TRANSFORMAÇÃO DE FONTES
|
|
|
- Ágata Figueiredo das Neves
- 7 Há anos
- Visualizações:
Transcrição
1 TRANSFORMAÇÃO DE FONTES OBJECTIVO: Trnsformção de um fonte de tensão em série com um resistênci num fonte de corrente em prlelo com ess mesm resistênci ou iceers. EXEMPLO s i Rs L L R L is Rsi i L L R L Ests fontes são equilentes se produzirem idênticos lores de tensão e de corrente qundo limentm crgs iguis quisquer que sejm os seus lores. Demonstrção: É eidente que s resistênci de lor R L = 0 e R L =, são dus crgs possíeis. L. EC Jime Sntos ( )
2 TRANSFORMAÇÃO DE FONTES Considerndo R L =, s dus fontes têm de proporcionr mesm tensão em circuito erto. s Rs is Loc Rsi Loc Loc = s = R si i s Se R L = 0 (terminis ds fontes em curtocircuito), s correntes de curtocircuito têm de ser iguis. s Rs i Lsc is Rsi i Lsc i = Lsc s = is R s = R s i s s Condição de equilênci R si = R s = R s e V s = R s i s L. EC Jime Sntos ( )
3 EXEMPLO DE APLICAÇÃO Considere o esquem representdo n figur: Determine utilizndo técnic d trnsformção de fontes corrente que percorre resistênci de. 2Ω 40Ω 3.76Ω 13Ω 12Ω 10A 129.6V 2Ω 3.76Ω 40Ω 6.24Ω 10A 129.6V L. EC Jime Sntos ( )
4 2Ω EXEMPLO DE APLICAÇÃO 2Ω 40Ω 62.4V 40Ω 3.24A 6.24A 129.6V 2Ω 8Ω 2Ω 24V 8Ω 3A 24 I = = 1. 2A 20 L. EC Jime Sntos ( )
5 EQUIVALENTES DE THÉVENIN E NORTON Equilentes de grnde utilidde qundo se pretende fzer pens nálises prciis de circuitos. EQUIVALENTE DE THÉVENIN Rede resisti contendo fontes independentes e dependentes R L V th R th R L Admitse que se pretende pens oter informção sore, p.ex., corrente e tensão os terminis de R L. V th? R th? O teorem de Théenin diznos que é possíel sustituir todos elementos de circuito, excepto crg, por um circuito equilente constituído por um fonte de tensão independente e um resistênci em série. L. EC Jime Sntos ( )
6 EQUIVALENTES DE THÉVENIN E NORTON CÁLCULO DE V th Se resistênci de crg (R L ) é infinit, estmos num situção de c.. V th terá de ser igul à tensão os terminis (,) do circuito originl (em c..) pr que estes sejm equilentes Rede resisti contendo fontes independentes e dependentes oc Tensão os terminis (,) é V th. V th = oc V th R th oc CÁLCULO DE R th Circuito eléctrico possuindo pens fontes independentes Desctição ds fontes independentes R th = Resistênci equilente entre os pontos ( ) d mlh resisti resultnte L. EC Jime Sntos ( )
7 EQUIVALENTES DE THÉVENIN E NORTON EQUIVALENTE DE NORTON isc Rth Por definição, o circuito equilente de Norton é o circuito equilente de ddo circuito originl, em que é possíel sustituir todos elementos do circuito, excepto crg, por um outro constituído por um fonte de corrente independente e um resistênci prlelo. em Rede resisti contendo fontes independentes e dependentes oc V th isc R th Rth oc L. EC Jime Sntos ( )
8 EQUIVALENTE DE NORTON EQUIVALENTE DE NORTON isc Rth CÁLCULO DE I n Se resistênci de crg (R L ) é nul, estmos num situção de c.c. A corrente de curto circuito entre os terminis (,) é I n. CÁLCULO DE R n Circuito eléctrico possuindo pens fontes independentes Desctição ds fontes independentes R n = Resistênci equilente entre os pontos d mlh resisti resultnte L. EC Jime Sntos ( )
9 EQUIVALENTES DE THÉVENIN E NORTON Técnics lterntis pr o cálculo de R th ou R n Utilizção simultâne do teorem de Theenin e de Norton. Determinção de VTH pelo teorem de Théenin Determinção de IN pelo teorem de Norton A resistênci de Théenin é dd pel relção entre tensão de Théenin e corrente de Norton R = th i TH N L. EC Jime Sntos ( )
10 EQUIVALENTES DE THÉVENIN E NORTON Existe contudo um processo lterntio o cálculo de mos os circuitos equilentes, já que um pode ser otido prtir do outro trés de um trnsformção de fontes. s Rs is Loc Rsi Loc Loc = s = R si i s L. EC Jime Sntos ( )
11 EQUIVALENTES DE THÉVENIN E NORTON EXEMPLO Cálculo de V th 50 V 10 V o I I A I 2 5 o Cálculo de V em c.. OBJECTIVO Eq. de Théenin Leis de Kirchhoff Nº rmos corrente incógnit: =2 Vth Rth n = 2 (n 1) = 1 Eq. de correntes EQUAÇÕES I 1 I 3 =I I 2 1 =1A (n1) =nº eq tensão=1 V 0 =10* I I 1 10I 2 =0 I 2 =4A V 0 = 40 olt L. EC Jime Sntos ( ) = 40 = V th
12 EQUIVALENTES DE THÉVENIN E NORTON Equilente Cálculo de R th. Circuito eléctrico possuindo pens fontes independentes 40V procedimento Desctimse s fontes independentes sustituindos pels respectis resistêncis interns Fonte de tensão idel Fonte de corrente idel Desctindo s fontes Curtocircuito Circuito erto R =10 Ω = R th Exemplo nterior 50 V A 5 o R L. EC Jime Sntos ( )
13 TEOREMA DA SOBREPOSIÇÃO Enuncido: Sempre que um sistem (circuito) liner é limentdo por mis do que um fonte independente, é possíel determinr respost totl trés d som ds contriuições indiiduis de cd fonte. EXEMPLO Ojectio: ) Determine corrente I L ; ) Verifique que o teorem d soreposição não se plic à potênci Procedimento 1 Contriuição d fonte de tensão. Desctimse s restntes fontes do circuito. L. EC Jime Sntos ( )
14 TEOREMA DA SOBREPOSIÇÃO Circuito simplificdo Lei de Ohm 2 Contriuição d fonte de corrente. Fonte de corrente: circuito erto Somndo s correntes : I L = I L1 I L2 Fonte de tensão: curtocircuito L. EC Jime Sntos ( )
15 TEOREMA DA SOBREPOSIÇÃO ) Verifique que o teorem d soreposição não se plic à potênci Assumindo que o teorem d soreposição se plic à potênci: Potênci deido à contriuição d 1ª fonte Potênci deido à contriuição d 2ª fonte Potênci totl deido o teorem d soreposição Resultdo incorrecto Potênci totl efectimente dissipd L. EC Jime Sntos ( )
PARTE I - Circuitos Resistivos Lineares
Prolem 1.1 Leis de Kirchhoff PARTE I Circuitos Resistivos Lineres i 1 v 2 R 1 10A 1 R 2 Considere o circuito d figur 1.1. ) Constru o seu grfo e indique o número de rmos e de nós. ) Clcule os vlores ds
Técnicas de Análise de Circuitos
Coordendori de utomção Industril Técnics de nálise de Circuitos Eletricidde Gerl Serr 0/005 LIST DE FIGURS Figur - Definição de nó, mlh e rmo...3 Figur LKC...4 Figur 3 Exemplo d LKC...5 Figur 4 plicção
Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031
Universidde Federl do io Grnde do Sul Escol de Engenhri de Porto Alegre Deprtmento de Engenhri Elétric ANÁLSE DE CCUTOS - ENG04031 Aul 1 - Lineridde, Superposição e elções /A Sumário Dics úteis; Leis e
Resumo. Estruturas de Sistemas Discretos. A Explosão do Ariane 5. Objectivo. Representações gráficas das equações às diferenças
Resumo Estruturs de Sistems Discretos Luís Clds de Oliveir [email protected] Instituto Superior Técnico Representções gráfics ds equções às diferençs Estruturs ásics de sistems IIR Forms trnsposts Estruturs
Definição 1 O determinante de uma matriz quadrada A de ordem 2 é por definição a aplicação. det
5 DETERMINANTES 5 Definição e Proprieddes Definição O erminnte de um mtriz qudrd A de ordem é por definição plicção ( ) : M IR IR A Eemplo : 5 A ( A ) ( ) ( ) 5 7 5 Definição O erminnte de um mtriz qudrd
5. Análise de Curto-Circuito ou Faltas. 5.3 Curto-Circuitos Assimétricos
Sistems Elétricos de Potênci 5. Análise de Curto-Circuito ou Flts 5. Curto-Circuitos Assimétricos Proessor: Dr. Rphel Augusto de Souz Benedito E-mil:[email protected] disponível em: http://pginpessol.utpr.edu.br/rphelbenedito
Eletrotécnica TEXTO Nº 7
Eletrotécnic TEXTO Nº 7 CIRCUITOS TRIFÁSICOS. CIRCUITOS TRIFÁSICOS EQUILIBRADOS E SIMÉTRICOS.. Introdução A quse totlidde d energi elétric no mundo é gerd e trnsmitid por meio de sistems elétricos trifásicos
Roteiro-Relatório da Experiência N o 6 ASSOCIAÇÃO DE QUADRIPOLOS SÉRIE - PARALELO - CASCATA
UNERSDADE DO ESTADO DE SANTA CATARNA UDESC FACULDADE DE ENGENHARA DE JONLLE FEJ DEPARTAMENTO DE ENGENHARA ELÉTRCA CRCUTOS ELÉTRCOS CEL PROF.: CELSO JOSÉ FARA DE ARAÚJO RoteiroReltório d Experiênci N o
Linhas 1 2 Colunas 1 2. (*) Linhas 1 2 (**) Colunas 2 1.
Resumos ds uls teórics -------------------- Cp 5 -------------------------------------- Cpítulo 5 Determinntes Definição Consideremos mtriz do tipo x A Formemos todos os produtos de pres de elementos de
Material envolvendo estudo de matrizes e determinantes
E. E. E. M. ÁREA DE CONHECIMENTO DE MATEMÁTICA E SUAS TECNOLOGIAS PROFESSORA ALEXANDRA MARIA º TRIMESTRE/ SÉRIE º ANO NOME: Nº TURMA: Mteril envolvendo estudo de mtrizes e determinntes INSTRUÇÕES:. Este
Diagrama de Blocos. Estruturas de Sistemas Discretos. Grafo de Fluxo. Sistemas IIR Forma Directa I
Estruturs de Sistems Discretos Luís Clds de Oliveir Digrm de Blocos As equções às diferençs podem ser representds num digrm de locos com símolos pr:. Representções gráfics ds equções às diferençs som de
UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA ELÉTRICA EEL7011 ELETRICIDADE BÁSICA TURMA: 141A
UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA ELÉTRICA EEL7011 ELETRICIDADE BÁSICA TURMA: 141A EQUIVALENTES DE THÉVENIN E NORTON E MÉTODOS DIRETO E INDIRETO DE MEDIR UMA RESISTÊNCIA
20/07/15. Matemática Aplicada à Economia LES 201
Mtemátic Aplicd à Economi LES 201 Auls 3 e 4 17 e 18/08/2015 Análise de Equilíbrio Sistems Lineres e Álgebr Mtricil Márci A.F. Dis de Mores Análise de Equilíbrio em Economi (Ching, cp 3) O significdo do
Conversão de Energia I
Deprtmento de Engenhri Elétric Conversão de Energi I Aul 5.2 Máquins de Corrente Contínu Prof. Clodomiro Unsihuy Vil Bibliogrfi FITZGERALD, A. E., KINGSLEY Jr. C. E UMANS, S. D. Máquins Elétrics: com Introdução
Física III Escola Politécnica GABARITO DA P2 25 de maio de 2017
Físic - 4323203 Escol Politécnic - 2017 GABARTO DA P2 25 de mio de 2017 Questão 1 Um esfer condutor de rio está no interior de um csc esféric fin condutor de rio. A esfer e csc esféric são concêntrics
4 SISTEMAS DE ATERRAMENTO
4 SISTEMAS DE ATEAMENTO 4. esistênci de terr Bix frequênci considerr o solo resistivo CONEXÃO À TEA Alt frequênci considerr cpcitânci indutânci e resistênci Em lt frequênci inclui-se s áres de telecomunicções
Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES MATRIZES
Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl - CAPES MATRIZES Prof. Antônio Murício Medeiros Alves Profª Denise Mri Vrell Mrtinez Mtemátic Básic pr Ciêncis Sociis
Matrizes e Determinantes
Págin de - // - : PROFESSOR: EQUIPE DE MTEMÁTIC NCO DE QUESTÕES - MTEMÁTIC - ª SÉRIE - ENSINO MÉDIO - PRTE =============================================================================================
81,9(56,'$'( )('(5$/ '2 5,2 '( -$1(,52 &21&8562 '( 6(/(d 2 0$7(0É7,&$
81,9(56,'$'( )('(5$/ ' 5, '( -$1(,5 &1&856 '( 6(/(d 0$7(0É7,&$ -867,),48( 7'$6 $6 68$6 5(667$6 De um retângulo de 18 cm de lrgur e 48 cm de comprimento form retirdos dois qudrdos de ldos iguis 7 cm, como
SERVIÇO PÚBLICO FEDERAL Ministério da Educação
SERVIÇO PÚBLICO FEDERAL Ministério d Educção Universidde Federl do Rio Grnde Universidde Abert do Brsil Administrção Bchreldo Mtemátic pr Ciêncis Sociis Aplicds I Rodrigo Brbos Sores . Mtrizes:.. Introdução:
INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA LISTA 3 SEMELHANÇA. Disciplina: Matemática Professor: Marcello Amadeo Série: 9º ano / EF
INSTITUTO E PLIÇÃO FERNNO RORIGUES SILVEIR isciplin: Mtemátic Professor: Mrcello mdeo Série: 9º no / EF lun(o): Turm: LIST 3 SEMELHNÇ FIGURS SEMELHNTES Em Mtemátic, qundo usmos medids proporcionis pr desenhr
UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA ELÉTRICA EEL7011 Eletricidade Básica
UNIERSIDDE FEDERL DE SNT CTRIN DEPRTMENTO DE ENGENHRI ELÉTRIC EEL7011 Eletricidade Básica UL 04 EQUILENTE DE THÉENIN, NORTON E MEDIDS DE RESISTÊNCI 1 INTRODUÇÃO E OBJETIOS Nas aulas anteriores teve-se
x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5,
- Limite. - Conceito Intuitivo de Limite Considere função f definid pel guinte epressão: f - - Podemos obrvr que função está definid pr todos os vlores de eceto pr. Pr, tnto o numerdor qunto o denomindor
Recordando produtos notáveis
Recordndo produtos notáveis A UUL AL A Desde ul 3 estmos usndo letrs pr representr números desconhecidos. Hoje você sbe, por exemplo, que solução d equção 2x + 3 = 19 é x = 8, ou sej, o número 8 é o único
Teoria de Linguagens 2 o semestre de 2014 Professor: Newton José Vieira Primeira Lista de Exercícios Entrega: até 16:40h de 23/10.
Pós-Grdução em Ciênci d Computção DCC/ICEx/UFMG Teori de Lingugens 2 o semestre de 2014 Professor: Newton José Vieir Primeir List de Exercícios Entreg: té 16:40h de 23/10. Oservções: O uso do softwre JFLAP,
Tópicos Especiais de Álgebra Linear Tema # 2. Resolução de problema que conduzem a s.e.l. com única solução. Introdução à Resolução de Problemas
Tópicos Especiis de Álgebr Liner Tem # 2. Resolução de problem que conduzem s.e.l. com únic solução Assunto: Resolução de problems que conduzem Sistem de Equções Lineres utilizndo invers d mtriz. Introdução
Introdução à Integral Definida. Aula 04 Matemática II Agronomia Prof. Danilene Donin Berticelli
Introdução à Integrl Definid Aul 04 Mtemátic II Agronomi Prof. Dnilene Donin Berticelli Áre Desde os tempos mis ntigos os mtemáticos se preocupm com o prolem de determinr áre de um figur pln. O procedimento
DETERMINANTES. Notação: det A = a 11. Exemplos: 1) Sendo A =, então det A = DETERMINANTE DE MATRIZES DE ORDEM 2
DETERMINANTES A tod mtriz qudrd ssoci-se um número, denomindo determinnte d mtriz, que é obtido por meio de operções entre os elementos d mtriz. Su plicção pode ser verificd, por exemplo, no cálculo d
Eletrônica de Potência
Eletrônic de Potênci 169421 Prof. Lélio R. Sores Júnior ENE-FT-UnB Eletrônic : trnsmissão, condicionmento e processmento de sinis (informção). Eletrônic de potênci: controle do fluxo de energi (elétric)
Diferenciação Numérica
Cpítulo 6: Dierencição e Integrção Numéric Dierencição Numéric Em muits circunstâncis, torn-se diícil oter vlores de derivds de um unção: derivds que não são de ácil otenção; Eemplo clculr ª derivd: e
ESTÁTICA DO SISTEMA DE SÓLIDOS.
Definições. Forçs Interns. Forçs Externs. ESTÁTIC DO SISTEM DE SÓLIDOS. (Nóbreg, 1980) o sistem de sólidos denomin-se estrutur cuj finlidde é suportr ou trnsferir forçs. São quels em que ção e reção, pertencem
Funções do 1 o Grau. Exemplos
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Funções do o Gru. Função
MATEMÁTICA. Equações do Segundo Grau. Professor : Dêner Rocha. Monster Concursos 1
MATEMÁTICA Equções do Segundo Gru Professor : Dêner Roh Monster Conursos 1 Equções do segundo gru Ojetivos Definir equções do segundo gru. Resolver equções do segundo gru. Definição Chm-se equção do º
Aula 14. Equivalente de Thévenin Parte I
Aula 14 Equivalente de Thévenin Parte I Tópico Estudados sobre análise de circuitos Método das tensões dos nós Método das correntes de malha Superposição Conversão de fontes Exemplos da Aula: http://everycircuit.com/circuit/6218399362580480
5) No circuito abaixo, determine a potência gerada pela bateria de 5 V.
) Determine Vab (i7 é desconhecido). V = 0V ab ) Obtenha os circuitos equivalentes de Thévenin e Norton do seguinte circuito. R.: 3) Determine a resistência equivalente R ab vista dos terminais ab do circuito
Todos os exercícios sugeridos nesta apostila se referem ao volume 2. MATEMÁTICA III 1 DETERMINANTES
INTRODUÇÃO... DETERMINANTE DE MATRIZ DE ORDEM... DETERMINANTE DE MATRIZ DE ORDEM... DETERMINANTE DE MATRIZ DE ORDEM... PROPRIEDADES DOS DETERMINANTES... 8 REGRA DE CHIÓ... MENOR COMPLEMENTAR... COFATOR...
TEOREMA DE THEVENIN E NORTON
TEOEMA DE EENN E NOTON Teorems plicdos pr nálise e solução de circuitos. ermite esconder informções desnecessris e se concentrr no que é relevnte e importnte n nálise. Amplificdor de udio de bix distorção
xy 1 + x 2 y + x 1 y 2 x 2 y 1 x 1 y xy 2 = 0 (y 1 y 2 ) x + (x 2 x 1 ) y + (x 1 y 2 x 2 y 1 ) = 0
EQUAÇÃO DA RETA NO PLANO 1 Equção d ret Denominmos equção de um ret no R 2 tod equção ns incógnits x e y que é stisfeit pelos pontos P (x, y) que pertencem à ret e só por eles. 1.1 Alinhmento de três pontos
n. 6 SISTEMAS LINEARES
n. 6 SISTEMAS LINEARES Sistem liner homogêneo Qundo os termos independentes de tods s equções são nulos. Todo sistem liner homogêneo dmite pelo menos solução trivil, que é solução identicmente nul. Assim,
Circuitos Elétricos II Experimento 1 Experimento 1: Sistema Trifásico
Circuitos Elétricos Experimento 1 Experimento 1: Sistem Trifásico 1. Objetivo: Medição de tensões e correntes de linh e de fse em um sistem trifásico. 2. ntrodução: As tensões trifásics são normlmente
Diogo Pinheiro Fernandes Pedrosa
Integrção Numéric Diogo Pinheiro Fernndes Pedros Universidde Federl do Rio Grnde do Norte Centro de Tecnologi Deprtmento de Engenhri de Computção e Automção http://www.dc.ufrn.br/ 1 Introdução O conceito
MATEMÁTICA PROFº ADRIANO PAULO LISTA DE FUNÇÃO POLINOMIAL DO 1º GRAU - ax b, sabendo que:
MATEMÁTICA PROFº ADRIANO PAULO LISTA DE FUNÇÃO POLINOMIAL DO º GRAU - Dd unção = +, determine Dd unção = +, determine tl que = Escrev unção im, sendo que: = e - = - - = e = c = e - = - A ret, gráico de
Eletrotécnica. Circuitos Elétricos
Eletrotécnica Circuitos Elétricos Introdução Caracterizamos um circuito elétrico como sendo um conjunto de componentes elétricos / eletrônicos ligados entre si formando pelo menos um caminho para a passagem
INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?
INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois
INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?
INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois
Matrizes. Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Márcia A.F. Dias de Moraes. Matrizes Conceitos Básicos
Mtemátic pr Economists LES uls e Mtrizes Ching Cpítulos e Usos em economi Mtrizes ) Resolução sistems lineres ) Econometri ) Mtriz Insumo Produto Márci.F. Dis de Mores Álgebr Mtricil Conceitos Básicos
Aula 5 Plano de Argand-Gauss
Ojetivos Plno de Argnd-Guss Aul 5 Plno de Argnd-Guss MÓDULO - AULA 5 Autores: Celso Cost e Roerto Gerldo Tvres Arnut 1) presentr geometricmente os números complexos ) Interpretr geometricmente som, o produto
1 Teorema de Thévenin
1 Teorema de Thévenin O teorema de Thévenin afirma que, do ponto de vista de um qualquer par de terminais, um circuito linear pode sempre ser substituído por uma fonte de tensão com resistência interna.
Método das Malhas. Abordagem Geral
Método das Malhas Abordagem Geral Método das Malhas 1. Associe uma corrente no sentido horário a cada malha fechada e independente do circuito. Não é necessário escolher o sentido horário para todas as
Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Luiz Fernando Satolo
Mtemátic pr Economists LES Auls 5 e Mtrizes Ching Cpítulos e 5 Luiz Fernndo Stolo Mtrizes Usos em economi ) Resolução sistems lineres ) Econometri ) Mtriz Insumo Produto Álgebr Mtricil Conceitos Básicos
Introdução ao estudo de equações diferenciais
MTDI I - 2007/08 - Introdução o estudo de equções diferenciis 63 Introdução o estudo de equções diferenciis Existe um grnde vriedde de situções ns quis se desej determinr um quntidde vriável prtir de um
Apostila 02 - Linguagens Regulares Exercícios
Cursos: Bchreldo em Ciênci d Computção e Bchreldo em Sistems de Informção Disciplins: (1493A) Teori d Computção e Lingugens Formis, (4623A) Teori d Computção e Lingugens Formis e (1601A) Teori d Computção
INTRODUÇÃO...3 ONDAS SENOIDAIS, FASORES E ÁLGEBRA FASORIAL...4 MÉTODOS DE ANÁLISE DE CIRCUITOS EM REGIME SENOIDAL...10
Cderno Universitário º semestre de 8 Análise de Circuitos em Corrente Alternd Por João Crlos ernetti dos Sntos Curso de Engenhri Elétric (ULBRA/Cnos) ÍNDCE NTRODUÇÃO...3 ONDAS SENODAS, FASORES E ÁLGEBRA
Circuitos Elétricos II Experimento 1 Experimento 1: Sistema Trifásico
Circuitos Elétricos Experimento 1 Experimento 1: Sistem Trifásico 1. Objetivo: Medição de tensões e correntes de linh e de fse em um sistem trifásico. 2. ntrodução: As tensões trifásics são normlmente
3 Teoria dos Conjuntos Fuzzy
0 Teori dos Conjuntos Fuzzy presentm-se qui lguns conceitos d teori de conjuntos fuzzy que serão necessários pr o desenvolvimento e compreensão do modelo proposto (cpítulo 5). teori de conjuntos fuzzy
16.4. Cálculo Vetorial. Teorema de Green
ÁLULO VETORIAL álculo Vetoril pítulo 6 6.4 Teorem de Green Nest seção, prenderemos sore: O Teorem de Green pr váris regiões e su plicção no cálculo de integris de linh. INTROUÇÃO O Teorem de Green fornece
Física Geral e Experimental I (2011/01)
Diretori de Ciêncis Exts Lbortório de Físic Roteiro Físic Gerl e Experimentl I (/ Experimento: Cinemátic do M. R. U. e M. R. U. V. . Cinemátic do M.R.U. e do M.R.U.V. Nest tref serão borddos os seguintes
Eletromagnetismo I. Eletromagnetismo I - Eletrostática. Equação de Laplace (Capítulo 6 Páginas 119 a 123) Eq. de Laplace
Eletromgnetismo I Prof. Dniel Orquiz Eletromgnetismo I Prof. Dniel Orquiz de Crvlo Equção de Lplce (Cpítulo 6 Págins 119 123) Eq. de Lplce Solução numéric d Eq. de Lplce Eletromgnetismo I 2 Prof. Dniel
ÁLGEBRA LINEAR Equações Lineares na Álgebra Linear EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS
EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS Equção Liner * Sej,,,...,, (números reis) e n (n ) 2 3 n x, x, x,..., x (números reis) 2 3 n Chm-se equção Liner sobre
Resumo com exercícios resolvidos do assunto: Aplicações da Integral
www.engenhrifcil.weely.com Resumo com exercícios resolvidos do ssunto: Aplicções d Integrl (I) (II) (III) Áre Volume de sólidos de Revolução Comprimento de Arco (I) Áre Dd um função positiv f(x), áre A
Adriano Pedreira Cattai
Adrino Pedreir Ctti pctti@hoocomr Universidde Federl d Bhi UFBA, MAT A01, 006 Superfícies de Revolução 1 Introdução Podemos oter superfícies não somente por meio de um equção do tipo F(,, ), eistem muitos
Hewlett-Packard O ESTUDO DO PONTO. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz
Hewlett-Pkrd O ESTUDO DO PONTO Auls 0 05 Elson Rodrigues, Griel Crvlho e Pulo Luiz Sumário INTRODUÇÃO AO PLANO CARTESIANO... Alguns elementos do plno rtesino... Origem... Eios... Qudrntes... Bissetrizes
Bhaskara e sua turma Cícero Thiago B. Magalh~aes
1 Equções de Segundo Gru Bhskr e su turm Cícero Thigo B Mglh~es Um equção do segundo gru é um equção do tipo x + bx + c = 0, em que, b e c são números reis ddos, com 0 Dd um equção do segundo gru como
1 ÁLGEBRA MATRICIAL 1.1 TIPOS ESPECIAIS DE MATRIZES. Teorema. Sejam A uma matriz k x m e B uma matriz m x n. Então (AB) T = B T A T
ÁLGEBRA MATRICIAL Teorem Sejm A um mtriz k x m e B um mtriz m x n Então (AB) T = B T A T Demonstrção Pr isso precismos d definição de mtriz trnspost Definição Mtriz trnspost (AB) T = (AB) ji i j = A jh
UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, utilizaremos o Teorema Fundamental do Cálculo (TFC) para o cálculo da área entre duas curvas.
CÁLCULO L1 NOTAS DA DÉCIMA SÉTIMA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nest ul, utilizremos o Teorem Fundmentl do Cálculo (TFC) pr o cálculo d áre entre dus curvs. 1. A áre entre dus curvs A
Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES DETERMINANTES
Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl - APES DETERMINANTES Prof Antônio Murício Medeiros Alves Profª Denise Mri Vrell Mrtinez Mtemátic Básic pr iêncis
Resumo. Sinais e Sistemas Transformada Z. Introdução. Transformada Z Bilateral
Resumo Sinis e Sistems Trnsformd Luís Clds de Oliveir lco@istutlpt Instituto Superior Técnico Definição Região de convergênci Trnsformd invers Proprieddes d trnsformd Avlição geométric d DTFT Crcterição
Métodos de análise e tópicos selecionados (CC)
Métodos de nálise e tópicos seleciondos (CC) Ojetivos Fmilirizr-se com s crcterístics terminis de um fonte de corrente e prender solucionr prolems envolvendo tensões e correntes de um circuito usndo fontes
6. ÁLGEBRA LINEAR MATRIZES
MATRIZES. ÁLGEBRA LINEAR Definição Digonl Principl Mtriz Unidde Mtriz Trnspost Iguldde entre Mtrizes Mtriz Nul Um mtriz m n um tbel de números reis dispostos em m linhs e n coluns. Sempre que m for igul
