CÁLCULO I Ano Lectivo o Semestre

Tamanho: px
Começar a partir da página:

Download "CÁLCULO I Ano Lectivo o Semestre"

Transcrição

1 Faculdade de Economia da Universidade Nova de Lisboa CÁLCULO I Ano Lectivo o Semestre CORRECÇÃO EXAME a ÉPOCA Gruo a) A frase é falsa or dois motivos: - Função com derivada contém o caso em que as derivadas laterais são iguais mas in nitas. Nenhuma aroximação é ossível. - Mesmo que além de "com derivada" se dissesse diferenciável, a frase ainda estaria errada ois a diferenciabilidade garante aenas uma aroximação de Taylor de a ordem. b) A frase é falsa. O conjunto derivado é o conjunto dos ontos de acumulação. Se o nosso conjunto é formado elos termos de uma sucessão, se existir limite, então ele oderá será o nosso único onto de acumulação e o cardinal do derivado será. Mas atenção! Os ontos de acumulação odem ir além do limite! Uma sucessão que contenha duas subsucessões que convirjam ara valores distintos, não tem limite, mas ainda assim oderá terá dois ontos de acumulação. O derivado teria cardinal e não. Exemlos: A = x : x = ( ) n + n ; 8n N : Dois ontos de acumulação. B = fx : x = ( ) n ; 8n Ng : Nenhum onto de acumulação. Para re ectirem: o que está escondido or detrás das alavras a bold? Gruo a) O domínio da função g será Dg = x < : x + ^ x + Df = x < : x + ^ x + > = = fx < : x ^ x > g :De outro modo, Dg = ] : +[ : A função g é contínua no seu domínio orque é a comosição de duas funções contínuas nos seus resectivos domínios: x + é uma função contínua no seu domínio e a função f também (se a a derivada de f é contínua no seu domínio (< + ), então a a derivada e a rória função f também o são). b) g (x) = f x + = f x + x + = f x + (x + ) = f ( x+) x+

2 c) g () = f ( ) = f () = = O facto de a rimeira derivada da função g(x) se anular em x = não é su ciente ara odermos clari car se é um extremo ou um onto de in exão. Como rovar então? Pelo sinal da a derivada que, neste nosso caso, odemos calcular: g (x) = f ( x+)( x+) x+ f ( x+)( x+) (x+) = f ( = f ( x+) f ( x+)(x+) x+ g () = f () f () = = < x+) (x+) x+ f ( x+) (x+) x+ = Como g () <, a função é côncava, existindo or isso um máximo no onto x = : d) g(x) ' g() + g ()x + g () x x! = f() + x x! =, g(x) ' x Gruo 3 a) A = x < : x > B = x <nq : 3 x > 9 C = fx < : jxj > g Conjunto A: sob a forma de intervalo A = ] ; [ [ ]; +[. Conjunto B: 3 x > 9, 3 x > 3, x >, x <. Assim, B = ] ; [ \ (<nq) ; em ortuguês, os irracionais de ] ; [ : Conjunto C: jxj >! condição universal, logo C = <: E = AnB = (] ; [ \ Q) [ [ ; [ [ ]; +[ int(e) = ] ; [ [ ]; +[ front(e) = ] ; ] [ f ; g ext(e) = ] ; [ ader(e) = ] ; ] [ [; +[ deriv(e) = ] ; ] [ [; +[ Como E 6= int(e), o conjunto não é aberto. Como E 6= ader(e), então também não é fechado. b) H = A C = (] ; [ [ ]; +[) < int(h) = H front(h) = f ; g <; ou seja, a recta vertical x = reunida com a recta x = : deriv(h) = (] ; ] [ [; +[) <; "quase" H...

3 c) f(x) = + 5x ln x A = ] ; [ [ ]; +[ Intervalo ] ; [ : i) A função é contínua e diferenciável no seu domínio <n fg ; logo também é em ] ; ]; ii) É ossível encontrar um intervalo fechado onde a função seja contínua, neste caso ] ; ] ; iii) Como lim f(x) = + 5( ) ln(+) = < e f( ) = 5 ln x! = + ln 3 > ; então em linguagem simbólica f( )f( ) < ; v) Pelo Corolário do Teorema de Bolzano, odemos garantir a existência de elo menos um zero no intervalo ] ; ] ; vi) Como a função derivada é semre ositiva em ] ; ], odemos a rmar que f(x) é estritamente crescente neste intervalo e ortanto existe aenas o zero referido em v). Note que f (x) = 5 ln 5 > ; 8x ] ; ] ; viii) Resumindo, só oderá existir exactamente um zero à esquerda de : x + Intervalo ]; +[ : i) A função é contínua e diferenciável no seu domínio <n fg ; logo também é em [; +[; ii) É ossível encontrar um intervalo fechado onde a função seja contínua, neste caso [; +[ ; iii) Como lim f(x) = + 5(+) ln(+) = + > e f() = + 5 ln x!+ = + ln 3 < ; então em linguagem simbólica f( )f() < ; v) Pelo Corolário do Teorema de Bolzano, odemos garantir a existência de elo menos uma raíz no intervalo [; +[ ; vi) Como a função derivada é semre ositiva em [; +[, odemos a rmar que f(x) é estritamente crescente neste intervalo e ortanto existe aenas o zero referido em v). Note que f (x) = 5 ln x +5 > ; 8x [; +[ ; viii) Resumindo, só oderá existir exactamente um zero à direita de : Conclusão: existem exactamente dois zeros em A, um no intervalo ] ; [ e outro no intervalo ]; +[ ;tal como suseitávamos! 3

4 Gruo a) = R h i n+ n+ x xdx = n = (n+) n (n) = n +, = n + b) Para demonstrar que lim = +; temos de veri car que: 8L > ; 9n(L) : n > n(l) ) > L: n + > L, n > L Dado L arbitrário, escolha-se ara n(l) o rimeiro número natural suerior a L : c) + = (n + ) + n = > ; 8n N. A sucessão é monótona crescente. d) i) Usando o resultado que diz que se lim Un+ lim (n+)+ n+ = lim n+5 n n+ = lim n = ) lim n n + = = a, então lim n = a; temos que: ii) lim sin n = lim n+ sin n: O roduto de um in nitésimo or uma sucessão limitada é um in tésimo. Como é um in nitésimo e sin n é uma sucessão limitada (entre e ), então sin n é um in nitésimo, isto é, sin n! : ( x+) a) P x Gruo 5 ( x+) Trata-se de uma rimitiva imediata: P Nota: x = ( x+) + C; tem dúvidas? Derive! Também oderiamos ter recorrido ao método de rimitivação or substituição, de nindo x = t ; x = t e t = x: ( x+) P x! R (t+) t t = R (t + ) = (t+)! ( x+) + C ( x+) Assim, P = ( x+) + C: x b) P xe x = R xe x A exressão suscita logo o método de rimitivação or artes. Seja u = e x e v = x; vem que u = ex e v = : Então, R xe x = ex x R e x = xex e x + C = ex (x ) + C

5 Gruo 6. Na relação imlícita SD + S 3 D = 3 ; o onto de equilíbrio é (S; D) = ; ; quer isto dizer que... Pretende-se calcular dd ds e ortanto imaginamos D(S): Derivando a relação imlícita em ordem a S : SD + S 3 D S = 3 S, D + SDD + 3S D + S 3 D =, D DS + S 3 = D 3S D, D = D 3S D DS+S 3 Avaliando esta exressão no onto de equilíbrio, D = 3 + = 7 8 Para calcularmos ds dd, basta recorrermos ao seguinte resultado sobre a derivada da função inversa: g (y ) = f (x : o) Assim, ds dd (; ) = dd ds (; ) = 8 7 ; sem cálculos! 5

Estudo de funções. Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática.

Estudo de funções. Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática. Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática Estudo de funções Continuidade Consideremos as funções: f : R R g : R R x x + x x +, x 1

Leia mais

IST-2010/11-1 o Semestre-MArq Matemática I 1 o TESTE (VERSÃO A) 6 de Novembro de 2010

IST-2010/11-1 o Semestre-MArq Matemática I 1 o TESTE (VERSÃO A) 6 de Novembro de 2010 IST-00/- o Semestre-MArq Matemática I o TESTE (VERSÃO A) 6 de Novembro de 00 Nome: Número: Sala: O teste que vai realizar tem a duração de hora e 0 minutos e consiste de 5 roblemas. Os roblemas,, e 4 deverão

Leia mais

EXAME NACIONAL DO ENSINO SECUNDÁRIO

EXAME NACIONAL DO ENSINO SECUNDÁRIO EXAME NACIONAL DO ENSINO SECUNDÁRIO. Ano de Escolaridade (Decreto-Lei n. 86/8, de de Agosto Programas novos e Decreto-Lei n. 74/004, de 6 de Março) Duração da rova: 50 minutos.ª FASE 007 VERSÃO PROVA ESCRITA

Leia mais

Faculdade de Economia Universidade Nova de Lisboa TÓPICOS DE CORRECÇÃO DO EXAME DE CÁLCULO I. Ano Lectivo o Semestre

Faculdade de Economia Universidade Nova de Lisboa TÓPICOS DE CORRECÇÃO DO EXAME DE CÁLCULO I. Ano Lectivo o Semestre Faculdade de Economia Universidade Nova de Lisboa TÓPICOS DE CORRECÇÃO DO EXAME DE CÁLCULO I Ano Lectivo 27-8 - o Semestre Exame Final em 24 de Janeiro de 28 Versão B Duração: 2 horas e 3 minutos Não é

Leia mais

Exames Nacionais. Prova Escrita de Matemática A 2009 VERSÃO Ano de Escolaridade Prova 635/1.ª Fase. Grupo I

Exames Nacionais. Prova Escrita de Matemática A 2009 VERSÃO Ano de Escolaridade Prova 635/1.ª Fase. Grupo I Exames Nacionais EXAME NACIONAL DO ENSINO SECUNDÁRIO Decreto-Lei n. 7/00, de 6 de Março Prova Escrita de Matemática A. Ano de Escolaridade Prova 6/.ª Fase Duração da Prova: 0 minutos. Tolerância: 0 minutos

Leia mais

Valores e vectores próprios

Valores e vectores próprios Valores e Vectores Prórios - Matemática II- /5 Valores e vectores rórios De nem-se valores e vectores rórios aenas ara matrizes quadradas, elo que, ao longo deste caítulo e quando mais nada seja eseci

Leia mais

Limite e Continuidade

Limite e Continuidade Matemática Licenciatura - Semestre 200. Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa Limite e Continuidade Neste caítulo aresentaremos as idéias básicas sobre ites e continuidade de

Leia mais

Apresente todos os cálculos e justificações relevantes. a) Escreva A e B como intervalos ou união de intervalos e mostre que C = { 1} [1, 3].

Apresente todos os cálculos e justificações relevantes. a) Escreva A e B como intervalos ou união de intervalos e mostre que C = { 1} [1, 3]. Instituto Superior Técnico Departamento de Matemática 1. o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I - Versão A LEAN, LEMat, MEQ 1. o Sem. 2016/17 12/11/2016 Duração: 1h0m Apresente todos os cálculos e

Leia mais

matematicaconcursos.blogspot.com

matematicaconcursos.blogspot.com Professor: Rômulo Garcia Email: machadogarcia@gmail.com Conteúdo Programático: Teoria dos Números Exercícios e alguns conceitos imortantes Números Perfeitos Um inteiro ositivo n diz-se erfeito se e somente

Leia mais

Complementos de Cálculo Diferencial

Complementos de Cálculo Diferencial Matemática - 009/0 - Comlementos de Cálculo Diferencial 47 Comlementos de Cálculo Diferencial A noção de derivada foi introduzida no ensino secundário. Neste teto retende-se relembrar algumas de nições

Leia mais

Gabarito da Lista 6 de Microeconomia I

Gabarito da Lista 6 de Microeconomia I Professor: Carlos E.E.L. da Costa Monitor: Vitor Farinha Luz Gabarito da Lista 6 de Microeconomia I Eercício Seja Y um conjunto de ossibilidades de rodução. Dizemos que uma tecnologia é aditiva quando

Leia mais

Exame de Matemática II - Curso de Arquitectura

Exame de Matemática II - Curso de Arquitectura Exame de Matemática II - Curso de Arquitectura o semestre de 7 de Julho de 7 Resonsável Henrique Oliveira a Parte. Considere a seguinte função f R! R de nida or f(x ; x ; x ) (x sin (x ) ; x ; x cos (x

Leia mais

M odulo de Potencia c ao e D ızimas Peri odicas Nota c ao Cient ıfica e D ızimas Oitavo Ano

M odulo de Potencia c ao e D ızimas Peri odicas Nota c ao Cient ıfica e D ızimas Oitavo Ano Módulo de Potenciação e Dízimas Periódicas Notação Científica e Dízimas Oitavo Ano Exercícios Introdutórios Exercício. Escreva os seguintes números na notação científica: a) 4673. b) 0, 0034. c). d) 0,

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I 2 o Ficha B1 x 2 x se x > 0 x + 1 x arctg(x 2 ) x se x 0 i) Estude a função f do ponto de vista da continuidade. iii) O conjunto f([1, 2]) é limitado? Resolução. 1. i) Para x > 0 a função f é contínua

Leia mais

Cálculo Diferencial e Integral I 2 o Exame - (MEMec; MEEC; MEAmb)

Cálculo Diferencial e Integral I 2 o Exame - (MEMec; MEEC; MEAmb) Cálculo Diferencial e Integral I o Exame - MEMec; MEEC; MEAmb) 7 de Julho de - 9 horas I val.). i) Sendo u n n do teorema das sucessões enquadradas, dado que n, tem-se u n. Como a sucessão u n é convergente,

Leia mais

UNIVERSIDADE DE COIMBRA - FACULDADE DE CIÊNCIAS E TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA ALGORITMO DO PONTO MÉDIO PARA

UNIVERSIDADE DE COIMBRA - FACULDADE DE CIÊNCIAS E TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA ALGORITMO DO PONTO MÉDIO PARA UNIVERSIDADE DE COIMBRA - FACULDADE DE CIÊNCIAS E TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA ALGORITMO DO PONTO MÉDIO PARA A RASTERIZAÇÃO DA ELIPSE OBJECTIVO: O resente trabalho tem or objectivo ilustrar o

Leia mais

Resumo Elementos de Análise Infinitésimal I

Resumo Elementos de Análise Infinitésimal I Apêndice B Os números naturais Resumo Elementos de Análise Infinitésimal I Axiomática de Peano Axioma 1 : 1 N. Axioma 2 : Se N, então + 1 N. Axioma 3 : 1 não é sucessor de nenhum N. Axioma 4 : Se + 1 =

Leia mais

Cálculo Diferencial e Integral I 1 o Sem. 2016/17 - LEAN, MEMat, MEQ

Cálculo Diferencial e Integral I 1 o Sem. 2016/17 - LEAN, MEMat, MEQ Instituto Superior Técnico Departamento de Matemática Cálculo Diferencial e Integral I o Sem. 06/7 - LEAN, MEMat, MEQ FICHA 8 - SOLUÇÕES Regra de Cauchy. Estudo de funções.. a) 0; b) ln ; c) ln ; d) +

Leia mais

Identifique todas as folhas Folhas não identificadas NÃO SERÃO COTADAS. Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I

Identifique todas as folhas Folhas não identificadas NÃO SERÃO COTADAS. Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I Identifique todas as folhas Folhas não identificadas NÃO SERÃO COTADAS Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I Ano Lectivo 8-9 - º Semestre Eame Final de ª Época em 5 de Junho

Leia mais

4.1 Preliminares. 1. Em cada caso, use a de nição para calcular f 0 (x) : (a) f (x) = x 3 ; x 2 R (b) f (x) = 1=x; x 6= 0 (c) f (x) = 1= p x; x > 0:

4.1 Preliminares. 1. Em cada caso, use a de nição para calcular f 0 (x) : (a) f (x) = x 3 ; x 2 R (b) f (x) = 1=x; x 6= 0 (c) f (x) = 1= p x; x > 0: 4. FUNÇÕES DERIVÁVEIS ANÁLISE NO CORPO R - 208. 4. Preinares. Em cada caso, use a de nição para calcular f 0 (x) : (a) f (x) = x 3 ; x 2 R (b) f (x) = =x; x 6= 0 (c) f (x) = = p x; x > 0: 2. Mostre que

Leia mais

Por outras palavras, iremos desenvolver a operação inversa da derivação conhecida por primitivação.

Por outras palavras, iremos desenvolver a operação inversa da derivação conhecida por primitivação. RIMITIVS Definições No caítulo anterior, centramos a nossa atenção no seguinte roblema: dada uma função, determinar a sua função derivada Neste caítulo, vamos considerar o roblema inverso, ou seja, determinar

Leia mais

Cálculo Diferencial e Integral I/MEEC 2011/2012 Resolução do 1 o Teste

Cálculo Diferencial e Integral I/MEEC 2011/2012 Resolução do 1 o Teste Cálculo Diferencial e Integral I/MEEC 0/0 Resolução do o Teste Problema Seja f(x) = log( x 4x+3 ). (a) Determine o domínio de f, que designamos D. Resolução: O domínio D é dado por log( x 4x+3 ) 0 x 4x+3

Leia mais

MAT 103 Complementos de Matemática para Contabilidade e Administração Prova 2 D 26 de Junho de 2008

MAT 103 Complementos de Matemática para Contabilidade e Administração Prova 2 D 26 de Junho de 2008 MAT 103 Complementos de Matemática para Contabilidade e Administração Prova D 6 de Junho de 008 Nome: RG: Assinatura: Instruções A duração da prova é de uma hora e quarenta minutos. Assinale as alternativas

Leia mais

MAT 103 Complementos de Matemática para Contabilidade e Administração Prova 2 C 26 de Junho de 2008

MAT 103 Complementos de Matemática para Contabilidade e Administração Prova 2 C 26 de Junho de 2008 MAT 103 Complementos de Matemática para Contabilidade e Administração Prova C 6 de Junho de 008 Nome: RG: Assinatura: Instruções A duração da prova é de uma hora e quarenta minutos. Assinale as alternativas

Leia mais

Escola Brasileira de Economia e Finanças - EPGE/FGV Graduação em Ciências Econômicas - Ciclo Pro ssional Finanças Públicas Gabarito - Lista 1

Escola Brasileira de Economia e Finanças - EPGE/FGV Graduação em Ciências Econômicas - Ciclo Pro ssional Finanças Públicas Gabarito - Lista 1 Escola Brasileira de Economia e Finanças - EPGE/FGV Graduação em Ciências Econômicas - Ciclo Pro ssional Finanças Públicas - 00 Gabarito - Lista Carlos Eugênio Costa Professor Érica Diniz Oliveira Monitora

Leia mais

SIMULADO. 05) Atribuindo-se todos os possíveis valores lógicos V ou F às proposições A e B, a proposição [( A) B] A terá três valores lógicos F.

SIMULADO. 05) Atribuindo-se todos os possíveis valores lógicos V ou F às proposições A e B, a proposição [( A) B] A terá três valores lógicos F. 01) Considere as seguintes roosições: P: Está quente e Q: Está chovendo. Então a roosição R: Se está quente e não está chovendo, então está quente ode ser escrita na forma simbólica P..( Q) P, em que P..(

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano de escolaridade Versão.4

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano de escolaridade Versão.4 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Teste.º Ano de escolaridade Versão.4 Nome: N.º Turma: Professor: José Tinoco 6//08 Evite alterar a ordem das questões Nota: O teste é constituído or duas artes Caderno

Leia mais

Análise Infinitesimal I. Maria Manuel Clementino, 2010/11

Análise Infinitesimal I. Maria Manuel Clementino, 2010/11 Análise Infinitesimal I Maria Manuel Clementino, 2010/11 Sumários Alargados Capítulo I: Fundamentos o Rigor e a Demonstração em Análise 1. Operadores lógicos e quantificadores Recomenda-se a leitura de:

Leia mais

3.1 Limite & Continuidade

3.1 Limite & Continuidade 3. FUNÇÕES CONTÍNUAS ANÁLISE NO CORPO R - 2018.1 3.1 Limite & Continuidade 1. Mostre que a função valor absoluto f (x) = jxj é contínua em qualquer ponto x 2 R: 2. A função de Dirichlet ' : R! R é de nida

Leia mais

Faculdade de Ciências Económicas e Empresariais UCP MATEMÁTICA I MINI-TESTE 2 - versão A

Faculdade de Ciências Económicas e Empresariais UCP MATEMÁTICA I MINI-TESTE 2 - versão A MINI-TESTE - versão A Duração: 90 minutos Durante a prova não serão prestados quaisquer tipo de esclarecimentos. Qualquer dúvida ou questão relativa ao enunciado deverá ser escrita na fola de prova para

Leia mais

Sumários Alargados. Recomenda-se a leitura de: Capítulos 0 e 1 de: J. Lewin/M. Lewin, An Introduction to Mathematical Analysis;

Sumários Alargados. Recomenda-se a leitura de: Capítulos 0 e 1 de: J. Lewin/M. Lewin, An Introduction to Mathematical Analysis; Sumários Alargados Capítulo I: Fundamentos o Rigor e a Demonstração em Análise 1. Operadores lógicos e quantificadores Recomenda-se a leitura de: Capítulos 0 e 1 de: J. Lewin/M. Lewin, An Introduction

Leia mais

Microeconomia II - Gabarito Lista 3 - Monopólio

Microeconomia II - Gabarito Lista 3 - Monopólio Microeconomia II - Gabarito Lista 3 - Monoólio Tiago Ferraz 1 de outubro de 015 1. Nicholson - Questão 14.5 a) Se A = 0, a demanda inversa será Q = 0 P P = 0 Q E a função custo C = 10Q + 15 O roblema do

Leia mais

Invertendo a exponencial

Invertendo a exponencial Reforço escolar M ate mática Invertendo a exonencial Dinâmica 3 2ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Matemática 2ª do Ensino Médio Algébrico Simbólico Função Logarítmica Aluno Primeira

Leia mais

Microeconomia II. Licenciaturas em Administração e Gestão de Empresas e em Economia

Microeconomia II. Licenciaturas em Administração e Gestão de Empresas e em Economia Microeconomia II Licenciaturas em Administração e Gestão de Emresas e em Economia 006-007 º Semestre Fernando Branco (fbranco@uc.t) º Teste Carolina Reis (careis@fcee.uc.t) O teste tem a duração de :30

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I Complementos ao texto de apoio às aulas. Amélia Bastos, António Bravo Julho 24 Introdução O texto apresentado tem por objectivo ser um complemento ao texto de apoio ao

Leia mais

Primitivas e a integral de Riemann Aula 26

Primitivas e a integral de Riemann Aula 26 Primitivas e a integral de Riemann Aula 26 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 13 de Maio de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica

Leia mais

2, que distam de duas unidades da origem. Nesse caso, a soma das abcissas dos dois pontos é : 8 C. 5

2, que distam de duas unidades da origem. Nesse caso, a soma das abcissas dos dois pontos é : 8 C. 5 Instituto Suerior Politécnico de Tete / Exame de Admissão de Matemática /. Sejam A e B dois ontos da recta de equação y = x+, que distam de duas unidades da origem. Nesse caso, a soma das acissas dos dois

Leia mais

Cálculo Diferencial e Integral II 2012/13 1 o semestre

Cálculo Diferencial e Integral II 2012/13 1 o semestre Cálculo Diferencial e Integral II 212/13 1 o semestre Modelo do 1 o Teste LEIC-TP, LEGI, LERC, LEE 6 de Novembro de 212 Justifique adequadamente todas as respostas. 1. Calcule V y dx dy dz em que V = {(x,

Leia mais

3.1 Cálculo de Limites

3.1 Cálculo de Limites 3. Cálculo de Limites 3.A Em cada caso abaio calcule o ite de f (), quando! a (a) f () = 2 + 5; a = 7 (b) f () = 3 3 + + ; a = 0 (c) f () = 2 + 3 0 ; a = 5 (d) f () = 2 4 + 5 3 + 2 2 ; a = 2 (e) f () =

Leia mais

Derivada : definições e exemplos

Derivada : definições e exemplos Derivada : definições e exemplos Retome-se o problema Dada uma curva y f ( x curva ( =, determinar em cada ponto x f ( x, a tangente à e analise-se este problema numa situação simples: Considere-se a parábola

Leia mais

Mestrado em Finanças e Economia Empresarial Microeconomia - 6 a Lista de Exercícios Prof.: Carlos Eugênio Monitora:Amanda Schutze

Mestrado em Finanças e Economia Empresarial Microeconomia - 6 a Lista de Exercícios Prof.: Carlos Eugênio Monitora:Amanda Schutze Mestrado em Finanças e Economia Emresarial Microeconomia - 6 a Lista de Exercícios Prof.: Carlos Eugênio Monitora:Amanda Schutze (schutze@fgvmail.br) Parte I - Exercícios Básicos a Questão As funções de

Leia mais

MAT 111 Cálculo Diferencial e Integral I. Prova 2 14 de Junho de 2012

MAT 111 Cálculo Diferencial e Integral I. Prova 2 14 de Junho de 2012 MAT 111 Cálculo Diferencial e Integral I Prof. Paolo Piccione Prova 2 14 de Junho de 2012 Nome: Número USP: Assinatura: Instruções A duração da prova é de duas horas. Assinale as alternativas corretas

Leia mais

MAT 111 Cálculo Diferencial e Integral I. Prova 2 14 de Junho de 2012

MAT 111 Cálculo Diferencial e Integral I. Prova 2 14 de Junho de 2012 MAT 111 Cálculo Diferencial e Integral I Prof. Paolo Piccione Prova 2 14 de Junho de 2012 Nome: Número USP: Assinatura: Instruções A duração da prova é de duas horas. Assinale as alternativas corretas

Leia mais

1 Capítulo 4 Comp m l p e l me m ntos de d Funçõ ç es

1 Capítulo 4 Comp m l p e l me m ntos de d Funçõ ç es Capítulo 4 Complementos de Funções SUMÁRIO Estrutura e cardinalidade em R Topologia Limites e continuidade de unções num ponto pela deinição (vizinhanças Teorema de Bolzano e Teorema de Weierstrass Teorema

Leia mais

Exercícios Complementares 1.2

Exercícios Complementares 1.2 Exercícios Comlemetares 1. 1.A Dê exemlo de uma seqüêcia fa g ; ão costate, ara ilustrar cada situação abaixo: (a) limitada e crescete (c) limitada e ão moótoa (e) ão limitada e ão moótoa (b) limitada

Leia mais

3.1 Cálculo de Limites

3.1 Cálculo de Limites 3. Cálculo de Limites 0. Formas Indeterminadas 0=0 = 0 0 02. Oerações com os símbolos + = = ( ) = = k = ; se k > 0 k = ; se k < 0 ( ) ( ) = ( ) = k = ; se k > 0 = ; se > 0 = 0; se < 0 k=0 = ; k 6= 0 03.

Leia mais

1 Lógica e teoria dos conjuntos

1 Lógica e teoria dos conjuntos Lógica e teoria dos conjuntos.. Introdução à lógica bivalente Pág. 0 Atividade de diagnóstico.. N..,5 Z.. 5.. Q.5. π R π.6. Q + +.7. Z.8. 0 Z 0.......... x = 5 x+ = 5 x = 5 x = S = { } x + = 0 ( x ) 9

Leia mais

Resolução do Exame de 1 a Época 2 o Semestre /2010 Grupo 1 Exercício 1 a) Função Produção quase-côncava: A; F > 0 B(A; F ) = 0:1 2p A + 0:1 2p F

Resolução do Exame de 1 a Época 2 o Semestre /2010 Grupo 1 Exercício 1 a) Função Produção quase-côncava: A; F > 0 B(A; F ) = 0:1 2p A + 0:1 2p F Resolução do Exame de a Época o Semestre - 009/00 Grupo Exercício a) Função Produção quase-côncava: A; F > 0 B(A; F ) = 0: p A + 0: p F B = 6 4 0 @B @A @B @A @B @F @ B @A @ B @F @A @B @F @ B @A@F @ B @F

Leia mais

Fundação Universidade Federal de Pelotas Curso de Licenciatura em Matemática Disciplina de Análise II - Prof. Dr. Maurício Zahn Lista 01 de Exercícios

Fundação Universidade Federal de Pelotas Curso de Licenciatura em Matemática Disciplina de Análise II - Prof. Dr. Maurício Zahn Lista 01 de Exercícios Fundação Universidade Federal de Pelotas Curso de Licenciatura em Matemática Disciplina de Análise II - Prof Dr Maurício Zahn Lista 01 de Eercícios 1 Use a definição de derivada para calcular a derivada

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano de escolaridade Versão.3

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano de escolaridade Versão.3 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Teste.º Ano de escolaridade Versão. Nome: N.º Turma: Professor: José Tinoco 6//08 Evite alterar a ordem das questões Nota: O teste é constituído or duas artes Caderno

Leia mais

Limites e continuidade

Limites e continuidade Limites e continuidade Limite (finito) de uma função em a Salvo indicação em contrário, quando nos referimos a uma função estamos sempre a considerar funções reais de variável real (f.r.v.r.), ou seja,

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBIOM, MEFT 1 o SEM. 2014/15 2 a FICHA DE EXERCÍCIOS. k + e 1 x, x > 0 f(x) = x cos 1, x > 0

CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBIOM, MEFT 1 o SEM. 2014/15 2 a FICHA DE EXERCÍCIOS. k + e 1 x, x > 0 f(x) = x cos 1, x > 0 Instituto Superior Técnico Departamento de Matemática CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBIOM, MEFT 1 o SEM. 2014/15 2 a FICHA DE EXERCÍCIOS I. Continuidade de Funções. 1) Considere a função f :

Leia mais

Limites. 2.1 Limite de uma função

Limites. 2.1 Limite de uma função Limites 2 2. Limite de uma função Vamos investigar o comportamento da função f definida por f(x) = x 2 x + 2 para valores próximos de 2. A tabela a seguir fornece os valores de f(x) para valores de x próximos

Leia mais

Apresente todos os cálculos e justificações relevantes

Apresente todos os cálculos e justificações relevantes Análise Matemática I 2 o Teste e o Exame Campus da Alameda 9 de Janeiro de 2006, 3 horas Licenciaturas em Engenharia do Ambiente, Engenharia Biológica, Engenharia Civil, Engenharia e Arquitectura Naval,

Leia mais

Análise Matemática I 1 o Exame (Grupos I, II, III, IV, V e VI) 2 o Teste (Grupos IV, V e VI)

Análise Matemática I 1 o Exame (Grupos I, II, III, IV, V e VI) 2 o Teste (Grupos IV, V e VI) Análise Matemática I o Exame (Grupos I, II, III, IV, V e VI) 2 o Teste (Grupos IV, V e VI) Campus da Alameda 5 de Janeiro de 2003 LEC, LET, LEN, LEM, LEMat, LEGM Apresente todos os cálculos e justificações

Leia mais

Faculdade de Economia Universidade Nova de Lisboa TÓPICOS DE CORRECÇÃO DO EXAME DE CÁLCULO I. Ano Lectivo 2007-08 - 1 o Semestre

Faculdade de Economia Universidade Nova de Lisboa TÓPICOS DE CORRECÇÃO DO EXAME DE CÁLCULO I. Ano Lectivo 2007-08 - 1 o Semestre Faculdade de Economia Universidade Nova de Lisboa TÓPICOS DE COECÇÃO DO EXAME DE CÁLCULO I Ano Lectivo 7-8 - o Semestre Exame Final em 7 de Janeiro de 8 Versão B Duração: horas e 3 minutos Não é permitido

Leia mais

1. Limite. lim. Ou seja, o limite é igual ao valor da função em x 0. Exemplos: 1.1) Calcule lim x 1 x 2 + 2

1. Limite. lim. Ou seja, o limite é igual ao valor da função em x 0. Exemplos: 1.1) Calcule lim x 1 x 2 + 2 1. Limite Definição: o limite de uma função f(x) quando seu argumento x tende a x0 é o valor L para o qual a função se aproxima quando x se aproxima de x0 (note que a função não precisa estar definida

Leia mais

MAT 111 Cálculo Diferencial e Integral I. Prova 2 5 de junho de 2014

MAT 111 Cálculo Diferencial e Integral I. Prova 2 5 de junho de 2014 MAT 111 Cálculo Diferencial e Integral I Prof. Paolo Piccione Prova 2 5 de junho de 2014 Nome: Número USP: Assinatura: Instruções A duração da prova é de duas horas. Assinale as alternativas corretas na

Leia mais

MAT 111 Cálculo Diferencial e Integral I. Prova 2 5 de junho de 2014

MAT 111 Cálculo Diferencial e Integral I. Prova 2 5 de junho de 2014 MAT 111 Cálculo Diferencial e Integral I Prof. Paolo Piccione Prova 2 5 de junho de 2014 Nome: Número USP: Assinatura: Instruções A duração da prova é de duas horas. Assinale as alternativas corretas na

Leia mais

MAT 111 Cálculo Diferencial e Integral I. Prova 2 5 de junho de 2014

MAT 111 Cálculo Diferencial e Integral I. Prova 2 5 de junho de 2014 MAT 111 Cálculo Diferencial e Integral I Prof. Paolo Piccione Prova 2 5 de junho de 2014 Nome: Número USP: Assinatura: Instruções A duração da prova é de duas horas. Assinale as alternativas corretas na

Leia mais

Concavidade e pontos de inflexão Aula 20

Concavidade e pontos de inflexão Aula 20 Concavidade e pontos de inflexão Aula 20 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 22 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica

Leia mais

FUNÇÕES DE VARIÁVEL ALEATÓRIA

FUNÇÕES DE VARIÁVEL ALEATÓRIA 5 FUNÇÕES DE VARIÁVEL ALEATÓRIA Dada uma variável aleatória contínua X com função de densidade f (x). Considerando Y = g(x), uma função de X, também é uma variável aleatória. A definição da variável Y

Leia mais

CÁLCULO I. 1 Funções Crescentes e Decrescentes

CÁLCULO I. 1 Funções Crescentes e Decrescentes CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 14: Crescimento e Decrescimento. Teste da Primeira Derivada. Objetivos da Aula Denir funções crescentes e decrescentes; Determinar os intervalos

Leia mais

Exercícios de MATEMÁTICA COMPUTACIONAL. 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares

Exercícios de MATEMÁTICA COMPUTACIONAL. 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares Exercícios de MATEMÁTICA COMPUTACIONAL Mestrado Integrado em Engenharia Biomédica 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares 1. Considere a equação sin(x) e x = 0. a) Prove que

Leia mais

Cálculo Diferencial e Integral I 1 o Sem. 2016/17 - LEAN, MEMat, MEQ FICHA 11 - SOLUÇÕES

Cálculo Diferencial e Integral I 1 o Sem. 2016/17 - LEAN, MEMat, MEQ FICHA 11 - SOLUÇÕES Instituto Superior Técnico Departamento de Matemática Cálculo Diferencial e Integral I o Sem 06/7 - LEAN, MEMat, MEQ FICHA - SOLUÇÕES Teorema Fundamental do Cálculo Regra de Barrow Integração por partes

Leia mais

Geometria Computacional Primitivas Geométricas. Claudio Esperança Paulo Roma Cavalcanti

Geometria Computacional Primitivas Geométricas. Claudio Esperança Paulo Roma Cavalcanti Geometria Comutacional Primitivas Geométricas Claudio Eserança Paulo Roma Cavalcanti Oerações com Vetores Sejam x e y vetores do R n e λ um escalar. somavetorial ( x, y ) = x + y multescalar ( λ, x ) =

Leia mais

Apontamentos de Álgebra Linear

Apontamentos de Álgebra Linear Aontamentos de Álgebra Linear (inclui as alicações não avaliadas) Nuno Martins Deartamento de Matemática Instituto Suerior Técnico Dezembro de 08 Índice Matrizes: oerações e suas roriedades Resolução de

Leia mais

DERIVAÇÃO de FUNÇÕES REAIS de VARIÁVEL REAL

DERIVAÇÃO de FUNÇÕES REAIS de VARIÁVEL REAL DERIVAÇÃO de FUNÇÕES REAIS de VARIÁVEL REAL Derivada de uma função num ponto. Sejam f uma função denida num intervalo A R e a um ponto de acumulação de A. Cama-se derivada de f no ponto a ao ite, caso

Leia mais

ANÁLISE MATEMÁTICA II

ANÁLISE MATEMÁTICA II ANÁLISE MATEMÁTICA II Acetatos de Ana Matos Séries de Potências DMAT Séries de Potências As séries de potências são uma generalização da noção de polinómio. Definição: Sendo x uma variável e a, chama-se

Leia mais

MAT 133 Cálculo II. Prova SUB C

MAT 133 Cálculo II. Prova SUB C MAT Cálculo II Prof Paolo Piccione 4 de dezembro de 2014 Prova SUB C 2014210 Nome: Número USP: Assinatura: Instruções A duração da prova é de uma hora e quarenta minutos Assinale as alternativas corretas

Leia mais

CÁLCULO I 1º Semestre 2011/2012. Duração: 2 horas e 30 minutos

CÁLCULO I 1º Semestre 2011/2012. Duração: 2 horas e 30 minutos NOVA SCHOOL OF BUSINESS AND ECONOMICS CÁLCULO I 1º Semestre 2011/2012 EXAME 2ª ÉPOCA 23 Janeiro 2012 Duração: 2 horas e 30 minutos Não é permitido o uso de calculadoras. Não pode desagrafar as folhas do

Leia mais

7.1. Pág. 17. Tarefa 2 B \C = {(1, 3), (1, 4), (1, 6), (5, 0), (5, 3), (8, 0)} B = {(1, 9), (5, 6), (5, 9), (8, 3), (8, 4), (8, 6), (8, 9)}

7.1. Pág. 17. Tarefa 2 B \C = {(1, 3), (1, 4), (1, 6), (5, 0), (5, 3), (8, 0)} B = {(1, 9), (5, 6), (5, 9), (8, 3), (8, 4), (8, 6), (8, 9)} 0 Soluções TEMA : PRBABILIDADES E CMBINATÓRIA. Exeriências aleatórias: A, C e D Exeriência determinista: B....... acontecimento B.. acontecimento D.. Por exemlo, o acontecimento A....... A = {,,,, }, B

Leia mais

Questão (a) 4.(b) 5.(a) 5.(b) 6.(a) 6.(b) 6.(c) 7 Cotação

Questão (a) 4.(b) 5.(a) 5.(b) 6.(a) 6.(b) 6.(c) 7 Cotação Faculdade de Ciências Exatas e da Engenharia PROVA DE AVALIAÇÃO DE CONHECIMENTOS E COMPETÊNCIAS PARA ADMISSÃO AO ENSINO SUPERIOR PARA MAIORES DE ANOS - 018 Matemática - 1/0/018 Atenção: Justifique os raciocínios

Leia mais

1. Em cada caso abaixo, encontre os quatro primeiros termos da sequência: p n (c) cn = ( 1) n n:

1. Em cada caso abaixo, encontre os quatro primeiros termos da sequência: p n (c) cn = ( 1) n n: . SEQUÊNCIAS NUMÉRICAS SÉRIES & EDO - 207.2.. :::: ::::::::::::::::::::::::::::::::::::::: TERMO GERAL & CLASSIFICAÇÃO. Em cada caso abaixo, ecotre os quatro rimeiros termos da sequêcia: (a) a = 2 (b)

Leia mais

Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA

Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA Licenciaturas em Engenharia do Ambiente e Química 2 o Semestre de 2005/2006 Capítulo II Resolução Numérica de Equações Não-Lineares 1. Considere a equação sin(x)

Leia mais

MAT 133 Cálculo II. Prova SUB A

MAT 133 Cálculo II. Prova SUB A MAT Cálculo II Prof Paolo Piccione 4 de dezembro de 2014 Prova SUB A 2014210 Nome: Número USP: Assinatura: Instruções A duração da prova é de uma hora e quarenta minutos Assinale as alternativas corretas

Leia mais

Gabarito da Lista 4 de exercícios - Microeconomia 2 Professora: Joisa Dutra Monitor: Rafaela Nogueira

Gabarito da Lista 4 de exercícios - Microeconomia 2 Professora: Joisa Dutra Monitor: Rafaela Nogueira Gabarito da Lista 4 de exercícios - Microeconomia Professora: Joisa Dutra Monitor: Rafaela Nogueira 1. (a) Verdadeiro, or de nição. (b) Falso. Para que o segundo teorema valha, o conjunto de rodução também

Leia mais

Continuidade de uma função

Continuidade de uma função Continuidade de uma função Consideremos f : D f uma função real de variável real (f.r.v.r.) e a um ponto de acumulação de D f que pertence a D f. Diz-se que a função f é contínua em a se lim f x f a. x

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano de escolaridade Versão.1

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano de escolaridade Versão.1 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Teste.º Ano de escolaridade Versão. Nome: N.º Turma: Professor: José Tinoco 6//08 Evite alterar a ordem das questões Nota: O teste é constituído or duas artes Caderno

Leia mais

MATEMÁTICA COMENTÁRIO DA PROVA

MATEMÁTICA COMENTÁRIO DA PROVA COMENTÁRIO DA PROVA Os objetivos desta rova discursiva foram lenamente alcançados. Os conteúdos rinciais foram contemlados, inclusive comlementando os tóicos abordados na ª. fase, mostrando uma conveniente

Leia mais

Ficha de Problemas n o 6: Cálculo Diferencial (soluções) 2.Teoremas de Rolle, Lagrange e Cauchy

Ficha de Problemas n o 6: Cálculo Diferencial (soluções) 2.Teoremas de Rolle, Lagrange e Cauchy Ficha de Problemas n o 6: Cálculo Diferencial soluções).teoremas de Rolle, Lagrange e Cauchy. Seja f) = 3 e. Então f é contínua e diferenciável em R. Uma vez que f) = +, f0) = conclui-se do Teorema do

Leia mais

Outras Técnicas que Utilizam o Escore de Propensão

Outras Técnicas que Utilizam o Escore de Propensão Técnicas Econométricas ara Avaliação de Imacto Outras Técnicas que Utilizam o Escore de Proensão Rafael Perez Ribas Centro Internacional de Pobreza Brasília, 28 de maio de 2008 Introdução O Escore de Proensão

Leia mais

Notas de Aula 2: MAXIMIZAÇÃO DE LUCROS

Notas de Aula 2: MAXIMIZAÇÃO DE LUCROS UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL UFRGS DEPARTAMENTO DE ECONOMIA CURSO DE CIÊNCIAS ECONÔMICAS DISCIPLINA: TEORIA MICROECONÔMICA II Primeiro Semestre/2001 Professor: Sabino da Silva Porto Júnior

Leia mais

INTRODUÇÃO À MATEMÁTICA FINANCEIRA

INTRODUÇÃO À MATEMÁTICA FINANCEIRA Hewlett-Packard INTRODUÇÃO À MATEMÁTICA FINANCEIRA Aulas 0 a 04 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Ano: 206 Sumário Matemática Financeira... REFLITA... Porcentagem... Cálculos com orcentagem...

Leia mais

Solução dos exercícios do capítulo 2, pp (a) Expansão isotérmica de um gás ideal. Trabalho: pdv = NRT 1

Solução dos exercícios do capítulo 2, pp (a) Expansão isotérmica de um gás ideal. Trabalho: pdv = NRT 1 Solução dos exercícios do caítulo 2,. 31-32 Equações de um gás ideal = NRT U = NcT U = c R Exercício 1. (a) Exansão isotérmica de um gás ideal. Trabalho: W = 2 1 d = NRT 2 1 1 d = NRT ln 2 1 omo a energia

Leia mais

Análise Matemática III - Turma especial

Análise Matemática III - Turma especial Análise Matemática III - Turma especial Fichas 1 a 5 - Solução parcial 1.3 Seja D E k um conjunto fechado. Uma transformação T : D D diz-se uma contracção se existe c < 1 tal que para todos os x, y D se

Leia mais

CÁLCULO I. 1 A Função Logarítmica Natural. Objetivos da Aula. Aula n o 22: A Função Logaritmo Natural. Denir a função f(x) = ln x;

CÁLCULO I. 1 A Função Logarítmica Natural. Objetivos da Aula. Aula n o 22: A Função Logaritmo Natural. Denir a função f(x) = ln x; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 22: A Função Logaritmo Natural Objetivos da Aula Denir a função f(x) = ln x; Calcular limites, derivadas e integral envolvendo a função

Leia mais

Universidade de São Paulo Escola Superior de Agricultura Luiz de Queiroz Departamento de Ciências Exatas

Universidade de São Paulo Escola Superior de Agricultura Luiz de Queiroz Departamento de Ciências Exatas Universidade de São Paulo Escola Superior de Agricultura Luiz de Queiroz Departamento de Ciências Exatas LCE0176 - Cálculo e Matemática Aplicados às Ciências Biológicas Professora: Clarice G. B. Demétrio

Leia mais

12 E 13 DE DEZEMBRO DE 2015

12 E 13 DE DEZEMBRO DE 2015 PROBLEMAS DO 1 o TORNEIO CARIOCA DE MATEMÁTICA 12 E 13 DE DEZEMBRO DE 2015 Conteúdo Notações 1 1 O suer-mdc 1 2 Os Reis do etróleo 2 3 Quadraturas de Triângulos 3 4 Um roblema bimodular 4 5 Sistemas de

Leia mais

8, 9 e 10) Figura 8. Figura 9. Figura 10

8, 9 e 10) Figura 8. Figura 9. Figura 10 A carga de ressão (h) ode ser obtida elos iezômetros (tubos de vidros graduados), que trabalham na escala efetiva e semre indicam a carga de ressão - h - (Figura 8, 9 e 0) Figura 8 Figura 9 Figura 0 36

Leia mais

Capítulo 2 Estática dos Fluidos

Capítulo 2 Estática dos Fluidos Caítulo 2 Estática dos Fluidos ME430 8 e 24/02/200 A(O) ENGENHEIRA(O) DEVE RESOLVER PROBLEMAS E CRIAR OPORTUNIDADES! Primeiro roblema São dados dois tubos cilíndricos verticais A e B abertos à atmosfera,

Leia mais

Na resposta a cada um dos itens deste grupo, selecione a única opção correta.

Na resposta a cada um dos itens deste grupo, selecione a única opção correta. Exame Nacional exame nacional do ensino secundário Decreto Lei n. 9/0, de de julho Prova Escrita de Matemática A. Ano de Escolaridade Prova 6/.ª Fase Duração da Prova: 0 minutos. Tolerância: 0 minutos

Leia mais

Limites e Continuidade

Limites e Continuidade MAT111 p. 1/2 Limites e Continuidade Gláucio Terra glaucio@ime.usp.br Departamento de Matemática IME - USP Revisão MAT111 p. 2/2 MAT111 p. 3/2 Limite de uma Função num Ponto DEFINIÇÃO Sejam f : A R R,

Leia mais

7.3 Diferenciabilidade

7.3 Diferenciabilidade CAPÍTULO 7. INTRODUÇÃO À ANÁLISE EM RN 7.18 Estude quanto a continuidade a função f de R 2 com valores em R definida por: x 2, se x 2 + y 2 < 2y, f(x, y) = x, se x 2 + y 2 = 2y, y 2, se x 2 + y 2 > 2y.

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I LEAmb, LEMat, LQ, MEB, MEEC, MEQ o teste / o eame - 7 de Janeiro de 8 duração: o teste: :3 / o eame: 3: Apresente todos os cálculos e justificações relevantes Para resolver

Leia mais

T. Rolle, Lagrange e Cauchy

T. Rolle, Lagrange e Cauchy T. Rolle, Lagrange e Cauchy EXERCÍCIOS RESOLVIDOS. Mostre que a equação 5 + 5 = 5 tem uma única solução em R. Seja f = 5 +5 5. Então f é contínua e diferenciável em R. Temos f = 5 4 + > 0, em R, logo f

Leia mais

instituto superior de contabilidade e administração do porto MICROECONOMIA Resolução Grupo I

instituto superior de contabilidade e administração do porto MICROECONOMIA Resolução Grupo I instituto suerior de contabilidade e administração do orto MIROONOMIA 1.º TRABALHO OMPLMNTAR 8-10 D MAIO D 2010 Resolução Gruo I 1. xressões analíticas da taxa marginal de transformação de Y em X, ara

Leia mais

Determinar a derivada resultante do produto de duas funções utilizando a regra do produto. Aplicar a Derivada para Determinação de Máximos e Mínimos.

Determinar a derivada resultante do produto de duas funções utilizando a regra do produto. Aplicar a Derivada para Determinação de Máximos e Mínimos. MATEMÁTICA PARA NEGÓCIOS - GST1075 Semana Aula: 4 Regras de derivação Tema Regras de derivação Palavras-chave Derivada Objetivos Ao final desta aula, o aluno deverá ser capaz de: Verificar a derivada de

Leia mais