Duas retas distintas irão assumir as seguintes posições relativas no espaço:

Tamanho: px
Começar a partir da página:

Download "Duas retas distintas irão assumir as seguintes posições relativas no espaço:"

Transcrição

1 Posições relativas As figuras planas e espaciais são formadas pela intersecção de retas e planos pertencentes ao espaço. Dentre as posições relativas, podemos destacar: Posição relativa entre duas retas Duas retas distintas irão assumir as seguintes posições relativas no espaço: Retas paralelas: duas retas são paralelas se pertencerem ao mesmo plano (coplanares) e não possuírem ponto de intersecção ou ponto em comum. Retas coincidentes: pertencem ao mesmo plano e possuem todos os pontos em comum. Retas concorrentes: duas retas concorrentes possuem apenas um ponto comum. Não é necessário que pertençam ao mesmo plano.

2 Retas concorrentes perpendiculares: são retas que possuem ponto em comum formando um ângulo de 90º. Retas reversas: estão presentes em planos distintos. Posição relativa entre reta e plano. Uma reta e um plano poderão ter as seguintes posições relativas: Reta paralela ao plano: considere uma reta t e um plano β, eles serão paralelos se não tiverem nenhum ponto em comum. Reta contida no plano: considerando uma reta t e um plano β. t está contido em β se todos os infinitos pontos de t pertencerem a β.

3 Retas e planos secantes ou concorrentes: a reta t será concorrente ao plano β se possuírem um ponto em comum. Posição entre dois planos Dois planos irão assumir no espaço as seguintes posições relativas entre si: Planos paralelos: dois planos são considerados paralelos se não possuírem pontos em comum ou se uma reta pertencente ao plano α (alfa) for paralela a uma reta pertencente ao plano β (beta). Planos secantes: dois planos são secantes quando forem distintos e a intersecção entre eles formar uma reta. Planos coincidentes: planos coincidentes equivalem a um mesmo plano, ou seja, todos os seus infinitos pontos e planos pertencem ao outro.

4 Publicado por: Marcos Noé Pedro da Silva Posição relativa entre ponto e circunferência A compreensão das posições relativas de um ponto em relação a uma circunferência é feita através da comparação da distância entre o ponto e o centro da circunferência com o seu raio. Neste artigo veremos as possibilidades das posições relativas de uma reta, analisando esses elementos citados.

5 O ponto comparado à circunferência pode assumir três posições diferentes, pode ser: externo à circunferência, interno à circunferência ou pertencer à circunferência. Antes é preciso saber o que é uma circunferência, veja o desenho abaixo que distingue círculo de circunferência: Portanto, circunferência é o contorno de um círculo. E podemos dizer que no círculo e fora dele e na própria circunferência existem infinitos pontos. Ponto externo à circunferência

6 Podemos concluir que nesse caso o raio é menor que a distância do ponto A ao centro da circunferência. Então, como dca > R podemos escrever: (xa a)2 + (ya b) > R2 Ponto interno à circunferência Podemos concluir que nesse caso o raio é maior que a distância do ponto A ao centro da circunferência. Então, como dca < R podemos escrever: (xa a)2 + (ya b) < R2 Ponto pertence à circunferência Podemos concluir que nesse caso o raio é igual à distância do ponto A ao centro da circunferência. Então, como dca = R podemos escrever: (xa a)2 + (ya b) = R2 Exemplo: Verifique qual a posição dos pontos P(0,0); Q(1,-4);

7 R(-2,-5) em relação à circunferência de equação x2 + y2 + 2x + 8y + 13 = 0 Deve-se transformar essa equação normal em reduzida. x2 + y2 + 2x + 8y + 13 = 0 x2 + 2x + y2 + 8y = -13 (x2 + 2x + 1) + (y2 + 8y + 16) = (x + 1)2 + (y + 4)2 = 4 Agora, com essa equação reduzida da circunferência, iremos substituir cada ponto os termos de x e y. P(0,0) (0+ 1)2 + (0 + 4)2 = = = 4 17 > 4 Portanto, o ponto P é externo à circunferência Q(1,-4) (1+ 1)2 + ((-4) + 4)2 = = 4 4 = 4 Portanto, o ponto Q pertence à circunferência. R(-2,-5) ((-2)+ 1)2 + ((-5) + 4)2 = 4 (-1)2 + (-1)2 = = 4 2 < 4 Portanto, o ponto R é interno à circunferência.

8 ELEMENTOS DA CIRCUNFERÊNCIA Circunferência A circunferência está presente em nosso cotidiano, ela possui alguns elementos: raio, diâmetro, centro, arco, corda, comprimento e área. No cotidiano identificamos objetos e construções que lembram uma circunferência, um contorno ou regiões circulares. A circunferência possui propriedades e definições que precisam ser conhecidas na sua utilização. Ela possui alguns elementos como: raio, diâmetro, centro, arco, corda, comprimento e área. Raio (r): Distância entre o centro e a extremidade da circunferência; Diâmetro (D): corda que vai de uma extremidade a outra passando pelo centro; Corda: qualquer reta traçada de uma extremidade a outra; Ângulo central: ângulo que possui como vértice o centro da circunferência; Comprimento: medida linear da circunferência; Área: determina a superfície delimitada pela circunferência; Arco: parte da circunferência limitada por dois pontos.

9 Um importante número utilizado nos cálculos envolvendo a circunferência é o π (pi), que resulta da divisão entre o comprimento e o diâmetro da figura circular. O π é um número irracional e vale aproximadamente 3,14. Para calcularmos o comprimento e a área da circunferência utilizamos as respectivas fórmulas matemáticas: C = 2πr e A = πr². Exemplo 1 Determine o comprimento de uma praça circular que possui um raio de 10 metros. C = 2*π*r C = 2*3,14*10 C = 62,8 O comprimento da praça é de 62,8 metros. Exemplo 2 Calcule a área da superfície limitada por uma circunferência que possui um raio de 4 metros. A = π * r² A = 3,14 * 4² A = 3,14 * 16 A = 50,24 m² A área é de aproximadamente 50,24 m² Exemplo 3 Calcule a área em negrito da figura a seguir, sabendo que o raio da circunferência maior mede 10 cm e o raio da menor é 3

10 cm. Basta calcularmos a área da circunferência maior e subtrairmos da circunferência menor. Observe: Área total = πr² πr² Área total = 3,14 * 10² 3,14 * 3² Área total = 3,14 * 100 3,14 * 9 Área total = ,26 Área total = 285,74 m² A área da região demarcada equivale a 285,74 m². Por Marcos Noé CIRCUNFERÊNCIA Circunferência é o conjunto de todos os pontos de um plano eqüidistantes de um ponto fixo, desse mesmo plano, denominado centro da circunferência. A circunferência possui características não comumente encontradas em outras figuras planas. Círculo (ou disco) é o conjunto de todos os pontos de um plano cuja distância a um ponto fixo é menor ou igual que uma distância r dada. A circunferência é o lugar geométrico de todos os pontos de um plano que estão localizados a uma mesma distância r de um ponto fixo denominado o centro da

11 circunferência. A circunferência possui características não comumente encontradas em outras figuras planas, como o fato de ser a única figura plana que pode ser rodada em torno de um ponto sem modificar sua posição aparente. É também a única figura que é simétrica em relação a um número infinito de eixos de simetria. A circunferência é importante em praticamente todas as áreas do conhecimento como nas Engenharias, Matemática, Física, Química, Biologia, Arquitetura, Astronomia, Artes e também é muito utilizado na indústria e bastante utilizada nas residências das pessoas. Algumas definições Raio Raio de uma circunferência (ou de um círculo) é um segmento de reta com uma extremidade no centro da circunferência e a outra extremidade num ponto qualquer da circunferência. Arco é uma parte da circunferência limitada por dois pontos, que se chamam extremidades do arco. Corda é um segmento de infinitos pontos alinhados, cujos pontos extremos com um ponto da circunferência. Quando esse segmento passa pelo centro da circunferência, temos o que chamamos de diâmetro. O diâmetro é sempre a corda maior: como é a corda que passa pelo centro, sua medida é igual a duas vezes a medida do raio. Assim, para medir a maior distância entre dois pontos de uma circunferência, deve medir o diâmetro, ou seja, o seu instrumento de medida (régua, trena ou fita métrica) deve passar pelo centro da circunferência. Em alguns casos, porém, apenas uma parte da circunferência é utilizada.

12 Tangente é a reta que tem um único ponto comum à circunferência, este ponto é conhecido como ponto de tangência ou ponto de contato. Secante é a reta que intercepta a circunferência em dois pontos distintos, se essa reta intercepta a circunferência em dois pontos quaisquer, podemos dizer também que é a reta que contem uma corda. Para simbolizar a corda que une os pontos P e Q, utilizamos a notação de segmento de reta, ou seja, corda PQ. Por outro lado, o arco também começa em P e termina em Q mas, como você pode ver, a corda e o arco são diferentes e por isso a simbologia também deve ser diferente. Para o arco, usamos PQ. Da mesma forma que a maior corda é o diâmetro, o maior arco é aquele que tem as extremidades em um diâmetro. Esse arco é chamado semicircunferência, e a parte do círculo correspondente é chamada semicírculo. O Comprimento da circunferência Quanto maior for o raio (ou o diâmetro) de uma circunferência maior será o seu comprimento. Imagine que você vai caminhar em torno de uma praça circular: você andará menos em uma praça com 500 metros de diâmetro do que numa praça com 800 metros de diâmetro. No exemplo abaixo, cada uma das três circunferências foi cortada no ponto

13 marcado com uma tesourinha, e a linha do traçado de cada uma delas foi esticada. Círculo Círculo (ou disco) é o conjunto de todos os pontos de um plano cuja distância a um ponto fixo é menor ou igual que uma distância r dada. Quando a distância é nula, o círculo se reduz a um ponto. O círculo é a reunião da circunferência com o conjunto de pontos localizados dentro da mesma. É uma figura geométrica bastante comum em nosso dia-a-dia. Observe à sua volta quantos objetos circulares estão presentes: nas moedas, nos discos, a mesa de refeição Agora pense, o que faríamos para: * riscar no tecido o contorno de uma toalha de mesa redonda? * desenhar um círculo no seu caderno? * marcar o limite das escavações de um poço no chão? Quando falamos em círculo, ninguém tem dúvida quanto ao formato dessa figura geométrica. No entanto, em geometria, costuma-se fazer uma pequena distinção entre círculo e circunferência, sobre a qual você já deve ter ouvido falar. A superfície de uma moeda, de uma pizza ou de um disco é um círculo. Quando riscamos no papel ou no chão apenas o contorno do círculo, este contorno é chamado circunferência. O compasso é um instrumento utilizado para desenhar circunferências. O compasso possui duas pernas, uma delas tem uma ponta metálica, que deve ser assentada no papel, no local que será o centro da circunferência, a outra ponta,

14 com a grafite, deve ser girada para obter o traçado da circunferência. Antes de traçar uma circunferência, devemos decidir qual será a abertura entre as pernas do compasso. À distância entre as duas pontas do compasso define o raio da circunferência. Utilizando uma tachinha, um barbante e um giz podem-se riscar uma circunferência no chão ou no tecido. Os operários, jardineiros e pedreiros, por exemplo, costumam usar uma corda e duas estacas. Equação reduzida da circunferência Uma circunferência é determinada quando conhecemos a posição do seu centro e o valor do seu raio. Imaginando no plano cartesiano uma circunferência de centro no ponto C = (a, b) e com raio R, vamos representar por P = (x, y) um ponto qualquer que pertence a essa circunferência. Que propriedade tem o ponto P? Se P pertence à circunferência, sua distância até o centro é igual ao raio. Como a distância do ponto C = (a, b) ao ponto P = (x, y) é igual a R, usando a fórmula da distância entre dois pontos temos: (x a)2 + (y b)2 = R Elevando ao quadrado os dois membros, a expressão obtida é a equação da circunferência de centro (a, b) e raio R.

15 Portanto, (x a)² + (y b)² = r² é a equação reduzida da circunferência e permite determinar os elementos essenciais para a construção da circunferência: as coordenadas do centro e o raio. Observação: Quando o centro da circunferência estiver na origem (C(0,0)), a equação da circunferência será x² + y² = r². Exemplo: Seja uma circunferência cuja equação é: (x 2) ² + (y 3)² = 100 Verificar se a circunferência passa pela origem,quais as coordenadas do centro e quanto vale o raio: Pela expressão temos que: R = 10 e C(2,3) Fazendo x=0 e y=0, temos que: (-2) ² + (-3) ² = 13 Como 13 é diferente de 100, logo a circunferência não passa pela origem. Equação geral da circunferência Desenvolvendo a equação reduzida, obtemos a equação geral da circunferência:

16 Como exemplo, vamos determinar a equação geral da circunferência de centro C(2, -3) e raio r = 4. A equação reduzida da circunferência é: (x 2)² +(y + 3) ² = 16 Desenvolvendo os quadrados dos binômios, temos: Determinação do centro e do raio da circunferência, dada a equação geral Dada a equação geral de uma circunferência, utilizamos o processo de fatoração de trinômio quadrado perfeito para transformá-la na equação reduzida e, assim, determinamos o centro e o raio da circunferência. Para tanto, a equação geral deve obedecer a duas condições: * os coeficientes dos termos x² e y² devem ser iguais a 1; * não deve existir o termo xy. Então, vamos determinar o centro e o raio da circunferência cuja equação geral é x² + y² 6x + 2y 6 = 0. Observando a equação, vemos que ela obedece às duas condições. Assim: * 1º passo: agrupamos os termos em x e os termos em y e isolamos o termo independente x² 6x + _ + y² + 2y + _ = 6 * 2º passo: determinamos os termos que completam os quadrados perfeitos nas variáveis x e y, somando a ambos os membros as parcelas correspondentes * 3º passo: fatoramos os trinômios quadrados perfeitos

17 (x 3) ² + (y + 1) ² = 16 * 4º passo: obtida a equação reduzida, determinamos o centro e o raio Posição de um ponto em relação a uma circunferência Em relação à circunferência de equação (x a) ² + (y b) ² = r², o ponto P(m, n) pode ocupar as seguintes posições: a) P é exterior à circunferência b) P pertence à circunferência

18 c) P é interior à circunferência Assim, para determinar a posição de um ponto P(m, n) em relação a uma circunferência, basta substituir as coordenadas de P na expressão (x a) ² + (y b) ² r²: * se (m a) ² + (n b) ² r² > 0, então P é exterior à circunferência; * se (m a) ² + (n b) ² r² = 0, então P pertence à circunferência; * se (m a) ² + (n b) ² r² < 0, então P é interior à circunferência. Posição de uma reta em relação a uma circunferência Dadas uma reta s: Ax + Bx + C = 0 e uma circunferência? de equação (x a) ² + (y b)² = r², vamos examinar as posições relativas entre s e? :

19 Também podemos determinar a posição de uma reta em relação a uma circunferência calculando a distância da reta ao centro da circunferência. Assim, dadas a reta s: Ax + By + C = 0 e a circunferência?: (x a) ² + ( y b ) ² = r², temos: Assim: Condições de tangência entre reta e circunferência Dados uma circunferência? e um ponto P(x, y) do plano, temos: a) se P pertence à circunferência, então existe uma única reta tangente à circunferência por P

20 b) se P é exterior à circunferência, então existem duas retas tangentes a ela por P c) se P é interior à circunferência, então não existe reta tangente à circunferência passando pelo ponto P. Posições Relativas entre Ponto e Circunferência * Externo: d > r ; d r > 0 * Interno: d < r d r < 0

21 * Pertence à Circunferência: d = r d r = 0 Posições Relativas entre Reta e Circunferência * Tangente: A reta tem um só ponto A comum com a circunferência, e os outros pontos da reta são exteriores à circunferência. A tangente a um círculo, num ponto, é a perpendicular ao raio que tem extremidade nesse ponto. d = r * Secante: A reta tem dois pontos distintos A e B comuns com a circunferência. d < r * Externo: A reta não tem ponto comum com a circunferência. Todos os pontos da reta são exteriores à circunferência d > r

22 Posições Relativas entre duas Circunferências Obs: (d = distância entre os Centros) 1 Não se interceptam: * Externamente: A duas circunferências não têm ponto em comum. d > r1 + r2 * Internamente: As duas circunferências não têm pontos em comum e os pontos de uma delas são interiores à outra. d < r1 r2 2 São Tangentes: * Externamente: As duas circunferências têm um único ponto em comum e os demais pontos de uma delas são exteriores à outra. O ponto comum é o ponto de tangência. d = r1 + r2 * Internamente: As duas circunferências têm um único ponto em comum e os demais pontos de uma delas são interiores à outra. O ponto comum é o ponto da tangência.

23 d = r1 r2 3 São Secantes: As duas circunferências têm dois pontos distintos em comum. São denominadas circunferências SECANTES. r1 r2 < d < r1 + r2 4 Caso particular: Concêntricas: As duas circunferências são interiores e os centros das duas são coincidentes. d = 0 Conclusão Nosso trabalho consiste em falar sobre circunferência. Nesta ação, conseguimos compreender o que é circunferência; é o lugar geométrico de todos os pontos de um plano que estão localizados a uma mesma distância r de um ponto fixo denominado o centro da circunferência. Por: Daiane Fernandes Circunferência é o conjunto de todos os pontos de um plano eqüidistantes de um ponto fixo, desse mesmo plano, denominado centro da circunferência. />

24 Binômio de Newton O Binômio de Newton, evidentemente desenvolvido pelo célebre Isaac Newton, serve para calcularmos o valor de um número binomial do tipo (a + b)n. Quando o expoente n for 2, fica simples, apenas decorando o quadrado do primeiro mais duas vezes o primeiro pelo segundo mais o quadrado do segundo = (a + b)2 = a2 + 2ab + b2. Porém quando o expoente for um número maior, fica mais complicado, do que aplicar o método da distributiva ( chuveirinho ). A fórmula que Newton criou é a seguinte: O numero de termos da nova expressão será o expoente n + 1. Exemplo de utilização do binômio de Newton Para saber rapidamente quais são os valores dos números binomiais, basta pesquisarmos o Triângulo de Pascal: Então obtemos a expressão: x x Caso em uma questão de vestibular seja pedido a soma dos coeficientes numérico do desenvolvimento de um binômio, não é necessário fazer todo o desenvolvimento pelo binômio de newton, basta saber a seguinte dica: troque qualquer letra do binômio por 1 calcule o valor que ficará dentro dos parênteses, e pronto, basta elevá-lo à n. No desenvolvimento que mostramos anteriormente, a soma dos coeficientes é 81 ( ), agora utilizando a dica dada: (2x+1)4 ( )4 = 34 = 81

CIRCUNFERÊNCIA. Exemplo de circunferência

CIRCUNFERÊNCIA. Exemplo de circunferência CIRCUNFERÊNCIA Circunferências são figuras geométricas planas geralmente representadas por figuras perfeitamente redondas, mas a representação geométrica nada mais é do que a representação de uma fórmula

Leia mais

O círculo e o número p

O círculo e o número p A UA UL LA 45 O círcuo e o número p Para pensar O círcuo é uma figura geométrica bastante comum em nosso dia-a-dia. Observe à sua vota quantos objetos circuares estão presentes: nas moedas, nos discos,

Leia mais

Formação Continuada em MATEMÁTICA Fundação CECIERJ/Consórcio CEDERJ. Matemática 3º Ano 4º Bimestre/2014 Plano de Trabalho 2. Geometria Analítica

Formação Continuada em MATEMÁTICA Fundação CECIERJ/Consórcio CEDERJ. Matemática 3º Ano 4º Bimestre/2014 Plano de Trabalho 2. Geometria Analítica Formação Continuada em MATEMÁTICA Fundação CECIERJ/Consórcio CEDERJ Matemática 3º Ano 4º Bimestre/2014 Plano de Trabalho 2 Geometria Analítica http://exilioandarilho.blogspot.com/2009_03_01_archive.html

Leia mais

Exercício 1) Uma praça circular tem 200 m de raio. Quantos metros de grade serão necessários para cerca-la?

Exercício 1) Uma praça circular tem 200 m de raio. Quantos metros de grade serão necessários para cerca-la? O círculo e o número π As formas circulares aparecem com freqüência nas construções e nos objetos presente em nosso mundo. As formas circulares estão presentes: nas moedas, nos discos, roda do carro...

Leia mais

3º trimestre SALA DE ESTUDOS Data: 11/17 Ensino Médio 3º ano A, B e C. Prof. Maurício Nome: nº

3º trimestre SALA DE ESTUDOS Data: 11/17 Ensino Médio 3º ano A, B e C. Prof. Maurício Nome: nº º trimestre SALA DE ESTUDOS Data: 11/17 Ensino Médio º ano A, B e C. Prof. Maurício Nome: nº CONTEÚDOS: EQUAÇÃO DA RETA E EQUAÇÃO DA CIRCUNFERÊNCIA. 1. (Eear 017) O triângulo ABC a) escaleno b) isósceles

Leia mais

Plano cartesiano, Retas e. Alex Oliveira. Circunferência

Plano cartesiano, Retas e. Alex Oliveira. Circunferência Plano cartesiano, Retas e Alex Oliveira Circunferência Sistema cartesiano ortogonal O sistema cartesiano ortogonal é formado por dois eixos ortogonais(eixo x e eixo y). A intersecção dos eixos x e y é

Leia mais

GEOMETRIA ANALI TICA PONTO MEDIANA E BARICENTRO PLANO CARTESIANO DISTÂNCIA ENTRE DOIS PONTOS CONDIÇÃO DE ALINHAMENTO DE TRÊS PONTOS

GEOMETRIA ANALI TICA PONTO MEDIANA E BARICENTRO PLANO CARTESIANO DISTÂNCIA ENTRE DOIS PONTOS CONDIÇÃO DE ALINHAMENTO DE TRÊS PONTOS GEOMETRIA ANALI TICA PONTO PLANO CARTESIANO Vamos representar os pontos A (-2, 3) e B (4, -3) num plano cartesiano. MEDIANA E BARICENTRO A mediana é o segmento que une o ponto médio de um dos lados do

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 ESTUDO DA CIRCUNFERÊNCIA

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 ESTUDO DA CIRCUNFERÊNCIA DEFINIÇÃO... EQUAÇÃO REDUZIDA... EQUAÇÃO GERAL DA CIRCUNFERÊNCIA... 3 RECONHECIMENTO... 3 POSIÇÃO RELATIVA ENTRE PONTO E CIRCUNFERÊNCIA... 1 POSIÇÃO RELATIVA ENTRE RETA E CIRCUNFERÊNCIA... 17 PROBLEMAS

Leia mais

Lista 3: Geometria Analítica

Lista 3: Geometria Analítica Lista 3: Geometria Analítica A. Ramos 25 de abril de 2017 Lista em constante atualização. 1. Equação da reta e do plano; 2. Ângulo entre retas e entre planos. Resumo Equação da reta Equação vetorial. Uma

Leia mais

A equação da circunferência

A equação da circunferência A UA UL LA A equação da circunferência Introdução Nas duas últimas aulas você estudou a equação da reta. Nesta aula, veremos que uma circunferência desenhada no plano cartesiano também pode ser representada

Leia mais

Circunferências. λ : x y 4x 10y λ : x y 4x 5y 12 0

Circunferências. λ : x y 4x 10y λ : x y 4x 5y 12 0 Circunferências 1. (Espcex (Aman) 014) Sejam dados a circunferência λ : x y 4x 10y 5 0 e o ponto P, que é simétrico de ( 1, 1) em relação ao eixo das abscissas. Determine a equação da circunferência concêntrica

Leia mais

Geometria Analítica - AFA

Geometria Analítica - AFA Geometria Analítica - AFA x = v + (AFA) Considerando no plano cartesiano ortogonal as retas r, s e t, tais que (r) :, (s) : mx + y + m = 0 e (t) : x = 0, y = v analise as proposições abaixo, classificando-

Leia mais

Geometria Analítica. Cônicas. Prof. Vilma Karsburg

Geometria Analítica. Cônicas. Prof. Vilma Karsburg Geometria Analítica Cônicas Prof. Vilma Karsburg Cônicas Sejam duas retas e e g concorrentes em O e não perpendiculares. Considere e fixa e g girar 360 em torno de e, mantendo constante o ângulo entre

Leia mais

CIRCUNFERÊNCIA E CÍRCULO 1ª PARTE DEFINIÇÕES

CIRCUNFERÊNCIA E CÍRCULO 1ª PARTE DEFINIÇÕES CIRCUNFERÊNCIA E CÍRCULO 1ª PARTE DEFINIÇÕES CÍRCULO E CIRCUNFERÊNCIA Circunferência: é uma linha. Exemplos: argola, roda de bicicleta... Círculo: é uma superfície. Exemplos: moeda, mesa redonda... CIRCUNFERÊNCIA

Leia mais

INSTITUTO FEDERAL DE BRASILIA 3ª Lista GABARITO DATA: 14/09/2016

INSTITUTO FEDERAL DE BRASILIA 3ª Lista GABARITO DATA: 14/09/2016 INSTITUTO FEDERAL DE BRASILIA ª Lista MATEMÁTICA GEOMETRIA ANALÍTICA GABARITO DATA: 14/09/016 1) No plano cartesiano, 0xy, a circunferência C tem centro no ponto P (, 1), e a reta t é tangente a C no ponto

Leia mais

6.1 equações canônicas de círculos e esferas

6.1 equações canônicas de círculos e esferas 6 C Í R C U LO S E E S F E R A S 6.1 equações canônicas de círculos e esferas Um círculo é o conjunto de pontos no plano que estão a uma certa distância r de um ponto dado (a, b). Desta forma temos que

Leia mais

GEOMETRIA ANALÍTICA. 2) Obtenha o ponto P do eixo das ordenadas que dista 10 unidades do ponto Q (6, -5).

GEOMETRIA ANALÍTICA. 2) Obtenha o ponto P do eixo das ordenadas que dista 10 unidades do ponto Q (6, -5). GEOMETRIA ANALÍTICA Distância entre Dois Pontos Sejam os pontos A(xA, ya) e B(xB, yb) e sendo d(a, B) a distância entre eles, temos: Aplicando o teorema de Pitágoras ao triângulo retângulo ABC, vem: [d

Leia mais

EXERCÍCIOS DE RECUPERAÇÃO DE GEOMETRIA 2º TRIMESTRE FORMULÁRIO

EXERCÍCIOS DE RECUPERAÇÃO DE GEOMETRIA 2º TRIMESTRE FORMULÁRIO EXERCÍCIOS DE RECUPERAÇÃO DE GEOMETRIA º TRIMESTRE Nome: nº: Ano:ºA E.M. Data: / / 018 Professora: Lilian Caccuri x A x B ya y Ponto médio: M ; yb ya Coeficiente angular: m x x 1) As retas x - y = 3 e

Leia mais

Circunferência. MA092 Geometria plana e analítica. Interior e exterior. Circunferência e círculo. Francisco A. M. Gomes

Circunferência. MA092 Geometria plana e analítica. Interior e exterior. Circunferência e círculo. Francisco A. M. Gomes Circunferência MA092 Geometria plana e analítica Francisco A. M. Gomes UNICAMP - IMECC Setembro de 2016 A circunferência é o conjunto dos pontos de um plano que estão a uma mesma distância (denominada

Leia mais

Exemplo: As retas r: 2x 3y = 1 e s: 10x 15y = 18 são paralelas?

Exemplo: As retas r: 2x 3y = 1 e s: 10x 15y = 18 são paralelas? 4.13. Condição de Paralelismo. Analisando as retas com equação na forma geral, facilmente sabemos, pela resolução do sistema de equações, qual é a posição relativa entre as retas. Agora, se as equações

Leia mais

Matemática B Intensivo V. 2

Matemática B Intensivo V. 2 Matemática Intensivo V. Eercícios ) ) C ( ) (5 7) Usando a fórmula do ponto médio: X + X Y + Y C + 5 + 7 6 8 ( ) ERRT: considere (6 ). Temos d () d (C). ssim: ( 6) + ( b ) ( ) + ( 6 b) 9 + b 9 + b b +

Leia mais

Polígonos PROFESSOR RANILDO LOPES 11.1

Polígonos PROFESSOR RANILDO LOPES 11.1 Polígonos PROFESSOR RANILDO LOPES 11.1 Polígonos Polígono é uma figura geométrica plana e fechada formada apenas por segmentos de reta que não se cruzam no mesmo plano. Exemplos 11.1 Elementos de um polígono

Leia mais

UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA LISTA DE EXERCÍCIOS DE MAT243-CÁLCULO III

UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA LISTA DE EXERCÍCIOS DE MAT243-CÁLCULO III UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA LISTA DE EXERCÍCIOS DE MAT243-CÁLCULO III Capítulo 1 Vetores no Rn 1. Sejam u e v vetores tais que e u v = 2 e v = 1. Calcule v u v. 2. Sejam u

Leia mais

Distância entre duas retas. Regiões no plano

Distância entre duas retas. Regiões no plano Capítulo 4 Distância entre duas retas. Regiões no plano Nesta aula, veremos primeiro como podemos determinar a distância entre duas retas paralelas no plano. Para isso, lembramos que, na aula anterior,

Leia mais

Instituto Federal de Educação, Ciência e Tecnologia Rio Grande do Sul Campus Rio Grande CAPÍTULO 4 GEOMETRIA ANALÍTICA

Instituto Federal de Educação, Ciência e Tecnologia Rio Grande do Sul Campus Rio Grande CAPÍTULO 4 GEOMETRIA ANALÍTICA Instituto Federal de Educação, Ciência e Tecnologia Rio Grande do Sul Campus Rio Grande CAPÍTULO 4 GEOMETRIA ANALÍTICA 4. Geometria Analítica 4.1. Introdução Geometria Analítica é a parte da Matemática,

Leia mais

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial 178 Capítulo 10 Equação da reta e do plano no espaço 1. Equações paramétricas da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que

Leia mais

Lista 5. Em toda a lista, as coordenadas referem-se a um sistema de coordenadas fixo (O; i, j, k)

Lista 5. Em toda a lista, as coordenadas referem-se a um sistema de coordenadas fixo (O; i, j, k) UFPR - Universidade Federal do Paraná Departamento de Matemática CM045 - Geometria Analítica Prof. José Carlos Eidam Lista 5 Em toda a lista, as coordenadas referem-se a um sistema de coordenadas fixo

Leia mais

Estudaremos três tipos de equações de retas: vetorial, paramétricas e simétricas.

Estudaremos três tipos de equações de retas: vetorial, paramétricas e simétricas. CAPÍTULO VII RETA Consideremos em V 3 o sistema de referência (O, i, j, k ), onde E = ( i, j, k ) é base ortonormal positiva e O(0, 0, 0). 7.1. EQUAÇÕES DA RETA Estudaremos três tipos de equações de retas:

Leia mais

3º. EM Prof a. Valéria Rojas Assunto: Determinante, Área do Triângulo, Equação da reta, Eq. Reduzida da Reta

3º. EM Prof a. Valéria Rojas Assunto: Determinante, Área do Triângulo, Equação da reta, Eq. Reduzida da Reta 1 - O uso do Determinante de terceira ordem na Geometria Analítica 1.1 - Área de um triângulo Seja o triângulo ABC de vértices A(x a, y a ), B(x b, x c ) e C(x c, y c ). A área S desse triângulo é dada

Leia mais

RETA E CIRCUNFERÊNCIA

RETA E CIRCUNFERÊNCIA RETA E CIRCUNFERÊNCIA - 016 1. (Unifesp 016) Na figura, as retas r, s e t estão em um mesmo plano cartesiano. Sabe-se que r e t passam pela origem desse sistema, e que PQRS é um trapézio. a) Determine

Leia mais

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE. Professor: João Carmo

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE. Professor: João Carmo INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE Professor: João Carmo INTRODUÇÃO Circunferência é uma linha curva, plana, fechada e que tem todos os pontos que a constitui, equidistantes

Leia mais

Curso: Engenharia Disciplina: Desenho Técnico Prof.ª Me. Aline Ribeiro CONSTRUÇÕES GEOMÉTRICAS 1. DESENHO GEOMÉTRICO

Curso: Engenharia Disciplina: Desenho Técnico Prof.ª Me. Aline Ribeiro CONSTRUÇÕES GEOMÉTRICAS 1. DESENHO GEOMÉTRICO 1 Curso: Engenharia Disciplina: Desenho Técnico Prof.ª Me. Aline Ribeiro CONSTRUÇÕES GEOMÉTRICAS 1. DESENHO GEOMÉTRICO 1.1. O que é desenho geométrico Desenho Geométrico é o conjunto de técnicas utilizadas

Leia mais

Aula 2 A distância no espaço

Aula 2 A distância no espaço MÓDULO 1 - AULA 2 Objetivos Aula 2 A distância no espaço Determinar a distância entre dois pontos do espaço. Estabelecer a equação da esfera em termos de distância. Estudar a posição relativa entre duas

Leia mais

Mat. Monitor: Roberta Teixeira

Mat. Monitor: Roberta Teixeira 1 Professor: Alex Amaral Monitor: Roberta Teixeira 2 Geometria analítica plana: circunferência e elipse 26 out RESUMO 1) Circunferência 1.1) Definição: Circunferência é o nome dado ao conjunto de pontos

Leia mais

Material by: Caio Guimarães (Equipe Rumoaoita.com) Referência: cadernos de aula: Professor Eduardo Wagner

Material by: Caio Guimarães (Equipe Rumoaoita.com) Referência: cadernos de aula: Professor Eduardo Wagner Material by: Caio Guimarães (Equipe Rumoaoita.com) Referência: cadernos de aula: Professor Eduardo Wagner 3 - Parábolas Definição 1.1: Dados um ponto no plano F e uma reta d no plano, é denominada Parábola

Leia mais

CONSTRUÇÕES GEOMÉTRICAS FUNDAMENTAIS

CONSTRUÇÕES GEOMÉTRICAS FUNDAMENTAIS UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE EXPRESSÃO GRÁFICA CONSTRUÇÕES GEOMÉTRICAS FUNDAMENTAIS 2 1 NOÇÕES DE GEOMETRIA PLANA 1.1 GEOMETRIA A necessidade de medir terras

Leia mais

O ESTUDO DA CIRCUNFERÊNCIA

O ESTUDO DA CIRCUNFERÊNCIA Hewlett-Packard O ESTUDO DA CIRCUNFERÊNCIA Aulas 01 a 05 Sumário EQUAÇÃO REDUZIDA DA CIRCUNFERÊNCIA...... EQUAÇÃO GERAL DA CIRCUNFERÊNCIA......... POSIÇÃO RELATIVA ENTRE UM PONTO E UMA CIRCUNFERÊNCIA...

Leia mais

Módulo de Geometria Anaĺıtica Parte 2. Circunferência. Professores Tiago Miranda e Cleber Assis

Módulo de Geometria Anaĺıtica Parte 2. Circunferência. Professores Tiago Miranda e Cleber Assis Módulo de Geometria Anaĺıtica Parte Circunferência a série E.M. Professores Tiago Miranda e Cleber Assis Geometria Analítica Parte Circunferência 1 Exercícios Introdutórios Exercício 1. Em cada item abaixo,

Leia mais

2º trimestre Lista de exercícios Ensino Médio 2º ano classe: Prof. Maurício Nome: nº

2º trimestre Lista de exercícios Ensino Médio 2º ano classe: Prof. Maurício Nome: nº º trimestre Lista de exercícios Ensino Médio º ano classe: Prof. Maurício Nome: nº --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Leia mais

Estudante: Circunferência: Equação reduzida da circunferência: Circunferência: Consideremos uma circunferência de centro C (a, b) e raio r.

Estudante: Circunferência: Equação reduzida da circunferência: Circunferência: Consideremos uma circunferência de centro C (a, b) e raio r. Gênesis Soares Jaboatão, de de 014. Estudante: Circunferência: Circunferência: A circunferência é o conjunto de todos os pontos de plano equidistantes de outro ponto C do mesmo plano chamado centro da

Leia mais

Relações Trigonométricas na Circunferência

Relações Trigonométricas na Circunferência Relações Trigonométricas na Circunferência Introdução Uma das invenções mais importantes da história da humanidade foi a roda, por volta de 3000 a.c. Figura 1 Talvez essa ideia tenha surgido da observação

Leia mais

BC Geometria Analítica. Lista 4

BC Geometria Analítica. Lista 4 BC0404 - Geometria Analítica Lista 4 Nos exercícios abaixo, deve-se entender que está fixado um sistema de coordenadas cartesianas (O, E) cuja base E = ( i, j, k) é ortonormal (e positiva, caso V esteja

Leia mais

Atividade 1 Conhecendo Geometria Analítica Retas Paralelas e perpendiculares a partir de suas equações e equação da circunferência.

Atividade 1 Conhecendo Geometria Analítica Retas Paralelas e perpendiculares a partir de suas equações e equação da circunferência. Geometria Analítica FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ / SEEDUC - RJ Tutora: Maria Cláudia Padilha Tostes Cursista: Marta Cristina de Oliveira Matrículas: 09137050 / 09269929

Leia mais

Hewlett-Packard CIRCUNFERÊNCIA. AULAS 01 e 02. Prof. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos

Hewlett-Packard CIRCUNFERÊNCIA. AULAS 01 e 02. Prof. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Hewlett-Packard CIRCUNFERÊNCIA AULAS 01 e 0 Prof. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Sumário Circunferência... 1 CIRCUNFERÊNCIA E CÍRCULO... 1 CIRCUNFERÊNCIA... 1 CÍRCULO... 1 CORDA DE

Leia mais

Disciplina: MATEMÁTICA Série: 3º ANO ATIVIDADES DE REVISÃO PARA O REDI (4º BIMESTRE) ENSINO MÉDIO

Disciplina: MATEMÁTICA Série: 3º ANO ATIVIDADES DE REVISÃO PARA O REDI (4º BIMESTRE) ENSINO MÉDIO Professor (a): Estefânio Franco Maciel Aluno (a): Disciplina: MATEMÁTICA Série: º ANO ATIVIDADES DE REVISÃO PARA O REDI (º BIMESTRE) ENSINO MÉDIO Data: /0/0. x y Questão 0) Dados os sistemas S : e x y

Leia mais

Os problemas em Desenho Geométrico resumem-se em encontrar pontos. E para determinar um ponto basta obter o cruzamento entre duas linhas.

Os problemas em Desenho Geométrico resumem-se em encontrar pontos. E para determinar um ponto basta obter o cruzamento entre duas linhas. 31 4 LUGARES GEOMÉTRICOS Os problemas em Desenho Geométrico resumem-se em encontrar pontos. E para determinar um ponto basta obter o cruzamento entre duas linhas. Definição: Um conjunto de pontos do plano

Leia mais

Datas de Avaliações 2016

Datas de Avaliações 2016 ROTEIRO DE ESTUDOS MATEMÁTICA (6ºB, 7ºA, 8ºA e 9ºA) SÉRIE 6º ANO B Conteúdo - Sucessor e Antecessor; - Representação de Conjuntos e as relações entre eles: pertinência e inclusão ( ). - Estudo da Geometria:

Leia mais

PROFESSOR FLABER 2ª SÉRIE Circunferência

PROFESSOR FLABER 2ª SÉRIE Circunferência PROFESSOR FLABER ª SÉRIE Circunferência 01. (Fuvest SP) A reta s passa pelo ponto (0,3) e é perpendicular à reta AB onde A=(0,0) e B é o centro da circunferência x + y - x - 4y = 0. Então a equação de

Leia mais

Capítulo 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 é assim definido:

Capítulo 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 é assim definido: Capítulo 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r é assim definido: (r1, r ) 0o se r1 e r são coincidentes, se as retas são concorrentes, isto é, r1

Leia mais

10. Determine as equações cartesianas das famílias de retas que fazem um ângulo de π/4 radianos com a reta y = 2x + 1.

10. Determine as equações cartesianas das famílias de retas que fazem um ângulo de π/4 radianos com a reta y = 2x + 1. Geometria Analítica. 1. Determine as posições relativas e as interseções entre os conjuntos em R abaixo. Em cada item também faça um esboço dos dois conjuntos dados no mesmo sistema de eixos. (a) C : (x

Leia mais

LUGARES GEOMÉTRICOS Geometria Euclidiana e Desenho Geométrico PROF. HERCULES SARTI Mestre

LUGARES GEOMÉTRICOS Geometria Euclidiana e Desenho Geométrico PROF. HERCULES SARTI Mestre LUGARES GEOMÉTRICOS Geometria Euclidiana e Desenho Geométrico PROF. HERCULES SARTI Mestre Lugar Geométrico Lugar geométrico é uma figura cujos pontos e somente eles satisfazem determinada condição. Todos

Leia mais

Exercícios de Matemática Geometria Analítica

Exercícios de Matemática Geometria Analítica Eercícios de Matemática Geometria Analítica. (UFRGS) Considere um sistema cartesiano ortogonal e o ponto P(. ) de intersecção das duas diagonais de um losango. Se a equação da reta que contém uma das diagonais

Leia mais

DESENHO. 1º Bimestre. AULA 1 Instrumentos de Desenho e Conceitos Básicos de Construções Geométricas Professor Luciano Nóbrega

DESENHO. 1º Bimestre. AULA 1 Instrumentos de Desenho e Conceitos Básicos de Construções Geométricas Professor Luciano Nóbrega DESENHO Felizes aqueles que se divertem com problemas Matemáticos que educam a alma e elevam o espírito. (Fraçois Fenelon Educador Francês) AULA 1 Instrumentos de Desenho e Conceitos Básicos de Construções

Leia mais

FORMAÇÃO CONTINUADA EM MATEMÁTICA Fundação CECIERJ Consórcio CEDERJ Matemática do 3º Ano 4º Bimestre 2014 Plano de Trabalho 2 Geometria Analítica II

FORMAÇÃO CONTINUADA EM MATEMÁTICA Fundação CECIERJ Consórcio CEDERJ Matemática do 3º Ano 4º Bimestre 2014 Plano de Trabalho 2 Geometria Analítica II FORMAÇÃO CONTINUADA EM MATEMÁTICA Fundação CECIERJ Consórcio CEDERJ Matemática do 3º Ano 4º Bimestre 2014 Plano de Trabalho 2 Geometria Analítica II Tarefa: 002 PLANO DE TRABALHO 2 Cursista: CLÁUDIO MAGNO

Leia mais

COLÉGIO SHALOM Ensino Fundamental 8 Ano Prof.º: Wesley Disciplina Geometria Aluno (a):. No.

COLÉGIO SHALOM Ensino Fundamental 8 Ano Prof.º: Wesley Disciplina Geometria Aluno (a):. No. COLÉGIO SHALOM Ensino Fundamental 8 Ano Prof.º: Wesley Disciplina Geometria Aluno (a):. No. Trabalho de Recuperação Data: / 12/2016 Valor: Orientações: -Responder manuscrito; -Cópias de colegas, entrega

Leia mais

UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE MATEMÁTICA 1 UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE MATEMÁTICA 1 a Lista de exercícios MAT 41 - Cálculo III - 01/II Coordenadas no espaço 1. Determinar o lugar geométrico

Leia mais

8º ANO ENSINO FUNDAMENTAL Matemática. 1º Trimestre 45 questões 26 de abril (Sexta-feira)

8º ANO ENSINO FUNDAMENTAL Matemática. 1º Trimestre 45 questões 26 de abril (Sexta-feira) 8º ANO ENSINO FUNDAMENTAL Matemática S º Trimestre 5 questões 6 de abril (Sexta-feir 09 SIMULADO OBJETIVO 8º ANO º TRIMESTRE. O número, corresponde à fração 0. 00. 000.. 99. MATEMÁTICA COMENTÁRIO/RESOLUÇÃO:

Leia mais

SISTEMAS DE PROJEÇÃO

SISTEMAS DE PROJEÇÃO MINISTÉRIO DA EDUCAÇÃO - UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS - DEPARTAMENTO DE EXPRESSÃO GRÁFICA Professora Deise Maria Bertholdi Costa - Disciplina CD020 Geometria Descritiva Curso

Leia mais

Desenho Técnico Página 11

Desenho Técnico Página 11 Exercício 16 Concordância Interna de Circunferências Dada uma circunferência de centro O 1 conhecido, determine a circunferência de centro O 2 de tal forma que sejam concordantes internamente. Marque o

Leia mais

Matemática B Semi-Extensivo V. 3

Matemática B Semi-Extensivo V. 3 GRITO Matemática Semi-Etensivo V. (, e (, M, Então: M = M = M = M = Eercícios D Substituindo em I, temos: = =. = = Então, = ( = 8 M(, (, (, M = M = 8 M = M = D Sabendo que o eio é o da abcissa e que o

Leia mais

A(500, 500) B( 600, 600) C(715, 715) D( 1002, 1002) E(0, 0) F (711, 0) (c) ao terceiro quadrante? (d) ao quarto quadrante?

A(500, 500) B( 600, 600) C(715, 715) D( 1002, 1002) E(0, 0) F (711, 0) (c) ao terceiro quadrante? (d) ao quarto quadrante? Universidade Federal de Ouro Preto Departamento de Matemática MTM131 - Geometria Analítica e Cálculo Vetorial Professora: Monique Rafaella Anunciação de Oliveira Lista de Exercícios 1 1. Dados os pontos:

Leia mais

Bacharelado em Ciência e Tecnologia 2ª Lista de Exercícios - Geometria Analítica

Bacharelado em Ciência e Tecnologia 2ª Lista de Exercícios - Geometria Analítica MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO DEPARTAMENTO DE CIÊNCIAS AMBIENTAIS Bacharelado em Ciência e Tecnologia ª Lista de Exercícios - Geometria Analítica 008. ) São dados os pontos

Leia mais

Geometria Analítica l - MAT Lista 6 Profa. Lhaylla Crissaff

Geometria Analítica l - MAT Lista 6 Profa. Lhaylla Crissaff Geometria Analítica l - MAT 0016 Lista 6 Profa. Lhaylla Crissaff 1. Encontre as equações paramétricas e cartesiana do plano π que passa pelos pontos A = (1, 0, ), B = (1,, 3) e C = (0, 1, ).. Prove que

Leia mais

Consequentemente, fica fácil determinar os outros casos. Logicamente:

Consequentemente, fica fácil determinar os outros casos. Logicamente: 4.. Posição relativa entre ponto e círculo. A linha, que é o círculo, divide o plano cartesiano em duas partes, a interior e a exterior, assim um ponto tem chance de pertencer a três lugares: P interior

Leia mais

Aula Exemplos e aplicações. Exemplo 1. Nesta aula apresentamos uma série de exemplos e aplicações dos conceitos vistos.

Aula Exemplos e aplicações. Exemplo 1. Nesta aula apresentamos uma série de exemplos e aplicações dos conceitos vistos. Aula 16 Nesta aula apresentamos uma série de exemplos e aplicações dos conceitos vistos. 1. Exemplos e aplicações Exemplo 1 Considere os pontos A = (1, 2, 2), B = (2, 4, 3), C = ( 1, 4, 2), D = (7, 1,

Leia mais

EQUAÇÕES DE RETAS E PLANOS

EQUAÇÕES DE RETAS E PLANOS UNIVERSIDADE FEDERAL DO RIO GRANDE - FURG INSTITUTO DE MATEMÁTICA, ESTATÍSTICA E FÍSICA - IMEF FABÍOLA AIUB SPEROTTO DAIANE SILVA DE FREITAS EQUAÇÕES DE RETAS E PLANOS NO ESPAÇO 1 Edição Rio Grande 2018

Leia mais

Título do Livro. Capítulo 5

Título do Livro. Capítulo 5 Capítulo 5 5. Geometria Analítica A Geometria Analítica tornou possível o estudo da Geometria através da Álgebra. Além de proporcionar a interpretação geométrica de diversas equações algébricas. 5.1. Sistema

Leia mais

SISTEMAS DE PROJEÇÃO. 1. Conceito de projeção cônica (ou central)

SISTEMAS DE PROJEÇÃO. 1. Conceito de projeção cônica (ou central) MINISTÉRIO DA EDUCAÇÃO - UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS - DEPARTAMENTO DE EXPRESSÃO GRÁFICA Professora Deise Maria Bertholdi Costa - Disciplina CD028 Expressão Gráfica II Curso

Leia mais

NOTAÇÕES. R : conjunto dos números reais C : conjunto dos números complexos

NOTAÇÕES. R : conjunto dos números reais C : conjunto dos números complexos NOTAÇÕES R : conjunto dos números reais C : conjunto dos números complexos i : unidade imaginária: i = 1 z : módulo do número z C Re(z) : parte real do número z C Im(z) : parte imaginária do número z C

Leia mais

Preliminares de Cálculo

Preliminares de Cálculo Preliminares de Cálculo Profs. Ulysses Sodré e Olivio Augusto Weber Londrina, 21 de Fevereiro de 2008, arquivo: precalc.tex... Conteúdo 1 Números reais 2 1.1 Algumas propriedades do corpo R dos números

Leia mais

Em matemática definimos e estudamos conjuntos de números, pontos, retas curvas, funções etc.

Em matemática definimos e estudamos conjuntos de números, pontos, retas curvas, funções etc. INTRODUÇÃO Curso de Geometria Analítica Abrangência: Graduação em Engenharia e Matemática Professor Responsável: Anastassios H. Kambourakis Resumo Teórico 02 - Introdução, Plano Cartesiano, Pontos e Retas

Leia mais

Ricardo Bianconi. Fevereiro de 2015

Ricardo Bianconi. Fevereiro de 2015 Seções Cônicas Ricardo Bianconi Fevereiro de 2015 Uma parte importante da Geometria Analítica é o estudo das curvas planas e, em particular, das cônicas. Neste texto estudamos algumas propriedades das

Leia mais

1. Área do triângulo

1. Área do triângulo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Geometria Plana II Prof.:

Leia mais

Retas no Espaço. Laura Goulart. 28 de Agosto de 2018 UESB. Laura Goulart (UESB) Retas no Espaço 28 de Agosto de / 30

Retas no Espaço. Laura Goulart. 28 de Agosto de 2018 UESB. Laura Goulart (UESB) Retas no Espaço 28 de Agosto de / 30 Retas no Espaço Laura Goulart UESB 28 de Agosto de 2018 Laura Goulart (UESB) Retas no Espaço 28 de Agosto de 2018 1 / 30 Equação Vetorial da Reta Um dos principais axiomas da Geometria Euclidiana diz que

Leia mais

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial 76 Capítulo 4 Distâncias no plano e regiões no plano 1. Distância de um ponto a uma reta Dados um ponto P e uma reta r no plano, já sabemos calcular a distância de P a cada ponto P r. Definição 1 Definimos

Leia mais

MAT001 Cálculo Diferencial e Integral I

MAT001 Cálculo Diferencial e Integral I 1 MAT001 Cálculo Diferencial e Integral I GEOMETRIA ANALÍTICA Coordenadas de pontos no plano cartesiano Distâncias entre pontos Sejam e dois pontos no plano cartesiano A distância entre e é dada pela expressão

Leia mais

Figura 1: Construção criada utilizando Geogebra

Figura 1: Construção criada utilizando Geogebra Conteúdo: Geometria Analítica Atividade: Material complementar 1 Aluno(s):... N o(s) :... Aluno(s):... N o(s) :... Pontuação:... Professor: Fábio Vinícius Turma:... Data:.../.../... Valor obtido:... [X]

Leia mais

G.A. Equação da Circunferência. Nível Básico

G.A. Equação da Circunferência. Nível Básico G.A. Equação da Circunferência Nível Básico 1. (Eear 017) As posições dos pontos A (1, 7) e B (7,1) em relação à circunferência de equação (x 6) (y ) 16 são, respectivamente, a) interna e interna. b) interna

Leia mais

Geometria Analítica? Onde usar os conhecimentos. os sobre Geometria Analítica?

Geometria Analítica? Onde usar os conhecimentos. os sobre Geometria Analítica? X GEOMETRIA ANALÍTICA Por que aprender Geometria Analítica?... A Geometria Analítica estabelece relações entre a álgebra e a geometria por meio de equações e inequações. Isso permite transformar questões

Leia mais

Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira:

Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira: Aula 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r se define da seguinte maneira: (r1, r ) 0o se r1 e r são coincidentes, Se as retas são concorrentes, isto

Leia mais

Primeiramente é importante destacar um aspecto referente a definições, nomenclatura e classificações.

Primeiramente é importante destacar um aspecto referente a definições, nomenclatura e classificações. FIGURAS BIDIMENSIONAIS Primeiramente é importante destacar um aspecto referente a definições, nomenclatura e classificações. O termo "polígono", por exemplo, aparece em alguns textos como uma figura plana

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições Propostas de resolução MATEMÁTICA A - o Ano N o s Complexos - Conjuntos e condições Propostas de resolução Exercícios de exames e testes intermédios. Escrevendo i na f.t. temos i i = ρ cis α, onde: ρ = i i = + ) = tg α = = ;

Leia mais

GEOMETRIA ANALÍTICA CONTEÚDOS. Distância entre pontos Equação da reta Distância ponto reta Coeficientes Equação da circunferência.

GEOMETRIA ANALÍTICA CONTEÚDOS. Distância entre pontos Equação da reta Distância ponto reta Coeficientes Equação da circunferência. GEOMETRIA ANALÍTICA CONTEÚDOS Distância entre pontos Equação da reta Distância ponto reta Coeficientes Equação da circunferência. AMPLIANDO SEUS CONHECIMENTOS Neste capítulo, estudaremos a Geometria Analítica.

Leia mais

Apresentaremos as equações do plano: Equação vetorial e Equação geral do. = AB e v. C A u B. ) não-colineares do plano.

Apresentaremos as equações do plano: Equação vetorial e Equação geral do. = AB e v. C A u B. ) não-colineares do plano. CAPÍTULO VIII PLANO Consideremos em V 3 o sistema de referência (O, i, j, k ), onde E = ( i, j, k ) é base ortonormal positiva e O(0, 0, 0). 8.1. EQUAÇÕES DO PLANO plano. Apresentaremos as equações do

Leia mais

Geometria Analítica Circunferência

Geometria Analítica Circunferência Formação Continuada em Matemática Fundação Cecierj/Consórcio CEDERJ Matemática 3º ano - 4º Bimestre 13 Plano de Trabalho Geometria Analítica Circunferência Tarefa - Grupo Aluna: Thelma Maria Teixeira Tutora:

Leia mais

1. Encontre as equações simétricas e paramétricas da reta que:

1. Encontre as equações simétricas e paramétricas da reta que: Universidade Federal de Uberlândia Faculdade de Matemática Disciplina : Geometria Analítica (GMA00) Assunto: retas; planos; interseções de retas e planos; posições relativas entre retas e planos; distância

Leia mais

Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Analítica 3º Ano APROFUNDAMENTO/REFORÇO

Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Analítica 3º Ano APROFUNDAMENTO/REFORÇO Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Analítica 3º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 1 1º Bimestre 2012 Aluno(a): Número: Turma: 1) Resolva

Leia mais

Elipse. 3 ano E.M. Professores Cleber Assis e Tiago Miranda

Elipse. 3 ano E.M. Professores Cleber Assis e Tiago Miranda Cônicas Elipse ano E.M. Professores Cleber Assis e Tiago Miranda Cônicas Elipse c) (x 1) (y ) 1 Exercícios Introdutórios Exercício 1. O ponto que representa o centro da elipse de (x 1) (y ) equação = 1

Leia mais

CÍRCULO E CIRCUNFERÊNCIA CONTEÚDOS. Circunferência Círculo Comprimento Área Ângulo central Setor circular Coroa circular AMPLIANDO SEUS CONHECIMENTOS

CÍRCULO E CIRCUNFERÊNCIA CONTEÚDOS. Circunferência Círculo Comprimento Área Ângulo central Setor circular Coroa circular AMPLIANDO SEUS CONHECIMENTOS CÍRCULO E CIRCUNFERÊNCIA CONTEÚDOS Circunferência Círculo Comprimento Área Ângulo central Setor circular Coroa circular AMPLIANDO SEUS CONHECIMENTOS Círculo ou circunferência? Talvez essa pergunta já tenha

Leia mais

Geometria Descritiva 28/08/2012. Elementos Primitivos da Geometria

Geometria Descritiva 28/08/2012. Elementos Primitivos da Geometria Geometria Descritiva Prof. Luiz Antonio do Nascimento ladnascimento@gmail.com www.lnascimento.com.br A Geometria, como qualquer outra ciência, fundamenta-se em observações e experiências para estabelecer

Leia mais

Professor Mascena Cordeiro

Professor Mascena Cordeiro www.mascenacordeiro.com Professor Mascena Cordeiro º Ano Ensino Médio M A T E M Á T I C A. Determine os valores de m pertencentes ao conjunto dos números reais, tal que os pontos (0, -), (, m) e (-, -)

Leia mais

Formação Continuada em Matemática Fundação CICIERJ/Consórcio Cederj. Matemática 3º Ano 4º Bimestre/2014. Plano de Trabalho

Formação Continuada em Matemática Fundação CICIERJ/Consórcio Cederj. Matemática 3º Ano 4º Bimestre/2014. Plano de Trabalho Formação Continuada em Matemática Fundação CICIERJ/Consórcio Cederj Matemática 3º Ano 4º Bimestre/2014 Plano de Trabalho GEOMETRIA ANALÍTICA: retas paralelas e retas perpendiculares a partir de suas equações

Leia mais

Matemática B Extensivo V. 7

Matemática B Extensivo V. 7 GRITO Matemática Etensivo V. 7 Eercícios ) D ) D ) I. Falso. O diâmetro é dado por. r. cm. II. Verdadeiro. o volume é dado por π. r² π. ² π cm² III. Verdadeiro. (, ) (, ) e assim, ( )² + ( )² r² fica ²

Leia mais

A GEOMETRIA DO GLOBO TERRESTRE

A GEOMETRIA DO GLOBO TERRESTRE Sumário A GEOMETRIA DO GLOBO TERRESTRE Grupo de Pesquisa em Matemática para o Ensino Médio GPMatEM Prof Luciana Martino: lulismartino@gmail.com Prof Marcos: profmarcosjose@gmail.com Prof Maria Helena:

Leia mais

SE18 - Matemática. LMAT 5C2 - Circunferência. Questão 1

SE18 - Matemática. LMAT 5C2 - Circunferência. Questão 1 SE18 - Matemática LMAT 5C2 - Circunferência Questão 1 (ENEM 2015) A figura mostra uma criança brincando em um balanço no parque. A corda que prende o assento do balanço ao topo do suporte mede 2 metros.

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições Propostas de resolução MATEMÁTICA A - o Ano N o s Complexos - Conjuntos e condições Propostas de resolução Exercícios de exames e testes intermédios. Escrevendo i na f.t. temos i i = ρe iα, onde: ρ = i i = + ) = tg α = = ; como

Leia mais

1 Construções geométricas fundamentais

1 Construções geométricas fundamentais UNIVERSIDADE FEDERAL DO PARANÁ Setor de Ciências Exatas Departamento de Expressão Gráfica 1 Construções geométricas fundamentais Prof ª Drª Adriana Augusta Benigno dos Santos Luz Jheniffer Chinasso de

Leia mais

Matemática I Cálculo I Unidade B - Cônicas. Profª Msc. Débora Bastos. IFRS Campus Rio Grande FURG UNIVERSIDADE FEDERAL DO RIO GRANDE

Matemática I Cálculo I Unidade B - Cônicas. Profª Msc. Débora Bastos. IFRS Campus Rio Grande FURG UNIVERSIDADE FEDERAL DO RIO GRANDE Unidade B - Cônicas Profª Msc. Débora Bastos IFRS Campus Rio Grande FURG UNIVERSIDADE FEDERAL DO RIO GRANDE 22 12. Cônicas São chamadas cônicas as curvas resultantes do corte de um cone duplo com um plano.

Leia mais

MATERIAL COMPLEMENTAR GEOMETRIA ANALÍTICA Professor. Sander

MATERIAL COMPLEMENTAR GEOMETRIA ANALÍTICA Professor. Sander MATERIAL COMPLEMENTAR GEOMETRIA ANALÍTICA Professor. Sander I) O BÁSICO 0. Considere os pontos A(,8) e B(8,0). A distância entre eles é: 3 3 0 0. O triângulo ABC formado pelos pontos A (7, 3), B ( 4, 3)

Leia mais