Dinâmica dos corpos rígidos
|
|
|
- Eliana Teves Pereira
- 9 Há anos
- Visualizações:
Transcrição
1 Dinâmi dos orpos ríidos Moimento em D Métodos de resolução Num instnte prtiulr: Equções de moimento Moimento finito: Prinípio d onserção de eneri meâni (forçs onsertis) Disiplin DCR, Z. Dimitrooá, DEC/FCT/UNL, 6
2 Equções de moimento Em d instnte: d orpo ríido e tmbém o onjunto de orpos ríidos está em equilíbrio Além ds forçs externs e, so neessário, ds forçs interns é neessário onsiderr s forçs de inéri que tum no sentido ontrário à elerção e s forçs de trito Equção de equilíbrio é um equção etoril pr resultnte de forçs, ou sej orresponde em D 3 equções eslres (por exemplo de somtório de forçs em direções e um que represent o equilíbrio de momentos) Sistems de orpos: nloi om estáti, existem equções lobis ou relionds om d orpo seprdmente, 3 dests equções são linermente dependentes om s outrs. Disiplin DCR, Z. Dimitrooá, DEC/FCT/UNL, 6
3 Forçs de inéri Compro-se que pr su expressão são neessários momentos de inéri de msss estuddos no p. Mss uniformemente distribuíd: entróide oinide om o entro de mss Moimento plno erl de d orpo i se representr omo: trnslção ~ e rotção em torno de Trnslção ~ y mi Atução ontr elerção r i mi x ª lei de Newton F=m Forç de inéri de trnslção dm m Disiplin DCR, Z. Dimitrooá, DEC/FCT/UNL, 6
4 Rotção em torno de Quntidde de moimento m Vetor, Unidde [km/s] Forç de inéri de rotção y r i mi i m i H r m r m r i i i i i i i i i m rr r r m r r r x d H dt ª lei de Newton n form lternti Fdt=md onde H é quntidde do moimento nulr i i i i i i i i i i H r dm Momento polr de inéri é obritório Forç de inéri de rotção Atução ontr elerção nulr Disiplin DCR, Z. Dimitrooá, DEC/FCT/UNL, 6
5 As forçs de inéri tum no ento de mss: de trnslção tem intensidde iul o produto de mss e d intensidde de elerção totl e tu n direção d elerção, no sentido oposto de rotção é um momento que rod no sentido oposto d elerção nulr e tem intensidde iul o produto do momento de inéri briéntrio de mss e d elerção nulr Pr determinção ds forçs de inéri torn-se indispensáel determinr s elerções no entro de ridde de d orpo Qundo trjetóri não é onheid, não se podem distinuir s omponentes ds elerções em omponentes norml e tnenil Nos pontos de ontto de dois orpos ríidos s omponentes tneniis de elerção são iuis Qundo o moimento inii-se do repouso, s eloiddes iniis são nuls e onsequentemente s omponentes de elerção norml são nuls, determinção ds tneniis pode ser judd pelos CRs Disiplin DCR, Z. Dimitrooá, DEC/FCT/UNL, 6
6 Pr determinr elerção de qulquer ponto (B) do orpo ríido é neessário sber elerção totl de um ponto qulquer (A), eloidde nulr e elerção nulr Propção de elerções A é o ponto de referêni A B Aelerção totl em B é resultnte de tods s omponentes Trnslção om A A B A AB B AB Rotção em torno de A AB B AB Disiplin DCR, Z. Dimitrooá, DEC/FCT/UNL, 6
7 Derrubmento Trnslção A linh de ção d forç resultnte tem que tressr bse pr eitr rotção (derrubmento) Rotção Forçs de trito Em d ponto ou superfíie de ontto: Teori de Coulomb Coefiiente de trito estátio e dinâmio (inemátio) m F m N F F Em rolmento Sem moimento m F F e N Em moimento (bloo) Rolmento / esorremento (diso, esfer) F N N F e Disiplin DCR, Z. Dimitrooá, DEC/FCT/UNL, 6
8 Prinípio d onserção d eneri meâni (forçs onsertis) Moimento finito, diferenç entre os estdos é dd n form de distâni perorrid Desntem: equção eslr ( inónit) Mis sobre eneri potenil m V mh h y Trblho do peso fin ini m y y mh V mh Níel zero Disiplin DCR, Z. Dimitrooá, DEC/FCT/UNL, 6
9 Eneri inéti A eneri inéti tem dus prtes: de trnslção tem lor iul à metde do produto de mss e d intensidde de eloidde o qudrdo de rotção tem lor iul à metde do produto do momento de inéri briéntrio de mss e d eloidde nulr o qudrdo Pr determinção d eneri inéti torn-se indispensáel determinr s eloiddes no entro de ridde T T m T R Disiplin DCR, Z. Dimitrooá, DEC/FCT/UNL, 6
10 Forçs de trito Forçs não-onsertis: O trblho depende do minho perorrido, Cusm per de eneri meâni irreuperáel (térmi, ústi, et.) Não se deeri usr o prinípio d onserção d eneri meâni qundo tum s forçs de trito em esorremento. Pode-se usr qundo se introduz per de eneri. A per de eneri orresponde o trblho exeutdo pels forçs de trito. Forçs de trito em rolmento não fzem trblho, em d instnte ri-se um forç no ponto de ontto, ssim el não fz trblho porque não se deslo ( eloidde do ponto de ontto é nul, ssim ds=dt=) Prinípio d onserção d eneri meâni: eneri meâni mntém o seu lor em d instnte num sistem onsertio; É possíel utilizr este prinípio num sistem não-onsertio, desde que se ontbilize per de eneri meâni usd pels forçs não-onsertis Disiplin DCR, Z. Dimitrooá, DEC/FCT/UNL, 6
11 Disiplin DCR, Z. Dimitrooá, DEC/FCT/UNL, 6 Pr eneri inéti pode-se usr o CR em ez do entro de ridde. m T CR m m d md T CR d
12 Rolmento om esorremento Pr ontbilizr orretmente per de eneri pels forçs de trito, tem que se seprr distâni perorrid em prte orrespondente o esorremento e o rolmento Lnç-se um esfer om eloidde indid n fiur bixo Esfer 5 mr s Rolmento om deslizmento (uniformemente deselerdo) m m F N N F m r m r 5 r r Disiplin DCR, Z. Dimitrooá, DEC/FCT/UNL, 6
13 Disiplin DCR, Z. Dimitrooá, DEC/FCT/UNL, 6 Tempo neessário pr terminr o deslizmento r t r 5 t t t r 5, 5, t Distâni perorrid 49 t t s s Prte de rolmento 49 5 r r 5 r t t r Verifição eneréti m r 5 mr 5 5 m F d m m Prte de esorremento d
F ds = mv dv. U F θds. Dinâmica de um Ponto Material: Trabalho e Energia Cap. 14. = 2 s1
4. Trblho de um orç MECÂNICA - DINÂMICA Dinâmi de um Ponto Mteril: Trblho e Energi Cp. 4 Prof Dr. Cláudio Curotto Adptdo por: Prof Dr. Ronldo Medeiro-Junior TC07 - Meâni Gerl III - Dinâmi 4. Prinípio do
Lista de Exercícios Vetores Mecânica da Partícula
List de Eeríios Vetores Meâni d Prtíul 01) Ddos os vetores e, ujos módulos vlem, respetivmente, 6 e 8, determine grfimente o vetor som e lule o seu módulo notções 0) Ddos os vetores, e, represente grfimente:
ROTAÇÃO DE CORPOS SOBRE UM PLANO INCLINADO
Físic Gerl I EF, ESI, MAT, FQ, Q, BQ, OCE, EAm Protocolos ds Auls Prátics 003 / 004 ROTAÇÃO DE CORPOS SOBRE UM PLANO INCLINADO. Resumo Corpos de diferentes forms deslocm-se, sem deslizr, o longo de um
Resoluções dos exercícios propostos
os fundmentos d físic 1 Unidde D Cpítulo 11 Os princípios d Dinâmic 1 P.230 prtícul está em MRU, pois resultnte ds forçs que gem nel é nul. P.231 O objeto, livre d ção de forç, prossegue por inérci em
2 Patamar de Carga de Energia
2 Ptmr de Crg de Energi 2.1 Definição Um série de rg de energi normlmente enontr-se em um bse temporl, ou sej, d unidde dess bse tem-se um informção d série. Considerndo um bse horári ou semi-horári, d
Vestibular UFRGS 2013 Resolução da Prova de Matemática
Vestibulr UFRG 0 Resolução d Prov de Mtemátic 6. Alterntiv (C) 00 bilhões 00. ( 000 000 000) 00 000 000 000 0 7. Alterntiv (B) Qundo multiplicmos dois números com o lgrismo ds uniddes igul 4, o lgrismo
Notas de aulas 1 IFSP Mecânica Técnica
Nots de uls 1 IFSP Meâni Téni 1. Revisão de trigonometri. Sistems de uniddes. Algrismos signifitivos. 2. Coneito de vetor. Som de vetores. Deomposição de forçs. 3. Equilírio de um ponto mteril. 4. Digrm
Exercícios de Dinâmica - Mecânica para Engenharia. deslocamento/espaço angular: φ (phi) velocidade angular: ω (ômega) aceleração angular: α (alpha)
Movimento Circulr Grndezs Angulres deslocmento/espço ngulr: φ (phi) velocidde ngulr: ω (ômeg) celerção ngulr: α (lph) D definição de Rdinos, temos: Espço Angulr (φ) Chm-se espço ngulr o espço do rco formdo,
Lista de Exercícios de Física II - Gabarito,
List de Exercícios de Físic II - Gbrito, 2015-1 Murício Hippert 18 de bril de 2015 1 Questões pr P1 Questão 1. Se o bloco sequer encost no líquido, leitur n blnç corresponde o peso do líquido e cord sustent
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO
M 100 MÂNI ov Sustitutiv 1 de deemo de 009 ução d ov: 100 minutos (não é pemitido uso de luldos) 1ª Questão (3,0 pontos) pl tinul de mss está lid às s e, d um de mss m, e à de mss m. Todos os sólidos são
AULA: Superfícies Quádricas
AULA: Superfíies Quádris Definição : Um equção gerl do gru em três vriáveis é um equção do tipo: A B C D E F G H I J (I), om pelo menos um ds onstntes A, B, C, D, E ou F é diferente de ero. Definição :
Comprimento de Curvas. Exemplo. Exemplos, cont. Exemplo 2 Para a cúspide. Continuação do Exemplo 2
Definição 1 Sej : omprimento de urvs x x(t) y y(t) z z(t) um curv lis definid em [, b]. O comprimento d curv é definido pel integrl L() b b [x (t)] 2 + [y (t)] 2 + [z (t)] 2 dt (t) dt v (t) dt Exemplo
Trigonometria FÓRMULAS PARA AJUDÁ-LO EM TRIGONOMETRIA
Trigonometri é o estudo dos triângulos, que contêm ângulos, clro. Conheç lgums regrs especiis pr ângulos e váris outrs funções, definições e trnslções importntes. Senos e cossenos são dus funções trigonométrics
Vetores. Capítulo. UNIDADE C Vetores e grandezas vetoriais: Cinemática vetorial
UNI etores e grndezs vetoriis: inemáti vetoril pítulo 7 etores s vetores são entes mtemátios mplmente utilizdos em Físi. les representm grndezs que só fim definids qundo são onheidos seu módulo, su direção
Física A Superintensivo
GABAITO Físic A Superintensio Exercícios 1) B ) E 3) D Coentário São chds de fundentis s uniddes que origin s deis. Teos coo fundentis n ecânic s grndezs copriento, tepo e ss, cujs uniddes no SI são etro,
Álgebra Linear e Geometria Analítica D
3 Deprtmento de Mtemáti Álgebr Liner e Geometri Anlíti D Segundo Teste 6 de Jneiro de 2 PREENCHA DE FORMA BEM LEGÍVEL Nome: Número de derno: Grelh de Resposts A B C D 2 3 4 5 Atenção Os primeiros 5 grupos
Bateria de Exercícios Matemática II. 1 Determine os valores de x e y, sabendo que os triângulos ABC e DEF são semelhantes:
Colégio: Nome: nº Sem limite pr reser Professor(): Série: 1ª EM Turm: Dt: / /2013 Desonto Ortográfio: Not: Bteri de Exeríios Mtemáti II 1 Determine os vlores de x e y, sendo que os triângulos ABC e DEF
Física. , penetra numa lâmina de vidro. e sua velocidade é reduzida para v vidro = 3
Questão 6 Um torre de ço, usd pr trnsmissão de televisão, tem ltur de 50 m qundo tempertur mbiente é de 40 0 C. Considere que o ço dilt-se, linermente, em médi, n proporção de /00.000, pr cd vrição de
Determinação do coeficiente de atrito estático e cinético
Métodos Estatístios em Físia Experimental Prof. Zwinglio Guimarães Determinação do oefiiente de atrito estátio e inétio Natália Camargo 1º Semestre/2015 O trabalho a ser apresentado é uma análise experimental
FACULDADES OSWALDO CRUZ ESCOLA SUPERIOR DE QUÍMICA
ULDDES OSWLDO RUZ ESOL SUERIOR DE QUÍMI DIÂMI ) rofessor: João Rodrigo Esclri Quintilino escl R b D figur: R 3 6 lterntiv e. x x v t t 4 x t 4t 8 m/s Se m 4 kg: R m 4 8 R 3 7 R v? v b) omo c R: b R, 9
Dinâmica dos Corpos Rígidos
Sebent de Disciplin DR, Zuzn Dimitrovová, DE/T/UNL, 06 Dinâmic dos orpos Rígidos. Introdução dinâmic, lém d nálise do movimento tmbém nlis origem deste movimento, ou sej, identific s forçs que o provocm,
Física III Escola Politécnica GABARITO DA P2 25 de maio de 2017
Físic - 4323203 Escol Politécnic - 2017 GABARTO DA P2 25 de mio de 2017 Questão 1 Um esfer condutor de rio está no interior de um csc esféric fin condutor de rio. A esfer e csc esféric são concêntrics
Material envolvendo estudo de matrizes e determinantes
E. E. E. M. ÁREA DE CONHECIMENTO DE MATEMÁTICA E SUAS TECNOLOGIAS PROFESSORA ALEXANDRA MARIA º TRIMESTRE/ SÉRIE º ANO NOME: Nº TURMA: Mteril envolvendo estudo de mtrizes e determinntes INSTRUÇÕES:. Este
E m Física chamam-se grandezas àquelas propriedades de um sistema físico
Bertolo Apêndice A 1 Vetores E m Físic chmm-se grndezs àquels proprieddes de um sistem físico que podem ser medids. Els vrim durnte um fenômeno que ocorre com o sistem, e se relcionm formndo s leis físics.
INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana.
INTEGRAL DEFINIDO O oneito de integrl definido está reliondo om um prolem geométrio: o álulo d áre de um figur pln. Vmos omeçr por determinr áre de um figur delimitd por dus rets vertiis, o semi-eio positivo
ESTÁTICA DO SISTEMA DE SÓLIDOS.
Definições. Forçs Interns. Forçs Externs. ESTÁTIC DO SISTEM DE SÓLIDOS. (Nóbreg, 1980) o sistem de sólidos denomin-se estrutur cuj finlidde é suportr ou trnsferir forçs. São quels em que ção e reção, pertencem
DECivil Secção de Mecânica Estrutural e Estruturas MECÂNICA I ENUNCIADOS DE PROBLEMAS
Eivil Secção de Mecânic Estruturl e Estruturs MEÂNI I ENUNIOS E ROLEMS Fevereiro de 2010 ÍTULO 3 ROLEM 3.1 onsidere plc em form de L, que fz prte d fundção em ensoleirmento gerl de um edifício, e que está
Calculando volumes. Para pensar. Para construir um cubo cuja aresta seja o dobro de a, de quantos cubos de aresta a precisaremos?
A UA UL LA 58 Clculndo volumes Pr pensr l Considere um cubo de rest : Pr construir um cubo cuj rest sej o dobro de, de quntos cubos de rest precisremos? l Pegue um cix de fósforos e um cix de sptos. Considerndo
Função Quadrática (Função do 2º grau) Profº José Leonardo Giovannini (Zé Leo)
Função Qudrátic (Função do º gru) Proº José Leonrdo Gionnini (Zé Leo) Zeros ou rízes e Equções do º Gru Chm-se zeros ou rízes d unção polinomil do º gru () = + b + c, reis tis que () =., os números DEFINIÇÃO:
Calculando volumes. Para construir um cubo cuja aresta seja o dobro de a, de quantos cubos de aresta a precisaremos?
A UA UL LA Acesse: http://fuvestibulr.com.br/ Clculndo volumes Pr pensr l Considere um cubo de rest : Pr construir um cubo cuj rest sej o dobro de, de quntos cubos de rest precisremos? l Pegue um cix de
Prova de Aferição de Matemática e Estudo do Meio Prova 26 2.º Ano de Escolaridade Braille, Entrelinha 1,5 sem figuras Critérios de Classificação
Prov de Aferição de Mtemáti e Estudo do Meio Prov 26 2.º Ano de Esolridde 2017 Dereto-Lei n.º 17/2016, de 4 de ril Brille, Entrelinh 1,5 sem figurs Critérios de Clssifição 12 Págins Prov 26/Adp CC Págin
Formas Lineares, Bilineares e Quadráticas
Forms Lineres Bilineres e Qudrátics Considere V um R-espço vetoril n-dimensionl Forms Lineres Qulquer trnsformção liner d form f : V R é denomind um funcionl liner ou form liner Eemplos: f : R R tl que
81,9(56,'$'( )('(5$/ '2 5,2 '( -$1(,52 &21&8562 '( 6(/(d 2 0$7(0É7,&$
81,9(56,'$'( )('(5$/ ' 5, '( -$1(,5 &1&856 '( 6(/(d 0$7(0É7,&$ -867,),48( 7'$6 $6 68$6 5(667$6 De um retângulo de 18 cm de lrgur e 48 cm de comprimento form retirdos dois qudrdos de ldos iguis 7 cm, como
TRANSFORMAÇÃO DE FONTES
TRANSFORMAÇÃO DE FONTES OBJECTIVO: Trnsformção de um fonte de tensão em série com um resistênci num fonte de corrente em prlelo com ess mesm resistênci ou iceers. EXEMPLO s i Rs L L R L is Rsi i L L R
Exemplos relativos à Dinâmica (sem rolamento)
Exeplos reltivos à Dinâic (se rolento) A resultnte ds forçs que ctu no corpo é iul o produto d ss pel celerção por ele dquirid: totl Cd corpo deve ser trtdo individulente, escrevendo u equção vectoril
MATEMÁTICA 1ª QUESTÃO. x é. O valor do limite. lim x B) 1 E) 1 2ª QUESTÃO. O valor do limite. lim A) 0 B) 1 C) 2 D) 3 E) 4
MATEMÁTICA ª QUESTÃO O vlor do limite lim x 0 x x é A) B) C) D) 0 E) ª QUESTÃO O vlor do limite x 4 lim x x x é A) 0 B) C) D) E) 4 ª QUESTÃO Um equção d ret tngente o gráfico d função f ( x) x x no ponto
Física Geral e Experimental I (2011/01)
Diretori de Ciêncis Exts Lbortório de Físic Roteiro Físic Gerl e Experimentl I (/ Experimento: Cinemátic do M. R. U. e M. R. U. V. . Cinemátic do M.R.U. e do M.R.U.V. Nest tref serão borddos os seguintes
Potencial Elétrico. Evandro Bastos dos Santos. 14 de Março de 2017
Potencil Elétrico Evndro Bstos dos Sntos 14 de Mrço de 2017 1 Energi Potencil Elétric Vmos começr fzendo um nlogi mecânic. Pr um corpo cindo em um cmpo grvitcionl g, prtir de um ltur h i té um ltur h f,
O atrito de rolamento.
engengens. Obseve-se que s foçs de tito de olmento epesentds n figu (F e f ) têm sentidos opostos. (Sugeimos que voê, ntes de possegui, poue i um modelo que pemit expli s foçs de tito de olmento). "Rffiniet
Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES MATRIZES
Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl - CAPES MATRIZES Prof. Antônio Murício Medeiros Alves Profª Denise Mri Vrell Mrtinez Mtemátic Básic pr Ciêncis Sociis
Resoluções dos testes propostos
os fundentos d físic 1 Unidde D Cpítulo 11 Os princípios d Dinâic 1.0 Respost: rt-se do princípio d inérci ou prieir lei de Newton..05 Respost: d el equção de orricelli, teos: v v 0 α s (30) (10) α 100
Geometria Analítica Prof Luis Carlos
ul 1: Vetores trtmento geométrico eometri nlític rof uis rlos 1. Segmentos orientdos: Um segmento orientdo é determindo por um pr ordendo de pontos (, ). é dito origem e extremidde do segmento. (, ): segmento
Prova de Aferição de Matemática e Estudo do Meio Prova 26 2.º Ano de Escolaridade Braille/Entrelinha 1,5 sem figuras Critérios de Classificação
Prov de Aferição de Mtemáti e Estudo do Meio Prov 26 2.º Ano de Esolridde 2018 Dereto-Lei n.º 17/2016, de 4 de ril Brille/Entrelinh 1,5 sem figurs Critérios de Clssifição 12 Págins Prov 26/Adp CC Págin
6. ÁLGEBRA LINEAR MATRIZES
MATRIZES. ÁLGEBRA LINEAR Definição Digonl Principl Mtriz Unidde Mtriz Trnspost Iguldde entre Mtrizes Mtriz Nul Um mtriz m n um tbel de números reis dispostos em m linhs e n coluns. Sempre que m for igul
MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON
MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON [email protected] MATRIZES Definição e Notção... 11 21 m1 12... 22 m2............ 1n.. 2n. mn Chmmos de Mtriz todo conjunto de vlores, dispostos
GEOMETRIA DESCRITIVA PASSO A PASSO PROF. JAIR ROBERTO BÄCHTOLD UDESC
GEOMETRIA DESCRITIVA PASSO A PASSO PROF. JAIR ROBERTO BÄCHTOLD UDESC Tópio 01 Tópio 02 Tópio 03 Tópio 04 Tópio 05 Tópio 06 Tópio 07 Tópio 08 Tópio 09 Tópio 10 Tópio 11 ÍNDICE Sistems de Projeções Estudo
MATEMÁTICA. Equações do Segundo Grau. Professor : Dêner Rocha. Monster Concursos 1
MATEMÁTICA Equções do Segundo Gru Professor : Dêner Roh Monster Conursos 1 Equções do segundo gru Ojetivos Definir equções do segundo gru. Resolver equções do segundo gru. Definição Chm-se equção do º
PROCESSO SELETIVO TURMA DE 2014 FASE 1 PROVA DE FÍSICA E SEU ENSINO
PROCEO ELEIVO URMA DE 4 FAE PROVA DE FÍICA E EU ENINO Cro professor, r professor est prov tem prtes; primeir prte é ojetiv, onstituí por 4 questões e múltipl esolh, um vleno,5 pontos; segun prte, om vlor
Física. Resolução das atividades complementares. F4 Vetores: conceitos e definições. 1 Observe os vetores das figuras:
Resolução ds tiiddes copleentres Físic F4 Vetores: conceitos e definições p. 8 1 Obsere os etores ds figurs: 45 c 45 b d Se 5 10 c, b 5 9 c, c 5 1 c e d 5 8 c, clcule o ódulo do etor R e cd cso: ) R 5
COEFICIENTES DE ATRITO
Físia Geral I MIEET Protoolos das Aulas Prátias Departamento de Físia Universidade do Algarve COEFICIENTES DE ATRITO 1. Resumo Corpos de diferentes materiais são deixados, sem veloidade iniial, sobre um
CURSO de FÍSICA - Gabarito
UNIVERSIDADE FEDERAL FLUMINENSE TRANSFERÊNCIA o semestre letivo de 010 e 1 o semestre letivo de 011 CURSO de FÍSICA - Gbrito Verifique se este cderno contém: PROVA DE REDAÇÃO com um propost; INSTRUÇÕES
Hewlett-Packard O ESTUDO DA RETA. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz
Hewlett-Pkrd O ESTUDO DA RETA Auls 01 05 Elson Rodrigues, Griel Crvlho e Pulo Luiz Sumário EQUAÇÃO GERAL DA RETA... 2 Csos espeiis... 2 Determinção d equção gerl de um ret prtir de dois de seus pontos...
Prova elaborada pelo prof. Octamar Marques. Resolução da profa. Maria Antônia Conceição Gouveia.
ª AVALIAÇÃO DA ª UNIDADE ª SÉRIE DO ENSINO MÉDIO DISCIPLINA: MATEMÁTICA Prov elord pelo prof. Otmr Mrques. Resolução d prof. Mri Antôni Coneição Gouvei.. Dispondo de livros de mtemáti e de físi, qunts
EXERCÍCIOS RESOLVIDOS
EXERÍIOS RESOLVIDOS R. 83 Ns igurs bixo, representmos s orçs que gem nos blocos (todos de mss igul 2,0 kg). Determine, em cd cso, o módulo d celerção que esses blocos dquirem. ) b) c) d) 2 = 3,0 N 1 =
3 : b.. ( ) é igual a: sen. Exponenciação e Logarítmos - PROF HELANO 15/06/15 < 4. 1) Para que valores reais se verifica a sentença
Exponencição e Logrítmos - PRO HELO /06/ ) Pr que vlores reis se verific sentenç x x x x x4 < 4 : ) { x / x } [, ] ) { x / x } ], [ ) Se, e c são reis positivos, então simplificndo ) ) 4 log c log c..
4 π. 8 π Considere a função real f, definida por f(x) = 2 x e duas circunferência C 1 e C 2, centradas na origem.
EFOMM 2010 1. Anlise s firmtivs bixo. I - Sej K o conjunto dos qudriláteros plnos, seus subconjuntos são: P = {x K / x possui ldos opostos prlelos}; L = {x K / x possui 4 ldos congruentes}; R = {x K /
Progressões Aritméticas
Segund Etp Progressões Aritmétics Definição São sequêncis numérics onde cd elemento, prtir do segundo, é obtido trvés d som de seu ntecessor com um constnte (rzão).,,,,,, 1 3 4 n 1 n 1 1º termo º termo
Funções e Limites. Informática
CURSO DE: SEGUNDA LICENCIATURA EM INFORMÁTICA DISCIPLINA: CÁLCULO I Funções e Limites Informátic Prof: Mrcio Demetrius Mrtinez Nov Andrdin 00 O CONCEITO DE UMA FUNÇÃO - FUNÇÃO. O que é um função Um função
CÁLCULO I. Denir e calcular o centroide de uma lâmina.
CÁLCULO I Prof. Mrcos Diniz Prof. André Almeid Prof. Edilson Neri Júnior Aul n o : Aplicções d Integrl: Momentos. Centro de Mss Objetivos d Aul Denir momento em relção um ponto xo e um ret. Denir e clculr
