EXERCÍCIOS RESOLVIDOS CURVAS CÔNICAS

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "EXERCÍCIOS RESOLVIDOS CURVAS CÔNICAS"

Transcrição

1 1 EXERCÍCIOS RESOLVIDOS CURVAS CÔNICAS 1. ENCONTRAR OS FOCOS DE UMA ELIPSE SENDO DADOS O EIXO MAIOR E O MENOR. Sejam os eixos AA' e BB' dados que se intersectam no ponto O (centro da elipse). Coloque a ponta seca do compasso no ponto B e com abertura igual à OA trace um arco que corte o eixo AA', encontrando assim os pontos F e F' (focos da elipse). 2. ENCONTRAR O EIXO MENOR DE UMA ELIPSE SENDO DADOS O EIXO MAIOR E A DISTÂNCIA ENTRE OS FOCOS. Sejam dados o eixo AA' e a distância focal FF'. Trace a mediatriz de AA' encontrando assim o centro O da elipse. Centre a ponta seca do compasso no ponto F e com abertura igual à OA trace um arco que corte a reta mediatriz nos pontos B e B'. O eixo menor procurado é o segmento BB'.

2 2 3. TRAÇAR UMA ELIPSE PELO MÉTODO DO JARDINEIRO (BARBANTE) SENDO DADOS O EIXO MAIOR E OS FOCOS. Sejam o eixo menor BB' e a distância focal FF' dados que se intersectam no ponto O (centro da elipse). Prolongue o segmento FF' para a esquerda e para a direita. Coloque aponta seca do compasso em O e com abertura igual à distância FB trace um arco que corte a reta que passa por FF' em A e A', encontrando assim o eixo maior da elipse. 4. TRAÇAR UMA ELIPSE PELO MÉTODO DO JARDINEIRO (BARBANTE) SENDO DADOS O EIXO MAIOR E OS FOCOS. Sejam dados o eixo maior AA' e a distância focal FF'. Corte um barbante que tem por comprimento a distância do eixo maior AA' e fixe-o em F e F'. Coloque a ponta do lápis no ponto B tomando o cuidado de esticar o barbante.

3 3 Movimente o lápis sempre com o barbante esticado de forma a marcar vários pontos no papel. Em seguida, trace a elipse movimentando o lápis que se encontra preso no ponto B do barbante. 5. TRAÇAR UMA ELIPSE PELO MÉTODO DE "SCHOOTEN" (TIRA DE PAPEL) SENDO DADOS OS DOIS EIXOS. Sejam dados os eixos AA' e BB'. Corte uma tira de papel como indicado abaixo, e marque nela os pontos P, A e B. O segmento PB deve ser igual ao eixo maior e o segmento PA deve ser igual ao eixo menor. Coloque a tira de papel posicionada de tal forma que o ponto A fique sobre o eixo AA' e o ponto B fique sobre o eixo BB' e marque um ponto onde estiver o ponto P. Mude a posição da tira de papel, mas tomando o cuidado de deixar o ponto A sempre sobre o eixo AA' e o ponto B sempre sobre o eixo BB'.

4 4 Assim vá mudando sucessivamente a posição da tira e marcando os pontos da elipse. Ao marcar todos os pontos, trace a elipse. 6. TRAÇAR A ELIPSE PELO MÉTODO DOS PONTOS SENDO DADOS OS DOIS EIXOS. Sejam os eixos AA' e BB' dados. Encontre os focos F e F'. Marque a partir do ponto F os pontos 1, 2, 3, 4, 5 e a partir do ponto F' os pontos 1', 2', 3', 4' e 5'. Coloque a ponta seca do compasso no ponto F e com abertura igual a 1'A', 2'A', 3'A', 4'A' e 5'A' trace cinco arcos.

5 5 Coloque a ponta seca do compasso no ponto F' e com abertura igual a 1A, 2A, 3A, 4A e 5A trace mais cinco arcos. Depois, coloque a ponta seca no ponto F' e com abertura igual a 1A', 2A', 3A', 4A' e 5A', trace mais cinco arcos que cortam os anteriores, encontrando assim dez pontos da elipse. Com centro em F e abertura 1'A, 2'A, 3'', 4'A e 5'A trace arcos que cortam os anteriores encontrando assim os pontos da elipse.

6 6 7. TRAÇAR A ELIPSE PELO MÉTODO DOS CÍRCULOS PRINCIPAIS SENDO DADOS OS DOIS EIXOS. Sejam os dois eixos AA' e BB'. Encontre os Focos F e F'. Trace um dos círculos principais: centre o compasso no ponto O e trace uma circunferência de raio OA. Trace o outro círculo principal com centro em O e raio OB. Divida o círculo maior em n partes iguais (n = 16, por exemplo). Divida o círculo menor no mesmo número de partes. Em seguida, trace retas perpendiculares ao eixo AA' pelos pontos que dividem a circunferência maior. Em seguida trace retas perpendiculares ao eixo BB' pelos pontos que dividem a circunferência menor.

7 7 Na interseção das retas temos os pontos da elipse. Ligue os pontos para obter a elipse. 8. TRAÇAR A ELIPSE PELO MÉTODO DO PARALELOGRAMO. Sejam os dois eixos AA' e BB' da elipse inscrita no paralelogramo que tem os lados iguais aos eixos maior e menor da elipse: AA' e BB'. Trace o paralelogramo PQRS. Divida o lado RS em seis partes iguais. Divida o lado PQ em seis partes iguais transportando os pontos 2, 1 e 1', 2' (com o uso dos esquadros) fazendo paralelas aos lados PS e QR.

8 8 Divida os segmentos OB e OB' em três partes iguais cada um e em seguida, divida os segmentos PQ e SR em seis partes iguais cada. Para obter os pontos da elipse ligue o ponto A ao ponto 2''' e o ponto B ao ponto 3 e prolongue até encontrar o segmento A2'''. No cruzamento dessas duas retas tem-se um ponto da elipse. Em seguida, ligue o ponto A ao ponto 1''' e o ponto B ao ponto 4 e prolongue até encontrar o segmento A1'''. No cruzamento dessas duas retas tem-se mais um ponto da elipse. Repita o mesmo procedimento para as outras três partes do paralelogramo obtendo assim, todos os pontos da elipse.

9 9 9. TRAÇAR A ELIPSE PELO MÉTODO DO RETÂNGULO. Primeiro trace os eixos maior e menor (AA' e BB') da elipse inscrita no retângulo. Depois trace o retângulo PQRS cujos lados são retas paralelas aos dois eixos da elipse. Divida os lados do retângulo em n partes iguais (no caso n = 6). Transporte essas 6 divisões para o eixo BB' e em seguida trace retas partindo de A' que chegam nos pontos do lado SR e depois trace retas que partem de A e passam pelas divisões do eixo BB'. No cruzamento das retas teremos os pontos da elipse. Ligue os pontos encontrados obtendo assim a elipse.

10 ENCONTRAR O FOCO DE UMA PARÁBOLA, SENDO DADOS O EIXO, A DIRETRIZ E O VÉRTICE. Sejam a diretriz d e o vértice V contido no eixo da parábola. Centre o compasso no ponto V e com abertura VO trace um arco que corta o eixo no ponto F. As distâncias OV e VF são semiparâmetro e a distância OF é o parâmetro. 11. TRAÇAR A PARÁBOLA PELO MÉTODO DOS PONTOS, SENDO DADOS O FOCO E A DIRETRIZ. Sejam dados a diretriz d e o foco F da parábola. Para construir a parábola, primeiro encontre o vértice, que está no ponto médio do segmento FO que é a distância entre o foco e a diretriz. Marque pontos no eixo a partir de F (no caso 5 pontos a uma distância arbitrária). Trace retas perpendiculares ao eixo pelos pontos F, 1, 2, 3, 4 e 5. Centre a ponta seca do compasso no ponto F e com abertura igual a medida de F até a diretriz, trace um arco que corte a reta que passa pelo ponto F em dois pontos da parábola. Depois, sempre com centro do compasso no ponto F e com abertura igual à distância que vai do ponto até a diretriz d, trace arcos que cortem as retas que passam pelos mesmos pontos, encontrando assim os pontos da parábola.

11 11 Ligue os pontos e obtenha a parábola (em cor azul). 12. TRAÇAR A PARÁBOLA PELO MÉTODO DO RETÂNGULO, SENDO DADOS O VÉRTICE, O EIXO E UM PONTO DA CURVA (ARCO PARABÓLICO). Seja o vértice A e o ponto P da parábola. Trace duas retas perpendiculares entre si e que passam pelo ponto A. Em seguida, trace uma reta pelo ponto P que seja perpendicular à reta horizontal que passa pelo ponto A.

12 12 Trace uma reta paralela àquela que passa pelo ponto P, a uma mesma distância. Depois, trace pelo ponto P uma reta paralela à reta horizontal que passa pelo ponto A, formando assim o retângulo PP' RR'. Divida os lados PR e P'R' em N partes iguais (no caso N = 4). Divida os segmentos PQ e QP' em quatro partes iguais.

13 13 Trace retas perpendiculares ao lado RR' pelos pontos 4, 5, 6, 6', 5' e 4'. Ligue o ponto A aos pontos 1, 2, 3 e 1', 2' e 3'. Na intersecção das retas têm-se os pontos da parábola. Ligue os pontos obtendo assim a parábola inscrita no retângulo 13. TRAÇAR AS "ASSINTOTAS" DE UMA HIPÉRBOLE SENDO DADOS OS EIXO REAL E IMAGINÁRIO. Sejam os eixos AA' e BB'. Trace por B e B' retas paralelas ao eixo real AA'.

14 14 Trace por A e A' retas paralelas ao eixo imaginário BB'. Construído o retângulo, trace as duas diagonais. Agora, prolongue as diagonais do retângulo. As assíntotas da hipérbole passam pelas diagonais do retângulo. 14. ENCONTRAR OS FOCOS DE UMA HIPÉRBOLE SENDO DADOS O EIXO REAL E O EIXO IMAGINÁRIO Sejam dados os vértices AA' que se encontram no eixo real xx' e o eixo imaginário BB'.

15 15 Centre o compasso no ponto O (que está na interseção dos dois eixos) e com abertura igual à distância AB trace um arco que corte o eixo real nos pontos F e F' encontrando assim os focos da hipérbole (F e F ). 15. ENCONTRAR O EIXO REAL DE UMA HIPÉRBOLE SENDO DADOS OS FOCOS E O EIXO IMAGINÁRIO. Sejam dados o eixo imaginário BB', a distância focal FF' e o eixo real que passa pelos pontos F e F'. Pede-se encontrar o segmento AA' (vértices da hipérbole) conhecido por eixo real.

16 16 Centre a ponta seca do compasso no ponto O e com a distância FB trace um arco que corte o eixo real nos pontos A e A' que são os vértices da hipérbole. 16. ENCONTRAR O EIXO IMAGINÁRIO DE UMA HIPÉRBOLE SENDO DADOS O EIXO REAL E A DISTÂNCIA ENTRE OS FOCOS. Sejam dados a distância focal e o eixo imaginário BB'. Para encontrar os vértices AA' da hipérbole, centre a ponta seca do compasso no ponto B e com raio igual à distância OF trace um arco que corte o eixo real nos pontos A e A'. 17. TRAÇAR A HIPÉRBOLE PELO MÉTODO DOS PONTOS SENDO DADOS OS DOIS EIXOS. Sejam dados o eixo imaginário BB', os vértices AA' e os focos FF' da hipérbole.

17 17 Marque a partir do ponto F para a esquerda os pontos 1', 2' e 3'. Marque a partir de F' para a direita os pontos 1, 2 e 3. Centre o compasso no ponto F e com abertura igual à F'1, F'2 e F'3 trace três arcos. Proceda da mesma forma do outro lado centrando o compasso em F'.

18 18 Agora com a ponta seca do compasso no ponto F e com abertura igual a 1A, 2A e 3A trace arcos que cortam os anteriores encontrando assim os pontos de um ramo da hipérbole. Proceda da mesma forma do outro lado centrando o compasso em F'. Ligue os pontos obtendo assim os dois ramos da hipérbole.

19 TRAÇAR A HIPÉRBOLE PELO MÉTODO DOS PONTOS SENDO DADOS OS DOIS EIXOS. Sejam os vértices A e A' e um ponto P da hipérbole e seus dois eixos: real e imaginário. Trace pelo ponto P uma paralela ao eixo real e uma paralela ao eixo imaginário e com os valores PP1 e PP3 construa o retângulo P, P1, P2, P3 encontrando os pontos A e Q' no eixo imaginário. Trace pelos pontos A e A' retas paralelas ao eixo imaginário encontrando R, R', R'' e R'''.

20 20 Divida o segmento P1R em N partes iguais (no caso N = 4). Em seguida divida os segmentos QP1 e QP2 também em quatro partes iguais. Transporte com os esquadros estas divisões para os outros lados paralelos dos retângulos. Ligue o vértice A aos pontos do segmento PP3.

21 21 Ligue o vértice A' aos pontos dos segmentos PR'' e P3R''' encontrando na interseção das linhas os pontos de um dos ramos da hipérbole. Repita o mesmo procedimento do outro lado para encontrar o outro ramo da hipérbole. Ligue A' aos pontos de P1P2. Ligue A aos pontos de P1R e P2R' e na interseção das linhas marque os pontos.

22 22 Os dois ramos da hipérbole aparecem em cor azul. 19. TRAÇAR A HIPÉRBOLE PELO MÉTODO DOS PONTOS SENDO DADOS OS DOIS EIXOS. Seja a elipse dada abaixo. Trace uma reta secante que corta a elipse em dois pontos A e B. Trace outra reta secante que seja paralela à primeira e corte a elipse nos pontos C e D. Encontre os pontos médios M e M' das cordas AB e CD respectivamente.

23 23 Ligue os pontos M e M' encontrando o diâmetro DD'. Encontre o ponto médio O do diâmetro DD'. Centre o compasso no ponto O e com um raio arbitrário trace um arco que corte a elipse em três pontos: H, I e J estabelecendo as cordas HI e IJ da elipse. O eixo maior AA' da elipse será a mediatriz da corda IJ o eixo menor BB' da elipse será a mediatriz de HI.

24 24 BIBLIOGRAFIA BRAGA, Theodoro. Desenho Linear Geométrico. São Paulo : Ícone. 13 ed. 230 p. MELLO E CUNHA, G. N. de. Curso de Desenho Geométrico e Elementar. São Paulo: Livraria Francisco Alves, 460p, RIVERA, Félix ; NEVES, Juarenze; GONÇALVES, Dinei (1986). Traçados em Desenho Geométrico. Rio Grande: editora da Furg, 389 p.

EXERCÍCIOS RESOLVIDOS TANGÊNCIA

EXERCÍCIOS RESOLVIDOS TANGÊNCIA 1 Resumo. Maria Bernadete Barison apresenta exercícios e resoluções sobre TANGÊNCIA em Desenho Geométrico. Geométrica vol.1 n.6c. 2005. Desenhos construídos por: Enéias de A. Prado. EXERCÍCIOS RESOLVIDOS

Leia mais

EXERCÍCIOS RESOLVIDOS POLÍGONOS

EXERCÍCIOS RESOLVIDOS POLÍGONOS 1 EXERCÍCIOS RESOLVIDOS POLÍGONOS 1. CONSTRUIR A ESCALA DE "DELAISTRE" PARA CONSTRUÇÃO DE POLÍGONOS REGULARES. Seja o segmento AB igual ao lado do polígono. Sendo AB=Lado, centralizar a ponta seca do compasso

Leia mais

EXERCÍCIOS RESOLVIDOS TRIÂNGULOS

EXERCÍCIOS RESOLVIDOS TRIÂNGULOS 1 EXERCÍCIOS RESOLVIDOS TRIÂNGULOS 1. CONSTRUIR UM TRIÂNGULO ESCALENO DE BASE 10 CM E ÂNGULOS ADJASCENTES À BASE DE 75 E 45. Sejam dados a base AB e os ângulos adjacentes à base. Primeiro transporte o

Leia mais

EXERCÍCIOS RESOLVIDOS CIRCUNFERÊNCIA

EXERCÍCIOS RESOLVIDOS CIRCUNFERÊNCIA 1 EXERCÍCIOS RESOLVIDOS CIRCUNFERÊNCIA 1. RECUPERAR O CENTRO DE UMA CIRCUNFERÊNCIA DADA. Seja uma circunferência de raio 3 cm. Marque na circunferência três pontos quaisquer A, B e C. Trace as cordas AB

Leia mais

EXERCÍCIOS RESOLVIDOS - RETAS

EXERCÍCIOS RESOLVIDOS - RETAS 1 EXERCÍCIOS RESOLVIDOS - RETAS 1. CONSTRUIR A MEDIATRIZ DE UM SEGMENTO DADO AB = 7 CM: - Utilizando a régua trace o segmento AB de medida igual a 7 cm. - Com a ponta seca do compasso no ponto A, abra

Leia mais

EXERCÍCIOS RESOLVIDOS ARCOS ARQUITETÔNICOS

EXERCÍCIOS RESOLVIDOS ARCOS ARQUITETÔNICOS Resumo. Maria Bernadete Barison apresenta exercícios e resoluções sobre ARCOS ARQUITETÔNICOS em Desenho Geométrico. Geométrica vol.1 n.8c. 2005. Desenhos construídos por: Enéias de A. Prado e Maria Bernadete

Leia mais

EXERCÍCIOS RESOLVIDOS - ÂNGULOS

EXERCÍCIOS RESOLVIDOS - ÂNGULOS 1 EXERCÍCIOS RESOLVIDOS - ÂNGULOS 1. TRANSPORTAR UM ÂNGULO PARA SOBRE UMA SEMI-RETA: - Construa o ângulo BÔA qualquer e ao lado a semi-reta O'. - Abra no compasso a medida OA, coloque a ponta seca no ponto

Leia mais

Profª.. Deli Garcia Ollé Barreto

Profª.. Deli Garcia Ollé Barreto CURVAS CÔNICAS Curvas cônicas são curvas resultantes de secções no cone reto circular. Cone reto circular é aquele cuja base é uma circunferência e a projeção do vértice sobre o plano da base é o centro

Leia mais

EXERCÍCIOS RESOLVIDOS SEGMENTOS PROPORCIONAIS

EXERCÍCIOS RESOLVIDOS SEGMENTOS PROPORCIONAIS 1 EXERCÍCIOS RESOLVIDOS SEGMENTOS PROPORCIONAIS 1. SÃO DADOS TRÊS SEGMENTOS, a = 3 cm, b = 2 cm e c = 2,5 cm. PEDE-SE ENCONTRAR A QUARTA PROPORCIONAL ENTRE a, b e c : PROCESSO I - Consideremos os três

Leia mais

DESENHO GEOMÉTRICO AULA 4T EXERCÍCIOS RESOLVIDOS

DESENHO GEOMÉTRICO AULA 4T EXERCÍCIOS RESOLVIDOS 1 DESENHO GEOMÉTRICO AULA 4T EXERCÍCIOS RESOLVIDOS 1. DIVIDIR O SEGMENTO AB = 5 CM EM MÉDIA E EXTREMA RAZÃO E INDICAR O SEGMENTO ÁUREO DE AB E TAMBÉM O SEGMENTO O QUAL AB É ÁUREO. Seja o segmento AB =

Leia mais

DESENHO GEOMÉTRICO AULA 3T EXERCÍCIOS RESOLVIDOS

DESENHO GEOMÉTRICO AULA 3T EXERCÍCIOS RESOLVIDOS 1 DESENHO GEOMÉTRICO AULA 3T EXERCÍCIOS RESOLVIDOS 1. SÃO DADOS 3 SEGMENTOS, a = 3 cm, b = 2 cm e c = 2,5 cm. PEDE-SE ENCONTRAR A QUARTA PROPORCIONAL ENTRE a, b e c : PROCESSO I - Consideremos os 3 segmentos

Leia mais

7. Determine a equação da parábola que passa pelos pontos P (0, 6), Q(3, 0) e R(4, 10).

7. Determine a equação da parábola que passa pelos pontos P (0, 6), Q(3, 0) e R(4, 10). Lista 3: Cônicas Professora Elisandra Bär de Figueiredo 1. Determine a equação do conjunto de pontos P (x, y) que são equidistantes da reta x = e do ponto (0, ). A seguir construa este conjunto de pontos

Leia mais

7. Determine a equação da parábola que passa pelos pontos P (0, 6), Q(3, 0) e R(4, 10).

7. Determine a equação da parábola que passa pelos pontos P (0, 6), Q(3, 0) e R(4, 10). Lista 3: Cônicas - Engenharia Mecânica Professora Elisandra Bär de Figueiredo 1. Determine a equação do conjunto de pontos P (x, y) que são equidistantes da reta x = e do ponto (0, ). A seguir construa

Leia mais

APLICAÇÕES DE CÔNICAS NA ENGENHARIA

APLICAÇÕES DE CÔNICAS NA ENGENHARIA O que você deve saber sobre APLICAÇÕES DE CÔNICAS NA ENGENHARIA As equações das curvas chamadas cônicas recebem esse nome devido à sua origem (a intersecção de um cone por um plano) e podem ser determinadas

Leia mais

Revisão de Círculos. Geometria Básica Profa Lhaylla Crissaff

Revisão de Círculos. Geometria Básica Profa Lhaylla Crissaff Revisão de Círculos Geometria Básica Profa Lhaylla Crissaff 2017.2 1 Definição Circunferência é uma figura geométrica formada por todos os pontos que estão a uma mesma distância de um ponto fixado no plano.

Leia mais

Desenho Geométrico e Concordâncias

Desenho Geométrico e Concordâncias UnB - FGA Desenho Geométrico e Concordâncias Disciplina: DIAC-1 Prof a Eneida González Valdés CONSTRUÇÕES GEOMÉTRICAS Todas as construções da geometria plana são importantes, há, entretanto algumas, que

Leia mais

RETAS E ARCOS Prof. Robson Naoto Shimizu

RETAS E ARCOS Prof. Robson Naoto Shimizu CONCORDÂNCIA ENTRE RETAS E ARCOS Prof. Robson Naoto Shimizu O QUE É? Concordar duas linhas, de mesma ou diferente espécie, é reuni-las de forma que nos pontos de contato se possa passar de uma para

Leia mais

5. Desenhos geométricos

5. Desenhos geométricos 17 Exercícios: 1. Na folha A4 impressa escreva o alfabeto com letras maiúsculas e minúsculas e a numeração de 0 a 9, com letras verticias. Faça ainda a legenda da folha 2. Na folha A4 impressa escreva

Leia mais

Geometria Analítica - AFA

Geometria Analítica - AFA Geometria Analítica - AFA x = v + (AFA) Considerando no plano cartesiano ortogonal as retas r, s e t, tais que (r) :, (s) : mx + y + m = 0 e (t) : x = 0, y = v analise as proposições abaixo, classificando-

Leia mais

Cilindro. MA13 - Unidade 23. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT

Cilindro. MA13 - Unidade 23. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Cilindro MA13 - Unidade 23 Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Cilindro Em um plano H considere uma curva simples fechada C e seja r uma

Leia mais

Este trabalho foi licenciado com a Licença Creative Commons Atribuição - NãoComercial - SemDerivados 3.0 Não Adaptada

Este trabalho foi licenciado com a Licença Creative Commons Atribuição - NãoComercial - SemDerivados 3.0 Não Adaptada 1. Introdução Definição: Parábola é o lugar geométrico dos pontos do plano cujas distâncias entre uma reta fixa, chamada de reta diretriz, e a um ponto fixo situado fora desta reta, chamado de foco da

Leia mais

Matemática. Resolução das atividades complementares. M21 Geometria Analítica: Cônicas

Matemática. Resolução das atividades complementares. M21 Geometria Analítica: Cônicas Resolução das atividades complementares Matemática M Geometria Analítica: Cônicas p. FGV-SP) Determine a equação da elipse de centro na origem que passa pelos pontos A, 0), B, 0) e C0, ). O centro da elipse

Leia mais

Ricardo Bianconi. Fevereiro de 2015

Ricardo Bianconi. Fevereiro de 2015 Seções Cônicas Ricardo Bianconi Fevereiro de 2015 Uma parte importante da Geometria Analítica é o estudo das curvas planas e, em particular, das cônicas. Neste texto estudamos algumas propriedades das

Leia mais

RETAS. A marca de uma ponta de lápis bem fina no papel dá a idéia do que é um ponto. Toda figura geométrica é considerada um conjunto de pontos.

RETAS. A marca de uma ponta de lápis bem fina no papel dá a idéia do que é um ponto. Toda figura geométrica é considerada um conjunto de pontos. 1 RETAS PONTO: A Geometria é a Ciência da extensão. O espaço é extenso sem interrupção e sem limite. Um lugar concebido sem extensão no espaço chama-se Ponto. O ponto não tem dimensão. A marca de uma ponta

Leia mais

PROBLEMAS SELECIONADOS DE DESENHO GEOMÉTRICO Parte III: Cônicas e Outras Curvas. Sergio Lima Netto

PROBLEMAS SELECIONADOS DE DESENHO GEOMÉTRICO Parte III: Cônicas e Outras Curvas. Sergio Lima Netto PROBLEMAS SELECIONADOS DE DESENHO GEOMÉTRICO Parte III: Cônicas e Outras Curvas Sergio Lima Netto sergioln@lps.ufrj.br versão 3b dezembro de 2008 Foi feito um grande esforço para reproduzir os desenhos

Leia mais

Lista 3. Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 2.5, pág. 81 em diante.

Lista 3. Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 2.5, pág. 81 em diante. MA13 Exercícios das Unidades 4 e 5 2014 Lista 3 Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 2.5, pág. 81 em diante. 1) Seja ABCD um quadrilátero qualquer. Prove que os pontos médios

Leia mais

Os problemas em Desenho Geométrico resumem-se em encontrar pontos. E para determinar um ponto basta obter o cruzamento entre duas linhas.

Os problemas em Desenho Geométrico resumem-se em encontrar pontos. E para determinar um ponto basta obter o cruzamento entre duas linhas. 31 4 LUGARES GEOMÉTRICOS Os problemas em Desenho Geométrico resumem-se em encontrar pontos. E para determinar um ponto basta obter o cruzamento entre duas linhas. Definição: Um conjunto de pontos do plano

Leia mais

INSTITUTO FEDERAL DE BRASILIA 4ª Lista. Nome: DATA: 09/11/2016

INSTITUTO FEDERAL DE BRASILIA 4ª Lista. Nome: DATA: 09/11/2016 INSTITUTO FEDERAL DE BRASILIA 4ª Lista MATEMÁTICA GEOMETRIA ANALÍTICA Nome: DATA: 09/11/016 Alexandre Uma elipse tem centro na origem e o eixo maior coincide com o eixo Y. Um dos focos é 1 F1 0, 3 e a

Leia mais

ARCOS CAD. bhttp://www.mat.uel.br/geometrica/cad/a8amat44.dwg

ARCOS CAD.  bhttp://www.mat.uel.br/geometrica/cad/a8amat44.dwg 1 1. INTRODUÇÃO. ARCOS CAD Nesta aula você aprenderá a construir arcos arquitetônicos compostos por arcos de circunferência utilizando os princípios da tangência e concordância. Nesta aula você aplicará

Leia mais

ATIVIDADE: METODOS DE DIVISÃO DE SEGMENTOS E DA CIRCUFERENCIA.

ATIVIDADE: METODOS DE DIVISÃO DE SEGMENTOS E DA CIRCUFERENCIA. ANEXO 7 Referente a Ação 7 5. ATIVIDADE DE PREPARAÇÃO DOS BOLSISTAS ALUNOS MINI-CURSO Construções Geométricas: Esta atividade foi desenvolvida na Universidade com o objetivo de habilitar os bolsistas em

Leia mais

UNIVERSIDADE FEDERAL DE ALAGOAS INSTITUTO DE MATEMÁTICA Aluno(a): Professor(a): Curso:

UNIVERSIDADE FEDERAL DE ALAGOAS INSTITUTO DE MATEMÁTICA Aluno(a): Professor(a): Curso: 5 Geometria Analítica - a Avaliação - 6 de setembro de 0 Justique todas as suas respostas.. Dados os vetores u = (, ) e v = (, ), determine os vetores m e n tais que: { m n = u, v u + v m + n = P roj u

Leia mais

c) F( 4, 2) r : 2x+y = 3 c) a = 3 F 1 = (0,0) F 2 = (1,1)

c) F( 4, 2) r : 2x+y = 3 c) a = 3 F 1 = (0,0) F 2 = (1,1) Lista de Exercícios Estudo Analítico das Cônicas e Quádricas 1. Determine o foco, o vértice, o parâmetro e a diretriz da parábola P e faça um esboço. a) P : y 2 = 4x b) P : y 2 +8x = 0 c) P : x 2 +6y =

Leia mais

Instituto de Matemática UFBA Disciplina: Geometria Analítica Mat A01 Última Atualização ª lista - Cônicas

Instituto de Matemática UFBA Disciplina: Geometria Analítica Mat A01 Última Atualização ª lista - Cônicas Instituto de Matemática UFBA Disciplina: Geometria Analítica Mat A01 Última Atualização - 005 1ª lista - Cônicas 1 0 ) Em cada um dos seguintes itens, determine uma equação da parábola a partir dos elementos

Leia mais

Anel enrijecedor anel externo ou interno ao costado do vaso, feito em perfil metálico com a qualidade de enrijecer o costado.

Anel enrijecedor anel externo ou interno ao costado do vaso, feito em perfil metálico com a qualidade de enrijecer o costado. Página: 1 de 9 1. OBJETIVO Descrever processos de traçagem de gabaritos de forma para vasos de pressão com tampos elípticos, semielípticos, torisféricos, e hemisféricos; utilizados no Processo de Qualificação

Leia mais

TANGÊNCIA. rectas tangentes a circunferências.

TANGÊNCIA. rectas tangentes a circunferências. Desenho Técnico I TANGÊNCIA Se prestarmos atenção no funcionamento das esteiras de uma escada rolante, nas esteiras que transportam cargas, no equilibrista do circo, o qual está sobre uma tábua apoiada

Leia mais

Cone. MA13 - Unidade 23. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT

Cone. MA13 - Unidade 23. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Cone MA13 - Unidade 23 Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Cone Em um plano H considere uma curva simples fechada C e seja V um ponto fora

Leia mais

Basta duplicar o apótema dado e utilizar o problema 1 (pág.: 45).

Basta duplicar o apótema dado e utilizar o problema 1 (pág.: 45). Aula 12 Exercício 1: Basta duplicar o apótema dado e utilizar o problema 1 (pág.: 45). Exercício 2: Traçar a diagonal AB, traçar a mediatriz de AB achando M (ponto médio de AB). Com centro em AB M e raio

Leia mais

Circunferência. MA092 Geometria plana e analítica. Interior e exterior. Circunferência e círculo. Francisco A. M. Gomes

Circunferência. MA092 Geometria plana e analítica. Interior e exterior. Circunferência e círculo. Francisco A. M. Gomes Circunferência MA092 Geometria plana e analítica Francisco A. M. Gomes UNICAMP - IMECC Setembro de 2016 A circunferência é o conjunto dos pontos de um plano que estão a uma mesma distância (denominada

Leia mais

Geometria Analítica? Onde usar os conhecimentos. os sobre Geometria Analítica?

Geometria Analítica? Onde usar os conhecimentos. os sobre Geometria Analítica? X GEOMETRIA ANALÍTICA Por que aprender Geometria Analítica?... A Geometria Analítica estabelece relações entre a álgebra e a geometria por meio de equações e inequações. Isso permite transformar questões

Leia mais

1 Construções geométricas fundamentais

1 Construções geométricas fundamentais UNIVERSIDADE FEDERAL DO PARANÁ Setor de Ciências Exatas Departamento de Expressão Gráfica 1 Construções geométricas fundamentais Prof ª Drª Adriana Augusta Benigno dos Santos Luz Jheniffer Chinasso de

Leia mais

Material by: Caio Guimarães (Equipe Rumoaoita.com) Referência: cadernos de aula: Professor Eduardo Wagner

Material by: Caio Guimarães (Equipe Rumoaoita.com) Referência: cadernos de aula: Professor Eduardo Wagner Material by: Caio Guimarães (Equipe Rumoaoita.com) Referência: cadernos de aula: Professor Eduardo Wagner 5 - Complementos De onde veio o nome seção cônica? Seções cônicas são as seções formadas pela interseção

Leia mais

Plano de Recuperação Final EF2

Plano de Recuperação Final EF2 Professor: Cíntia e Pupo Ano: 9º Objetivos: Proporcionar ao aluno a oportunidade de resgatar os conteúdos trabalhados em Desenho Geométrico, nos quais apresentou defasagens e que lhe servirão como pré-requisitos

Leia mais

c) F( 4, 2) r : 2x+y = 3 c) a = 3 F 1 = (0,0) F 2 = (1,1)

c) F( 4, 2) r : 2x+y = 3 c) a = 3 F 1 = (0,0) F 2 = (1,1) Lista de Exercícios Estudo Analítico das Cônicas e Quádricas 1. Determine o foco, o vértice, o parâmetro e a diretriz da parábola P e faça um esboço. a) P : y 2 = 4x b) P : y 2 +8x = 0 c) P : x 2 +6y =

Leia mais

DESENHO GEOMÉTRICO E GEOMETRIA DESCRITIVA

DESENHO GEOMÉTRICO E GEOMETRIA DESCRITIVA DESENHO GEOMÉTRICO E GEOMETRIA DESCRITIVA CURSO: Licenciatura em Matemática PROFESSOR: Katia Arcaro E-mail: katia.arcaro@caxias.ifrs.edu.br 2017/2 1 Definições Preliminares 1. Desenho Geométrico: figura

Leia mais

Expressões Algébricas

Expressões Algébricas META: Resolver geometricamente problemas algébricos. AULA 11 OBJETIVOS: Introduzir a 4 a proporcional. Construir segmentos que resolvem uma equação algébrica. PRÉ-REQUISITOS O aluno deverá ter compreendido

Leia mais

I. Para concordar um arco com uma reta é necessário que o ponto de concordância e o centro do arco, estejam ambos sobre uma mesma perpendicular.

I. Para concordar um arco com uma reta é necessário que o ponto de concordância e o centro do arco, estejam ambos sobre uma mesma perpendicular. 9.CONCORDÂNCIAS T A N G E N T E S Chama-se concordância de duas linhas curvas ou de uma reta com uma curva, a ligação entre elas, executada de tal forma, que se possa passar de uma para outra, sem ângulo,

Leia mais

DESENHO BÁSICO AULA 03. Prática de traçado e desenho geométrico 14/08/2008

DESENHO BÁSICO AULA 03. Prática de traçado e desenho geométrico 14/08/2008 DESENHO BÁSICO AULA 03 Prática de traçado e desenho geométrico 14/08/2008 Polígonos inscritos e circunscritos polígono inscrito polígono circunscrito Divisão da Circunferência em n partes iguais n=2 n=4

Leia mais

1. Quantos são os planos determinados por 4 pontos não coplanares?justifique.

1. Quantos são os planos determinados por 4 pontos não coplanares?justifique. Universidade Federal de Uberlândia Faculdade de Matemática Disciplina: Geometria euclidiana espacial (GMA010) Assunto: Paralelisno e Perpendicularismo; Distância e Ângulos no Espaço. Prof. Sato 1 a Lista

Leia mais

Universidade Federal de Ouro Preto Departamento de Matemática MTM131 - T84 Geometria Analítica e Cálculo Vetorial Cônicas - Tiago de Oliveira

Universidade Federal de Ouro Preto Departamento de Matemática MTM131 - T84 Geometria Analítica e Cálculo Vetorial Cônicas - Tiago de Oliveira Universidade Federal de Ouro Preto Departamento de Matemática MTM11 - T8 Geometria Analítica e Cálculo Vetorial Cônicas - Tiago de Oliveira 1. Determine a equação geral da elipse que satisfaça as condições

Leia mais

Curiosidades relacionadas com o Cartaz da OBMEP 2017

Curiosidades relacionadas com o Cartaz da OBMEP 2017 Curiosidades relacionadas com o Cartaz da OBMEP 2017 As esferas de Dandelin A integração das duas maiores competições matemáticas do país, a OBMEP e a OBM, inspirou-nos a anunciar nos quatro cantos do

Leia mais

A Matemática no Vestibular do IME. Material Complementar 1: Soluções de Desenho Geométrico. c 2014, Sergio Lima Netto

A Matemática no Vestibular do IME. Material Complementar 1: Soluções de Desenho Geométrico. c 2014, Sergio Lima Netto Matemática no Vestibular do IME Material Complementar 1: Soluções de Desenho Geométrico c 014, Sergio Lima Netto sergioln@smt.ufrj.br Esse material inclui as soluções de diversas questões de desenho geométrico

Leia mais

Geometria Analítica: Cônicas

Geometria Analítica: Cônicas Geometria Analítica: Cônicas 1 Geometria Analítica: Cônicas 1. Parábola Definição: Considere em um plano uma reta d e um ponto F não pertencente à d. Parábola é o lugar geométrico formado pelo conjunto

Leia mais

Instituto de Matemática - UFBA Disciplina: Geometria Analítica - Mat A 01 1 a Lista - Cônicas

Instituto de Matemática - UFBA Disciplina: Geometria Analítica - Mat A 01 1 a Lista - Cônicas Instituto de Matemática - UFBA Disciplina: Geometria Analítica - Mat A 0 a Lista - Cônicas. Em cada um dos seguintes itens, determine uma equação da parábola a partir dos elementos dados: (a) foco F (,

Leia mais

Geometria Analítica - Aula

Geometria Analítica - Aula Geometria Analítica - Aula 18 228 IM-UFF K. Frensel - J. Delgado Aula 19 Continuamos com o nosso estudo da equação Ax 2 + Cy 2 + Dx + Ey + F = 0 1. Hipérbole Definição 1 Uma hipérbole, H, de focos F 1

Leia mais

18/06/13 REVISTA DO PROFESSOR DE MATEMÁTICA - SOCIEDADE BRASILEIRA DE MATEMÁTICA

18/06/13 REVISTA DO PROFESSOR DE MATEMÁTICA - SOCIEDADE BRASILEIRA DE MATEMÁTICA COMPUTADOR NA SALA DE AULA Estudo das cônicas com Geometria Dinâmica José Carlos de Souza Jr. Andréa Cardoso Unifal MG COMPUTADOR NA SALA DE AULA A exploração de softwares de Geometria Dinâmica nos permite

Leia mais

1 Processos Aproximativos

1 Processos Aproximativos Desenho Geométrico Professora: Sandra Maria Tieppo 1 Processos Aproximativos Um processo é chamado aproximativo quando existe nele um erro teórico. Muitas vezes tais processos podem ser convenientes haja

Leia mais

Desenho Técnico Página 11

Desenho Técnico Página 11 Exercício 16 Concordância Interna de Circunferências Dada uma circunferência de centro O 1 conhecido, determine a circunferência de centro O 2 de tal forma que sejam concordantes internamente. Marque o

Leia mais

MÓDULO 1 - AULA 21. Objetivos

MÓDULO 1 - AULA 21. Objetivos Aula 1 Hipérbole - continuação Objetivos Aprender a desenhar a hipérbole com compasso e régua com escala. Determinar a equação reduzida da hipérbole no sistema de coordenadas com origem no ponto médio

Leia mais

Unidade. Educação Artística 171. l- Limpeza e organização com os materiais são requisitos básicos nesta disciplina.

Unidade. Educação Artística 171. l- Limpeza e organização com os materiais são requisitos básicos nesta disciplina. 2 Educação Artística 171 Unidade 1 l- Limpeza e organização com os materiais são requisitos básicos nesta disciplina. ll- O lápis é o responsável direto pela boa qualidade do desenho e é classificado,

Leia mais

Lista 5. Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 4.1, pág. 147 em diante.

Lista 5. Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 4.1, pág. 147 em diante. MA13 Exercícios das Unidades 8, 9 e 10 2014 Lista 5 Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 4.1, pág. 147 em diante. 1) As retas r, s e t são paralelas com s entre r e t. As transversais

Leia mais

O TRIÂNGULO PSEUDO-RETÂNGULO E A HIPÉRBOLE EQUILÁTERA

O TRIÂNGULO PSEUDO-RETÂNGULO E A HIPÉRBOLE EQUILÁTERA O TRIÂNGULO PSEUDO-RETÂNGULO E A HIPÉRBOLE EQUILÁTERA SERGIO ALVES IME-USP salves@ime.usp.br Sejam A e A dois pontos distintos de um fixado plano euclidiano E. Se E indica a circunferência de diâmetro

Leia mais

Aula 09 (material didático produzido por Paula Rigo)

Aula 09 (material didático produzido por Paula Rigo) EMBAP ESCOLA DE MÚSICA E BELAS ARTES DO PARANÁ DISCIPLINA DE DESENHO GEOMÉTRICO E GEOMETRIA DESCRITIVA Profª Eliane Dumke e-mail: eliane.dumke@gmail.com Aula 09 (material didático produzido por Paula Rigo)

Leia mais

Matemática B Extensivo V. 7

Matemática B Extensivo V. 7 GRITO Matemática Etensivo V. 7 Eercícios ) D ) D ) I. Falso. O diâmetro é dado por. r. cm. II. Verdadeiro. o volume é dado por π. r² π. ² π cm² III. Verdadeiro. (, ) (, ) e assim, ( )² + ( )² r² fica ²

Leia mais

Polígonos PROFESSOR RANILDO LOPES 11.1

Polígonos PROFESSOR RANILDO LOPES 11.1 Polígonos PROFESSOR RANILDO LOPES 11.1 Polígonos Polígono é uma figura geométrica plana e fechada formada apenas por segmentos de reta que não se cruzam no mesmo plano. Exemplos 11.1 Elementos de um polígono

Leia mais

Curso de Traçados de Caldeiraria

Curso de Traçados de Caldeiraria Curso de Traçados de Caldeiraria 3 4 LEVANTAR UMA PERPENDICULAR NO MEIO DE UMA RETA Fig. 1 AB, reta dada. Com ponta seca em A traçar dois arcos acima e abaixo da reta. Em seguida, com ponta seca em B traçar

Leia mais

EXERCÍCIOS RESOLVIDOS ESTUDO DA RETA

EXERCÍCIOS RESOLVIDOS ESTUDO DA RETA 1 EXERCÍCIOS RESOLVIDOS ESTUDO DA RETA 1. SEJA O CUBO DADO NA FIGURA ABAIXO CUJOS VÉRTICES AB PERTENCEM À LT. PERGUNTA-SE: A) QUE TIPO DE RETAS PASSA PELAS ARESTAS EF, EC, EG. B) QUE TIPO DE RETAS PASSA

Leia mais

Matemática I Cálculo I Unidade B - Cônicas. Profª Msc. Débora Bastos. IFRS Campus Rio Grande FURG UNIVERSIDADE FEDERAL DO RIO GRANDE

Matemática I Cálculo I Unidade B - Cônicas. Profª Msc. Débora Bastos. IFRS Campus Rio Grande FURG UNIVERSIDADE FEDERAL DO RIO GRANDE Unidade B - Cônicas Profª Msc. Débora Bastos IFRS Campus Rio Grande FURG UNIVERSIDADE FEDERAL DO RIO GRANDE 22 12. Cônicas São chamadas cônicas as curvas resultantes do corte de um cone duplo com um plano.

Leia mais

13. (Uerj) Em cada ponto (x, y) do plano cartesiano, o valor de T é definido pela seguinte equação:

13. (Uerj) Em cada ponto (x, y) do plano cartesiano, o valor de T é definido pela seguinte equação: 1. (Ufc) Considere o triângulo cujos vértices são os pontos A(2,0); B(0,4) e C(2Ë5, 4+Ë5). Determine o valor numérico da altura relativa ao lado AB, deste triângulo. 2. (Unesp) A reta r é perpendicular

Leia mais

SISTEMAS DE PROJEÇÃO

SISTEMAS DE PROJEÇÃO MINISTÉRIO DA EDUCAÇÃO - UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS - DEPARTAMENTO DE EXPRESSÃO GRÁFICA Professora Deise Maria Bertholdi Costa - Disciplina CD020 Geometria Descritiva Curso

Leia mais

Explorando construções de cônicas *

Explorando construções de cônicas * Explorando construções de cônicas * João Calixto Garcia e Vanderlei Marcos do Nascimento 03 de março de 2014 Resumo O assunto Construções Geométricas mostra-se um belo instrumento para o ensino da Matemática.

Leia mais

PREPARATÓRIO PROFMAT/ AULA 8 Geometria

PREPARATÓRIO PROFMAT/ AULA 8 Geometria PREPARATÓRIO PROFMAT/ AULA 8 Geometria QUESTÕES DISCURSIVAS Questão 1. (PROFMAT-2012) As figuras a seguir mostram duas circunferências distintas, com centros C 1 e C 2 que se intersectam nos pontos A e

Leia mais

1.4 Determine o ponto médio e os pontos de triseção do segmento de extremidades A(7) e B(19).

1.4 Determine o ponto médio e os pontos de triseção do segmento de extremidades A(7) e B(19). Capítulo 1 Coordenadas cartesianas 1.1 Problemas Propostos 1.1 Dados A( 5) e B(11), determine: (a) AB (b) BA (c) AB (d) BA 1. Determine os pontos que distam 9 unidades do ponto A(). 1.3 Dados A( 1) e AB

Leia mais

Questão 1 a) A(0; 0) e B(8; 12) b) A(-4; 8) e B(3; -9) c) A(3; -5) e B(6; -2) d) A(2; 3) e B(1/2; 2/3) e) n.d.a.

Questão 1 a) A(0; 0) e B(8; 12) b) A(-4; 8) e B(3; -9) c) A(3; -5) e B(6; -2) d) A(2; 3) e B(1/2; 2/3) e) n.d.a. APOSTILAS (ENEM) VOLUME COMPLETO Exame Nacional de Ensino Médio (ENEM) 4 VOLUMES APOSTILAS IMPRESSAS E DIGITAIS Questão 1 (UFPE) Determine o ponto médio dos segmentos seguintes, que têm medidas inteiras:

Leia mais

MAT 105- Lista de Exercícios

MAT 105- Lista de Exercícios 1 MAT 105- Lista de Exercícios 1. Determine as áreas dos seguintes polígonos: a) triângulo de vértices (2,3), (5,7), (-3,4). Resp. 11,5 b) triângulo de vértices (0,4), (-8,0), (-1,-4). Resp. 30 c) quadrilátero

Leia mais

Hipérbole. Sumário. 6.1 Introdução Hipérbole Forma canônica da hipérbole... 6

Hipérbole. Sumário. 6.1 Introdução Hipérbole Forma canônica da hipérbole... 6 6 Hipérbole Sumário 6.1 Introdução....................... 2 6.2 Hipérbole........................ 2 6.3 Forma canônica da hipérbole............. 6 6.3.1 Hipérbole com centro na origem e reta focal coincidente

Leia mais

54 CAPÍTULO 2. GEOMETRIA ANALÍTICA ( ) =

54 CAPÍTULO 2. GEOMETRIA ANALÍTICA ( ) = 54 CAPÍTULO. GEOMETRIA ANALÍTICA.5 Cônicas O grá co da equação + + + + + = 0 (.4) onde,,,, e são constantes com, e, não todos nulos, é uma cônica. A equação (.4) é chamada de equação geral do grau em e

Leia mais

REVISÃO FUVEST Ensino Médio Geometria Prof. Sérgio Tambellini

REVISÃO FUVEST Ensino Médio Geometria Prof. Sérgio Tambellini REVISÃO FUVEST Ensino Médio Geometria Prof. Sérgio Tambellini Aluno :... Questão 1 - (FUVEST SP/014) GEOMETRIA PLANA Uma das piscinas do Centro de Práticas Esportivas da USP tem o formato de três hexágonos

Leia mais

Lugares geométricos básicos I

Lugares geométricos básicos I Lugares geométricos básicos I M13 - Unidade 5 Resumo elaborado por Eduardo Wagner baseado no texto:. Caminha M. Neto. Geometria. Coleção PROFMT Definição Lugar Geométrico da propriedade P é o conjunto

Leia mais

EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA

EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA - 015 1. (Unicamp 015) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0),

Leia mais

Geometria e seus Artefatos

Geometria e seus Artefatos Geometria e seus Artefatos Prof. Mário Selhorst Construção dos conceitos básicos de Geometria Analítica 1 SUMÁRIO (Use os links para acessar diretamente aos exemplos e o ícone 1. Perpendicular por um ponto

Leia mais

GEOMETRIA PLANA. Segmentos congruentes: Dois segmentos ou ângulos são congruentes quando têm as mesmas medidas.

GEOMETRIA PLANA. Segmentos congruentes: Dois segmentos ou ângulos são congruentes quando têm as mesmas medidas. PARTE 01 GEOMETRIA PLANA Introdução A Geometria está apoiada sobre alguns postulados, axiomas, definições e teoremas, sendo que essas definições e postulados são usados para demonstrar a validade de cada

Leia mais

Assunto: Estudo do ponto

Assunto: Estudo do ponto Assunto: Estudo do ponto 1) Sabendo que P(m+1;-3m-4) pertence ao 3º quadrante, determine os possíveis valores de m. resp: -4/3

Leia mais

Geometria Analítica. Cônicas. Prof. Vilma Karsburg

Geometria Analítica. Cônicas. Prof. Vilma Karsburg Geometria Analítica Cônicas Prof. Vilma Karsburg Cônicas Sejam duas retas e e g concorrentes em O e não perpendiculares. Considere e fixa e g girar 360 em torno de e, mantendo constante o ângulo entre

Leia mais

Vetores e Geometria Analítica

Vetores e Geometria Analítica Vetores e Geometria Analítica ECT2102 Prof. Ronaldo Carlotto Batista 4 de maio de 2016 Círculo Denição Círculo é o conjunto de pontos P (x, y) a uma distância a, chamada de raio, de um ponto C (x o, y

Leia mais

Notas de Aulas 3 - Cônicas Prof Carlos A S Soares

Notas de Aulas 3 - Cônicas Prof Carlos A S Soares Notas de Aulas 3 - Cônicas Prof Carlos A S Soares 1 Parábolas 11 Conceito e Elementos Definição 1 Sejam l uma reta e F um ponto não pertencente a l Chamamos parábola de diretriz l e foco F o conjunto dos

Leia mais

DESENHO GEOMÉTRICO Matemática - Unioeste Definição 1. Poligonal é uma figura formada por uma sequência de pontos (vértices)

DESENHO GEOMÉTRICO Matemática - Unioeste Definição 1. Poligonal é uma figura formada por uma sequência de pontos (vértices) DESENHO GEOMÉTRICO Matemática - Unioeste - 2010 1 Polígonos Definição 1. Poligonal é uma figura formada por uma sequência de pontos (vértices) A 1, A 2,..., A n e pelos segmentos (lados) A 1 A 2, A 2 A

Leia mais

Márcio Dinis do Nascimento de Jesus

Márcio Dinis do Nascimento de Jesus Márcio Dinis do Nascimento de Jesus Trabalho 2 Construções com o Cinderella! Departamento de Matemática Faculdade de Ciências e Tecnologia Universidade de Coimbra 2013 2 Construções com o Cinderella! Trabalho

Leia mais

Conceitos Básicos de Desenho Técnico

Conceitos Básicos de Desenho Técnico Conceitos Básicos de Desenho Técnico 1. Conceitos Básicos de Desenho Técnico: exemplos e prática das Aulas 02 e 03 Esta aula tem por objetivos exercitar e aprimorar: Conhecimento de escalas numéricas;

Leia mais

MATEMÁTICA Polígonos e circunferências. Circunferência

MATEMÁTICA Polígonos e circunferências. Circunferência MTEMÁTI ircunferência hama-se circunferência de centro e raio r ao conjuntos de pontos do plano cuja a distância ao ponto é igual a r. Uma circunferência de centro e raio r designa-se geralmente por (,

Leia mais

Unidade. Educação Artística 161. I- Limpeza e organização com os materiais são requisitos básicos nesta disciplina.

Unidade. Educação Artística 161. I- Limpeza e organização com os materiais são requisitos básicos nesta disciplina. Unidade 1 2 Educação Artística 161 Unidade 1 I- Limpeza e organização com os materiais são requisitos básicos nesta disciplina. II- O lápis é o responsável direto pela boa qualidade do desenho. Classificamos

Leia mais

Exercícios de Matemática Geometria Analítica

Exercícios de Matemática Geometria Analítica Eercícios de Matemática Geometria Analítica. (UFRGS) Considere um sistema cartesiano ortogonal e o ponto P(. ) de intersecção das duas diagonais de um losango. Se a equação da reta que contém uma das diagonais

Leia mais

Exercícios de Aprofundamento Matemática Geometria Analítica

Exercícios de Aprofundamento Matemática Geometria Analítica 1. (Unicamp 015) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0), (t, 0) e no ponto P de abscissa x t pertencente à reta

Leia mais

Algumas Possibilidades do Uso do GeoGebra nas Aulas de Matemática

Algumas Possibilidades do Uso do GeoGebra nas Aulas de Matemática UNIVERSIDADE FEDERAL DE VIÇOSA III Semana Acadêmica de Matemática Algumas Possibilidades do Uso do GeoGebra nas Aulas de Matemática Profª Lahis Braga Souza Profª Thais Sena de Lanna Profª Cristiane Neves

Leia mais

UNIVERSIDADE ESTADUAL PAULISTA - UNESP.

UNIVERSIDADE ESTADUAL PAULISTA - UNESP. UNIVERSIDADE ESTADUAL PAULISTA - UNESP. CAMPUS DE PRESIDENTE PRUDENTE FACULDADE DE CIÊNCIAS E TECNOLOGIA - FCT. CURSO: Matemática DISCIPLINA: Desenho Geométrico e Geometria Descritiva. ALUNO (A):... Profª.:

Leia mais

uma da outra. Observação: Nestas duas questões as medidas dos raios das circunferências e dos arcos são arbitrárias.

uma da outra. Observação: Nestas duas questões as medidas dos raios das circunferências e dos arcos são arbitrárias. Questões de concordância 1 au 1996. Traçar três circunferências de raios diferentes, tangentes entre si. 2 au 1996. Concordar dois arcos, concordados entre si, com duas paralelas afastadas 7 centímetros,

Leia mais

APLICAÇÕES NA GEOMETRIA ANALÍTICA

APLICAÇÕES NA GEOMETRIA ANALÍTICA 4 APLICAÇÕES NA GEOMETRIA ANALÍTICA Gil da Costa Marques 4.1 Geometria Analítica e as Coordenadas Cartesianas 4. Superfícies 4..1 Superfícies planas 4.. Superfícies limitadas e não limitadas 4.3 Curvas

Leia mais

Conceitos básicos de Geometria:

Conceitos básicos de Geometria: Conceitos básicos de Geometria: Os conceitos de ponto, reta e plano não são definidos. Compreendemos estes conceitos a partir de um entendimento comum utilizado cotidianamente dentro e fora do ambiente

Leia mais

TÓPICO. Fundamentos da Matemática II APLICAÇÕES NA GEOMETRIA ANALÍTICA. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

TÓPICO. Fundamentos da Matemática II APLICAÇÕES NA GEOMETRIA ANALÍTICA. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques APLICAÇÕES NA GEOMETRIA ANALÍTICA 4 Gil da Costa Marques TÓPICO Fundamentos da Matemática II 4.1 Geometria Analítica e as Coordenadas Cartesianas 4.2 Superfícies 4.2.1 Superfícies planas 4.2.2 Superfícies

Leia mais

Desenho Geométrico. Desenho Geométrico. Desenho Geométrico. Desenho Geometrico

Desenho Geométrico. Desenho Geométrico. Desenho Geométrico. Desenho Geometrico UNIVERSIDADE ESTADUAL VALE DO ACARAÚ- UVA DEPARTAMENTO DE MATEMÁTICA Desenho Geométrico Desenho Geométrico Desenho Geométrico Desenho Geometrico Daniel Caetano de Figueiredo Daniel Caetano de Figueiredo

Leia mais

LISTA DE EXERCÍCIOS MAT GEOMETRIA E DESENHO GEOMÉTRICO I

LISTA DE EXERCÍCIOS MAT GEOMETRIA E DESENHO GEOMÉTRICO I LISTA DE EXERCÍCIOS MAT 230 - GEOMETRIA E DESENHO GEOMÉTRICO I 1. Numa geometria de incidência, o plano tem 5 pontos. Quantas retas tem este plano? A resposta é única? 2. Exibir um plano de incidência

Leia mais