o quociente C representa a quantidade de A por unidade de B. Exemplo Se um objecto custar 2, então 10 objectos custam 20. Neste caso temos 20 :10 2.

Tamanho: px
Começar a partir da página:

Download "o quociente C representa a quantidade de A por unidade de B. Exemplo Se um objecto custar 2, então 10 objectos custam 20. Neste caso temos 20 :10 2."

Transcrição

1 Mtemátic I - Gestão ESTG/IPB Resolução. (i).0 : r Dividedo = Divisor x Quociete + Resto.0 = x Num divisão A : B C, A B 0 C o quociete C represet qutidde de A por uidde de B. Exemplo Se um ojecto custr, etão 0 ojectos custm 0. Neste cso temos 0 : O quociete represet divisão de 0 em 0 prtes, ou sej qutidde de euros por ojecto. Notr que este rciocíio é válido se estivermos cosiderr um relção lier etre o úmero de ojectos x e o seu custo y, este cso y x () A respost dr líe () é o resultdo d divisão 96 : 8, i.e. cd grm de produto cust. () A respost dr líe () é o resultdo d divisão 8 : , i.e. com compr-se proximdmete oitet e três milésims de grm do produto. ESTG/IPB Deprtmeto de Mtemátic Mário Artes

2 Mtemátic I - Gestão ESTG/IPB. Frcções Numerdor Deomidor O vlor d frcção correspode o resultdo excto d divisão, i.e. c c. 0.7, porque 0.7., porque. O vlor de um frcção ão se lter se multiplicrmos ou dividirmos o umerdor e o deomidor pelo mesmo úmero O primeiro exemplo represet redução d frcção 6 8 à form mis simples (com úmeros mis pequeos). Dest últim, por ão se poder reduzir mis, diz-se que está form irredutível. ESTG/IPB Deprtmeto de Mtemátic Mário Artes

3 Mtemátic I - Gestão ESTG/IPB Adição de Frcções () ( ) Pr efectur som, temos que oter dus frcções com o mesmo deomidor. O meor deomidor possível é o míimo múltiplo comum de 0 e 60. Cálculo do mmc(0,60) Fctorizmos os dois úmeros em produtos de fctores primos Nest otção, 0 sigific divisão de 0 por, cujo quociete é 0; escrevemos 0 lih seguite d colu esquerd e repetimos o processo. A fctorizção termi qudo colu d esquerd se otém. Todos os úmeros colu direit são úmeros primos (um úmero primo é um úmero iteiro positivo, mior do que, que só é divisível por si próprio e por. Os primeiros sete úmeros primos são,,, 7,,,7 ). Mrcmos em cd decomposição os fctores comus ms (os que têm um rr) Multiplicmos frcção correspodete cd úmero pelos termos ão mrcdos o outro úmero: , i.e. mmc(0,60) () () ESTG/IPB Deprtmeto de Mtemátic Mário Artes

4 Mtemátic I - Gestão ESTG/IPB Multiplicção de Frcções Regr gerl: c c d d Divisão de Frcções Regr gerl: 6. Potêcis c d ou d c Expoete d c c d Bse 6 ESTG/IPB Deprtmeto de Mtemátic Mário Artes

5 Mtemátic I - Gestão ESTG/IPB 6 Multiplicção de Potêcis com Mesm Bse Regr gerl: c c 7 9 c c c c Divisão de Potêcis com Mesm Bse Regr gerl: c c Exemplo Potêcis com expoete ulo: 0 se 0. Exemplo 0 Potêcis com expoete egtivo: se 0. 8 ESTG/IPB Deprtmeto de Mtemátic Mário Artes

6 Mtemátic I - Gestão ESTG/IPB 7 Potêcis de frcções: Rdicis Sil de rdicl Ídice do rdicl: úmero iteiro positivo 6 Rdicdo: úmero ão-egtivo se o ídice do rdicl é pr 9 lê-se riz qudrd de ove ou riz ídice dois de ove. 8 lê-se riz cúic de oito ou riz ídice três de oito. 6 6 lê-se riz sext de sesset e qutro ou riz ídice seis de sesset e qutro. lê-se riz -ésim de ou riz ídice de. 9 sigific que 9. 8 sigific que 6 6 sigific que sigific que ESTG/IPB Deprtmeto de Mtemátic Mário Artes

7 Mtemátic I - Gestão ESTG/IPB 8 Proprieddes d Rdicição [, são úmeros reis ão egtivos;, m são úmeros iteiros ão egtivos], m m m m 7 7 Se o rdicdo for egtivo, etão o ídice d riz tem que ser ímpr. 9 8 é igul ão está defiid o cojuto dos úmeros reis; ão existe um úmero tl que 9 e porque ão está defiid o cojuto dos úmeros reis. é igul porque. Not: por defiição temos m m m, sedo e positivos. otr que, ou sej, 6 6 como riz cúic de. comport-se ESTG/IPB Deprtmeto de Mtemátic Mário Artes

8 Mtemátic I - Gestão ESTG/IPB 9 Exercícios. Escrever form irredutível () 7 () 8. Resolver. 7 () () (c) 0. Escrever como produto. () 8 () 8 (c) 9. Reduzir cd um ds expressões à form de frcção irredutível. () () 7 7 (c) : 7 (d) (e) (f) 0. 0 (g) (h) (i) ( ) 6 6. Simplificr s expressões. () () (d) (g) ( ) (e) (h) (c) (f) (i) : 6. Um cot cári é iicid com ct. De seguid é duplicd cd di que pss. Qul o vlor d cot o fim de 0 dis? E o fim de 0 dis? 7. Um cot cári é iicid com De seguid são-lhe crescetdos cd di que pss. Qul o vlor d cot o fim de 0 dis? E o fim de 0 dis? 8. Pr cd expressão E, determir o iteiro k tl que k E k. () 9 () 8 (c) (d) 8 (e) 6 (f) 6 (g) 8 (h) 9 (i) 8 (j) 9 (k) (l) 7 66 ESTG/IPB Deprtmeto de Mtemátic Mário Artes

9 Mtemátic I - Gestão ESTG/IPB 0 (m) () 6 (o) 9 (p) (q) 70. (r). (s) (t).. (u) 9. Escrever cd um ds expressões form deciml. () 0 () 9 0 (c) 9 0 (d) 0. Determir s soluções reis ds equções. () x () x (c) x (d) x ESTG/IPB Deprtmeto de Mtemátic Mário Artes

Vamos supor um quadrado com este, divididos em 9 quadradinhos iguais.

Vamos supor um quadrado com este, divididos em 9 quadradinhos iguais. Rdicição O que é, fil, riz qudrd de um úmero? Vmos supor um qudrdo com este, divididos em 9 qudrdihos iguis. Pegdo cd qudrdiho como uidde de áre, podemos dizer que áre do qudrdo é 9 qudrdihos, ou sej,

Leia mais

Z = {, 3, 2, 1,0,1,2,3, }

Z = {, 3, 2, 1,0,1,2,3, } Pricípios Aritméticos O cojuto dos úmeros Iteiros (Z) Em Z estão defiids operções + e. tis que Z = {, 3,, 1,0,1,,3, } A) + y = y + (propriedde comuttiv d dição) B) ( + y) + z = + (y + z) (propriedde ssocitiv

Leia mais

EXERCÍCIOS: d) 1.1 = e) = f) = g) 45.45= Potenciação de um número é o produto de fatores iguais a esse número; h)

EXERCÍCIOS: d) 1.1 = e) = f) = g) 45.45= Potenciação de um número é o produto de fatores iguais a esse número; h) d). = e).. = f).. = Potecição de um úmero é o produto de ftores iguis esse úmero; ) =. = 9 ) =.. = (OBS.: os úmeros:. são ditos ftores, ou ses) g).= h) 8.8.8= i) 89.89.89 = EXERCÍCIOS: 0. Sedo =, respod:

Leia mais

MÓDULO IV. EP.02) Determine o valor de: a) 5 3 = b) 3 4 = c) ( 4) 2 = d) 4 2 = EP.03) Determine o valor de: a) 2 3 = b) 5 2 = c) ( 3) 4 = d) 3 4 =

MÓDULO IV. EP.02) Determine o valor de: a) 5 3 = b) 3 4 = c) ( 4) 2 = d) 4 2 = EP.03) Determine o valor de: a) 2 3 = b) 5 2 = c) ( 3) 4 = d) 3 4 = MÓDULO IV. Defiição POTENCIACÃO Qudo um úmero é multiplicdo por ele mesmo, dizemos que ele está elevdo o qudrdo, e escrevemos:. Se um úmero é multiplicdo por ele mesmo váris vezes, temos um potêci:.. (

Leia mais

Quando o polinômio divisor é da forma x + a, devemos substituir no polinômio P(x), x por a, visto que: x + a = x ( a).

Quando o polinômio divisor é da forma x + a, devemos substituir no polinômio P(x), x por a, visto que: x + a = x ( a). POLINÔMIOS II. TEOREMA DE D ALEMBERT O resto d divisão de um poliômio P(x) por x é igul P(). m m Sej, com efeito, P x x x..., um poliômio de x, ordedo segudo s potecis m m decrescetes de x. Desigemos o

Leia mais

FUNÇÃO EXPONENCIAL. P potência. Se na potência a n a e n Q, temos: 1- Um número, não-nulo elevado a 0 (zero) é igual a 1 (um).

FUNÇÃO EXPONENCIAL. P potência. Se na potência a n a e n Q, temos: 1- Um número, não-nulo elevado a 0 (zero) é igual a 1 (um). FUNÇÃO EXPONENCIAL - Iicilmete, pr estudr fução epoecil e, coseqüetemete, s equções epoeciis, devemos rever os coceitos sore Potecição. - POTENCIAÇÃO Oserve o produto io.... = 6 Este produto pode ser revido

Leia mais

COLÉGIO SANTO IVO. Educação Infantil - Ensino Fundamental - Ensino Médio

COLÉGIO SANTO IVO. Educação Infantil - Ensino Fundamental - Ensino Médio COLÉGIO SANTO IVO Educção Iftil - Esio Fudmetl - Esio Médio Roteiro de Estudo pr Avlição do º Trimestre - 0 Discipli: Mtemátic e Geometri Série: º Ao EFII Profª Cristi Nvl O luo deverá : - Estudr o resumo

Leia mais

AULAS 7 A 9 MÉDIAS LOGARITMO. Para n números reais positivos dados a 1, a 2,..., a n, temos as seguintes definições:

AULAS 7 A 9 MÉDIAS LOGARITMO.  Para n números reais positivos dados a 1, a 2,..., a n, temos as seguintes definições: 009 www.cursoglo.com.br Treimeto pr Olimpíds de Mtemátic N Í V E L AULAS 7 A 9 MÉDIAS Coceitos Relciodos Pr úmeros reis positivos ddos,,...,, temos s seguites defiições: Médi Aritmétic é eésim prte d som

Leia mais

AULA 1 - Conjuntos numéricos: propriedades, operações e representações.

AULA 1 - Conjuntos numéricos: propriedades, operações e representações. AULA - Cojutos uméricos: proprieddes, operções e represetções.. Cojutos: Proprieddes e operções Defiição Símbolo / Notção Exemplo Vzio = Pertiêci Iclusão ou Subcojuto Uião Itersecção (pertece) (ão pertece)

Leia mais

FICHA DE TRABALHO N.º 3 MATEMÁTICA A - 10.º ANO RADICAIS E POTÊNCIAS DE EXPOENTE RACIONAL

FICHA DE TRABALHO N.º 3 MATEMÁTICA A - 10.º ANO RADICAIS E POTÊNCIAS DE EXPOENTE RACIONAL Rdicis e Potêcis de Expoete Rciol Site: http://recursos-pr-mtemtic.webode.pt/ FIH E TRLHO N.º MTEMÁTI - 0.º NO RIIS E POTÊNIS E EXPOENTE RIONL ohece Mtemátic e domirás o Mudo. Glileu Glilei GRUPO I ITENS

Leia mais

A potenciação indica multiplicações de fatores iguais. Por exemplo, o produto

A potenciação indica multiplicações de fatores iguais. Por exemplo, o produto POTENCIAÇÃO E RADICIAÇÃO POTENCIAÇÃO A potecição idic ultiplicções de ftores iguis. Por eeplo, o produto... pode ser idicdo for. Assi, o síolo, sedo u úero iteiro e u úero turl ior que, sigific o produto

Leia mais

PROPRIEDADE E EXERCICIOS RESOLVIDOS.

PROPRIEDADE E EXERCICIOS RESOLVIDOS. PROPRIEDADE E EXERCICIOS RESOLVIDOS. Proprieddes:. Epoete Igul u(. Cosiderdo d coo se osse qulquer uero ou o d u letr que pode tor qulquer vlor. d d d e: d 9 9 9. Epoete Mior que U(. De u or gerl te-se:...

Leia mais

POTENCIAÇÃO. pcdamatematica. a 1. 5 f) ( 5) 5 h) ( 3) a. b (5,2).(10,3) (9,9) 26 a. a a. Definição. Ex: a) Seja a, n e n 2. Definimos: n vezes

POTENCIAÇÃO. pcdamatematica. a 1. 5 f) ( 5) 5 h) ( 3) a. b (5,2).(10,3) (9,9) 26 a. a a. Definição. Ex: a) Seja a, n e n 2. Definimos: n vezes Sej, e. Defiimos: E0: Clcule: d) e) Defiição.... vezes 0 f) ( ) g) h) 0 6 ( ) i) ( ) j) E0: Dos úmeros bio, o que está mis próimo de (,).(0,) é: (9,9) 0,6 6, 6, d) 6 e) 60 E0: O vlor de 0, (0,6) é: 0,06

Leia mais

Universidade Federal Fluminense ICEx Volta Redonda Métodos Quantitativos Aplicados I Professora: Marina Sequeiros

Universidade Federal Fluminense ICEx Volta Redonda Métodos Quantitativos Aplicados I Professora: Marina Sequeiros Uiversidde Federl Flumiese ICE Volt Redod Métodos Qutittivos Aplicdos I Professor: Mri Sequeiros. Poliômios Defiição: Um poliômio ou fução poliomil P, vriável, é tod epressão do tipo: P)=... 0, ode IN,

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 2

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 2 FICHA de AVALIAÇÃO de MATEMÁTICA A 4º Teste º Ao de escolridde Versão Nome: Nº Turm: Professor: José Tioco 09/0/08 Apresete o seu rciocíio de form clr, idicdo todos os cálculos que tiver de efetur e tods

Leia mais

PROF. GILMAR AUGUSTO PROF. GILMAR AUGUSTO

PROF. GILMAR AUGUSTO PROF. GILMAR AUGUSTO MÚLTIPLOS E DIVISORES - (Of. Justiç Bttis e Adrdi). Ds firmtivs: - O úmero zero é o úico úmero pr que é primo; - O úmero ão é primo em composto; - Os úmeros que têm mis de dois divisores são chmdos úmeros

Leia mais

COLÉGIO SANTO IVO. Educação Infantil - Ensino Fundamental - Ensino Médio

COLÉGIO SANTO IVO. Educação Infantil - Ensino Fundamental - Ensino Médio COLÉGIO SANTO IVO Educção Ifti - Esio Fudmet - Esio Médio Roteiro de Estudo pr Avição do º Trimestre - 08 Discipi: Mtemátic e Geometri Série: º Ao EFII Profª Cristi Nv O uo deverá : - Assistir s Vídeo

Leia mais

BINÔMIO DE NEWTON E TRIÂNGULO DE PASCAL

BINÔMIO DE NEWTON E TRIÂNGULO DE PASCAL BINÔMIO DE NEWTON E TRIÂNGULO DE PASCAL Itrodução Biômio de Newto: O iômio de Newto desevolvido elo célere Isc Newto serve r o cálculo de um úmero iomil do tio ( ) Se for, fic simles é es decorr que ()²

Leia mais

MATEMÁTICA BÁSICA. a c ad bc. b d bd EXERCÍCIOS DE AULA. 01) Calcule o valor de x em: FRAÇÕES

MATEMÁTICA BÁSICA. a c ad bc. b d bd EXERCÍCIOS DE AULA. 01) Calcule o valor de x em: FRAÇÕES MATEMÁTICA BÁSICA FRAÇÕES EXERCÍCIOS DE AULA ) Clcule o vlor de x em: A som e sutrção de frções são efetuds prtir d oteção do míimo múltiplo comum dos deomidores. É difícil respoder de imedito o resultdo

Leia mais

Um disco rígido de 300Gb foi dividido em quatro partições. O conselho directivo ficou. 24, os alunos ficaram com 3 8

Um disco rígido de 300Gb foi dividido em quatro partições. O conselho directivo ficou. 24, os alunos ficaram com 3 8 GUIÃO REVISÕES Simplificção de expressões Um disco rígido de 00Gb foi dividido em qutro prtições. O conselho directivo ficou com 1 4, os docentes ficrm com 1 4, os lunos ficrm com 8 e o restnte ficou pr

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A 4º Teste º Ao de escolridde Versão Nome: Nº Turm: Professor: José Tioco 09/0/08 Apresete o seu rciocíio de form clr, idicdo todos os cálculos que tiver de efetur e tods

Leia mais

PROPRIEDADES DAS POTÊNCIAS

PROPRIEDADES DAS POTÊNCIAS EXPONENCIAIS REVISÃO DE POTÊNCIAS Represetos por, potêci de bse rel e epoete iteiro. Defiios potêci os csos bio: 0) Gráfico d fução f( ) 0 Crescete I ]0, [.....,, ftores 0, se 0 PROPRIEDADES DAS POTÊNCIAS

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão.4

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão.4 FICHA de AVALIAÇÃO de MATEMÁTICA A 5º Teste º Ao de escolridde Versão4 Nome: Nº Turm: Professor: José Tioco /4/8 Apresete o seu rciocíio de form clr, idicdo todos os cálculos que tiver de efetur e tods

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão.1

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão.1 FICHA de AVALIAÇÃO de MATEMÁTICA A 5º Teste º Ao de escolridde Versão Nome: Nº Turm: Proessor: José Tioco 3/4/8 Apresete o seu rciocíio de orm clr, idicdo todos os cálculos que tiver de eetur e tods s

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 4

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 4 FICHA de AVALIAÇÃO de MATEMÁTICA A 0.º Ao Versão Apresete o seu rciocíio de form clr, idicdo todos os cálculos que tiver de efetur e tods s justificções ecessáris. Qudo, pr um resultdo, ão é pedid um proimção,

Leia mais

Redes elétricas Circuitos que contém resistências e geradores de energia podem ser analisados usando sistemas de equações lineares;

Redes elétricas Circuitos que contém resistências e geradores de energia podem ser analisados usando sistemas de equações lineares; Álger Lier Mtrizes e vetores Sistems lieres Espços vetoriis Bse e dimesão Trsformções lieres Mtriz de um trsformção lier Aplicções d Álger Lier: Redes elétrics Circuitos que cotém resistêcis e gerdores

Leia mais

Matrizes e Sistemas de equações lineares. D.I.C. Mendes 1

Matrizes e Sistemas de equações lineares. D.I.C. Mendes 1 Mtrizes e Sistems de equções lieres D.I.C. Medes s mtrizes são um ferrmet básic formulção de problems de mtemátic e de outrs áres. Podem ser usds: resolução de sistems de equções lieres; resolução de sistems

Leia mais

a é dita potência do número real a e representa a

a é dita potência do número real a e representa a IFSC / Mteátic Básic Prof. Júlio Césr TOMIO POTENCIAÇÃO [ou Expoecição] # Potêci co Expoete Nturl: Defiição: Ddo u úero iteiro positivo, expressão ultiplicção do úero rel e questão vezes. é dit potêci

Leia mais

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA LISTA 2 RADICIAÇÃO

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA LISTA 2 RADICIAÇÃO INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA Professores: Griel Brião / Mrcello Amdeo Aluo(: Turm: ESTUDO DOS RADICAIS LISTA RADICIAÇÃO Deomi-se riz de ídice de um úmero rel, o úmero rel tl que

Leia mais

DESIGUALDADES Onofre Campos

DESIGUALDADES Onofre Campos OLIMPÍADA BRASILEIRA DE MATEMÁTICA NÍVEL II SEMANA OLÍMPICA Slvdor, 9 6 de jeiro de 00 DESIGUALDADES Oofre Cmpos oofrecmpos@olcomr Vmos estudr lgums desigulddes clássics, como s desigulddes etre s médis

Leia mais

Prova: DESAFIO. I. Traduzindo para a linguagem simbólica, temos a seguinte equação na incógnita x, com x > 0: 45 4x = x x 3 4x = 0 x 4 4x 2 45 = 0

Prova: DESAFIO. I. Traduzindo para a linguagem simbólica, temos a seguinte equação na incógnita x, com x > 0: 45 4x = x x 3 4x = 0 x 4 4x 2 45 = 0 Colégio Nome: N.º: Edereço: Dt: Telefoe: E-mil: Discipli: MATEMÁTICA Prov: DESAFIO PARA QUEM CURSARÁ A ạ SÉRIE DO ENSINO MÉDIO EM 09 QUESTÃO 6 A difereç etre o cubo de um úmero rel positivo e o seu quádruplo,

Leia mais

2. Resolução Numérica de Equações Não-Lineares

2. Resolução Numérica de Equações Não-Lineares . Resolução Numéric de Equções Não-Lieres. Itrodução Neste cpítulo será visto lgoritmos itertivos pr ecotrr rízes de fuções ão-lieres. Nos métodos itertivos, s soluções ecotrds ão são ets, ms estrão detro

Leia mais

M M N. Logo: MN = DC = DP + PC DC = AB + AB DC = 2 AB S ABCD = (AB + DC). = (AB + 2 AB). = 3 AB S M N CD = Assim temos que: M'N'CD h

M M N. Logo: MN = DC = DP + PC DC = AB + AB DC = 2 AB S ABCD = (AB + DC). = (AB + 2 AB). = 3 AB S M N CD = Assim temos que: M'N'CD h QUESTÃO Sejm i, r + si e + (r s) + (r + s)i ( > ) termos de um seqüêci. etermie, em fução de, os vlores de r e s que torm est seqüêci um progressão ritmétic, sbedo que r e s são úmeros reis e i. Sbemos

Leia mais

1. (6,0 val.) Determine uma primitiva de cada uma das seguintes funções. (considere a mudança de variável u = tan 2

1. (6,0 val.) Determine uma primitiva de cada uma das seguintes funções. (considere a mudança de variável u = tan 2 Istituto Superior Técico Deprtmeto de Mtemátic Secção de Álgebr e Aálise o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBiom e MEFT o Sem. 00/ 5/J/0 - v. Durção: h30m RESOLUÇÃO. 6,0 vl. Determie um

Leia mais

Curso de linguagem matemática Professor Renato Tião. 1. Resolver as seguintes equações algébricas: GV. Simplifique a expressão 2 GV.

Curso de linguagem matemática Professor Renato Tião. 1. Resolver as seguintes equações algébricas: GV. Simplifique a expressão 2 GV. Curso de liguge teátic Professor Reto Tião. Resolver s seguites equções lgébrics: ) x + = b) x = c) x = d) x = e) x = f) x = g) x = ) x = i) x = j) = k) logx = l) logx= x GV. GV. Siplifique expressão 8

Leia mais

Propriedades Matemáticas

Propriedades Matemáticas Proprieddes Mtemátics Guilherme Ferreir guifs2@hotmil.com Setembro, 2018 Sumário 1 Introdução 2 2 Potêncis 2 3 Rízes 3 4 Frções 4 5 Produtos Notáveis 4 6 Logritmos 5 6.1 Consequêncis direts d definição

Leia mais

Matrizes - revisão. No caso da multiplicação ser possível, é associativa e distributiva Não é, em geral, comutativa 2013/03/12 MN 1

Matrizes - revisão. No caso da multiplicação ser possível, é associativa e distributiva Não é, em geral, comutativa 2013/03/12 MN 1 Mtrizes - revisão No cso d multiplicção ser possível, é ssocitiv e distributiv A ( BC) ( AB) C A( B C) AB AC Não é, em gerl, comuttiv AB BA 03/03/ MN Mtrizes - revisão A divisão de mtrizes ão é um operção

Leia mais

FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA. Equações Exponenciais

FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA. Equações Exponenciais FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA Equções Epoeciis... Fução Epoecil..4 Logritmos: Proprieddes 6 Fução Logrítmic. Equções Logrítmics...5 Iequções Epoeciis e Logrítmics.8 Equções Epoeciis 0. (ITA/74)

Leia mais

AVALIAÇÃO TRIMESTRE. DISCIPLINA Matemática ALUNO(A) GABARITO

AVALIAÇÃO TRIMESTRE. DISCIPLINA Matemática ALUNO(A) GABARITO COORDENAÇÃO ENSINO MÉDIO AVALIAÇÃO - 0 TRIMESTRE NOTA UNIDADE(S): CAMBOINHAS PROFESSOR Equie DISCIPLINA Mtemátic SÉRIE/TURMA O /A E B DATA /0/00 NITERÓI SÃO GONÇALO X X ALUNO(A) GABARITO N IMPORTANTE:.

Leia mais

Aula 9 Limite de Funções

Aula 9 Limite de Funções Alise Mtemátic I Aul 9 Limite de Fuções Ao cdémico 017 Tem 1. Cálculo Dierecil Noção ituitiv e deiição de ite. Eemplos de ites. Limites lteris. Proprieddes. Bibliogri Básic Autor Título Editoril Dt Stewrt,

Leia mais

Matemática C Extensivo V. 6

Matemática C Extensivo V. 6 Mtemátic C Etesivo V 6 Eercícios ) D ) D ) C O vlor uitário do isumo é represetdo por y Portto pelo produto ds mtrizes A e B temos o seguite sistem: 5 5 9 y 5 5y 5y 9 5y 5 Portto: y 4 y 4 As médis uis

Leia mais

Função Logaritmo - Teoria

Função Logaritmo - Teoria Fução Logritmo - Teori Defiição: O ritmo de um úmero rel positivo, bse IR { } podemos escrever Resumido temos: +, é o úmero rel tl que, equivletemete E: 7 8 8 8 8 7 * { }, IR { } * +, IR + Usdo que fução

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear NOTS E U Geometri lític e Álger ier Sistems de Equções ieres Professor: ui Ferdo Nues, r Geometri lític e Álger ier ii Ídice Sistems de Equções ieres efiições Geris Iterpretção Geométric de Sistems de

Leia mais

CURSO DE MATEMÁTICA BÁSICA

CURSO DE MATEMÁTICA BÁSICA Curso de Mtemátic Básic RONALDO VILAS BOAS COSTA CURSO DE MATEMÁTICA BÁSICA CONTEÚDOS BÁSICOS PARA UM MELHOR DESENVOLVIMENTO NA DISCIPLINA DE MATEMÁTICA Prof: RONALDO VILAS BOAS COSTA UBERLÂNDIA, 07 ÍNDICE

Leia mais

4º Teste de Avaliação de MATEMÁTICA A 12º ano

4º Teste de Avaliação de MATEMÁTICA A 12º ano º (0 / 4) Nº Nome 4º Teste de Avlição de MATEMÁTICA A º o 4 Fevereiro 04 durção 90 mi. Pro. Josué Bptist Clssiicção:, O Pro.:, Grupo I Os sete ites deste rupo são de escolh múltipl. Em cd um deles, são

Leia mais

Cálculo Diferencial e Integral 1

Cálculo Diferencial e Integral 1 NOTAS DE AULA Cálculo Dierecil e Itegrl Limites Proessor: Luiz Ferdo Nues, Dr. 8/Sem_ Cálculo ii Ídice Limites.... Noção ituitiv de ite.... Deiição orml de ite.... Proprieddes dos ites.... Limites lteris...

Leia mais

ESCOLA TÉCNICA DE BRASILIA CURSO DE MATEMÁTICA APLICADA

ESCOLA TÉCNICA DE BRASILIA CURSO DE MATEMÁTICA APLICADA AULA 0 POTENCIAÇÃO E RADICIAÇÃO. POTENCIAÇÃO N figur 0- teos o exeplo de u poteci DOIS ELEVADO A TRÊS ou DOIS ELEVADO AO CUBO ou siplesete DOIS AO CUBO. POTENCIAÇÃO Expoete (úero de vezes que o ftor se

Leia mais

SISTEMAS LINEARES. Sendo x e y, respectivamente, o número de pontos que cada jogador marcou, temos uma equação com duas incógnitas:

SISTEMAS LINEARES. Sendo x e y, respectivamente, o número de pontos que cada jogador marcou, temos uma equação com duas incógnitas: SISTEMAS LINEARES Do grego system ( Sy sigific juto e st, permecer, sistem, em mtemátic,é o cojuto de equções que devem ser resolvids juts,ou sej, os resultdos devem stisfzêlos simultemete. Já há muito

Leia mais

Universidade Salvador UNIFACS Cursos de Engenharia Métodos Matemáticos Aplicados / Cálculo Avançado / Cálculo IV Profa: Ilka Rebouças Freire

Universidade Salvador UNIFACS Cursos de Engenharia Métodos Matemáticos Aplicados / Cálculo Avançado / Cálculo IV Profa: Ilka Rebouças Freire Uiversidde Slvdor UNIFACS Cursos de Egehri Métodos Mtemáticos Aplicdos / Cálculo Avçdo / Cálculo IV Prof: Ilk Rebouçs Freire Série de Fourier Texto : Itrodução. Algus Pré-requisitos No curso de Cálculo

Leia mais

SISTEMAS LINEARES. Cristianeguedes.pro.br/cefet

SISTEMAS LINEARES. Cristianeguedes.pro.br/cefet SISTEMAS LINEARES Cristieguedes.pro.r/cefet Itrodução Notção B A X Mtricil Form. : m m m m m m m A es Mtri dos Coeficiet : X Mtri dsvriáveis : m B Termos Idepede tes : Número de soluções Ddo um sistem

Leia mais

As funções exponencial e logarítmica

As funções exponencial e logarítmica As fuções epoecil e logrítmic. Potêcis em Sej um úmero rel positivo, isto é, * +. Pr todo, potêci, de bse e epoete é defiid como o produto de ftores iguis o úmero rel :...... vezes Pr, estbelece-se 0,

Leia mais

MATEMÁTICA. Professor : Dêner Rocha. Monster Concursos 1

MATEMÁTICA. Professor : Dêner Rocha. Monster Concursos 1 MATEMÁTICA Professor : Dêner Roch Monster Concursos Adição e Subtrção de Números Inteiros ) (+) + (+7) = + + 7 = +0 (tirmos os prentes e conservmos os sinis dos números) b) (-9) + (-8) = - 9-8 = -7 (tirmos

Leia mais

Matemática 1 Professor Paulo Cesar Pfaltzgraff Ferreira. Sumário

Matemática 1 Professor Paulo Cesar Pfaltzgraff Ferreira. Sumário Mtemátic Professor Pulo Cesr Pfltgrff Ferreir i Sumário Uidde Revisão de Tópicos Fudmetis do Esio Médio... 0. Apresetção... 0. Simologi Mtemátic mis usul... 0. Cojutos Numéricos... 0. Operções com Números

Leia mais

MÉTODOS ITERATIVOS PARA RESOLUÇÃO DE SISTEMAS

MÉTODOS ITERATIVOS PARA RESOLUÇÃO DE SISTEMAS MÉTODO ITRATIVO PARA ROLUÇÃO D ITMA ) NORMA D UMA MATRIZ: ej A=[ ij ] um mtriz de ordem m: Norm lih: A má i m j ij Norm colu: A má jm i ij emplos: I) A 0 A A má má ; 0 má{4 ; } 4 0 ; má{; 5} 5 Os.: por

Leia mais

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou POLINÔMIOS Definição: Um polinômio de gru n é um função que pode ser escrit n form P() n n i 0... n i em que cd i é um número compleo (ou i 0 rel) tl que n é um número nturl e n 0. Os números i são denomindos

Leia mais

0,01. Qual a resposta correta à pergunta de Chiquinho, considerandose os valores atribuídos às variáveis pelo professor?

0,01. Qual a resposta correta à pergunta de Chiquinho, considerandose os valores atribuídos às variáveis pelo professor? GABARIO Questão: Chiquiho ergutou o rofessor qul o vlor umérico d eressão + y+ z. Este resodeu-lhe com cert iroi: como queres sber o vlor umérico de um eressão, sem tribuir vlores às vriáveis? Agor, eu

Leia mais

Integrais Duplos. Definição de integral duplo

Integrais Duplos. Definição de integral duplo Itegris uplos Recorde-se defiição de itegrl de Riem em : Um fução f :,, limitd em,, é itegrável à Riem em, se eiste e é fiito lim m j 0 j1 ft j j j1. ode P 0,, um qulquer prtição de, e t 1,,t um sequêci

Leia mais

Transformada z. A transformada z é a TFTD da sequência r -n x[n] e a ROC é determinada pelo intervalo de valores de r para os quais.

Transformada z. A transformada z é a TFTD da sequência r -n x[n] e a ROC é determinada pelo intervalo de valores de r para os quais. Trsformd A TFTD de um sequêci é: Pr covergir série deve ser solutmete somável. Ifelimete muitos siis ão podem ser trtdos: A trsformd é um geerlição d TFTD que permite o trtmeto desses siis: Ζ Defiição:

Leia mais

Unidade 2 Progressão Geométrica

Unidade 2 Progressão Geométrica Uidde Progressão Geométric Seuêci e defiição de PG Fórmul do termo gerl Fução expoecil e PG Juros compostos e PG Iterpolção geométric Som dos termos de um PG Seuêci e defiição de PG Imgie ue você tem dus

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A. TESTE Nº 4 Grupo I

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A. TESTE Nº 4 Grupo I ESOLA SEUNDÁRIA OM º ILO D. DINIS º ANO DE ESOLARIDADE DE MATEMÁTIA A TESTE Nº Grupo I As seis questões deste grupo são de escolh múltipl. Pr cd um dels são idicds qutro ltertivs, ds quis só um está correct.

Leia mais

Curso de linguagem matemática Professor Renato Tião. Operadores

Curso de linguagem matemática Professor Renato Tião. Operadores Operdores Curso de ligugem mtemátic Professor Reto Tião No uiverso dos úmeros reis, há sete operções ritmétics defiids, sedo que seis dels são idicds por síolos específicos: +,,,,,, e outr é idicd pel

Leia mais

Considere uma função contínua arbitrária f(x) definida em um intervalo fechado [a, b].

Considere uma função contínua arbitrária f(x) definida em um intervalo fechado [a, b]. Mtemátic II 9. Prof.: Luiz Gozg Dmsceo E-mils: dmsceo@yhoo.com.r dmsceo@uol.com.r dmsceo@hotmil.com http://www.dmsceo.ifo www.dmsceo.ifo dmsceo.ifo Itegris defiids Cosidere um fução cotíu ritrári f() defiid

Leia mais

0.2 Exercícios Objetivo. (c) (V)[ ](F)[ ] A segunda derivada de f é (4) x 0 2

0.2 Exercícios Objetivo. (c) (V)[ ](F)[ ] A segunda derivada de f é (4) x 0 2 A segud derivd de f é f() = { < 0 0 0 (4) Cálculo I List úmero 07 Logritmo e epoecil trcisio.prcio@gmil.com T. Prcio-Pereir Dep. de Computção lu@: Uiv. Estdul Vle do Acrú 3 de outubro de 00 pági d discipli

Leia mais

SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFERENÇA

SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFERENÇA SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFEREÇA ( ( x( Coeficiete costte. ( ( x ( Coeficiete vriável (depedete do tempo. Aplicmos x( pr e cosidermos codição iicil ( ( ( M ( ( ( ( x( x( ( x(

Leia mais

séries de termos positivos e a n b n, n (div.) (conv.)

séries de termos positivos e a n b n, n (div.) (conv.) Teorem.9 Sej e b i) (div.) ii) b º Critério de Comprção séries de termos positivos e b, N b (div.) (cov.) (cov.) Estude turez d série = sbedo que,! Ν! Teorem.0 º Critério de Comprção Sejm 0, b > 0 e lim

Leia mais

Turno Disciplina Carga Horária Licenciatura Plena em

Turno Disciplina Carga Horária Licenciatura Plena em Curso Turo Discipli Crg Horári Licecitur Ple em Noturo Mtemátic Elemetr III 60h Mtemátic Aul Período Dt Coordedor.. 0 6/0/006 ª. feir Tempo Estrtégi Recurso Descrição (Produção) Descrição (Arte) :0 / :

Leia mais

9 = 3 porque 3 2 = 9. 16 = 4 porque 4 2 = 16. -125 = - 5 porque (- 5) 3 = - 125. 81 = 3 porque 3 4 = 81. 32 = 2 porque 2 5 = 32 -32 = - 2

9 = 3 porque 3 2 = 9. 16 = 4 porque 4 2 = 16. -125 = - 5 porque (- 5) 3 = - 125. 81 = 3 porque 3 4 = 81. 32 = 2 porque 2 5 = 32 -32 = - 2 COLÉGIO PEDRO II Cpus Niterói Discipli: Mteátic Série: ª Professor: Grziele Souz Mózer Aluo (: Tur: Nº: RADICAIS º Triestre (Reforço) INTRODUÇÃO 9 porque 9 porque - - porque (- ) - 8 porque 8 porque De

Leia mais

SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFERENÇA

SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFERENÇA SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFEREÇA Coeficiete costte. SISTEMAS LIT CARACTERIZADOS POR EQUAÇÕES A DIFEREÇA COM COEFICIETES COSTATES Sistems descritos por equções difereç com coeficiete

Leia mais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais POTÊNCIAS A potênci de epoente n ( n nturl mior que ) do número, representd por n, é o produto de n ftores iguis. n =...... ( n ftores) é chmdo de bse n é chmdo de epoente Eemplos =... = 8 =... = PROPRIEDADES

Leia mais

Somas de Riemann e Integração Numérica. Cálculo 2 Prof. Aline Paliga

Somas de Riemann e Integração Numérica. Cálculo 2 Prof. Aline Paliga Soms de Riem e Itegrção Numéric Cálculo 2 Prof. Alie Plig Itrodução Problems de tgete e de velocidde Problems de áre e distâci Derivd Itegrl Defiid 1.1 Áres e distâcis 1.2 Itegrl Defiid 1.1 Áres e distâcis

Leia mais

Uma figura plana bem conhecida e que não possui lados é o círculo. Como determinar o perímetro de um círculo?

Uma figura plana bem conhecida e que não possui lados é o círculo. Como determinar o perímetro de um círculo? erímetro A defiição de erímetro de um figur l muits vezes ode ser ecotrd do seguite modo: é som ds medids dos ldos d figur. Ms será que ess defiição é bo? or exemlo, um figur como que segue bixo ossui

Leia mais

Módulo 01. Matrizes. [Poole 134 a 178]

Módulo 01. Matrizes. [Poole 134 a 178] ódulo Note em, leitur destes potmetos ão dispes de modo lgum leitur tet d iliogrfi pricipl d cdeir hm-se à teção pr importâci do trlho pessol relizr pelo luo resolvedo os prolems presetdos iliogrfi, sem

Leia mais

6/16/2011. Relações de Girard Relações entre raizes e coeficientes. a x. a 1. Considere-se as raízes i, i=1,2,...n, e P(x) na forma fatorada:

6/16/2011. Relações de Girard Relações entre raizes e coeficientes. a x. a 1. Considere-se as raízes i, i=1,2,...n, e P(x) na forma fatorada: 66 Numero de Rizes Reis Teorem de Bolzo Sej = um equção lgébric com coeficietes reis,b. Se b , etão eiste um úmero pr de rízes reis, ou ão eistem

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear NOS DE U Geometri líti e Álger ier Mtrizes e Determites Professor: uiz Ferdo Nues, Dr 8/Sem_ Geometri líti e Álger ier ii Ídie Mtrizes e Determites Mtrizes Determites e Mtriz Ivers 8 Referêis iliográfis

Leia mais

Métodos Numéricos Interpolação Métodos de Newton. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Interpolação Métodos de Newton. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numéricos Métodos de Newto Professor Volmir Eugêio Wilhelm Professor Mri Klei Poliomil Revisão No eemplo só se cohece fução pr 5 vlores de - ós de iterpolção Desej-se cohecer o vlor d fução em

Leia mais

CONJUNTOS NUMÉRICOS NOTAÇÕES BÁSICAS. : Variáveis e parâmetros. : Conjuntos. : Pertence. : Não pertence. : Está contido. : Não está contido.

CONJUNTOS NUMÉRICOS NOTAÇÕES BÁSICAS. : Variáveis e parâmetros. : Conjuntos. : Pertence. : Não pertence. : Está contido. : Não está contido. CONJUNTOS NUMÉRICOS NOTAÇÕES BÁSICAS,,... A, B,... ~ > < : Vriáveis e prâmetros : Conjuntos : Pertence : Não pertence : Está contido : Não está contido : Contém : Não contém : Existe : Não existe : Existe

Leia mais

Professor Mauricio Lutz FUNÇÃO EXPONENCIAL

Professor Mauricio Lutz FUNÇÃO EXPONENCIAL Professor Muricio Lutz REVISÃO SOBRE POTENCIAÇÃO ) Expoete iteiro positivo FUNÇÃO EPONENCIAL Se é u uero rel e é iteiro, positivo, diferete de zero e ior que u, expressão represet o produto de ftores,

Leia mais

Revisão de Álgebra Matricial

Revisão de Álgebra Matricial evisão de Álgebr Mtricil Prof. Ptrici Mri ortolo Fote: OLDINI, C. e WETZLE, F.; Álgebr Lier. ª. ed. São Pulo. Editor Hrbr, 986 Álgebr Mtricil D Mtemátic do º. Gru: y ( y ( De( : y Em ( : ( Em ( : y y 8

Leia mais

7 Solução aproximada Exemplo de solução aproximada. k critérios que o avaliador leva em consideração.

7 Solução aproximada Exemplo de solução aproximada. k critérios que o avaliador leva em consideração. 7 olução proximd Neste cpítulo é feit elborção de um ov formulção simplificd prtir de um estudo de Lel (008), demostrd por dus forms á cohecids de proximção do cálculo do vetor w de prioriddes retirds

Leia mais

Os números racionais. Capítulo 3

Os números racionais. Capítulo 3 Cpítulo 3 Os números rcionis De modo informl, dizemos que o conjunto Q dos números rcionis é composto pels frções crids prtir de inteiros, desde que o denomindor não sej zero. Assim como fizemos nteriormente,

Leia mais

1- SOLUÇÃO DE SISTEMAS LINEARES E INVERSÃO DE MATRIZES

1- SOLUÇÃO DE SISTEMAS LINEARES E INVERSÃO DE MATRIZES - SOLUÇÃO DE SISTEMAS LINEARES E INVERSÃO DE MATRIZES.- Métodos etos pr solução de sistems lieres Métodos pr solução de sistems de equções lieres são divididos priciplmete em dois grupos: ) Métodos Etos:

Leia mais

Módulo e Equação Modular (valor absoluto)?

Módulo e Equação Modular (valor absoluto)? Mtemátic Básic Unidde 6 Função Modulr RANILDO LOES Slides disponíveis no nosso SITE: https://ueedgrtito.wordpress.com Módulo e Equção Modulr (vlor bsoluto)? - - - - R uniddes uniddes Definição, se, se

Leia mais

Conjuntos Numéricos. Conjuntos Numéricos

Conjuntos Numéricos. Conjuntos Numéricos UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA.. Proprieddes dos números

Leia mais

Definição: Sejam dois números inteiros. Uma matriz real é uma tabela de números reais com m linhas e n colunas, distribuídos como abaixo:

Definição: Sejam dois números inteiros. Uma matriz real é uma tabela de números reais com m linhas e n colunas, distribuídos como abaixo: I MTRIZES Elemeos de Álgebr Lier - MTRIZES Prof Emíli / Edmé Defiição: Sem dois úmeros ieiros Um mriz rel é um bel de úmeros reis com m lihs e colus, disribuídos como bixo: ( ) i m m m m Cd elemeo d mriz

Leia mais

LISTA PREPARATÓRIA PARA RECUPERAÇÃO FINAL MATEMÁTICA (9º ano)

LISTA PREPARATÓRIA PARA RECUPERAÇÃO FINAL MATEMÁTICA (9º ano) PARTE I ) Determine s potêncis: ) 4 = b) - = ) Escrev usndo potênci de bse 0: ) 7 bilhões: b) um milionésimo: ) Trnsforme os números ddos em potencições e simplifique epressão: 0000000 00000 5 = 4) Escrev

Leia mais

Novo Espaço Matemática A, 12.º ano Proposta de teste de avaliação [março 2019]

Novo Espaço Matemática A, 12.º ano Proposta de teste de avaliação [março 2019] Propost de teste de vlição [mrço 09] Nome: Ao / Turm: N.º: Dt: - - Não é permitido o uso de corretor. Deves riscr quilo que pretedes que ão sej clssificdo. A prov iclui um formulário. As cotções dos ites

Leia mais

Após encontrar os determinantes de A. B e de B. A, podemos dizer que det A. B = det B. A?

Após encontrar os determinantes de A. B e de B. A, podemos dizer que det A. B = det B. A? PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - ª SÉRIE - ENSINO MÉDIO ============================================================================================= Determinntes - O vlor

Leia mais

CURSO DE INVERNO DE MATEMÁTICA BÁSICA 2013

CURSO DE INVERNO DE MATEMÁTICA BÁSICA 2013 Progrm de Pós-Grdução em Físic Curso de Ivero de Mtemátic Básic 0 CURSO DE INVERNO DE MATEMÁTICA BÁSICA 0 Progrm de Pós-Grdução em Físic Pró-Reitori de Esio de Grdução/UFSC Pró-Reitori de Esio de Pós-Grdução/UFSC

Leia mais

CÁLCULO I. Exibir o cálculo de algumas integrais utilizando a denição.

CÁLCULO I. Exibir o cálculo de algumas integrais utilizando a denição. CÁLCULO I Prof Mrcos Diiz Prof Adré Almeid Prof Edilso Neri Prof Emerso Veig Prof Tigo Coelho Aul o : A Itegrl de Riem Objetivos d Aul Deir itegrl de Riem; Exibir o cálculo de lgums itegris utilizdo deição

Leia mais

CURSO DE INVERNO DE MATEMÁTICA BÁSICA 2013

CURSO DE INVERNO DE MATEMÁTICA BÁSICA 2013 Progrm de Pós-Grdução em Físic Curso de Ivero de Mtemátic Básic 0 CURSO DE INVERNO DE MATEMÁTICA BÁSICA 0 Progrm de Pós-Grdução em Físic Pró-Reitori de Esio de Grdução/UFSC Pró-Reitori de Esio de Pós-Grdução/UFSC

Leia mais

SISTEMA DE EQUAÇÕES LINEARES

SISTEMA DE EQUAÇÕES LINEARES SISTEM DE EQUÇÕES LINERES Defiição Ddos os úmeros reis b com equção b ode são vriáveis ou icógits é deomid equção lier s vriáveis Os úmeros reis são deomidos coeficietes ds vriáveis respectivmete e b é

Leia mais

Recordando produtos notáveis

Recordando produtos notáveis Recordndo produtos notáveis A UUL AL A Desde ul 3 estmos usndo letrs pr representr números desconhecidos. Hoje você sbe, por exemplo, que solução d equção 2x + 3 = 19 é x = 8, ou sej, o número 8 é o único

Leia mais

SOLUÇÕES DE EDO LINEARES DE 2 A ORDEM NA FORMA INFINITA

SOLUÇÕES DE EDO LINEARES DE 2 A ORDEM NA FORMA INFINITA SOLUÇÕES DE EDO LINEARES DE A ORDEM NA FORMA INFINITA Coforme foi visto é muito simples se obter solução gerl de um EDO lier de ordem coeficietes costtes y by cy em termos ds fuções lgébrics e trscedetes

Leia mais

MATEMÁTICA BÁSICA PROF ª. PAULA FRANCIS BENEVIDES

MATEMÁTICA BÁSICA PROF ª. PAULA FRANCIS BENEVIDES MATEMÁTICA BÁSICA PROF ª. PAULA FRANCIS BENEVIDES FRAÇÕES: Adição e Subtrção ) ) ) ) ) 6) Multiplicção 7 Divisão 7 7) ) = Número Misto 9) 0) Coversão de Número Decimis em Frção ) 0, = ), = ) 0, = TESTES:

Leia mais

Universidade Federal de Pelotas Vetores e Álgebra Linear Prof a : Msc. Merhy Heli Rodrigues Matrizes

Universidade Federal de Pelotas Vetores e Álgebra Linear Prof a : Msc. Merhy Heli Rodrigues Matrizes Uiversidde Federl de Pelos Veores e Álgebr Lier Prof : Msc. Merhy Heli Rodrigues Mrizes. Mrizes. Defiição: Mriz m x é um bel de m. úmeros reis disposos em m lihs (fils horizois) e colus (fils vericis)..

Leia mais

retangular: Corte: 2 Fatias: 4 Corte: Fatias: 7 Corte: 4 Fatias: 11 com n cor a definição função. Isto n+ a n 2.

retangular: Corte: 2 Fatias: 4 Corte: Fatias: 7 Corte: 4 Fatias: 11 com n cor a definição função. Isto n+ a n 2. Métodos de Cotgem e Esttístic Cristi Pol e Luverci Nscimeto. RELAÇÕES DE RECORRÊNCIA. Itrodução Algums relções mtemátics podem ser deiids por recorrêci. O objetivo dess ul cosiste em estudr esses tipos

Leia mais

Testes de Radiciação

Testes de Radiciação Testes de Rdicição ) O vlor de 7 9 é ) ) Vlor d epressão ) 7 0 é : ) O número. ) é rcionl e menor que é rcionl e mior que é rcionl e menor que é rcionl e mior que não é rel ) (UFRGS) Se = e = ) número

Leia mais

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c.

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c. EQUAÇÃO DO GRAU Você já estudou em série nterior s equções do 1 gru, o gru de um equção é ddo pelo mior expoente d vriável, vej lguns exemplos: x + = 3 equção do 1 gru já que o expoente do x é 1 5x 8 =

Leia mais

COLÉGIO OBJETIVO JÚNIOR

COLÉGIO OBJETIVO JÚNIOR COLÉGIO OJETIVO JÚNIOR NOME: N. o : DT: / /0 FOLHETO DE MTEMÁTIC (V.C. E R.V.) 9. o NO Este folheto é um roteiro pr você recuperr o conteúdo trblhdo em 0. Como ele vi servir de bse pr você estudr pr s

Leia mais

Sequências Numéricas Progressão Aritmética. Prof.: Joni Fusinato

Sequências Numéricas Progressão Aritmética. Prof.: Joni Fusinato Sequêcis Numérics Progressão Aritmétic Prof.: Joi Fusito joi.fusito@ifsc.edu.br jfusito@gmil.com Sequêci de Fibocci Leordo Fibocci (1170 150) foi um mtemático itlio. Ficou cohecido pel descobert d sequêci

Leia mais