Resumo. Sinais e Sistemas Transformada Z. Introdução. Transformada Z Bilateral

Tamanho: px
Começar a partir da página:

Download "Resumo. Sinais e Sistemas Transformada Z. Introdução. Transformada Z Bilateral"

Transcrição

1 Resumo Sinis e Sistems Trnsformd Luís Clds de Oliveir lco@istutlpt Instituto Superior Técnico Definição Região de convergênci Trnsformd invers Proprieddes d trnsformd Avlição geométric d DTFT Crcterição de SLITs usndo trnsformd Representção de SLITs em digrms Sinis e Sistems p/5 Sinis e Sistems p/5 Introdução Trnsformd Bilterl A trnsformd de Fourier não converge pr tods s sequêncis A trnsformd rnge um mior clsse de sinis A trnsformd desempenh pr os sinis discretos o mesmo ppel que trnsformd de Lplce pr os contínuos, X() = + n= x(n) X() x(n) n Sinis e Sistems p3/5 Sinis e Sistems p4/5

2 A DTFT e Trnsformd X() = + n= x(n) n A trnsformd de Fourier é trnsformd clculd sore circunferênci de rio unitário ( = r = ): X(e jω ) = + n= =re jω X(re jω ) = x(n)e jωn Plno + n= Im (x(n)r n )e jωn =e jω ω Re Clculr trnsformd do sinl: n, x(n) = n u(n) em que e u(n) é função esclão unitário X() =, > Sinis e Sistems p5/5 Sinis e Sistems p6/5 Convergênci d Trnsformd Clculr trnsformd do sinl: n, x(n) = n u( n ) em que e u(n) é função esclão unitário X() =, < Aplicndo condição d sequênci ser solutmente somável, usd pr trnsformd de Fourier: + n= x(n) n < A convergênci d trnsformd depende pens de : ROC tem form de um nel Em certos csos o limite interno do nel poderá ser origem e o limite externo poderá ser infinito Plno Im Re Sinis e Sistems p7/5 Sinis e Sistems p8/5

3 Função Rcionl Sinl Lterl Direito Um importnte clsse de trnsformds são quels em que trnsformd é um função rcionl no interior d região de convergênci: X() = P() Q() Em que P() e Q() são polinómios em de um sinl lterl direito: x(n) = n u(n) Plno Im Re eros de X() : nome ddo às ríes do numerdor P() pólos de X() : nome ddo às ríes do denomindor Q() Sinis e Sistems p9/5 Sinis e Sistems p0/5 Sinl Lterl Esquerdo Proprieddes d ROC Plno Im Re de um sinl lterl esquerdo: x(n) = n u( n ) Se trnsformd for um função rcionl e x(n) tiver mplitude finit excepto possivelmente em n = + ou n = : Propriedde : A região de convergênci é um nel centrdo n origem Propriedde : A trnsformd de Fourier de x(n) converge solutmente sse região de convergênci d trnsformd incluir o círculo unitário Propriedde 3: A região de convergênci não pode incluir nenhum pólo Sinis e Sistems p/5 Sinis e Sistems p/5

4 Proprieddes d ROC Proprieddes d ROC Propriedde 4: Se x(n) for um sinl de durção finit então região de convergênci é todo o plno excepto possivelmente = 0 ou = Propriedde 5: Se x(n) for um sinl lterl direito região de convergênci estende-se pr for do pólo mis fstdo d origem (incluindo possivelmente = ) Propriedde 6: Se x(n) for um sinl lterl esquerdo região de convergênci estende-se pr o interior do pólo mis próximo d origem (incluindo possivelmente = 0) Propriedde 7: Se x(n) for um sinl ilterl região de convergênci será um nel no plno, limitdo no interior e exterior por um pólo e não contendo pólos no seu interior Propriedde 8: A região de convergênci tem de ser um região ligd Sinis e Sistems p3/5 Sinis e Sistems p4/5 Clculr trnsformd do sinl indicndo região de convergênci: n, x(n) = n [u(n) u(n N)] em que, > 0 e u(n) é função esclão unitário X() = ( ) N, > 0 Clculr trnsformd do sinl indicndo região de convergênci: n, x(n) = n em que, > 0 e u(n) é função esclão unitário X() =, < < / Sinis e Sistems p5/5 Sinis e Sistems p6/5

5 Trnsformd Invers Determinr o número de sinis que podem ser ssocids à trnsformd :, X() = ( 3 )( ) Podemos ssocir um sinl i-lterl, um lterl esquerdo e um lterl direito No cso gerl inversão d trnsformd exige o recurso um integrl de circulção No entnto, se trnsformd for um função rcionl, pode ser expndid n form: X() = m i= A i Em função d região de convergênci, o sinl x(n) será um som de exponenciis n form A i n i u(n) ou A i n i u( n ) Sinis e Sistems p7/5 Sinis e Sistems p8/5 Método de Inspecção : X() = Us-se o pr de trnsformds:, > n u(n),, > Clculr trnsformd invers de: 3 5 6, X() =, > /3 ( 4 )( 3 ) x(n) = (/4) n u(n) + (/3) n u(n) Sinis e Sistems p9/5 Sinis e Sistems p0/5

6 Expnsão em Frcções Simples Expnsão em Frcções Simples X() = M k=0 k k N k=0 k = M 0 k=( c k ) k N 0 k= ( d k ) Se M < N e se os pólos forem todos de primeir ordem: em que: X() = N k= A k d k A k = ( d k )X() =dk No cso M N e existir um pólo de ordem s em = d i : X() = M N r=0 B r r + N k= A k s d k + C m ( d i ) m em que B r pode ser otido por divisão long do numerdor pelo denomindor terminndo-o qundo o gru do resto for menor que o do denomindor, { } d s m C m = (s m)!( d i ) s m dw [( d iw) s X(w )] s m w=di m= Sinis e Sistems p/5 Sinis e Sistems p/5 Expnsão em Série de Potêncis X() = + n= x(n) n = + x( ) + x( ) + x(0) + x() + x() + Os vlores d sequênci são os coeficientes ds potêncis de Clculr trnsformd invers de:, X() = , 0 < < x(n) = 4δ(n + ) + δ(n) + 3δ(n ) Sinis e Sistems p3/5 Sinis e Sistems p4/5

7 Lineridde Deslocmento Temporl x (n) + x (n) X () + X () Com região de convergênci: R X R X x(n n 0 ) n0 X() Com região de convergênci: R X excepto possível dição ou remoção de = 0 ou = Sinis e Sistems p5/5 Sinis e Sistems p6/5 Multiplicção por um Exponencil Inversão Temporl n 0 x(n) X(/ 0 ) Com região de convergênci: 0 R X x( n) X(/) Com região de convergênci: R X Sinis e Sistems p7/5 Sinis e Sistems p8/5

8 Conjugdo Convolução x (n) X ( ) Com região de convergênci: x (n) x (n) X ()X () Com região de convergênci contendo: R X R X R X Sinis e Sistems p9/5 Sinis e Sistems p30/5 Diferencição nx(n) dx() d Com região de convergênci: Clculr trnsformd invers de:, X() = ( ), > R X x(n) = n n u(n) Sinis e Sistems p3/5 Sinis e Sistems p3/5

9 Teorem do Vlor Inicil Se x(n) for um sequênci cusl (x(n) = 0 pr n < 0): x(0) = lim X() Pr um sequênci cusl, se X() for rcionl e se x(0) for um vlor finito, então ordem do numerdor não pode ser superior à do denomindor Verifique se 3, X() =, > / ( 3 )( ) Pode ser trnsformd do sinl: x(n) = 7(/3) n u(n) 6(/) n u(n) Aplicndo o teorem do vlor inicil: x(0) = lim X() = Sinis e Sistems p33/5 Sinis e Sistems p34/5 Trnsformds Comuns Trnsformds Comuns δ(n) u(n) u( n ) δ(n m) n u(n) n u( n ),, >, < m, excepto 0 (m > 0) ou (m < 0), >, < n n u(n) n n u( n) (n + ) n u(n) (n + ) n u( n ), > ( ), < ( ), > ( ), < ( ) Sinis e Sistems p35/5 Sinis e Sistems p36/5

10 Trnsformds Comuns Trnsformd de Fourier Sistem cusl de primeir ordem: h(n) = n u(n) r n cos(ω 0 n)u(n) r n sin(ω 0 n)u(n) [r cos(ω 0 )], > r r cos(ω 0 ) + r [r sin(ω 0 )], > r r cos(ω 0 ) + r H() = = Fendo = e jω otém-se trnsformd de Fourier: { n, 0 n N 0, cso contrário N N, > 0 H(e jω ) = e jω e jω = v v p H(e jω ) = ω (e jω ) = v v p em que v é o vector do ero = e jω e v p é o vector do pólo = e jω Sinis e Sistems p37/5 Sinis e Sistems p38/5 Sistem de Segund Ordem Cuslidde No cso de um sistem cusl de segund ordem: H() = r cos(θ) + r = r cos(θ) + r Fendo = e jω otém-se trnsformd de Fourier: H(e jω ) = v v v p v p A repost impulsiv de um SLIT cusl é um sinl lterl direito, então Um SLIT discreto com função de trnsferênci rcionl é cusl se e só se: ) região de convergênci for o exterior d circunferênci que inclui o pólo mis fstdo, ) ordem do numerdor não exceder ordem do denomindor H(e jω ) = v + v v p v p em que v e v são os vectores dos eros = e jω e v p e v p são os vectores dos pólos = e jω Sinis e Sistems p39/5 Sinis e Sistems p40/5

11 Verifique se, H() = pode ser função de trnsferênci de um sistem cusl Mesmo sem conhecer ROC podemos concluir que o sistem não é cusl porque ordem do numerdor é superior à do denomindor Verifique se, H() = +, > é função de trnsferênci de um sistem cusl Um ve que ROC é o exterior do pólo mis fstdo d origem, st confirmr que ordem do numerdor não excede do denomindor: Sinis e Sistems p4/5 H() = logo o sistem é cusl Sinis e Sistems p4/5 Estilidde Equções às Diferençs Um sistem discreto, liner e invrinte no tempo é estável se região de convergênci incluir o circunferênci de rio unitário Um SLIT cusl discreto com função de trnsferênci rcionl é estável se e só se todos os pólos estiverem no interior d circunferênci de rio unitário Muitos SLITs podem ser crcteridos por um equção às diferençs de coeficientes constntes: N k y(n k) = k=0 M k x(n k) k=0 Aplicndo propriedde do deslocmento: H() = Y() M X() = k=0 k k N k=0 k k Sinis e Sistems p43/5 Sinis e Sistems p44/5

12 Digrm de Blocos Grfo de Fluxo As equções às diferençs podem ser representds num digrm de locos com símolos pr: som de dois sinis; multiplicção de um sinl por um constnte; trso unitário : y(n) = x(n) + x(n ) + y(n ) x(n) y(n) A representção num grfo de fluxo é essencilmente igul à representção em locos excepto n notção utilid: o grfo é um conjunto de rmos que se interligm em nós; cd nó está ssocid um sequênci; cd rmo corresponde um trnsformção liner do nó de entrd pr o de síd Sinis e Sistems p45/5 Sinis e Sistems p46/5 de um Grfo Sistems IIR Form Direct I y(n) = x(n) + x(n ) + y(n ) x(n) H() = + y(n) y(n) = x(n) N N k y(n k) + k x(n k) k= 0 k=0 y(n) N N N N Sinis e Sistems p47/5 Sinis e Sistems p48/5

13 Sistems IIR Form Direct II x(n) 0 y(n) Determinr respost em frequênci e representr n form direct I e n form direct II o sistem liner e invrinte no tempo definido pel seguinte equção às diferençs: N N n, y(n) = x(n) x(n ) + y(n ) + y(n ) 3 N N Sinis e Sistems p49/5 Sinis e Sistems p50/5 Sistems FIR Form Direct Conclusões x(n) M M y(n) = k x(n k) = h(k)x(n k) k=0 k=0 M H() = k k k=0 h(0) h() h() h(m ) h(m) y(n) A trnsformd é um generlição d trnsformd de Fourier de sinis discretos Tl como n trnsformd de Lplce, trnsformd permite que sistems com função de trnsferênci rcionl sejm crcteridos pelo seu mp de pólos e eros A loclição dos pólos e d região de convergênci permitem determinr crcterístics como cuslidde e estilidde O mp de pólos e eros permite esoçr geometricmente trnsformd de Fourier à prte um fctor de escl Sinis e Sistems p5/5 Sinis e Sistems p5/5

Resumo. Sinais e Sistemas Transformada Z. Introdução. Transformada Z Bilateral

Resumo. Sinais e Sistemas Transformada Z. Introdução. Transformada Z Bilateral Resumo Sinis e Sistems Trnsformd lco@ist.utl.pt Instituto Superior Técnico Definição Região de convergênci Trnsformd invers Proprieddes d trnsformd Avlição geométric d DTFT Crcterição de SLITs usndo trnsformd.

Leia mais

Diagrama de Blocos. Estruturas de Sistemas Discretos. Grafo de Fluxo. Sistemas IIR Forma Directa I

Diagrama de Blocos. Estruturas de Sistemas Discretos. Grafo de Fluxo. Sistemas IIR Forma Directa I Estruturs de Sistems Discretos Luís Clds de Oliveir Digrm de Blocos As equções às diferençs podem ser representds num digrm de locos com símolos pr:. Representções gráfics ds equções às diferençs som de

Leia mais

Resumo. Estruturas de Sistemas Discretos. A Explosão do Ariane 5. Objectivo. Representações gráficas das equações às diferenças

Resumo. Estruturas de Sistemas Discretos. A Explosão do Ariane 5. Objectivo. Representações gráficas das equações às diferenças Resumo Estruturs de Sistems Discretos Luís Clds de Oliveir lco@ist.utl.pt Instituto Superior Técnico Representções gráfics ds equções às diferençs Estruturs ásics de sistems IIR Forms trnsposts Estruturs

Leia mais

Transformada Z. Transformada Z Bilateral. Transformada de Fourier e Transformada Z. A transformada de Fourier não converge para todas as sequências.

Transformada Z. Transformada Z Bilateral. Transformada de Fourier e Transformada Z. A transformada de Fourier não converge para todas as sequências. Transformada Z Luís Caldas de Oliveira Introdução A transformada de Fourier não converge para todas as sequências. A transformada Z abrange uma maior classe de sinais. sumo 1. Definição 2. gião de Convergência

Leia mais

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 2 3 quadrimestre 2012

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 2 3 quadrimestre 2012 EN607 Trnsformds em Sinis e Sistems Lineres List de Exercícios Suplementres 3 qudrimestre 0. (0N) (LATHI, 007, p. 593) Pr o sinl mostrdo n figur seguir, obtenh os coeficientes d série de Fourier e esboce

Leia mais

Sinais e Sistemas. Série de Fourier. Renato Dourado Maia. Faculdade de Ciência e Tecnologia de Montes Claros. Fundação Educacional Montes Claros

Sinais e Sistemas. Série de Fourier. Renato Dourado Maia. Faculdade de Ciência e Tecnologia de Montes Claros. Fundação Educacional Montes Claros Sinis e Sistems Série de Fourier Rento Dourdo Mi Fculdde de Ciênci e Tecnologi de Montes Clros Fundção Educcionl Montes Clros Introdução A Série e Integrl de Fourier englobm um dos desenvolvimentos mtemáticos

Leia mais

Aula 10 Estabilidade

Aula 10 Estabilidade Aul 0 Estbilidde input S output O sistem é estável se respost à entrd impulso 0 qundo t Ou sej, se síd do sistem stisfz lim y(t) t = 0 qundo entrd r(t) = impulso input S output Equivlentemente, pode ser

Leia mais

Progressões Aritméticas

Progressões Aritméticas Segund Etp Progressões Aritmétics Definição São sequêncis numérics onde cd elemento, prtir do segundo, é obtido trvés d som de seu ntecessor com um constnte (rzão).,,,,,, 1 3 4 n 1 n 1 1º termo º termo

Leia mais

Sinais e Sistemas. Série de Fourier. Renato Dourado Maia. Faculdade de Ciência e Tecnologia de Montes Claros. Fundação Educacional Montes Claros

Sinais e Sistemas. Série de Fourier. Renato Dourado Maia. Faculdade de Ciência e Tecnologia de Montes Claros. Fundação Educacional Montes Claros Sinis e Sistems Série de Fourier Rento Dourdo Mi Fculdde de Ciênci e Tecnologi de Montes Clros Fundção Educcionl Montes Clros Introdução A Série e Integrl de Fourier englobm um dos desenvolvimentos mtemáticos

Leia mais

A TRANSFORMADA Z. Métodos Matemáticos I C. Prof. Hélio Magalhães de Oliveira, Texto por R. Menezes Campello de Souza

A TRANSFORMADA Z. Métodos Matemáticos I C. Prof. Hélio Magalhães de Oliveira, Texto por R. Menezes Campello de Souza A TRANSFORMADA Z Métodos Matemáticos I C Prof. Hélio Magalhães de Oliveira, Texto por R. Menezes Campello de Souza Notação x(t) é o sinal analógico x(nt) = x[n], n inteiro, é a seqüência T é o período

Leia mais

Processamento Digital de Sinais - ENG420

Processamento Digital de Sinais - ENG420 Processamento Digital de Sinais - ENG420 Fabrício Simões IFBA 24 de setembro de 2016 Fabrício Simões (IFBA) Processamento Digital de Sinais - ENG420 24 de setembro de 2016 1 / 19 1 Transformada Z - Conceito

Leia mais

Processamento Digital de Sinais. Notas de Aula. Transformada Z. Transformada Z - TZ

Processamento Digital de Sinais. Notas de Aula. Transformada Z. Transformada Z - TZ Transformada Z Transformada Z 2 Transformada Z - TZ Processamento Digital de Sinais Notas de Aula Transformada Z É uma generalização da Transformada de Fourier de Tempo Discreto (DTFT) Útil para representação

Leia mais

Resumo. Sinais e Sistemas Transformada de Fourier de Sinais Discretos. Sequência de Duração Finita. Série de Fourier

Resumo. Sinais e Sistemas Transformada de Fourier de Sinais Discretos. Sequência de Duração Finita. Série de Fourier Resumo Sinais e Sistemas Transformada de Fourier de Sinais Discretos lco@ist.utl.pt Representação de sinais aperiódicos Transformada de Fourier de sinais periódicos Propriedades da transformada de Fourier

Leia mais

MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON

MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON PROFJWPS@GMAIL.COM MATRIZES Definição e Notção... 11 21 m1 12... 22 m2............ 1n.. 2n. mn Chmmos de Mtriz todo conjunto de vlores, dispostos

Leia mais

AULA 1. 1 NÚMEROS E OPERAÇÕES 1.1 Linguagem Matemática

AULA 1. 1 NÚMEROS E OPERAÇÕES 1.1 Linguagem Matemática 1 NÚMEROS E OPERAÇÕES 1.1 Lingugem Mtemátic AULA 1 1 1.2 Conjuntos Numéricos Chm-se conjunto o grupmento num todo de objetos, bem definidos e discerníveis, de noss percepção ou de nosso entendimento, chmdos

Leia mais

Processamento Digital de Sinais. Notas de Aula. Transformada Z. Transformada Z - TZ

Processamento Digital de Sinais. Notas de Aula. Transformada Z. Transformada Z - TZ Transformada Z Transformada Z 2 Transformada Z - TZ Processamento Digital de Sinais É uma generalização da Transformada de Fourier de Tempo Discreto (DTFT) Útil para representação e análise de sistemas

Leia mais

Matrizes. Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Márcia A.F. Dias de Moraes. Matrizes Conceitos Básicos

Matrizes. Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Márcia A.F. Dias de Moraes. Matrizes Conceitos Básicos Mtemátic pr Economists LES uls e Mtrizes Ching Cpítulos e Usos em economi Mtrizes ) Resolução sistems lineres ) Econometri ) Mtriz Insumo Produto Márci.F. Dis de Mores Álgebr Mtricil Conceitos Básicos

Leia mais

Introdução à Integral Definida. Aula 04 Matemática II Agronomia Prof. Danilene Donin Berticelli

Introdução à Integral Definida. Aula 04 Matemática II Agronomia Prof. Danilene Donin Berticelli Introdução à Integrl Definid Aul 04 Mtemátic II Agronomi Prof. Dnilene Donin Berticelli Áre Desde os tempos mis ntigos os mtemáticos se preocupm com o prolem de determinr áre de um figur pln. O procedimento

Leia mais

Resumo. Sinais e Sistemas Transformada de Laplace. Resposta ao Sinal Exponencial

Resumo. Sinais e Sistemas Transformada de Laplace. Resposta ao Sinal Exponencial Resumo Sinais e Sistemas Transformada de aplace uís Caldas de Oliveira lco@istutlpt Instituto Superior Técnico Definição da transformada de aplace Região de convergência Propriedades da transformada de

Leia mais

Transformada de Laplace

Transformada de Laplace Sinais e Sistemas Transformada de Laplace lco@ist.utl.pt Instituto Superior Técnico Sinais e Sistemas p.1/60 Resumo Definição da transformada de Laplace. Região de convergência. Propriedades da transformada

Leia mais

Estruturas de Sistemas Discretos

Estruturas de Sistemas Discretos Estruturas de Sistemas Discretos Luís Caldas de Oliveira lco@istutlpt Instituto Superior Técnico Estruturas de Sistemas Discretos p1/43 Resumo Representações gráficas das equações às diferenças Estruturas

Leia mais

IFRN Campus Natal/Central. Prof. Tibério Alves, D. Sc. FIC Métodos matemáticos para físicos e engenheiros - Aula 02.

IFRN Campus Natal/Central. Prof. Tibério Alves, D. Sc. FIC Métodos matemáticos para físicos e engenheiros - Aula 02. IFRN Cmpus Ntl/Centrl Prof. Tibério Alves, D. Sc. FIC Métodos mtemáticos pr físicos e engenheiros - Aul 0 Séries de Fourier 3 de gosto de 08 Resumo Neste ul, vmos estudr o conceito de conjunto completo

Leia mais

Transformada de Fourier Discreta no Tempo (DTFT)

Transformada de Fourier Discreta no Tempo (DTFT) Transformada de Fourier Discreta no Tempo (DTFT) Transformada de Fourier de um sinal discreto no tempo x(n): X e jω = x(n)e jωn n= A DTFT é uma função complexa da variável real e contínua ω. A DTFT é uma

Leia mais

Matemática para Economia Les 201. Aulas 28_29 Integrais Luiz Fernando Satolo

Matemática para Economia Les 201. Aulas 28_29 Integrais Luiz Fernando Satolo Mtemátic pr Economi Les 0 Auls 8_9 Integris Luiz Fernndo Stolo Integris As operções inverss n mtemátic: dição e sutrção multiplicção e divisão potencição e rdicição A operção invers d diferencição é integrção

Leia mais

Transformada z. Carlos Alberto Ynoguti. September 14, / 53

Transformada z. Carlos Alberto Ynoguti. September 14, / 53 Carlos Alberto Ynoguti September 14, 2007 1 / 53 Introdução Relação entre a DTFT e a convergência Exemplo 3.22 Observação Exemplo 3.23 Alguns pares de transformadas z 2 / 53 Introdução Introdução Relação

Leia mais

CONJUNTOS NUMÉRICOS NOTAÇÕES BÁSICAS. : Variáveis e parâmetros. : Conjuntos. : Pertence. : Não pertence. : Está contido. : Não está contido.

CONJUNTOS NUMÉRICOS NOTAÇÕES BÁSICAS. : Variáveis e parâmetros. : Conjuntos. : Pertence. : Não pertence. : Está contido. : Não está contido. CONJUNTOS NUMÉRICOS NOTAÇÕES BÁSICAS,,... A, B,... ~ > < : Vriáveis e prâmetros : Conjuntos : Pertence : Não pertence : Está contido : Não está contido : Contém : Não contém : Existe : Não existe : Existe

Leia mais

Sinais e Sistemas Discretos

Sinais e Sistemas Discretos Sinais e Sistemas Discretos Luís Caldas de Oliveira Resumo 1. Sinais em Tempo Discreto 2. Sistemas em Tempo Discreto 3. Sistemas Lineares e Invariantes no Tempo 4. Representações em requência 5. A Transformada

Leia mais

Capítulo III INTEGRAIS DE LINHA

Capítulo III INTEGRAIS DE LINHA pítulo III INTEGRIS DE LINH pítulo III Integris de Linh pítulo III O conceito de integrl de linh é um generlizção simples e nturl do conceito de integrl definido: f ( x) dx Neste último, integr-se o longo

Leia mais

Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Luiz Fernando Satolo

Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Luiz Fernando Satolo Mtemátic pr Economists LES Auls 5 e Mtrizes Ching Cpítulos e 5 Luiz Fernndo Stolo Mtrizes Usos em economi ) Resolução sistems lineres ) Econometri ) Mtriz Insumo Produto Álgebr Mtricil Conceitos Básicos

Leia mais

Cálculo Diferencial e Integral I 2 o Teste - LEAN, MEAer, MEAmb, MEBiol, MEMec

Cálculo Diferencial e Integral I 2 o Teste - LEAN, MEAer, MEAmb, MEBiol, MEMec Cálculo Diferencil e Integrl I o Teste - LEAN, MEAer, MEAmb, MEBiol, MEMec de Junho de, h Durção: hm Apresente todos os cálculos e justificções relevntes..5 vl.) Clcule, se eistirem em R, os limites i)

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA

UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA PRIMEIRO SEMESTRE DE 2015 13 de Fevereiro de 2015 Prte I Álgebr Liner 1 Questão: Sejm

Leia mais

Sistemas de tempo discreto

Sistemas de tempo discreto Sistemas de tempo discreto Magno T. M. Silva EPUSP, fevereiro de Sistemas de tempo discreto p. /37 . Sistemas de tempo discreto São funções matemáticas que transformam uma seqüência de entrada s(n) em

Leia mais

Transformada Z. A transformada Z de uma sequência x n é definida como:

Transformada Z. A transformada Z de uma sequência x n é definida como: Transformada Z Vimos que as DTFTs de algumas sequências não convergem uniformemente para funções contínuas de ω, porque as sequências não são absolutamente somáveis. A transformada Z permitirá a análise

Leia mais

Um disco rígido de 300Gb foi dividido em quatro partições. O conselho directivo ficou. 24, os alunos ficaram com 3 8

Um disco rígido de 300Gb foi dividido em quatro partições. O conselho directivo ficou. 24, os alunos ficaram com 3 8 GUIÃO REVISÕES Simplificção de expressões Um disco rígido de 00Gb foi dividido em qutro prtições. O conselho directivo ficou com 1 4, os docentes ficrm com 1 4, os lunos ficrm com 8 e o restnte ficou pr

Leia mais

Teorema de Green no Plano

Teorema de Green no Plano Instituto Superior Técnico eprtmento de Mtemátic Secção de Álgebr e Análise Prof. Gbriel Pires Teorem de Green no Plno O teorem de Green permite relcionr o integrl de linh o longo de um curv fechd com

Leia mais

MTDI I /08 - Integral de nido 55. Integral de nido

MTDI I /08 - Integral de nido 55. Integral de nido MTDI I - 7/8 - Integrl de nido 55 Integrl de nido Sej f um função rel de vriável rel de nid e contínu num intervlo rel I [; b] e tl que f (x) ; 8x [; b]: Se dividirmos [; b] em n intervlos iguis, mplitude

Leia mais

Diferenciação Numérica

Diferenciação Numérica Cpítulo 6: Dierencição e Integrção Numéric Dierencição Numéric Em muits circunstâncis, torn-se diícil oter vlores de derivds de um unção: derivds que não são de ácil otenção; Eemplo clculr ª derivd: e

Leia mais

Aula 09 Equações de Estado (parte II)

Aula 09 Equações de Estado (parte II) Aul 9 Equções de Estdo (prte II) Recpitulndo (d prte I): s equções de estdo têm form (sistems de ordem n ) = A + B u y = C + D u onde: A é um mtriz n n B é um mtriz n p C é um mtriz q n D é um mtriz q

Leia mais

fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que:

fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que: Cpítulo 8 Integris Imprópris 8. Introdução A eistênci d integrl definid f() d, onde f é contínu no intervlo fechdo [, b], é grntid pelo teorem fundmentl do cálculo. Entretnto, determinds plicções do Cálculo

Leia mais

3 - CRITÉRIO DE ESTABILIDADE DE ROUTH Estabilidade de Sistemas Lineares. Definições de estabilidade: Teorema da estabilidade:

3 - CRITÉRIO DE ESTABILIDADE DE ROUTH Estabilidade de Sistemas Lineares. Definições de estabilidade: Teorema da estabilidade: 3 - CRITÉRIO DE ESTABILIDADE DE ROUTH 3.1 - Estbilidde de Sistems Lineres Definições de estbilidde: Um sistem liner é estável qundo qulquer sinl de entrd de mplitude finit produz sinis de síd tmbém de

Leia mais

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral Escol Superior de Agricultur Luiz de Queiroz Universidde de São Pulo Módulo I: Cálculo Diferencil e Integrl Teori d Integrção e Aplicções Professor Rent Alcrde Sermrini Nots de ul do professor Idemuro

Leia mais

CÁLCULO INTEGRAL. e escreve-se

CÁLCULO INTEGRAL. e escreve-se Primitivs CÁLCULO INTEGRAL Prolem: Dd derivd de um função descorir função inicil. Definição: Chm-se primitiv de um função f, definid num intervlo ] [ à função F tl que F = f e escreve-se,, F = P f ou F

Leia mais

Matemática A - 10 o Ano Ficha de Trabalho

Matemática A - 10 o Ano Ficha de Trabalho Fich de Trlho Álger - Rdicis Mtemátic - 0 o no Fich de Trlho Álger - Rdicis Grupo I. Sejm e dois números nturis diferentes que tis que x =. onclui-se então que x pode ser ddo por qul ds expressões ixo?

Leia mais

2.4 Integração de funções complexas e espaço

2.4 Integração de funções complexas e espaço 2.4 Integrção de funções complexs e espço L 1 (µ) Sej µ um medid no espço mensurável (, F). A teori de integrção pr funções complexs é um generlizção imedit d teori de integrção de funções não negtivs.

Leia mais

Os números racionais. Capítulo 3

Os números racionais. Capítulo 3 Cpítulo 3 Os números rcionis De modo informl, dizemos que o conjunto Q dos números rcionis é composto pels frções crids prtir de inteiros, desde que o denomindor não sej zero. Assim como fizemos nteriormente,

Leia mais

ÁLGEBRA LINEAR Equações Lineares na Álgebra Linear EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS

ÁLGEBRA LINEAR Equações Lineares na Álgebra Linear EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS Equção Liner * Sej,,,...,, (números reis) e n (n ) 2 3 n x, x, x,..., x (números reis) 2 3 n Chm-se equção Liner sobre

Leia mais

MÉTODO DA POSIÇÃO FALSA EXEMPLO

MÉTODO DA POSIÇÃO FALSA EXEMPLO MÉTODO DA POSIÇÃO FALSA Vimos que o Método d Bissecção encontr um novo intervlo trvés de um médi ritmétic. Ddo o intervlo [,], o método d posição fls utiliz médi ponderd de e com pesos f( e f(, respectivmente:

Leia mais

Interpretação Geométrica. Área de um figura plana

Interpretação Geométrica. Área de um figura plana Integrl Definid Interpretção Geométric Áre de um figur pln Interpretção Geométric Áre de um figur pln Sej f(x) contínu e não negtiv em um intervlo [,]. Vmos clculr áre d região S. Interpretção Geométric

Leia mais

Problemas e Algoritmos

Problemas e Algoritmos Problems e Algoritmos Em muitos domínios, há problems que pedem síd com proprieddes específics qundo são fornecids entrds válids. O primeiro psso é definir o problem usndo estruturs dequds (modelo), seguir

Leia mais

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES Prof. Erivelton Gerldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO FEDERAL DE

Leia mais

Material envolvendo estudo de matrizes e determinantes

Material envolvendo estudo de matrizes e determinantes E. E. E. M. ÁREA DE CONHECIMENTO DE MATEMÁTICA E SUAS TECNOLOGIAS PROFESSORA ALEXANDRA MARIA º TRIMESTRE/ SÉRIE º ANO NOME: Nº TURMA: Mteril envolvendo estudo de mtrizes e determinntes INSTRUÇÕES:. Este

Leia mais

x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5,

x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5, - Limite. - Conceito Intuitivo de Limite Considere função f definid pel guinte epressão: f - - Podemos obrvr que função está definid pr todos os vlores de eceto pr. Pr, tnto o numerdor qunto o denomindor

Leia mais

Aula 27 Integrais impróprias segunda parte Critérios de convergência

Aula 27 Integrais impróprias segunda parte Critérios de convergência Integris imprópris segund prte Critérios de convergênci MÓDULO - AULA 7 Aul 7 Integris imprópris segund prte Critérios de convergênci Objetivo Conhecer dois critérios de convergênci de integris imprópris:

Leia mais

Nota de aula_2 2- FUNÇÃO POLINOMIAL

Nota de aula_2 2- FUNÇÃO POLINOMIAL Universidde Tecnológic Federl do Prná Cmpus Curiti Prof. Lucine Deprtmento Acdêmico de Mtemátic Not de ul_ - FUNÇÃO POLINOMIAL Definição 8: Função polinomil com um vriável ou simplesmente função polinomil

Leia mais

Análise de Sistemas LTI através das transformadas

Análise de Sistemas LTI através das transformadas Análise de Sistemas LTI através das transformadas Luis Henrique Assumpção Lolis 23 de setembro de 2013 Luis Henrique Assumpção Lolis Análise de Sistemas LTI através das transformadas 1 Conteúdo 1 Resposta

Leia mais

Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031

Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031 Universidde Federl do Rio Grnde do Sul Escol de Engenhri de Porto Alegre Deprtmento de Engenhri Elétric ANÁLISE DE CIRCUITOS II - ENG04031 Aul 2 - Teorems de Thévenin e Norton Sumário Algrismos significtivos

Leia mais

(B) (A) e o valor desta integral é 9. gabarito: Propriedades da integral Represente geometricamente as integrais para acompanhar o cálculo.

(B) (A) e o valor desta integral é 9. gabarito: Propriedades da integral Represente geometricamente as integrais para acompanhar o cálculo. Cálculo Univrido List numero integrl trcisio@sorlmtemtic.org T. Prcino-Pereir Sorl Mtemátic lun@: 7 de setemro de 7 Cálculo Produzido com L A TEX sis. op. Dein/GNU/Linux www.clculo.sorlmtemtic.org/ Os

Leia mais

Aula 5 Plano de Argand-Gauss

Aula 5 Plano de Argand-Gauss Ojetivos Plno de Argnd-Guss Aul 5 Plno de Argnd-Guss MÓDULO - AULA 5 Autores: Celso Cost e Roerto Gerldo Tvres Arnut 1) presentr geometricmente os números complexos ) Interpretr geometricmente som, o produto

Leia mais

O Amplificador Operacional

O Amplificador Operacional UFSM CT DELC O Amplificdor Opercionl Prte I Giovni Brtto 6/26/2007 Introdução Neste texto, o mplificdor opercionl será considerdo como um cix pret. Estmos interessdos em compreender o seu funcionmento

Leia mais

Trigonometria FÓRMULAS PARA AJUDÁ-LO EM TRIGONOMETRIA

Trigonometria FÓRMULAS PARA AJUDÁ-LO EM TRIGONOMETRIA Trigonometri é o estudo dos triângulos, que contêm ângulos, clro. Conheç lgums regrs especiis pr ângulos e váris outrs funções, definições e trnslções importntes. Senos e cossenos são dus funções trigonométrics

Leia mais

Apoio à Decisão. Aula 3. Aula 3. Mônica Barros, D.Sc.

Apoio à Decisão. Aula 3. Aula 3. Mônica Barros, D.Sc. Aul Métodos Esttísticos sticos de Apoio à Decisão Aul Mônic Brros, D.Sc. Vriáveis Aletóris Contínus e Discrets Função de Probbilidde Função Densidde Função de Distribuição Momentos de um vriável letóri

Leia mais

Funções do 1 o Grau. Exemplos

Funções do 1 o Grau. Exemplos UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Funções do o Gru. Função

Leia mais

3. CÁLCULO INTEGRAL EM IR

3. CÁLCULO INTEGRAL EM IR 3 CÁLCULO INTEGRAL EM IR A importâni do álulo integrl em IR reside ns sus inúmers plições em vários domínios d engenhri, ms tmém em ísi, em teori ds proiliddes, em eonomi, em gestão 3 Prtição de um intervlo

Leia mais

Lista 5: Geometria Analítica

Lista 5: Geometria Analítica List 5: Geometri Anlític A. Rmos 8 de junho de 017 Resumo List em constnte tulizção. 1. Equção d elipse;. Equção d hiperból. 3. Estudo unificdo ds cônics não degenerds. Elipse Ddo dois pontos F 1 e F no

Leia mais

FUNÇÕES. Mottola. 1) Se f(x) = 6 2x. é igual a (a) 1 (b) 2 (c) 3 (d) 4 (e) 5. 2) (UNIFOR) O gráfico abaixo. 0 x

FUNÇÕES. Mottola. 1) Se f(x) = 6 2x. é igual a (a) 1 (b) 2 (c) 3 (d) 4 (e) 5. 2) (UNIFOR) O gráfico abaixo. 0 x FUNÇÕES ) Se f() = 6, então f ( 5) f ( 5) é igul () (b) (c) 3 (d) 4 (e) 5 ) (UNIFOR) O gráfico bio 0 () não represent um função. (b) represent um função bijetor. (c) represent um função não injetor. (d)

Leia mais

NOTA DE AULA. Tópicos em Matemática

NOTA DE AULA. Tópicos em Matemática Universidde Tecnológic Federl do Prná Cmpus Curitib Prof. Lucine Deprtmento Acdêmico de Mtemátic NOTA DE AULA Tópicos em Mtemátic Fonte: http://eclculo.if.usp.br/ 1. CONJUNTOS NUMÉRICOS: 1.1 Números Nturis

Leia mais

Matemática para Economia Les 201

Matemática para Economia Les 201 Mtemátic pr Economi Les uls 8_9 Integris Márci znh Ferrz Dis de Mores _//6 Integris s operções inverss n mtemátic: dição e sutrção multiplicção e divisão potencição e rdicição operção invers d dierencição

Leia mais

SOCIEDADE EDUCACIONAL DE SANTA CATARINA INSTITUTO SUPERIOR TUPY

SOCIEDADE EDUCACIONAL DE SANTA CATARINA INSTITUTO SUPERIOR TUPY SOCIEDADE EDUCACIONAL DE SANTA CATARINA INSTITUTO SUPERIOR TUPY IDENTIFICAÇÃO Curso: Engenhri Mecânic PLANO DE ENSINO Período/Módulo: 4 o Período Disciplin/Unidde Curriculr: Cálculo IV Código: CE386 Número

Leia mais

3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos

3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos 3. Cálculo integrl em IR 3.. Integrl Indefinido 3... Definição, Proprieddes e Exemplos A noção de integrl indefinido prece ssocid à de derivd de um função como se pode verificr prtir d su definição: Definição

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS Prof. Bruno Fris Arquivo em nexo Conteúdo Progrmático Biliogrfi HALLIDAY,

Leia mais

Conjuntos Numéricos. Conjuntos Numéricos

Conjuntos Numéricos. Conjuntos Numéricos UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA.. Proprieddes dos números

Leia mais

Integral. (1) Queremos calcular o valor médio da temperatura ao longo do dia. O valor. a i

Integral. (1) Queremos calcular o valor médio da temperatura ao longo do dia. O valor. a i Integrl Noção de Integrl. Integrl é o nálogo pr unções d noção de som. Ddos n números 1, 2,..., n, podemos tomr su som 1 + 2 +... + n = i. O integrl de = té = b dum unção contínu é um mneir de somr todos

Leia mais

A equação de Schrödinger independente do tempo

A equação de Schrödinger independente do tempo A equção de Schrödinger independente do tempo 1 Estdos estcionários Até gor nós introduzimos função de ond d prtícul e discutimos su interpretção, interpretção probbilístic de Born pr função de ond e indicmos

Leia mais

Após encontrar os determinantes de A. B e de B. A, podemos dizer que det A. B = det B. A?

Após encontrar os determinantes de A. B e de B. A, podemos dizer que det A. B = det B. A? PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - ª SÉRIE - ENSINO MÉDIO ============================================================================================= Determinntes - O vlor

Leia mais

CONJUNTOS NUMÉRICOS Símbolos Matemáticos

CONJUNTOS NUMÉRICOS Símbolos Matemáticos CONJUNTOS NUMÉRICOS Símolos Mtemáticos,,... vriáveis e prâmetros igul A, B,... conjuntos diferente pertence > mior que não pertence < menor que está contido mior ou igul não está contido menor ou igul

Leia mais

6. ÁLGEBRA LINEAR MATRIZES

6. ÁLGEBRA LINEAR MATRIZES MATRIZES. ÁLGEBRA LINEAR Definição Digonl Principl Mtriz Unidde Mtriz Trnspost Iguldde entre Mtrizes Mtriz Nul Um mtriz m n um tbel de números reis dispostos em m linhs e n coluns. Sempre que m for igul

Leia mais

Integrais Imprópias Aula 35

Integrais Imprópias Aula 35 Frções Prciis - Continução e Integris Imprópis Aul 35 Alexndre Nolsco de Crvlho Universidde de São Pulo São Crlos SP, Brzil 05 de Junho de 203 Primeiro Semestre de 203 Turm 20304 - Engenhri de Computção

Leia mais

equação paramêtrica/vetorial da curva: a lei γ(t) =... Dizemos que a curva é fechada se I = [a, b] e γ(a) = γ(b).

equação paramêtrica/vetorial da curva: a lei γ(t) =... Dizemos que a curva é fechada se I = [a, b] e γ(a) = γ(b). 1 Lembrete: curvs Definição Chmmos Curv em R n : um função contínu : I R n onde I R é intervlo. (link desenho curvs) Definimos: Trço d curv: imgem equção prmêtric/vetoril d curv: lei (t) =... Dizemos que

Leia mais

SÉRIES DE FOURIER. 1. Uma série trigonométrica e sua sequência das somas parciais (S N ) N são dadas por

SÉRIES DE FOURIER. 1. Uma série trigonométrica e sua sequência das somas parciais (S N ) N são dadas por SÉRIES DE FOURIER 1. Um série trigonométric e su sequênci ds soms prciis (S N ) N são dds por (1) c n e inx, n Z, c n C, x R ; S N = n= c n e inx. Tl série converge em x R se (S N (x)) N converge e, o

Leia mais

Dep. Matemática e Aplicações 27 de Abril de 2011 Universidade do Minho 1 o Teste de Teoria das Linguagens. Proposta de resolução

Dep. Matemática e Aplicações 27 de Abril de 2011 Universidade do Minho 1 o Teste de Teoria das Linguagens. Proposta de resolução Dep. Mtemátic e Aplicções 27 de Aril de 2011 Universidde do Minho 1 o Teste de Teori ds Lingugens Lic. Ciêncis Computção Propost de resolução 1. Considere lingugem L = A sore o lfeto A = {,}. Durção: 2

Leia mais

Aos pais e professores

Aos pais e professores MAT3_015_F01_5PCImg.indd 9 9/09/16 10:03 prcels ou termos som ou totl Pr dicionres mentlmente, podes decompor os números e dicioná-los por ordens. 136 + 5 = (100 + 30 + 6) + (00 + 50 + ) 300 + 80 + 8 MAT3_015_F0.indd

Leia mais

6 Cálculo Integral. 1. (Exercício VI.1 de [1]) Considere a função f definida no intervalo [0, 2] por. 1 se x [0, 1[ 3 se x ]1, 2]

6 Cálculo Integral. 1. (Exercício VI.1 de [1]) Considere a função f definida no intervalo [0, 2] por. 1 se x [0, 1[ 3 se x ]1, 2] 6 Cálculo Integrl. (Eercício VI. de []) Considere função f definid no intervlo [, ] por se [, [ f () = se = 3 se ], ] () Mostre que pr tod decomposição do intervlo [, ], s soms superior S d ( f ) e inferior

Leia mais

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou POLINÔMIOS Definição: Um polinômio de gru n é um função que pode ser escrit n form P() n n i 0... n i em que cd i é um número compleo (ou i 0 rel) tl que n é um número nturl e n 0. Os números i são denomindos

Leia mais

Diogo Pinheiro Fernandes Pedrosa

Diogo Pinheiro Fernandes Pedrosa Integrção Numéric Diogo Pinheiro Fernndes Pedros Universidde Federl do Rio Grnde do Norte Centro de Tecnologi Deprtmento de Engenhri de Computção e Automção http://www.dc.ufrn.br/ 1 Introdução O conceito

Leia mais

Propriedades Matemáticas

Propriedades Matemáticas Proprieddes Mtemátics Guilherme Ferreir guifs2@hotmil.com Setembro, 2018 Sumário 1 Introdução 2 2 Potêncis 2 3 Rízes 3 4 Frções 4 5 Produtos Notáveis 4 6 Logritmos 5 6.1 Consequêncis direts d definição

Leia mais

Transformada Discreta de Fourier (DFT)

Transformada Discreta de Fourier (DFT) Transformada Discreta de Fourier DFT) Processamento de Sinais 5/6 Engenharia Aeroespacial Sinais periódicos Seja x[n] um sinal periódico com período x[n + r] = x[n] para r Z) O sinal x[n] é determinado

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois

Leia mais

x u 30 2 u 1 u 6 + u 10 2 = lim (u 1)(1 + u + u 2 + u 3 + u 4 )(2 + 2u 5 + u 10 )

x u 30 2 u 1 u 6 + u 10 2 = lim (u 1)(1 + u + u 2 + u 3 + u 4 )(2 + 2u 5 + u 10 ) Universidde Federl de Viços Deprtmento de Mtemátic MAT 40 Cálculo I - 207/II Eercícios Resolvidos e Comentdos Prte 2 Limites: Clcule os seguintes ites io se eistirem. Cso contrário, justique não eistênci.

Leia mais

Introdução ao estudo de equações diferenciais

Introdução ao estudo de equações diferenciais MTDI I - 2007/08 - Introdução o estudo de equções diferenciis 63 Introdução o estudo de equções diferenciis Existe um grnde vriedde de situções ns quis se desej determinr um quntidde vriável prtir de um

Leia mais

Universidade Federal de Pelotas Vetores e Álgebra Linear Prof a : Msc. Merhy Heli Rodrigues Determinantes

Universidade Federal de Pelotas Vetores e Álgebra Linear Prof a : Msc. Merhy Heli Rodrigues Determinantes Universidde Federl de Pelots Vetores e Álgebr Liner Prof : Msc. Merhy Heli Rodrigues Determinntes Determinntes Definição: Determinnte é um número ssocido um mtriz qudrd.. Determinnte de primeir ordem Dd

Leia mais

(x, y) dy. (x, y) dy =

(x, y) dy. (x, y) dy = Seção 7 Função Gm A expressão n! = 1 3... n (1 está definid pens pr vlores inteiros positivos de n. Um primeir extensão é feit dizendo que! = 1. Ms queremos estender noção de ftoril inclusive pr vlores

Leia mais

LISTA PREPARATÓRIA PARA RECUPERAÇÃO FINAL MATEMÁTICA (9º ano)

LISTA PREPARATÓRIA PARA RECUPERAÇÃO FINAL MATEMÁTICA (9º ano) PARTE I ) Determine s potêncis: ) 4 = b) - = ) Escrev usndo potênci de bse 0: ) 7 bilhões: b) um milionésimo: ) Trnsforme os números ddos em potencições e simplifique epressão: 0000000 00000 5 = 4) Escrev

Leia mais

Definição 1 O determinante de uma matriz quadrada A de ordem 2 é por definição a aplicação. det

Definição 1 O determinante de uma matriz quadrada A de ordem 2 é por definição a aplicação. det 5 DETERMINANTES 5 Definição e Proprieddes Definição O erminnte de um mtriz qudrd A de ordem é por definição plicção ( ) : M IR IR A Eemplo : 5 A ( A ) ( ) ( ) 5 7 5 Definição O erminnte de um mtriz qudrd

Leia mais

1 o Teste Tipo. Sinais e Sistemas (LERC/LEE) 2008/2009. Maio de Respostas

1 o Teste Tipo. Sinais e Sistemas (LERC/LEE) 2008/2009. Maio de Respostas o Teste Tipo Sinais e Sistemas (LERC/LEE) 2008/2009 Maio de 2009 Respostas i Problema. (0,9v) Considere o seguinte integral: + 0 δ(t π/4) cos(t)dt em que t eδ(t) é a função delta de Dirac. O integral vale:

Leia mais

Filtros de tempo discreto

Filtros de tempo discreto Filtros de tempo discreto ENGC33: Sinais e Sistemas II Departamento de Engenharia Elétrica - DEE Universidade Federal da Bahia - UFBA 25 de março de 2019 Prof. Tito Luís Maia Santos 1/ 28 Sumário 1 Apresentação

Leia mais

Lista de Problemas H2-2002/2. LISTA DE PROBLEMAS Leia atentamente as instruções relativas aos métodos a serem empregados para solucionar os problemas.

Lista de Problemas H2-2002/2. LISTA DE PROBLEMAS Leia atentamente as instruções relativas aos métodos a serem empregados para solucionar os problemas. List de Prolems H 0/ List sugerid de prolems do livro texto (Nilsson& Riedel, quint edição) 4.8, 4.9, 4., 4.1, 4.18, 4., 4.1, 4., 4.3, 4.3, 4.36, 4.38, 4.39, 4.40, 4.41, 4.4, 4.43, 4.44, 4.4, 4.6, 4.,

Leia mais

Notação. Se u = u(x, y) é uma função de duas variáveis, representamos por u, ou ainda, por 2 u a expressão

Notação. Se u = u(x, y) é uma função de duas variáveis, representamos por u, ou ainda, por 2 u a expressão Seção 20: Equção de Lplce Notção. Se u = u(x, y) é um função de dus vriáveis, representmos por u, ou ind, por 2 u expressão u = 2 u = u xx + u yy, chmd de lplcino de u. No cso de função de três vriáveis,

Leia mais

O processo de filtragem de sinais pode ser realizado digitalmente, na forma esquematizada pelo diagrama apresentado a seguir:

O processo de filtragem de sinais pode ser realizado digitalmente, na forma esquematizada pelo diagrama apresentado a seguir: Sistemas e Sinais O processo de filtragem de sinais pode ser realizado digitalmente, na forma esquematizada pelo diagrama apresentado a seguir: 1 Sistemas e Sinais O bloco conversor A/D converte o sinal

Leia mais