Resolução / Critério de Avaliação

Tamanho: px
Começar a partir da página:

Download "Resolução / Critério de Avaliação"

Transcrição

1 FUP - GHARIA CIVI xeríio Copleentr nº TORIA DAS STRUTURAS Ano letivo /3 Resolução / Critério de Avlição ot sobre Avlição: Convenção usd pr digrs de esforços: e - V V - - d Cd ite vlido ou está opletente erto ou está opletente errdo. Apens está erto se o resultdo for idêntio o d solução, ou se for rigorosente deonstrdo que substituição dos vlores de entrd orretos onduz extente os resultdos d solução. Consider-se orretos os vlores o u erro inferior %. roldn F Crterístis ds Brrs + C + C + C k/ + C A B C + C + C D ABC, CD e C: =GP I=.5 4 α= -5 / o C BF: =GP A=. α= -5 / o C. 3, 3, 3, Figur A estrutur lulr I = k/ A = 8 k ) Indi-se pelo enos u rzão pel qul estrutur não pode ser onsiderd oo siste bse. 9x% A. ão. leento CD é ipósttio. B. ão. Corpo ABCD-C é iperstátio. C. Si. D. Si.. ão. Corpo ABCD-CF é ipósttio (CIR e C). F. ão. ão resiste u ção orizontl. G. Si. H. ão. CD be oo ABC-CF são ipósttios. I. ão. Corpo ABCD-CF e C são ipósttios. Resolução T-C-/3-/8

2 b) Cálulo dos esforços pr Xi=. Cálulo ds reções d estrutur. = VD = VD = k Fy = V = V = 6k k/ t = C A B C t = 5 C t = - C roldn F t = C t = C t = C t = C t = 5 C t = - C t = C D. V =6k V =k D 3, 3, 3, Figur Soliitção Xi= Cálulo dos oentos Cálulo dos esforços xiis B = 3 / = 45k eiobc = 4.5 / =. 5k CB = C = 6 / = 8k = = k AB C C = 6 4 / 5 = 48k CD = k Cálulo dos esforços trnsversos V V CA = 6 = 6k V C = 6 3/ 5 = + 36k Resolução T-C-/3-/8

3 V Figur 3 sforços ssoidos Xi= 5x5/4%+%+% ) Cálulo dos esforços qundo inógnit X =. F = VD 3 = VD = k Fy = = V 8 73 V = 8 73 = k x = = H H = 3 73 =. 353k 3/5 3/ 73 4/5 73 8/ 4/5 3/5 X = 3/ 73 8/ 73 Figur 4 Soliitção X = Cálulo dos oentos Cálulo dos esforços xiis CB =.8 3 =. 4k CF = 4 ( ) = k C = = 73 = k = = = k BC FC C BF = k BC = 3/ 5 =. 6k CF = ( 4 / ) = k Resolução T-C-/3-3/8

4 C = ( ) = k Cálulo dos esforços trnsversos V BC = 4 5 =. 8k V C = / =. 8899k V CF = / 5 = k V Figur 5 sforços ssoidos X = 5x6/+5x6/+% d) Cálulo dos esforços qundo inógnit X =. = VD 3 = VD = 3k Fy = = V 3 V = 3k X = /3 /3 Figur 6 Soliitção X = Cálulo dos oentos C = k C = k Cálulo dos esforços xiis CD = 3k C = 4 / 5 3 = k Resolução T-C-/3-4/8

5 Cálulo dos esforços trnsversos V V C = = 5k /5 + -/3 V Figur 7 sforços ssoidos X = 5x4/+5x5/+% e) Cálulo dos, e plindo o Teore dos Trblos Virtuis. Cálulo de α t = ds + + ds αt ds αt I A + + ds = ( ( 8 + (.5)) ( 8).44494) = I = A α t ds = ( ) (.5) = 4.47 α tds = (( 3/ 5 3) 5 + ( ) 5 + ( ) ) = α t = = 7.88 = ( ) = = ds + Cálulo de I ds = / 3 I A ( ) =.369 A = ( ) / 8 = 6.93 = ( ) = % = ds + Cálulo de I A Resolução T-C-/3-5/8

6 I ds = / A = =.74 = (.74 + ) =.74 3% f) Cálulo dos, e plindo o Teore dos Trblos Virtuis. Cálulo de α t / 3. = ds + + ds αt ds αt I A + + ds = ( 6 5 ( 8)) =. rd I = rd A t ( ) 5 α ds = 5 =. rd.5 α tds = ( ) = rd 3 α t = rd = ( ) = 6. rd 3 Cálulo de = = ds + Cálulo de I I ds = / 3 5 A A = rd =.6667 = ( ) =.6667 rd rd 3% g) qução resolvente { { { = + X + X = + X + X = X +. 74X = X X X 33. 3k = X 7. 73k = % Resolução T-C-/3-6/8

7 +3.98 ) Cálulo dos esforços, e VV d estrutur, por utilizção do prinípio d sobreposição dos efeitos. Cálulo dos oentos CB = =. 486k CF = = 3. 98k C = = k Cálulo dos esforços xiis BC = 3/ = k CD = / = k CF = = 7. 56k C = = k Cálulo dos esforços trnsversos VV V BC = / = k V CF = = 8. 46k V C = / = 4. 4k V Figur 8 sforços finis 5x3/+5x3/+5x3/ i) Cálulo d vrição de opriento do bo l = + α t = (33.3/ 8 + ) (5 + 73) =. 83 A j) Cálulo d rotção e desloento orizontl do nó C. Cálulo d trnslção orizontl de C Aplindo o teore dos trblos virtuis, usndo oo estrutur e equilibrio que orresponde o siste bse D d líne ) soliitd por u rg unitári n direção direit/esquerd plid e C e deford virtul verddeir deford d estrutur ve: H α t = ds + ds t ds I + α C Resolução T-C-/3-7/8

8 C I ds = / 6 ( 4) ( ) 5 α t ds = ( ) ( 4) 5.5 = α tds = = 45 H = ( ) 5 =. 5 = Cálulo d rotção de C Figur 9 Soliitção unitári e respetivos esforços pr o álulo do desloento orizontl de C Aplindo o teore dos trblos virtuis, usndo oo estrutur e equilibrio que orresponde o siste bse D d líne ) soliitd por u oento unitário no sentido direto no ponto C e deford virtul verddeir deford d estrutur ve: - Figur Soliitção unitári e respetivos esforços pr o álulo d rotção do ponto C C I α t ΘC = ds + ds t ds I + α C ds = ( ) 5 ( ) α t ds = 5 ( ).5 ( ) α t ds = rd = 5.84 = ΘC = ( ) 5 =. 584rd rd rd Resolução T-C-/3-8/8

Álgebra Linear e Geometria Analítica D

Álgebra Linear e Geometria Analítica D 3 Deprtmento de Mtemáti Álgebr Liner e Geometri Anlíti D Segundo Teste 6 de Jneiro de 2 PREENCHA DE FORMA BEM LEGÍVEL Nome: Número de derno: Grelh de Resposts A B C D 2 3 4 5 Atenção Os primeiros 5 grupos

Leia mais

Resolução 2 o Teste 26 de Junho de 2006

Resolução 2 o Teste 26 de Junho de 2006 Resolução o Teste de Junho de roblem : Resolução: k/m m k/m k m 3m k m m 3m m 3m H R H R R ) A estti globl obtém-se: α g = α e + α i α e = ret 3 = 3 = ; α i = 3 F lint = = α g = Respost: A estrutur é eteriormente

Leia mais

Resistência de Materiais 2

Resistência de Materiais 2 Resistênci de Mteriis Ano ectivo 0/04 º Exme 8 de Jneiro de 04 Durção: hors Oservções: Não podem ser consultdos quisquer elementos de estudo pr lém do formulário fornecido. Resolver os prolems em grupos

Leia mais

QUESTÃO 01 Seja f : R R uma função definida pela sentença f(x) = 3 0,5 x. A respeito desta função considere as seguintes afirmativas:

QUESTÃO 01 Seja f : R R uma função definida pela sentença f(x) = 3 0,5 x. A respeito desta função considere as seguintes afirmativas: PROVA DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - JUNHO DE. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÃO Sej f : R R um

Leia mais

SOLUÇÃO COMECE DO BÁSICO

SOLUÇÃO COMECE DO BÁSICO SOLUÇÃO COMECE DO BÁSICO SOLUÇÃO CB1. [D] Sendo nulo o oento e relção o poio, teos: Mg 5 2Mg 10 x 2,5 10 x x 7,5 c SOLUÇÃO CB2. [D] Arthur é u corpo rígido e equilírio: Pr que ele estej e equilírio de

Leia mais

MARINHA DO BRASIL DIRETORIA DE ENSINO DA MARINHA (PROCESSO SELETIVO DE ADMISSÃO AO COLÉGIO NAVAL / PSA CN-2005) Prova : Amarela MATEMÁTICA

MARINHA DO BRASIL DIRETORIA DE ENSINO DA MARINHA (PROCESSO SELETIVO DE ADMISSÃO AO COLÉGIO NAVAL / PSA CN-2005) Prova : Amarela MATEMÁTICA MARINHA DO BRASIL DIRETORIA DE ENSINO DA MARINHA (PROCESSO SELETIVO DE ADMISSÃO AO COLÉGIO NAVAL / PSA CN005) Prov : Amrel MATEMÁTICA 1) Num triângulo ABC, AB = AC, o ponto D interno o ldo AC é determindo

Leia mais

1 Assinale a alternativa verdadeira: a) < <

1 Assinale a alternativa verdadeira: a) < < MATEMÁTICA Assinle lterntiv verddeir: ) 6 < 7 6 < 6 b) 7 6 < 6 < 6 c) 7 6 < 6 < 6 d) 6 < 6 < 7 6 e) 6 < 7 6 < 6 Pr * {} temos: ) *, * + e + * + ) + > + + > ) Ds equções (I) e (II) result 7 6 < ( 6 )

Leia mais

4.4 - Acelerômetros Combinados. Montagem: x 2. referência. Circuito: - + S v. a 1 = E 1 + E 2. a 2 -E 1 = E 2. Características de Sensores

4.4 - Acelerômetros Combinados. Montagem: x 2. referência. Circuito: - + S v. a 1 = E 1 + E 2. a 2 -E 1 = E 2. Características de Sensores 4.4 - Acelerômetros ombindos Montgem: G θ x x x ircuito: reerênci R R v R R R R R - + 0 + v R - + R 0-7 rcterístics de ensores Deslocmento liner médio: x x + x && x + Deslocmento ngulr médio: θ && θ x

Leia mais

GABARITO / 6 TRU 003: Mecânica das Estruturas II T1000 e T2000 3a. Prova 17/11/2006

GABARITO / 6 TRU 003: Mecânica das Estruturas II T1000 e T2000 3a. Prova 17/11/2006 GRITO / TRU : ecânic ds struturs II T e T. Prov 7// ( ) ( Pontos). uestão: Sej treiç d figur, compost de brrs de mesm rigidez xi, e sujeit à crg vertic posiciond no nó centr inferior. Use o teorem de peyron

Leia mais

"Bem-vindos ao melhor ano de suas vidas #2018"

Bem-vindos ao melhor ano de suas vidas #2018 COLÉGIO SHALOM Ensino Fundmentl 8ª no ( ) 65 Profº: Wesle d Silv Mot Disciplin: Mtemátic Aluno ():. No. Trblho de recuperção Dt: 17 /12/ 2018 "Bem-vindos o melhor no de sus vids #2018" 1) Sobre s proprieddes

Leia mais

a) 3 ( 2) = d) 4 + ( 3) = g) = b) 4 5 = e) 2 5 = h) = c) = f) = i) =

a) 3 ( 2) = d) 4 + ( 3) = g) = b) 4 5 = e) 2 5 = h) = c) = f) = i) = List Mtemátic -) Efetue s dições e subtrções: ) ( ) = d) + ( ) = g) + 7 = b) = e) = h) + = c) 7 + = f) + = i) 7 = ) Efetue s multiplicções e divisões: ).( ) = d).( ) = g) ( ) = b).( 7) = e).( 6) = h) (

Leia mais

Prova elaborada pelo prof. Octamar Marques. Resolução da profa. Maria Antônia Conceição Gouveia.

Prova elaborada pelo prof. Octamar Marques. Resolução da profa. Maria Antônia Conceição Gouveia. ª AVALIAÇÃO DA ª UNIDADE ª SÉRIE DO ENSINO MÉDIO DISCIPLINA: MATEMÁTICA Prov elord pelo prof. Otmr Mrques. Resolução d prof. Mri Antôni Coneição Gouvei.. Dispondo de livros de mtemáti e de físi, qunts

Leia mais

Matemática. Resolução das atividades complementares. M10 Função logarítmica. 1 Sendo ƒ uma função dada por f(x) 5 log 2

Matemática. Resolução das atividades complementares. M10 Função logarítmica. 1 Sendo ƒ uma função dada por f(x) 5 log 2 Resolução ds tividdes copleentres Mteátic M0 Função rític p. 7 Sendo ƒ u função dd por f(), clcule o vlor de f(). f() f()??? f() A epressão é igul : ) c) 0 e) b) d)? 0 0 Clcule y, sendo. y y Resolv epressão.

Leia mais

PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR 2010 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR 2010 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA FUVET VETIBULAR 00 Fse Prof. Mri Antôni Gouvei. Q-7 Um utomóvel, modelo flex, consome litros de gsolin pr percorrer 7km. Qundo se opt pelo uso do álcool, o utomóvel consome 7 litros

Leia mais

f(x) dx for um número real. (1) x = x 0 Figura A

f(x) dx for um número real. (1) x = x 0 Figura A FFCLRP-USP Integris Imprópris - CÁLCULO DIFERENCIAL E INTEGRAL I Professor Dr Jir Silvério dos Sntos Integris Imprópris Definição Sej f : ; x ) R um função Suponh ret x = x é um Assíntot Verticl o gráfico

Leia mais

AULA DE VÉSPERA VESTIBULAR 2019 MATEMÁTICA

AULA DE VÉSPERA VESTIBULAR 2019 MATEMÁTICA AULA DE VÉSPERA VESTIBULAR 09 MATEMÁTICA Prof. Luiz Henrique 0) A figur indic um circunferênci de diâmetro AB 8 cm, um triângulo equilátero ABC, e os pontos D e E pertencentes à circunferênci, com D em

Leia mais

Trigonometria FÓRMULAS PARA AJUDÁ-LO EM TRIGONOMETRIA

Trigonometria FÓRMULAS PARA AJUDÁ-LO EM TRIGONOMETRIA Trigonometri é o estudo dos triângulos, que contêm ângulos, clro. Conheç lgums regrs especiis pr ângulos e váris outrs funções, definições e trnslções importntes. Senos e cossenos são dus funções trigonométrics

Leia mais

QUESTÃO 01. QUESTÃO 02.

QUESTÃO 01. QUESTÃO 02. PROVA DE MATEMÁTICA DO O ANO _ EM DO COLÉGIO ANCHIETA BA. ANO 6 UNIDADE III PRIMEIRA AVALIAÇÃO. ELABORAÇÃO: PROFESSOR OCTAMAR MARQUES. PROFESSORA MARIA ANTÔNIA GOUVEIA. QUESTÃO. Quntos inteiros são soluções

Leia mais

Medidas Mecânicas UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE SÃO CARLOS DEPARTAMENTO DE ENGENHARIA MECÂNICA. Prof. Leopoldo de Oliveira

Medidas Mecânicas UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE SÃO CARLOS DEPARTAMENTO DE ENGENHARIA MECÂNICA. Prof. Leopoldo de Oliveira UNIVRSIDAD D SÃO PAULO SCOLA D NGNHARIA D SÃO CARLOS DPARTAMNTO D NGNHARIA MCÂNICA Medids Mecânics Prof. Leopoldo de Oliveir Revisão st prte do curso se destin estudr dinâmic dos sensores mis comumente

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MAT ALGEBRA LINEAR I-A PROF.: GLÓRIA MÁRCIA

UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MAT ALGEBRA LINEAR I-A PROF.: GLÓRIA MÁRCIA UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MAT - ALGEBRA LINEAR I-A PROF.: GLÓRIA MÁRCIA LISTA DE EXERCÍCIOS ) Sejm A, B e C mtries inversíveis de mesm ordem, encontre epressão d mtri X,

Leia mais

Soluções tampão. EFEITO TAMPÃO: é a resistência de uma solução a mudanças de. concentração de íons hidrogênio ao se adicionar pequenas

Soluções tampão. EFEITO TAMPÃO: é a resistência de uma solução a mudanças de. concentração de íons hidrogênio ao se adicionar pequenas Soluções tmpão EFEITO TAMPÃO: é resistênci de um solução mudnçs de concentrção de íons hidrogênio o se dicionr pequens quntiddes de ácido ou bse. Um solução que tem ess propriedde é chmd de SOLUÇÃO TAMPÃO.

Leia mais

MATEMÁTICA. Capítulo 5 LIVRO 1. Teorema de Pitágoras Relações Métricas nos Triângulos. Páginas: 190 à 201

MATEMÁTICA. Capítulo 5 LIVRO 1. Teorema de Pitágoras Relações Métricas nos Triângulos. Páginas: 190 à 201 MATEMÁTICA LIVRO 1 Cpítulo 5 Teorem de Pitágors Relções Métris nos Triângulos Págins: 190 à 01 Teorem de Pitágors: II ² III IV ² II ² I I IV III "A áre do qudrdo formdo om o ldo d hipotenus é igul som

Leia mais

Simulado EFOMM - Matemática

Simulado EFOMM - Matemática Simuldo EFOMM - Mtemátic 1. Sejm X, Y, Z, W subconjuntos de N tis que: 1. (X Y ) Z = {1,,, },. Y = {5, 6}, Z Y =,. W (X Z) = {7, 8},. X W Z = {, }. Então o conjunto [X (Z W)] [W (Y Z)] é igul (A) {1,,,,

Leia mais

ISSN Pubblicato dal 23/11/2012

ISSN Pubblicato dal 23/11/2012 ISSN 1127-8579 Pubblicato dal 23/11/2012 All'indirizzo http://xn--leggedistabilit2013-kub.diritto.it/docs/34317-tr-fico-de-drogas-esubstitui-o-de-pena-privativa-de-liberdade-por-pena-restritivas-de-direitos-uma-an-liseevolutiva-do-tratamento-da-mat-ria-no-ordenamento-jur-dico-brasileiro

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 10º ANO DE ESCOLARIDADE MATEMÁTICA A FICHA DE AVALIAÇÃO Nº 5. Grupo I

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 10º ANO DE ESCOLARIDADE MATEMÁTICA A FICHA DE AVALIAÇÃO Nº 5. Grupo I ESCOLA SECUNDÁRIA COM º CICLO D. DINIS COIMBRA 10º ANO DE ESCOLARIDADE MATEMÁTICA A FICHA DE AVALIAÇÃO Nº Grupo I As cinco questões deste grupo são de escolh múltipl. Pr cd um dels são indicds qutro lterntivs,

Leia mais

4 π. 8 π Considere a função real f, definida por f(x) = 2 x e duas circunferência C 1 e C 2, centradas na origem.

4 π. 8 π Considere a função real f, definida por f(x) = 2 x e duas circunferência C 1 e C 2, centradas na origem. EFOMM 2010 1. Anlise s firmtivs bixo. I - Sej K o conjunto dos qudriláteros plnos, seus subconjuntos são: P = {x K / x possui ldos opostos prlelos}; L = {x K / x possui 4 ldos congruentes}; R = {x K /

Leia mais

2 Patamar de Carga de Energia

2 Patamar de Carga de Energia 2 Ptmr de Crg de Energi 2.1 Definição Um série de rg de energi normlmente enontr-se em um bse temporl, ou sej, d unidde dess bse tem-se um informção d série. Considerndo um bse horári ou semi-horári, d

Leia mais

Universidade de São Paulo Escola Politécnica - Engenharia Civil PEF - Departamento de Engenharia de Estruturas e Fundações

Universidade de São Paulo Escola Politécnica - Engenharia Civil PEF - Departamento de Engenharia de Estruturas e Fundações Universidde de São ulo Esol oliténi - Engenhri Civil EF - Deprtmento de Engenhri de Estruturs e Fundções - Coneitos Fundmentis de Dimensionmento de Estruturs de Conreto: Vigs, Ljes e ilres ILARES DE CONTRAVENTAMENTO

Leia mais

Bateria de Exercícios Matemática II. 1 Determine os valores de x e y, sabendo que os triângulos ABC e DEF são semelhantes:

Bateria de Exercícios Matemática II. 1 Determine os valores de x e y, sabendo que os triângulos ABC e DEF são semelhantes: Colégio: Nome: nº Sem limite pr reser Professor(): Série: 1ª EM Turm: Dt: / /2013 Desonto Ortográfio: Not: Bteri de Exeríios Mtemáti II 1 Determine os vlores de x e y, sendo que os triângulos ABC e DEF

Leia mais

2.1. Integrais Duplos (definição de integral duplo)

2.1. Integrais Duplos (definição de integral duplo) Análise Mtemáti II- no letivo 6/7.. Integris uplos (efinição e integrl uplo) Pr melhor ompreener efinição e integrl uplo vmos omeçr por olor o seguinte esfio: Tene eterminr o volume o sólio que está im

Leia mais

o Seu pé direito na medicina

o Seu pé direito na medicina o Seu pé direito n medicin UNIFESP //006 MATEMÁTIA 0 Entre os primeiros mil números inteiros positivos, quntos são divisíveis pelos números,, 4 e 5? 60 b) 0 c) 0 d) 6 e) 5 Se o número é divisível por,,

Leia mais

3. CÁLCULO INTEGRAL EM IR

3. CÁLCULO INTEGRAL EM IR 3 CÁLCULO INTEGRAL EM IR A importâni do álulo integrl em IR reside ns sus inúmers plições em vários domínios d engenhri, ms tmém em ísi, em teori ds proiliddes, em eonomi, em gestão 3 Prtição de um intervlo

Leia mais

Curso Básico de Fotogrametria Digital e Sistema LIDAR. Irineu da Silva EESC - USP

Curso Básico de Fotogrametria Digital e Sistema LIDAR. Irineu da Silva EESC - USP Curso Básico de Fotogrmetri Digitl e Sistem LIDAR Irineu d Silv EESC - USP Bses Fundmentis d Fotogrmetri Divisão d fotogrmetri: A fotogrmetri pode ser dividid em 4 áres: Fotogrmetri Geométric; Fotogrmetri

Leia mais

BANCO DE EXERCÍCIOS - 24 HORAS

BANCO DE EXERCÍCIOS - 24 HORAS BANCO DE EXERCÍCIOS - 4 HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº 07 GABARITO COMENTADO 1) Se o resto d divisão de 47 por x é 7, então x divide 47 7 = 40 D mesm mneir, x divide

Leia mais

Resoluções dos testes propostos

Resoluções dos testes propostos os fundentos d físic 1 Unidde D Cpítulo 11 Os princípios d Dinâic 1.0 Respost: rt-se do princípio d inérci ou prieir lei de Newton..05 Respost: d el equção de orricelli, teos: v v 0 α s (30) (10) α 100

Leia mais

III) Os vetores (m, 1, m) e (1, m, 1) são L.D. se, somente se, m = 1

III) Os vetores (m, 1, m) e (1, m, 1) são L.D. se, somente se, m = 1 Lista de Exercícios de SMA000 - Geometria Analítica 1) Indique qual das seguintes afirmações é falsa: a) Os vetores (m, 0, 0); (1, m, 0); (1, m, m 2 ) são L.I. se, somente se, m 0. b) Se u, v 0, então

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prov Escrit de MATEMÁTICA A - o Ano 0 - Fse Propost de resolução GRUPO I. Como comissão deve ter etmente mulheres, num totl de pessos, será constituíd por um único homem. Logo, como eistem 6 homens no

Leia mais

Exemplos relativos à Dinâmica (sem rolamento)

Exemplos relativos à Dinâmica (sem rolamento) Exeplos reltivos à Dinâic (se rolento) A resultnte ds forçs que ctu no corpo é iul o produto d ss pel celerção por ele dquirid: totl Cd corpo deve ser trtdo individulente, escrevendo u equção vectoril

Leia mais

a1q1: Seja ABCDEF GH um cubo de aresta unitária de E 3 e considere o espaço V 3 orientado pela base { CD, CB, CH}. Então podemos afirmar que: a)

a1q1: Seja ABCDEF GH um cubo de aresta unitária de E 3 e considere o espaço V 3 orientado pela base { CD, CB, CH}. Então podemos afirmar que: a) 1 a1q1: Seja ABCDEF GH um cubo de aresta unitária de E 3 e considere o espaço V 3 orientado pela base { CD, CB, CH}. Então podemos afirmar que: a) EB ED = GA b) EB ED = AG c) EB ED = EH d) EB ED = EA e)

Leia mais

COLÉGIO OBJETIVO JÚNIOR

COLÉGIO OBJETIVO JÚNIOR COLÉGIO OJETIVO JÚNIOR NOME: N. o : DT: / /0 FOLHETO DE MTEMÁTIC (V.C. E R.V.) 9. o NO Este folheto é um roteiro pr você recuperr o conteúdo trblhdo em 0. Como ele vi servir de bse pr você estudr pr s

Leia mais

STSE - Simulação e Teste de Sistemas Electrónicos Ano lectivo 2004/5-2º Exame - 12 de Fevereiro de 2005 Duração: 1ª parte 45 minutos.

STSE - Simulação e Teste de Sistemas Electrónicos Ano lectivo 2004/5-2º Exame - 12 de Fevereiro de 2005 Duração: 1ª parte 45 minutos. STSE - Simulção e Teste de Sistems Eletrónios Ano letivo 2004/5-2º Exme - 12 de Fevereiro de 2005 Durção: 1ª prte 45 minutos Número: Nome: 1ª Prte Questionário de respost múltipl d respost ert vle 0,5

Leia mais

Pos. Designação Tipo Medida Material 1 RETENTORES CB 4 X 11 X 6 2 RETENTORES CB 4 X 11 X 6 VITON 3 RETENTORES CB 4 X 12 X 6 4 RETENTORES CB 4 X 12 X

Pos. Designação Tipo Medida Material 1 RETENTORES CB 4 X 11 X 6 2 RETENTORES CB 4 X 11 X 6 VITON 3 RETENTORES CB 4 X 12 X 6 4 RETENTORES CB 4 X 12 X 1 RETENTORES CB 4 X 11 X 6 2 RETENTORES CB 4 X 11 X 6 VITON 3 RETENTORES CB 4 X 12 X 6 4 RETENTORES CB 4 X 12 X 6 VITON 5 RETENTORES CB 4,5 0X 16 X 7 6 RETENTORES CB 4,8 X 22 X 7 7 RETENTORES CC 5 X 15

Leia mais

PARTE I - Circuitos Resistivos Lineares

PARTE I - Circuitos Resistivos Lineares Prolem 1.1 Leis de Kirchhoff PARTE I Circuitos Resistivos Lineres i 1 v 2 R 1 10A 1 R 2 Considere o circuito d figur 1.1. ) Constru o seu grfo e indique o número de rmos e de nós. ) Clcule os vlores ds

Leia mais

FUNÇÕES EM IR n. . O conjunto D é o domínio de f. O contradomínio de f consiste em todos os números. a função de domínio D dada por:

FUNÇÕES EM IR n. . O conjunto D é o domínio de f. O contradomínio de f consiste em todos os números. a função de domínio D dada por: FUNÇÕES EM IR n Deinição: Sej D um conjunto de pres ordendos de números reis Um unção de dus vriáveis é um correspondênci que ssoci cd pr em D ectmente um número rel denotdo por O conjunto D é o domínio

Leia mais

XI OMABC NÍVEL O lugar geométrico dos pontos P x, y cuja distância ao ponto Q 1, 2 é igual a y é uma:

XI OMABC NÍVEL O lugar geométrico dos pontos P x, y cuja distância ao ponto Q 1, 2 é igual a y é uma: O lugr geométrco dos pontos P x, y cu dstânc o ponto Q, é gul y é um: prábol com foco no ponto Q crcunferênc de ro gul N fgur segur, o trângulo ABC é equlátero de ldo 0, crcunferênc mor é tngente os três

Leia mais

Máximos e Mínimos Locais

Máximos e Mínimos Locais INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA MAT B Limites e Derivds - Pro Grç Luzi Domiguez Sntos ESTUDO DA VARIAÇÃO DAS FUNÇÕES Máimos e Mínimos Lois Deinição: Dd um unção, sej D i possui

Leia mais

Curso de linguagem matemática Professor Renato Tião. 1. Resolver as seguintes equações algébricas: GV. Simplifique a expressão 2 GV.

Curso de linguagem matemática Professor Renato Tião. 1. Resolver as seguintes equações algébricas: GV. Simplifique a expressão 2 GV. Curso de liguge teátic Professor Reto Tião. Resolver s seguites equções lgébrics: ) x + = b) x = c) x = d) x = e) x = f) x = g) x = ) x = i) x = j) = k) logx = l) logx= x GV. GV. Siplifique expressão 8

Leia mais

Extrapolação de Richardson

Extrapolação de Richardson Etrpolção de Rirdson Apesr de todos os visos em relção à etrpolção, qui temos um eepção, em que, prtir de dus determinções de um integrl se lul um tereir, mis preis. 3/5/4 MN Etrpolção de Rirdson E é epressão

Leia mais

CONCURSO DE SELEÇÃO 2003 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

CONCURSO DE SELEÇÃO 2003 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO CONCURSO DE SELEÇÃO 003 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO 41100 0$7(0É7,&$ RESOLUÇÃO PELA PROFESSORA MARIA ANTÔNIA CONCEIÇÃO GOUVEIA $ LOXVWUDomR TXH VXEVWLWXL D RULJLQDO GD TXHVWmR H DV GDV UHVROXo}HV

Leia mais

Dinâmica dos corpos rígidos

Dinâmica dos corpos rígidos Dinâmi dos orpos ríidos Moimento em D Métodos de resolução Num instnte prtiulr: Equções de moimento Moimento finito: Prinípio d onserção de eneri meâni (forçs onsertis) Disiplin DCR, Z. Dimitrooá, DEC/FCT/UNL,

Leia mais

PRATIQUE EM CASA. m v m M v SOLUÇÃO PC1. [A]

PRATIQUE EM CASA. m v m M v SOLUÇÃO PC1. [A] PRATIQUE EM CASA SOLUÇÃO PC. Usndo Conservção d Quntidde de oviento entre o oento ntes do choque e o instnte ieditente pós o choque e considerndo colisão perfeitente elástic se perds de energi ecânic pr

Leia mais

4,00 m. E, h, ν uniformes. Figura 1 Figura 2

4,00 m. E, h, ν uniformes. Figura 1 Figura 2 Ee de nálise de Estruturs I icencitur e Engenhri iil Responsáel: Prof. J.. eieir de reits 3 de Jneiro de ª Époc º Seestre Obserções: urção de h3in (º este) ou 3 hors (Ee). onsult pens do forulário e de

Leia mais

Duração: 1h30 Resp: Prof. João Carlos Fernandes (Dep. Física)

Duração: 1h30 Resp: Prof. João Carlos Fernandes (Dep. Física) ecânic e Ond O Curo LEC º TESTE 0/0 º Seetre -04-0 8h0 Durção: h0 ep: Prof João Crlo ernnde (Dep íic) TAGUS PAK Nº: Noe: POBLEA (4 vlore) U etudnte de O potou co u igo que conegui delocr u loco de kg pen

Leia mais

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II. Tarefa nº 3 do plano de trabalho nº 5

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II. Tarefa nº 3 do plano de trabalho nº 5 Escol Secndári com 3º ciclo D. Dinis º Ano de Mtemátic A Tem II Introdção o Cálclo Diferencil II ( e ) = e Tref nº 3 do plno de trblo nº 5 e e = ( ln ) = ( ln ) = ( log ) Not: é m fnção de e é m constnte

Leia mais

DECivil Secção de Mecânica Estrutural e Estruturas MECÂNICA I ENUNCIADOS DE PROBLEMAS

DECivil Secção de Mecânica Estrutural e Estruturas MECÂNICA I ENUNCIADOS DE PROBLEMAS Eivil Secção de Mecânic Estruturl e Estruturs MEÂNI I ENUNIOS E ROLEMS Fevereiro de 2010 ÍTULO 3 ROLEM 3.1 onsidere plc em form de L, que fz prte d fundção em ensoleirmento gerl de um edifício, e que está

Leia mais

REVISÃO Lista 12 Geometria Analítica., então r e s são coincidentes., então r e s são perpendiculares.

REVISÃO Lista 12 Geometria Analítica., então r e s são coincidentes., então r e s são perpendiculares. NOME: ANO: º Nº: PROFESSOR(A): An Luiz Ozores DATA: REVISÃO List Geometri Anlític Algums definições y Equções d ret: by c 0, y mb, y y0 m( 0) e p q Posições de dus rets: Dds s rets r : y mr br e s y ms

Leia mais

Módulo Elementos Básicos de Geometria Plana - Parte 3. Paralelogramos Especiais. 8 ano E.F. Professores Cleber Assis e Tiago Miranda

Módulo Elementos Básicos de Geometria Plana - Parte 3. Paralelogramos Especiais. 8 ano E.F. Professores Cleber Assis e Tiago Miranda Módulo Elementos Básicos de Geometri Pln - Prte 3 Prlelogrmos Especiis 8 no E.F. Professores Cleer Assis e Tigo Mirnd Elementos Básicos de Geometri Pln - Prte 3 Prlelogrmos Especiis 1 Exercícios Introdutórios

Leia mais

1 x 5 (d) f = 1 + x 2 2 (f) f = tg 2 x x p 1 + x 2 (g) f = p x + sec 2 x (h) f = x 3p x. (c) f = 2 sen x. sen x p 1 + cos x. p x.

1 x 5 (d) f = 1 + x 2 2 (f) f = tg 2 x x p 1 + x 2 (g) f = p x + sec 2 x (h) f = x 3p x. (c) f = 2 sen x. sen x p 1 + cos x. p x. 6. Primitivs cd. 6. Em cd cso determine primitiv F (x) d função f (x), stisfzendo condição especi- () f (x) = 4p x; F () = f (x) = x + =x ; F () = (c) f (x) = (x + ) ; F () = 6. Determine função f que

Leia mais

Dados dois conjuntos A e B, uma função de A em B é uma correspondência que a cada elemento de A faz corresponder um e um só elemento de B.

Dados dois conjuntos A e B, uma função de A em B é uma correspondência que a cada elemento de A faz corresponder um e um só elemento de B. TEMA IV Funções eis de Vriável el 1. evisões Ddos dois onjuntos A e B, um unção de A em B é um orrespondêni que d elemento de A z orresponder um e um só elemento de B. Dus unções e são iuis se e somente

Leia mais

Canguru Matemático sem Fronteiras 2010

Canguru Matemático sem Fronteiras 2010 Cnguru Mtemático sem Fronteirs 2010 Durção: 1h30min Destintários: lunos do 9 Ano de Escolridde Nome: Turm: Não podes usr clculdor. Há pens um respost correct em cd questão. As questões estão grupds em

Leia mais

Aula 1 - POTI = Produtos Notáveis

Aula 1 - POTI = Produtos Notáveis Aul 1 - POTI = Produtos Notáveis O que temos seguir são s demonstrções lgébrics dos sete principis produtos notáveis e tmbém prov geométric dos três primeiros. 1) Qudrdo d Som ( + b) = ( + b) * ( + b)

Leia mais

Conversão de Energia I

Conversão de Energia I Deprtento de Engenhri Elétric Conversão de Energi Aul 5.5 Máquins de Corrente Contínu Prof. Clodoiro Unsihuy-Vil Bibliogrfi FTZGERALD, A. E., KNGSLEY Jr. C. E UMANS, S. D. Máquins Elétrics: co ntrodução

Leia mais

Conversão de Energia II

Conversão de Energia II Deprtmento de ngenhri létric Aul 6. Máquins íncrons Prof. João Américo ilel Máquins íncrons Crcterístics vzio e de curto-circuito Curv d tensão terminl d rmdur vzio em função d excitção de cmpo. Crctéristic

Leia mais

FUNÇÕES. Mottola. 1) Se f(x) = 6 2x. é igual a (a) 1 (b) 2 (c) 3 (d) 4 (e) 5. 2) (UNIFOR) O gráfico abaixo. 0 x

FUNÇÕES. Mottola. 1) Se f(x) = 6 2x. é igual a (a) 1 (b) 2 (c) 3 (d) 4 (e) 5. 2) (UNIFOR) O gráfico abaixo. 0 x FUNÇÕES ) Se f() = 6, então f ( 5) f ( 5) é igul () (b) (c) 3 (d) 4 (e) 5 ) (UNIFOR) O gráfico bio 0 () não represent um função. (b) represent um função bijetor. (c) represent um função não injetor. (d)

Leia mais

GGE RESPONDE IME 2012 MATEMÁTICA 1

GGE RESPONDE IME 2012 MATEMÁTICA 1 0. O segundo, o sétio e o vigésio sétio teros de u Progressão Aritéti () de núeros inteiros, de rzão r, for, nest orde, u Progressão Geoétri (PG), de rzão q, o q e r IN* (nturl diferente de zero). Deterine:

Leia mais

VETORES. Problemas Resolvidos

VETORES. Problemas Resolvidos Prolems Resolvidos VETORES Atenção Lei o ssunto no livro-teto e ns nots de ul e reproduz os prolems resolvidos qui. Outros são deidos pr v. treinr PROBLEMA 1 Dois vetores, ujos módulos são de 6e9uniddes

Leia mais

Cálculo 1 - Cálculo Integral Teorema Fundamental do Cálculo

Cálculo 1 - Cálculo Integral Teorema Fundamental do Cálculo Cálulo 1 - Cálulo Integrl Teorem Fundmentl do Cálulo Prof. Fbio Silv Botelho November 17, 2017 1 Resultdos Preliminres Theorem 1.1. Sej f : [,b] R um função ontínu em [,b] e derivável em (,b). Suponh que

Leia mais

ESTÁTICA (2012/2013) FICHA 1 Revisões DEPARTAMENTO DE ENGENHARIA CIVIL SOLUÇÕES DAS FICHAS DAS AULAS PRÁTICAS. Exercício 1 a) Figura 1 b) Figura 2

ESTÁTICA (2012/2013) FICHA 1 Revisões DEPARTAMENTO DE ENGENHARIA CIVIL SOLUÇÕES DAS FICHAS DAS AULAS PRÁTICAS. Exercício 1 a) Figura 1 b) Figura 2 DEPTMENT DE ENENHI CIVIL ESTÁTIC (0/03) SLUÇÕES DS FICHS DS ULS PÁTICS FICH evisões Exercício a) Figura b) Figura Barras Comprimento B,00 m C 3,073 m BC,56 m BD 5,385 m CD,737 m Barras Comprimento α 39,806

Leia mais

Um corpo triangular, como mostrado na figura, sofre um deslocamento definido por:

Um corpo triangular, como mostrado na figura, sofre um deslocamento definido por: Mecânic dos Sólidos I List de Exercícios I Exercício Um corpo tringulr, como mostrdo n figur, sofre um deslocmento definido por: u = y 5 e y () Configurção Deformd. A B C C Pr = cm e =. cm, pede -se: (b)

Leia mais

Relações Métricas e Razões Trigonométricas no Triângulo Retângulo - bombeiros

Relações Métricas e Razões Trigonométricas no Triângulo Retângulo - bombeiros Relções Métrics e Rzões Trigonométrics no Triângulo Retângulo - bombeiros Os ctetos de um triângulo retângulo medem cm e 8cm Nesss condições determine: ) medid "" d ipotenus b) medid "" d ltur reltiv à

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica ESO POITÉNI D UNIVERSIDDE DE SÃO PUO Deprtmento de Enenri Mecânic PME MEÂNI Seund Prov 19 de mio de 9 Durção d Prov: 115 minutos (não é permitido o uso de clculdors) 1ª Questão (1, ponto) Respond: Do que

Leia mais

1 Integral de Riemann-Sieltjes

1 Integral de Riemann-Sieltjes Cálulo Avnçdo - 2009 Referêni: Brtle, R. G. The Elements of Rel Anlysis, Seond Edition, Wiley. 1 Integrl de Riemnn-Sieltjes 1.1 Definição No que segue vmos onsiderr f e g funções reis definids em J = [,

Leia mais

a x = é solução da equação b = 19. O valor de x + y é: a + b é: Professor Docente I - CONHECIMENTOS ESPECÍFICOS 26. A fração irredutível

a x = é solução da equação b = 19. O valor de x + y é: a + b é: Professor Docente I - CONHECIMENTOS ESPECÍFICOS 26. A fração irredutível CONHECIMENTOS ESPECÍFICOS 6. A frção irredutível O vlor de A) 8 B) 7 66 8 9 = 6. + b = é solução d equção b 7. Sejm e ynúmeros reis, tis que + y A) 6 B) 7 78 8 88 = 9. O vlor de + y e 8. Sejm e b números

Leia mais

ANÁLISE DE ESTRUTURAS I

ANÁLISE DE ESTRUTURAS I IST - DECvl Dertento de Engenr Cvl NÁISE DE ESTRUTURS I Tels de nálse de Estruturs Gruo de nálse de Estruturs IST, IST - DECvl Gruo de nálse de Estruturs Foruláro de es Eq. de grnge: w w w q D Equção de

Leia mais

1. Prove a chamada identidade de Lagrange. u 1,u 3 u 2,u 3. u 1 u 2,u 3 u 4 = u 1,u 4 u 2,u 4. onde u 1,u 2,u 3 e u 4 são vetores em R 3.

1. Prove a chamada identidade de Lagrange. u 1,u 3 u 2,u 3. u 1 u 2,u 3 u 4 = u 1,u 4 u 2,u 4. onde u 1,u 2,u 3 e u 4 são vetores em R 3. Universidde Federl de Uberlândi Fculdde de Mtemátic Disciplin : Geometri Diferencil Assunto: Cálculo no Espço Euclidino e Curvs Diferenciáveis Prof. Sto 1 List de exercícios 1. Prove chmd identidde de

Leia mais

Problemas e Algoritmos

Problemas e Algoritmos Problems e Algoritmos Em muitos domínios, há problems que pedem síd com proprieddes específics qundo são fornecids entrds válids. O primeiro psso é definir o problem usndo estruturs dequds (modelo), seguir

Leia mais

ROTAÇÃO DE CORPOS SOBRE UM PLANO INCLINADO

ROTAÇÃO DE CORPOS SOBRE UM PLANO INCLINADO Físic Gerl I EF, ESI, MAT, FQ, Q, BQ, OCE, EAm Protocolos ds Auls Prátics 003 / 004 ROTAÇÃO DE CORPOS SOBRE UM PLANO INCLINADO. Resumo Corpos de diferentes forms deslocm-se, sem deslizr, o longo de um

Leia mais

Do programa... 2 Descobre o teu livro... 4

Do programa... 2 Descobre o teu livro... 4 Índice Do progrm........................................... Descobre o teu livro....................................... 4 Atividde zero: Record.................................. 6 1. T de vrição e otimizção...........................

Leia mais

Máximos e Mínimos Locais

Máximos e Mínimos Locais INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA MAT AO CÁLCULO A - Pro : Grç Luzi Domiguez Sntos ESTUDO DA VARIAÇÃO DAS FUNÇÕES Máimos e Mínimos Lois Deinição: Dd um unção, sej D i possui um

Leia mais

Proposta de teste de avaliação

Proposta de teste de avaliação Propost de teste de vlição Mtemátic A. O ANO DE ESOLARIDADE Durção: 90 minutos Dt: derno (é permitido o uso de clculdor) N respost o item de escolh múltipl, selecione opção corret. Escrev, n olh de resposts,

Leia mais

Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira. MAT146 - Cálculo I - Teoremas Fundamentais do Cálculo

Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira. MAT146 - Cálculo I - Teoremas Fundamentais do Cálculo MAT46 - Cálculo I - Teorems Fundmentis do Cálculo Alexndre Mirnd Alves Anderson Tigo d Silv Edson José Teixeir Os Teorems Fundmentis do Cálculo Os próximos teorems fzem conexão entre os conceitos de ntiderivd

Leia mais

Matemática A. Versão 2. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A.

Matemática A. Versão 2. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A. Teste Intermédio de Mtemátic Versão Teste Intermédio Mtemátic Versão Durção do Teste: 90 minutos 09.0.0.º no de Escolridde Decreto-Lei n.º 74/004, de 6 de mrço N su folh de resposts, indique de form legível

Leia mais

d) xy 2 h) x c a b c) d) e) 20

d) xy 2 h) x c a b c) d) e) 20 AS RESPOSTAS ESTÃO NO FINAL DOS EXERCÍCIOS. Rdicis ) Escrev em form de potênci com epoente frcionário ) Escrev em form de rdicl ) Dividindo o índice do rdicl e os epoentes de todos os ftores do rdicndo

Leia mais

Índice TEMA TEMA TEMA TEMA TEMA

Índice TEMA TEMA TEMA TEMA TEMA Índice Resolução de roblems envolvendo triângulos retângulos Teori. Rzões trigonométrics de um ângulo gudo 8 Teori. A clculdor gráfic e s rzões trigonométrics 0 Teori. Resolução de roblems usndo rzões

Leia mais

Prof.(s): Judson Santos - Luciano Santos 1º S I M U L A D O ITA/IME

Prof.(s): Judson Santos - Luciano Santos 1º S I M U L A D O ITA/IME Prof.(s): Judson Sntos - Lucino Sntos y 0) Sbendo que (,,, ) estão em progressão ritmétic nest ordem y stisfendo s condições de eistênci dos ritmos. Então o vlor d epressão y é igul : ) b) y 0) Sej,, 4,,

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 12º ANO DE ESCOLARIDADE MATEMÁTICA A

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 12º ANO DE ESCOLARIDADE MATEMÁTICA A ESCOLA SECUNDÁRIA COM º CICLO D. DINIS COIMBRA º ANO DE ESCOLARIDADE MATEMÁTICA A Tref nº do plno de trblho nº 9. Determine o vlor de:. log log + e log( ) log 0 + log 0 e log( 0 0) log + log e 7 d. log

Leia mais

LISTA DE EXERCÍCIOS Questões de Vestibulares. e B = 2

LISTA DE EXERCÍCIOS Questões de Vestibulares. e B = 2 LISTA DE EXERCÍCIOS Questões de Vestiulres ) UFBA 9 Considere s mtries A e B Sendo-se que X é um mtri simétri e que AX B, determine -, sendo Y ( ij) X - R) ) UFBA 9 Dds s mtries A d Pode-se firmr: () se

Leia mais

Lista de Exercícios Vetores Mecânica da Partícula

Lista de Exercícios Vetores Mecânica da Partícula List de Eeríios Vetores Meâni d Prtíul 01) Ddos os vetores e, ujos módulos vlem, respetivmente, 6 e 8, determine grfimente o vetor som e lule o seu módulo notções 0) Ddos os vetores, e, represente grfimente:

Leia mais

Após encontrar os determinantes de A. B e de B. A, podemos dizer que det A. B = det B. A?

Após encontrar os determinantes de A. B e de B. A, podemos dizer que det A. B = det B. A? PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - ª SÉRIE - ENSINO MÉDIO ============================================================================================= Determinntes - O vlor

Leia mais

ESTÁTICA DO SISTEMA DE SÓLIDOS.

ESTÁTICA DO SISTEMA DE SÓLIDOS. Definições. Forçs Interns. Forçs Externs. ESTÁTIC DO SISTEM DE SÓLIDOS. (Nóbreg, 1980) o sistem de sólidos denomin-se estrutur cuj finlidde é suportr ou trnsferir forçs. São quels em que ção e reção, pertencem

Leia mais

Falando. Matematicamente. Prova-tipo de exame. Escola: Nome: Turma: N.º: Data:

Falando. Matematicamente. Prova-tipo de exame. Escola: Nome: Turma: N.º: Data: Prov-tipo de exme Mtemticmente Flndo Alexndr Conceição Mtilde Almeid Escol: Nome: Turm: N.º: Dt: 1. Todos os 25 lunos d turm do André estão inscritos em tividdes extrcurriculres: 16 em Desporto Escolr

Leia mais

Recordando produtos notáveis

Recordando produtos notáveis Recordndo produtos notáveis A UUL AL A Desde ul 3 estmos usndo letrs pr representr números desconhecidos. Hoje você sbe, por exemplo, que solução d equção 2x + 3 = 19 é x = 8, ou sej, o número 8 é o único

Leia mais

Exercícios. setor Aula 25

Exercícios. setor Aula 25 setor 08 080409 080409-SP Aul 5 PROGRESSÃO ARITMÉTICA. Determinr o número de múltiplos de 7 que estão compreendidos entre 00 e 000. r 7 00 7 PA 05 30 4 n 994 00 98 98 + 7 05 n + (n ) r 994 05 + (n ) 7

Leia mais

Propriedades Matemáticas

Propriedades Matemáticas Proprieddes Mtemátics Guilherme Ferreir guifs2@hotmil.com Setembro, 2018 Sumário 1 Introdução 2 2 Potêncis 2 3 Rízes 3 4 Frções 4 5 Produtos Notáveis 4 6 Logritmos 5 6.1 Consequêncis direts d definição

Leia mais

6º Teste de avaliação versão1. Grupo I

6º Teste de avaliação versão1. Grupo I Escol Secundár com 3º cclo D. Dns 0º Ano de Mtemátc A 6º Teste de vlção versão Grupo I As cnco questões deste grupo são de escolh múltpl. Pr cd um dels são ndcds qutro lterntvs, ds qus só um está corret.

Leia mais

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A. 6º Teste de avaliação versão2. Grupo I

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A. 6º Teste de avaliação versão2. Grupo I Escol Secundár com 3º cclo D. Dns 10º Ano de Mtemátc A 6º Teste de vlção versão Grupo I As cnco questões deste grupo são de escolh múltpl. Pr cd um dels são ndcds qutro lterntvs, ds qus só um está corret.

Leia mais

Lista 2 com respostas

Lista 2 com respostas Lista 2 com respostas Professora Nataliia Goloshchapova MAT0112-1 semestre de 2015 Exercício 1. Sejam OABC um tetraedro e M o ponto médio de BC. Explique por que ( OA, OB, OC ) é base e determine as coordenadas

Leia mais

é: y y x y 31 2 d) 18 e) O algarismo das unidades de é igual a: a) 1 b) 3 c) 5 d) 7 e) 9

é: y y x y 31 2 d) 18 e) O algarismo das unidades de é igual a: a) 1 b) 3 c) 5 d) 7 e) 9 0. Dentre s firmtivs bio, ssinle quel que NÃO é verddeir pr todo nturl n: - n = b - n- = - n+ n n c d - n = -- n e - n- = -- n 07. O lgrismo ds uniddes de 00. 7 00. 00 é igul : b c d 7 e 0. O vlor de 6

Leia mais

é: 31 2 d) 18 e) 512 y y x y

é: 31 2 d) 18 e) 512 y y x y 0. Dentre s firmtivs bio, ssinle quel que NÃO é verddeir pr todo nturl n: ) -) n = b) -) n- = -) n+ n n c) ) ) d) -) n = --) n e) -) n- = --) n 07. O lgrismo ds uniddes de 00. 7 00. 00 é igul : ) b) c)

Leia mais