Cilindro. MA13 - Unidade 23. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Cilindro. MA13 - Unidade 23. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT"

Transcrição

1 Cilindro MA13 - Unidade 23 Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT

2 Cilindro Em um plano H considere uma curva simples fechada C e seja r uma reta não contida em H. Por cada ponto P de C trace uma reta paralela a r. A reunião dessas retas é uma superfície ciĺındrica. Um plano H paralelo a H corta a superfície ciĺındrica segundo uma curva C, congruente a C. Os planos H e H cortam a reta r nos pontos A e A e seja AA = g. A parte do espaço limitada pela superfície ciĺındrica e pelos planos H e H é um cilindro de base C e geratriz g. A distância entre os planos H e H é a altura do cilindro. Cilindro slide 2/7

3 O volume do cilindro O volume do cilindro é o produto da área da base pela altura. Dado um cilindro de altura h com base de área A considere um paralelepípedo retângulo com mesma altura e base de mesma área. Coloque os dois sólidos com bases no mesmo plano como mostra a figura acima. Tanto no cilindro quanto no paralelepípedo, toda seção paralela à base é congruente com a base. Assim, se um plano paralelo ao plano da base dos dois sólidos produz no cilindro uma seção de área A 1 e no paralelepípedo uma seção de área A 2, então, A 1 = A + A 2 e, pelo princípio de Cavalieri, os dois sólidos têm mesmo volume. O volume do cilindro de base de área A e altura h é V = Ah. Cilindro slide 3/7

4 Cilindro circular reto Um cilindro é reto quando as geratrizes são perpendiculares ao plano da base. Se, além disso a base for um círculo temos o cilindro circular reto. O volume do cilindro circular de raio R e altura h é V = πr 2 h. A superfície lateral do cilindro pode ser cortada ao longo de uma geratriz e desenrolada, sem alterar sua área, para obter um cilindro de base 2πR e altura h. A área lateral do cilindro circular reto é, portanto, S L = 2πRh. Obs: cilindro equilátero é o que possui altura igual ao diâmetro. Cilindro slide 4/7

5 Tronco de cilindro circular Em um cilindro circular reto um plano obĺıquo ao eixo cortou todas as geratrizes. Cada uma das partes em que o cilindro ficou dividido é um tronco de cilindro. A base do cilindro tem raio R e o eixo do cilindro cortou a base e a seção em dois pontos cuja distância é d. O volume do tronco é V = πr 2 d. Justifique. Obs: A seção é uma elipse cujo eixo menor é 2R. Veja a demonstração no livro, pág Cilindro slide 5/7

6 Sólidos de revolução Quando uma figura plana F gira em torno de uma reta r de seu plano e que não a atravessa ela gera um objeto chamado sólido de revolução. A reta r é o eixo desse sólido. Se um retângulo gira em torno de uma reta r que contém um de seus lados, o sólido de revolução formado é um cilindro circular reto. O cilindro circular reto também é chamado cilindro de revolução. Cilindro slide 6/7

7 Superfície de revolução Quando uma linha plana L gira em torno de uma reta r de seu plano, ela gera uma superfície chamada superfície de revolução. A reta r é o eixo dessa superfície. Cilindro slide 7/7

8 Cone MA13 - Unidade 23 Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT

9 Cone Em um plano H considere uma curva simples fechada C e seja V um ponto fora de H. Por cada ponto P de C trace a reta VP. A reunião dessas retas é uma superfície cônica de vértice V. A parte do espaço limitada pela superfície cônica e pelo plano H é o cone de base C e vértice V. A distância de V ao plano H é a altura do cone. O segmento VP é uma geratriz do cone. Cone slide 2/13

10 Teorema Toda seção paralela à base de um cone é uma figura semelhante à base. Considere um cone de base C vértice V e altura h. Um plano paralelo à base distando h de V produziu no cone uma seção C. Para cada ponto X C considere X a interseção de X com C. A função s : C C tal que S(X ) = X é uma semelhança. De fato, para quaisquer X, Y C e suas imagens X, Y C tem-se X Y XY = h h Ċone slide 3/13

11 Teorema O volume do cone é a terça parte do produto da área da base pela altura. Dado um cone com base de área A e altura h considere uma pirâmide com mesma altura e base de mesma área. Coloque os dois sólidos com as bases no mesmo plano H. Um plano paralelo a H corta os dois sólidos formando seções de áreas A 1 e A 2. Pelas propriedades do cone e da pirâmide temos A ( 1 h A = h Logo, A 1 = A 2 e os dois sólidos têm mesmo volume. O volume do cone com base de área A e altura h é V = 1 3 Ah. ) 2 = A 2 A. Cone slide 4/13

12 Cone circular reto Seja C uma circunferência contida no plano H e seja V um ponto tal que OV seja perpendicular a H. O cone de base C e vértice V é o cone circular reto. Todas as geratrizes do cone circular reto são iguais. O cone pode ser imaginado como o sólido de revolução resultado da rotação do triângulo retângulo VOP em torno da reta que contém OV. Cone slide 5/13

13 Área lateral do cone circular reto Considere um cone de raio R e geratriz g. Cortando o cone ao longo de uma geratriz podemos aplicar sua superfície lateral sobre um plano sem alterar sua área. Obtemos um setor circular de raio g que subtende um arco de comprimento 2πR. A área lateral S L do cone é igual à área desse setor. Como a área do setor circular é proporcional ao comprimento do arco correspondente temos que S L = 2πR 2πg πg 2 = πrg Cone slide 6/13

14 Tronco de cone circular de bases paralelas Um cone com base de raio R foi cortado por um plano paralelo ao plano de sua base. A seção tem raio r e a distância entre os dois planos é h. O segmento da geratriz do cone compreendido entre os dois planos paralelos é a geratriz g do tronco de cone. O volume do tronco de cone é V = πh 3 (R2 + r 2 + Rr). A área lateral do tronco de cone é S = π(r + r)g. As demonstrações estão no Apêndice 1 desta aula. Cone slide 7/13

15 Esferas inscrita e circunscrita Todo cone circular reto (cone de revolução) admite esfera inscrita e circunscrita. Cone e esfera são sólidos de revolução. Então os centros das esferas inscrita no cone e circunscrita ao cone estão no eixo comum, ou seja, a reta que contém o vértice e o centro da base. Corte o cone por um plano que contém o eixo. A seção é a figura a seguir. eixo V A O B O ponto V é o vértice do cone e o segmento AB é o diâmetro da base. O raio da esfera inscrita no cone é o raio da circunferência inscrita no triângulo VAB. O raio da esfera circunscrita ao cone é o raio da circunferência circunscrita ao triângulo VAB. Cone slide 8/13

16 Apêndice 1 a) Volume do tronco de cone de altura h com bases de raios R e r. Faça uma figura. Do cone original de altura x foi retirado um cone de altura y. Assim, x y = h. O volume do tronco de cone é a diferença entre os volumes dos cones: V = 1 3 πr2 x 1 3 πr 2 y V = 1 3 πr2 (h + y) 1 3 πr 2 y = 1 3 πr2 h πr2 y 1 3 πr 2 y V = 1 3 πr2 h π(r2 r 2 )y = 1 3 πr2 h + 1 π(r + r)(r r)y 3 Da semelhança entre os dois cones temos R x (R r)y = rh. Substituindo na fórmula do volume temos = r y = R r h, ou seja, V = 1 3 πr2 h π(r + r)rh = 1 3 πr2 h πrrh r 2 h V = πh 3 (R2 + r 2 + Rr) Cone slide 9/13

17 b) Área lateral do tronco de cone de geratriz g com bases de raios R e r. Faça uma figura. Seja x a geratriz do cone original e seja y a geratriz do cone que foi retirado. Assim, x y = g. A área lateral do tronco de cone é a diferença entre as áreas laterais dos dois cones: S L = πrx πry S L = πr(g + y) πry = πrg + πry πry S L = πrg + π(r r)y Da semelhança entre os dois cones temos R x = r y = R r g, ou seja, (R r)y = rg. Substituindo na fórmula da área temos S L = πrg + πrg = π(r + r)g Cone slide 10/13

18 Seções em superfície cônica de revolução As retas r e e (eixo) são concorrentes em V. A reta r gira em torno de e produzindo uma superfície cônica de revolução (de duas folhas). Faça uma figura. a) O plano corta todas as geratrizes de uma folha. A seção é uma elipse. Cone slide 11/13

19 b) O plano corta as duas folhas A seção é uma hipérbole. Cone slide 12/13

20 c) O plano corta uma folha e é paralelo a uma geratriz. A seção é uma parábola. Cone slide 13/13

21 Volume da esfera. Volume do segmento esférico MA13 - Unidade 24 Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT

22 Volume da esfera A primeira figura é um cilindro de revolução de centro V, raio R e altura 2R subtraído dos dois cones de vértice V com bases sobre as bases do cilindro. A segunda figura é uma esfera de centro O e raio R. Os dois sólidos estão apoiados no plano horizontal H. Volume da esfera. Volume do segmento esférico slide 2/8

23 Continuação A reta VO é paralela ao plano H. Um plano paralelo a H, distando x de VO cortou os dois sólidos produzindo seções de áreas s 1 e s 2, respectivamente. A primeira seção é uma coroa circular limitada pelas circunferências de centro C e raios CQ e CP. Observe que CQ = R. Como as arestas dos cones fazem 45 com o plano H então o triângulo retângulo CVP é isósceles com CP = CV = x. Volume da esfera. Volume do segmento esférico slide 3/8

24 Continuação A segunda seção é um círculo de centro A e raio AB. No triângulo AOB retângulo em A tem-se OA = x e OB = R. Calcularemos as áreas das seções. S 1 = πr 2 πx 2 = π(r 2 x 2 ) = πab 2 = S 2 Pelo princípio de Cavalieri os dois sólidos têm mesmo volume. Volume da esfera. Volume do segmento esférico slide 4/8

25 Continuação O volume V da esfera é igual ao volume do cilindro subtraído dos dois cones. V = πr 2 2R πr2 R = 2πR πr2 = 4 3 πr3 V = 4 3 πr3 Volume da esfera. Volume do segmento esférico slide 5/8

26 Segmento esférico Cortando uma esfera por um plano, cada um dos sólidos em que ela ficou dividida é um segmento esférico. Um segmento esférico é definido pelo raio R da esfera na qual está contido e pela sua altura h, que é a maior distância de um ponto de sua superfície ao plano da seção. Volume da esfera. Volume do segmento esférico slide 6/8

27 O volume do segmento esférico Considere na mesma figura que utilizamos para encontrar o volume da esfera, um plano H 1 paralelo a H distando h de H. Agora, a mesma situação aparece em um desenho simplificado. Pelo Princípio de Cavalieri o volume do segmento esférico de altura h em uma esfera de raio R é igual ao volume de um cilindro de raio R e altura h subtraído do volume de um tronco de cone de altura h cujas bases têm raios R e x. Volume da esfera. Volume do segmento esférico slide 7/8

28 Continuação Para fazer as contas observe que o raio da base menor do tronco de cone é x = R h. O volume do cilindro de raio R e altura h é V 1 = πr 2 h. O volume do tronco de cone de altura h com bases de raios R e x é V 2 = πh 3 (R2 + x 2 + Rx) O volume do segmento esférico é V = V 1 V 2. Faça as contas. A resposta é V = πh2 (3R h) 3 Volume da esfera. Volume do segmento esférico slide 8/8

29 Superfície de revolução. Área da esfera MA13 - Unidade 24 Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT

30 Rotação de um segmento Um segmento AB e uma reta e são coplanares. O segmento AB gira em torno de e (eixo), produzindo uma superfície de revolução: a superfície lateral de um tronco de cone. Superfície de revolução. Área da esfera slide 2/9

31 Continuando Seja h a projeção de AB sobre o eixo e. Girando AB em torno do eixo os pontos A e B descrevem circunferências de raios R e r, respectivamente. Seja M o ponto médio de AB e m sua distância ao eixo. e B r m = R+r 2 M m h A R Superfície de revolução. Área da esfera slide 3/9

32 Superfície gerada por um segmento Na figura a seguir considere: AA e, BB e, MM e, BC AA, MD AB, AB = g e A B = h. e B B g m M M z D h A C A Os triângulos BCA e MM D são semelhantes. Assim AB MD = BC MM ou seja, g z = h m. Então, mg = zh. Superfície de revolução. Área da esfera slide 4/9

33 Continuando A superfície gerada pela rotação de um segmento em torno de um eixo é a superfície lateral de um tronco de cone. Sua área é S = π(r + r)g onde R e r são os raios das bases e g é a geratriz (v. Resumo anterior). Com os elementos da figura anterior essa área é igual a S = π(r + r)g = 2π R + r g = 2πmg = 2πzh 2 onde h é o comprimento da projeção do segmento sobre o eixo e z é a parte da mediatriz do segmento compreendida entre o segmento e o eixo. Superfície de revolução. Área da esfera slide 5/9

34 Superfície gerada por uma poligonal regular Considere uma semicircunferência de centro O e diâmetro AA e a reta e (eixo) passando por A e A. Seja B um ponto da semicircunferência. Divida o arco AB em n partes iguais pelos pontos P 1, P 2,... P n 1. A reunião dos segmentos AP 1, P 1 P 2,... P n 1 B é uma poligonal regular inscrita na semicircunferência. A área da superfície gerada pela poligonal é h A h 1 h 2 h 3 O e z P 1 P 2 B S = 2πzh 1 + 2πzh πzh n S = 2πz(h 1 + h h n ) S = 2πzh A onde h é a projeção da poligonal sobre o eixo e z é o apótema da poligonal. Superfície de revolução. Área da esfera slide 6/9

35 Calota esférica Cortando a superfície de uma esfera por um plano, cada uma das partes em que ela fica dividida é uma calota esférica. A seção é a base da calota. A altura da calota é a maior distância de um de seus pontos ao plano da seção. Superfície de revolução. Área da esfera slide 7/9

36 A área da calota Considere uma semicircunferência de diâmetro AA e a reta e (eixo) passando por A e A. Seja B um ponto da semicircunferência. A superfície gerada pela rotação do arco AB em torno do eixo e é uma calota esférica. Considere agora a poligonal regular de extremidades A e B e faça n. A poligonal tende ao arco AB e o apótema z tende ao raio R da semicircunferência. Em uma circunferência de raio R a área de uma calota de altura h é h A e A R B S = 2πRh Superfície de revolução. Área da esfera slide 8/9

37 Área da esfera Nas figura anterior, faça B coincidir com A. A rotação do arco AB em torno do eixo e gera a esfera de raio R. e A 2R B Como h = AA = Ab = 2R, a área da esfera é S = 2πR 2R, ou seja, S = 4πR 2 Superfície de revolução. Área da esfera slide 9/9

Cone. MA13 - Unidade 23. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT

Cone. MA13 - Unidade 23. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Cone MA13 - Unidade 23 Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Cone Em um plano H considere uma curva simples fechada C e seja V um ponto fora

Leia mais

GEOMETRIA MÉTRICA ESPACIAL

GEOMETRIA MÉTRICA ESPACIAL GEOMETRIA MÉTRICA ESPACIAL .. PARALELEPÍPEDOS RETÂNGULOS Um paralelepípedo retângulo é um prisma reto cujas bases são retângulos. AB CD A' B' C' D' a BC AD B' C' A' D' b COMPRIMENTO LARGURA AA' BB' CC'

Leia mais

OS PRISMAS. 1) Definição e Elementos :

OS PRISMAS. 1) Definição e Elementos : 1 OS PRISMAS 1) Definição e Elementos : Dados dois planos paralelos α e β, um polígono contido em um desses planos e um reta r, que intercepta esses planos, chamamos de PRISMA o conjunto de todos os segmentos

Leia mais

V = 12 A = 18 F = = 2 V=8 A=12 F= = 2

V = 12 A = 18 F = = 2 V=8 A=12 F= = 2 Por: Belchior, Ismaigna e Jannine Relação de Euler Em todo poliedro convexo é válida a relação seguinte: V - A + F = 2 em que V é o número de vértices, A é o número de arestas e F, o número de faces. Observe

Leia mais

Definição e elementos. Um plano Um círculo C contido em Um ponto V que não pertence a

Definição e elementos. Um plano Um círculo C contido em Um ponto V que não pertence a CONE Cones Definição e elementos Um plano Um círculo C contido em Um ponto V que não pertence a Elementos do cone Base: é o círculo C, de centro O, situado no plano Vértice: é o ponto V Elementos do cone

Leia mais

Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes

Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes Apostila de Matemática II 3º bimestre/2016 Professora : Cristiane Fernandes Pirâmide A pirâmide é uma figura geométrica espacial, um poliedro composto por uma base (triangular, pentagonal, quadrada, retangular,

Leia mais

CONE Considere uma região plana limitada por uma curva suave (sem quinas), fechada e um ponto P fora desse plano.

CONE Considere uma região plana limitada por uma curva suave (sem quinas), fechada e um ponto P fora desse plano. CONE Considere uma região plana limitada por uma curva suave (sem quinas), fechada e um ponto P fora desse plano. Denominamos cone ao sólido formado pela reunião de todos os segmentos de reta que têm uma

Leia mais

ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO

ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO 2011-2012 Sólidos Geométricos NOME: Nº TURMA: Polígonos Um polígono é uma figura geométrica plana limitada por uma linha fechada.

Leia mais

Volume e Área de Superfície, Parte II

Volume e Área de Superfície, Parte II AULA 15 15.1 Introdução Nesta última aula, que é uma sequência obteremos o volume da esfera utilizando o Princípio de Cavalieri, e trataremos de idéias de área de superfície. Finalmente abordaremos o contéudo

Leia mais

GEOMETRIA MÉTRICA. As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases.

GEOMETRIA MÉTRICA. As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases. GEOMETRIA MÉTRICA 1- I- PRISMA 1- ELEMENTOS E CLASSIFICAÇÃO Considere o prisma: As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases. BASES

Leia mais

Aplicação de Integral Definida: Volumes de Sólidos de Revolução

Aplicação de Integral Definida: Volumes de Sólidos de Revolução Aplicação de Integral Definida: Prof a. Sólidos Exemplos de Sólidos: esfera, cone circular reto, cubo, cilindro. Sólidos de Revolução são sólidos gerados a partir da rotação de uma área plana em torno

Leia mais

Aula 32. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

Aula 32. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil Superfícies de Revolução e Outras Aplicações Aula 32 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 29 de Maio de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia

Leia mais

Módulo Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera. Cone. Professores Cleber Assis e Tiago Miranda

Módulo Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera. Cone. Professores Cleber Assis e Tiago Miranda Módulo Geometria Espacial - olumes e Áreas de Cilindro, Cone e Esfera Cone. ano/e.m. Professores Cleber Assis e Tiago Miranda Geometria Espacial - olumes e Áreas de Cilindro, Cone e Esfera. Cone. 1 Exercícios

Leia mais

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON PROFJWPS@GMAIL.COM DEFINIÇÕES GEOMETRIA PLANA Ponto: Um elemento do espaço que define uma posição. Reta: Conjunto infinito de pontos. Dois pontos são

Leia mais

INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA II EXERCÍCIOS DE RECUPERAÇÃO FINAL 2016

INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA II EXERCÍCIOS DE RECUPERAÇÃO FINAL 2016 INSTITUTO GEREMÁRIO DANTAS Educação Infantil, Ensino Fundamental e Médio Fone: (1) 1087900 Rio de Janeiro RJ www.igd.com.br Aluno(a): º Ano:C1 Nº Professora: Marcilene Siqueira Gama COMPONENTE CURRICULAR:

Leia mais

Seja AB = BC = CA = 4a. Sendo D o ponto de interseção da reta s com o lado AC temos, pelo teorema de Tales, AD = 3a e DC = a.

Seja AB = BC = CA = 4a. Sendo D o ponto de interseção da reta s com o lado AC temos, pelo teorema de Tales, AD = 3a e DC = a. GABARITO MA1 Geometria I - Avaliação 2-201/2 Questão 1. (pontuação: 2) As retas r, s e t são paralelas, como mostra a figura abaixo. A distância entre r e s é igual a e a distância entre s e t é igual

Leia mais

Definição A figura geométrica formada pela reunião de todos os segmentos de reta paralelos à reta r, com uma extremidade num ponto do círculo R e a

Definição A figura geométrica formada pela reunião de todos os segmentos de reta paralelos à reta r, com uma extremidade num ponto do círculo R e a CILINDRO Definição A figura geométrica formada pela reunião de todos os segmentos de reta paralelos à reta r, com uma extremidade num ponto do círculo R e a outra no plano, denomina-se cilindro circular.

Leia mais

PREPARATÓRIO PROFMAT/ AULA 8 Geometria

PREPARATÓRIO PROFMAT/ AULA 8 Geometria PREPARATÓRIO PROFMAT/ AULA 8 Geometria QUESTÕES DISCURSIVAS Questão 1. (PROFMAT-2012) As figuras a seguir mostram duas circunferências distintas, com centros C 1 e C 2 que se intersectam nos pontos A e

Leia mais

Geometria Descritiva 28/08/2012. Elementos Primitivos da Geometria

Geometria Descritiva 28/08/2012. Elementos Primitivos da Geometria Geometria Descritiva Prof. Luiz Antonio do Nascimento ladnascimento@gmail.com www.lnascimento.com.br A Geometria, como qualquer outra ciência, fundamenta-se em observações e experiências para estabelecer

Leia mais

Avaliação 2 - MA Gabarito

Avaliação 2 - MA Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL Avaliação - MA1-015 - Gabarito Questão 01 [,00 ] Considere um cilindro sólido de altura R, cujas bases são dois círculos de raio R, do qual são retirados

Leia mais

Geometria Espacial - AFA

Geometria Espacial - AFA Geometria Espacial - AFA 1. (AFA) O produto da maior diagonal pela menor diagonal de um prisma hexagonal regular de área lateral igual a 1 cm e volume igual a 1 cm é: 10 7. 0 7. 10 1. (D) 0 1.. (AFA) Qual

Leia mais

Projeto Jovem Nota 10 Cilindros e Cones Lista A Professor Marco Costa

Projeto Jovem Nota 10 Cilindros e Cones Lista A Professor Marco Costa 1. Um tanque, na forma de um cilindro circular reto, tem altura igual a 3 m e área total (área da superfície lateral mais áreas da base e da tampa) igual a 20. m2. Calcule, em metros, o raio da base deste

Leia mais

V= V = AULA 7 - GEOMETRIA ESPACIAL CONE DE REVOLUÇÃO. Área Lateral

V= V = AULA 7 - GEOMETRIA ESPACIAL CONE DE REVOLUÇÃO. Área Lateral UL 7 - GEOMETRI ESPCIL Área Lateral CONE DE REVOLUÇÃO É um sólido gerado pela rotação completa de um triângulo retângulo em torno de um de seus catetos. Elementos: R é o raio da base g é a geratriz h é

Leia mais

Volume de Sólidos. Principio de Cavalieri

Volume de Sólidos. Principio de Cavalieri Volume de Sólidos Principio de Cavalieri Volume Entenderemos por sólido qualquer um dos seguintes subconjuntos do espaço: cilindro, cone, esfera, poliedro (que iremos definir no próximo capítulo) ou qualquer

Leia mais

Inscrição e circunscrição de sólidos geométricos. Esfera e cubo Esfera e cilindro Esfera e cone reto Cilindro e cone reto

Inscrição e circunscrição de sólidos geométricos. Esfera e cubo Esfera e cilindro Esfera e cone reto Cilindro e cone reto Inscrição e circunscrição de sólidos geométricos Esfera e cubo Esfera e cilindro Esfera e cone reto Cilindro e cone reto Introdução Nosso último estudo em Geometria será destinado aos sólidos inscritos

Leia mais

Exercícios de Aprofundamento Mat Geom Espacial

Exercícios de Aprofundamento Mat Geom Espacial 1. (Fuvest 015) No cubo ABCDEFGH, representado na figura abaixo, cada aresta tem medida 1. Seja M um ponto na semirreta de origem A que passa por E. Denote por θ o ângulo BMH e por x a medida do segmento

Leia mais

Circunferência. MA092 Geometria plana e analítica. Interior e exterior. Circunferência e círculo. Francisco A. M. Gomes

Circunferência. MA092 Geometria plana e analítica. Interior e exterior. Circunferência e círculo. Francisco A. M. Gomes Circunferência MA092 Geometria plana e analítica Francisco A. M. Gomes UNICAMP - IMECC Setembro de 2016 A circunferência é o conjunto dos pontos de um plano que estão a uma mesma distância (denominada

Leia mais

1) Em cada Prisma representado a seguir, calcule a área da base (A b ), a área lateral (A L ), a área total (A T ) e o volume (V):

1) Em cada Prisma representado a seguir, calcule a área da base (A b ), a área lateral (A L ), a área total (A T ) e o volume (V): EXERCÍCIOS DE FIXAÇÃO GEOMETRIA SÓLIDA ÁREAS E VOLUMES DE PRISMAS, CILINDROS E CONES 2 a SÉRIE ENSINO MÉDIO 2011 ==========================================================================================

Leia mais

4. Superfícies e sólidos geométricos

4. Superfícies e sólidos geométricos 4. Superfícies e sólidos geométricos Geometria Descritiva 2006/2007 4.1 Classificação das superfícies e sólidos geométricos Geometria Descritiva 2006/2007 1 Classificação das superfícies Linha Lugar das

Leia mais

Geometria Métrica Espacial. Geometria Métrica Espacial

Geometria Métrica Espacial. Geometria Métrica Espacial UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA 1. Prismas Geometria Métrica

Leia mais

Módulo Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera. Esfera. Professores Cleber Assis e Tiago Miranda

Módulo Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera. Esfera. Professores Cleber Assis e Tiago Miranda Módulo Geometria Espacial - Volumes e Áreas de Cilindro, Cone e Esfera Esfera. a série E.M. Professores Cleber Assis e Tiago Miranda Geometria Espacial - Volumes e Áreas de Cilindro, Cone e Esfera. Esfera.

Leia mais

3º ANO DO ENSINO MÉDIO. 1.- Quais são os coeficientes angulares das retas r e s? 60º 105º. 0 x x. a) Escreva uma equação geral da reta r.

3º ANO DO ENSINO MÉDIO. 1.- Quais são os coeficientes angulares das retas r e s? 60º 105º. 0 x x. a) Escreva uma equação geral da reta r. EXERCÍCIOS DE REVISÃO 3º BIMESTRE GEOMETRIA ANALÍTICA 3º ANO DO ENSINO MÉDIO 1.- Quais são os coeficientes angulares das retas r e s? s 60º 105º r 2.- Considere a figura a seguir: 0 x r 2 A C -2 0 2 5

Leia mais

Parte 2 Cursinho Popular Paulo Freire Jaquicele Ap. da Costa Graduanda em Matemática- UFV

Parte 2 Cursinho Popular Paulo Freire Jaquicele Ap. da Costa Graduanda em Matemática- UFV Geometria Espacial Parte 2 Cursinho Popular Paulo Freire Jaquicele Ap. da Costa Graduanda em Matemática- UFV E-mail:jaquicele.costa@ufv.br Pirâmide Pirâmide Consideremos um polígono convexo qualquer ABCDE,contido

Leia mais

COLÉGIO MILITAR DO RIO E JANEIRO. Equipe: Prof. Cap Boente, Prof Magda, Prof Zamboti e Prof Fernando 3º TRIMESTRE DE 2016

COLÉGIO MILITAR DO RIO E JANEIRO. Equipe: Prof. Cap Boente, Prof Magda, Prof Zamboti e Prof Fernando 3º TRIMESTRE DE 2016 COLÉGIO MILITR DO RIO E JNEIRO LIST 3 DE EXERCÍCIOS COMPLEMENTRES GEOMETRI ESPCIL º NO DO ENSINO MÉDIO Equipe: Prof. Cap Boente, Prof Magda, Prof Zamboti e Prof Fernando 3º TRIMESTRE DE 016 CILINDRO Sejam

Leia mais

REVISÃO FUVEST Ensino Médio Geometria Prof. Sérgio Tambellini

REVISÃO FUVEST Ensino Médio Geometria Prof. Sérgio Tambellini REVISÃO FUVEST Ensino Médio Geometria Prof. Sérgio Tambellini Aluno :... Questão 1 - (FUVEST SP/014) GEOMETRIA PLANA Uma das piscinas do Centro de Práticas Esportivas da USP tem o formato de três hexágonos

Leia mais

GEOMETRIA ESPACIAL

GEOMETRIA ESPACIAL GEOMETRIA ESPACIAL - 016 1. (Unicamp 016) Considere os três sólidos exibidos na figura abaixo, um cubo e dois paralelepípedos retângulos, em que os comprimentos das arestas, a e b, são tais que a b 0.

Leia mais

Geometria Espacial Cilindro, Cone, Esfera, Inscrição e Circunscrição

Geometria Espacial Cilindro, Cone, Esfera, Inscrição e Circunscrição Geometria Espacial Cilindro, Cone, Esfera, Inscrição e Circunscrição Enem 15 semanas 1. Um quadrado de lados medindo 1 cm sofre uma rotação completa em torno de um eixo paralelo a um de seus lados. A distância

Leia mais

Profª.. Deli Garcia Ollé Barreto

Profª.. Deli Garcia Ollé Barreto CURVAS CÔNICAS Curvas cônicas são curvas resultantes de secções no cone reto circular. Cone reto circular é aquele cuja base é uma circunferência e a projeção do vértice sobre o plano da base é o centro

Leia mais

Geometria Espacial Elementos de Geometria Espacial Prof. Fabiano

Geometria Espacial Elementos de Geometria Espacial Prof. Fabiano Geometria Espacial Elementos de Geometria Espacial Prof. Fabiano A Geometria espacial (euclidiana) funciona como uma ampliação da Geometria plana (euclidiana) e trata dos métodos apropriados para o estudo

Leia mais

Resumo de Geometria Espacial Métrica

Resumo de Geometria Espacial Métrica 1) s. esumo de Geometria Espacial Métrica Extensivo - São João da Boa Vista Matemática - Base Base Base Base Base oblíquo reto quadrangular regular exagonal regular triangular regular Base Fórmulas dos

Leia mais

Cones, cilindros, esferas e festividades, qual a ligação?

Cones, cilindros, esferas e festividades, qual a ligação? Cones, cilindros, esferas e festividades, qual a ligação? Helena Sousa Melo hmelo@uac.pt Professora do Departamento de Matemática da Universidade dos Açores Publicado no jornal Correio dos Açores em 5

Leia mais

Sólidos de Revolução

Sólidos de Revolução Sólidos de Revolução 1. (Cefet MG 015) Na figura a seguir, ABCD é um retângulo inscrito em um setor circular de raio R com AB R. O volume do sólido de revolução gerado pela rotação desse retângulo em torno

Leia mais

DESENHO GEOMÉTRICO 3º ANO ENSINO MÉDIO

DESENHO GEOMÉTRICO 3º ANO ENSINO MÉDIO DESENHO GEOMÉRICO º NO ENSINO MÉDIO PROFESSOR: DENYS YOSHID PERÍODO: NOIE DESENHO GEOMÉRICO NO ENSINO MÉDIO - 016 1 Sumário 1.Pirâmide... 1.1 Elementos de uma pirâmide... 1. Classificação da pirâmide...

Leia mais

Geometria Analítica. Superfícies. Prof Marcelo Maraschin de Souza

Geometria Analítica. Superfícies. Prof Marcelo Maraschin de Souza Geometria Analítica Superfícies Prof Marcelo Maraschin de Souza Superfícies Quadráticas A equação geral do 2º grau nas três variáveis x,y e z ax 2 + by 2 + cz 2 + 2dxy + 2exz + 2fyz + mx + ny + pz + q

Leia mais

Resumo Geometria e medidas. Prismas e Cilindros Pirâmides e Cones Volume de uma pirâmide Volume da Esfera

Resumo Geometria e medidas. Prismas e Cilindros Pirâmides e Cones Volume de uma pirâmide Volume da Esfera Projeto Teia do Saber: Fundamentando uma Prática de Ensino de Matemática Utilização do Computador no Desenvolvimento do Conteúdo Matemática do Ensino Médio Geometria 16 de outubro de 2004 Um entendimento

Leia mais

x = 4 2sen30 0 = 4 2(1/2) = 2 2 e y = 4 2 cos 30 0 = 4 2( 3/2) = 2 6.

x = 4 2sen30 0 = 4 2(1/2) = 2 2 e y = 4 2 cos 30 0 = 4 2( 3/2) = 2 6. CURSO DE PRÉ CÁLCULO ONLINE - PET MATEMÁTICA / UFMG LISTA DE EXERCÍCIOS RESOLVIDOS: Exercício 1 Calcule o valor de x e y indicados na figura abaixo. Solução: No triângulo retângulo ABD, temos que AD mede

Leia mais

2 CILINDRO E ESFERA 1 CUBO E ESFERA. 2.1 Cilindro inscrito. 1.1 Cubo inscrito. 2.2 Cilindro circunscrito. 1.2 Cubo circunscrito

2 CILINDRO E ESFERA 1 CUBO E ESFERA. 2.1 Cilindro inscrito. 1.1 Cubo inscrito. 2.2 Cilindro circunscrito. 1.2 Cubo circunscrito Matemática Pedro Paulo GEOMETRIA ESPACIAL XI A seguir, nós vamos analisar a relação entre alguns sólidos e as esferas. Os sólidos podem estar inscritos ou circunscritos a uma esfera. Lembrando: A figura

Leia mais

1. Quantos são os planos determinados por 4 pontos não coplanares?justifique.

1. Quantos são os planos determinados por 4 pontos não coplanares?justifique. Universidade Federal de Uberlândia Faculdade de Matemática Disciplina: Geometria euclidiana espacial (GMA010) Assunto: Paralelisno e Perpendicularismo; Distância e Ângulos no Espaço. Prof. Sato 1 a Lista

Leia mais

EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE

EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE 1ª. SÉRIE Exercícios de PA e PG 1. Determinar o 61º termo da PA ( 9,13,17,21,...) Resp. 249 2. Determinar a razão da PA ( a 1,a 2, a 3,...) em que o primeiro

Leia mais

2. (Uerj 2002) Admita uma esfera com raio igual a 2 m, cujo centro O dista 4 m de um determinado ponto P.

2. (Uerj 2002) Admita uma esfera com raio igual a 2 m, cujo centro O dista 4 m de um determinado ponto P. 1. (Ita 2002) Seja S a área total da superfície de um cone circular reto de altura h, e seja m a razão entre as áreas lateral e da base desse cone. Obtenha uma expressão que forneça h em função apenas

Leia mais

EXERCÍCIOS RESOLVIDOS CURVAS CÔNICAS

EXERCÍCIOS RESOLVIDOS CURVAS CÔNICAS 1 EXERCÍCIOS RESOLVIDOS CURVAS CÔNICAS 1. ENCONTRAR OS FOCOS DE UMA ELIPSE SENDO DADOS O EIXO MAIOR E O MENOR. Sejam os eixos AA' e BB' dados que se intersectam no ponto O (centro da elipse). Coloque a

Leia mais

Sólidos Inscritos. Interbits SuperPro Web

Sólidos Inscritos. Interbits SuperPro Web Sólidos Inscritos 1. (Uerj 014) Uma esfera de centro A e raio igual a 3dm é tangente ao plano de uma mesa em um ponto T. Uma fonte de luz encontra-se em um ponto F de modo que F, A e T são colineares.

Leia mais

Volume e Área de Superfície, Parte I

Volume e Área de Superfície, Parte I AULA 14 14.1 Introdução Nesta aula vamos trabalhar com os conceitos que você, aluno já está habituado: volume e área de superfície. Nesta aula, trataremos de volumes de sólidos simples como cilindros,

Leia mais

UNITAU APOSTILA CILINDROS PROF. CARLINHOS

UNITAU APOSTILA CILINDROS PROF. CARLINHOS ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA CILINDROS PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: 1 CILINDROS Na figura abaixo, temos: - Dois planos paralelos α e β; - Um círculo contido em

Leia mais

1 ELEMENTOS DO CONE 3 ÁREAS E VOLUME DO CONE 2 SECÇÃO MERIDIANA. 3.1 Área lateral. 3.2 Área da base. 3.3 Área total. 3.4 Volume

1 ELEMENTOS DO CONE 3 ÁREAS E VOLUME DO CONE 2 SECÇÃO MERIDIANA. 3.1 Área lateral. 3.2 Área da base. 3.3 Área total. 3.4 Volume Matemática Pedro Paulo GEOMETRIA ESPACIAL VII 1 ELEMENTOS DO CONE Cone é um sólido formado por um círculo que é a base e um ponto fora do plano da base que é o vértice, que é ligado a todos os pontos do

Leia mais

Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo

Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo Índice Geometria plana Polígonos Triângulos Congruência de triângulos Semelhança de triângulos Relações métricas no triângulo retângulo Quadriláteros Teorema de Tales Esquadros de madeira www.ser.com.br

Leia mais

INTERSEÇÃO DE SUPERFÍCIES

INTERSEÇÃO DE SUPERFÍCIES 1 INTERSEÇÃO DE SUPERFÍCIES INTRODUÇÃO Nesta aula você aprenderá a encontrar a linha de inteseção de duas superfícies, a classificar o tipo de interseção e além disso verá alguns exemplos de estruturas

Leia mais

Matemática. Ficha Extra - Temas do 2º Bim. 3 os anos Walter/Blaidi Nome: Nº: Turma:

Matemática. Ficha Extra - Temas do 2º Bim. 3 os anos Walter/Blaidi Nome: Nº: Turma: Matemática Ficha Extra - Temas do º Bim. 3 os anos Walter/Blaidi 01 Nome: Nº: Turma: 1. (PUCRS) A região plana limitada por uma semicircunferência e seu diâmetro faz uma rotação completa em torno desse

Leia mais

Aula 09 (material didático produzido por Paula Rigo)

Aula 09 (material didático produzido por Paula Rigo) EMBAP ESCOLA DE MÚSICA E BELAS ARTES DO PARANÁ DISCIPLINA DE DESENHO GEOMÉTRICO E GEOMETRIA DESCRITIVA Profª Eliane Dumke e-mail: eliane.dumke@gmail.com Aula 09 (material didático produzido por Paula Rigo)

Leia mais

1. Área do triângulo

1. Área do triângulo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Geometria Plana II Prof.:

Leia mais

LISTA DE EXERCÍCIOS PRISMAS, PIRÂMIDES, CILINDROS E CONES PROF. FLABER

LISTA DE EXERCÍCIOS PRISMAS, PIRÂMIDES, CILINDROS E CONES PROF. FLABER ALUNO(A): TURMA: Nº Caro aluno, Esta lista de exercícios tem como objetivo auxiliá-lo e orientá-lo no estudo para que possa melhorar seu desempenho na Prova Oficial. Resolva os exercícios com dedicação.

Leia mais

Relação da matéria para a recuperação final. 2º Colegial / Geometria / Jeca

Relação da matéria para a recuperação final. 2º Colegial / Geometria / Jeca Relação da matéria para a recuperação final. º olegial / eometria / Jeca ula 33 - eometria métrica do espaço - Prisma reto. ula 34 - Paralelepípedo retorretângulo. ula 35 - ubo. ula 36 - Prisma regular.

Leia mais

INSTITUTO DE MATEMÁTICA - UFBA DEPARTAMENTO DE MATEMÁTICA 2 a LISTA DE EXERCÍCIOS DE MAT CÁLCULO II-A. Última atualização:

INSTITUTO DE MATEMÁTICA - UFBA DEPARTAMENTO DE MATEMÁTICA 2 a LISTA DE EXERCÍCIOS DE MAT CÁLCULO II-A. Última atualização: INSTITUTO DE MATEMÁTICA - UFBA DEPARTAMENTO DE MATEMÁTICA a LISTA DE EXERCÍCIOS DE MAT 4 - CÁLCULO II-A Última atualização: --4 ) Nos problemas a seguir encontre a área das regiões indicadas: A) Interior

Leia mais

REVISÃO Lista 11 Geometria Espacial. para área lateral, total, V para volume, d para diagonal, h para altura, r para raio, g para geratriz )

REVISÃO Lista 11 Geometria Espacial. para área lateral, total, V para volume, d para diagonal, h para altura, r para raio, g para geratriz ) NOME: ANO: º Nº: PROFESSOR(A): Ana Luiza Ozores DATA: Algumas definições (Nas fórmulas a seguir, vamos utilizar aqui REVISÃO Lista Geometria Espacial A B para área da base, para área lateral, total, V

Leia mais

Geometria Espacial no Cabri 3D

Geometria Espacial no Cabri 3D Geometria Espacial no Cabri 3D Na Geometria Plana temos algumas facilidades na abordagem do estudo, pois existem modelos concretos onde os alunos podem se basear, como por exemplo, as superfícies pelas

Leia mais

Desenho e Projeto de Tubulação Industrial Nível II

Desenho e Projeto de Tubulação Industrial Nível II Desenho e Projeto de Tubulação Industrial Nível II Módulo I Aula 05 Prismas Prismas são sólidos geométricos que possuem as seguintes características: bases paralelas são iguais; arestas laterais iguais

Leia mais

g 2 2 = ( 5) = = 9 g = 3 cm

g 2 2 = ( 5) = = 9 g = 3 cm Matemática Unidade III Geometria espacial Série 11 - Cone circular reto 01 a) Considere esta figura: g = ( 5) + = 5 + 4 = 9 g = 3 cm b) Ab = π r = 4π cm c) Al = π r g = π 3 = 6π cm d) At = Ab + Al = 4π

Leia mais

Prof. Milton Procópio de Borba

Prof. Milton Procópio de Borba Prof. Milton Procópio de Borba Original do Prof. Luiz Algemiro Cubas Guimarães (MIRO) MATEMÁTICA APLICADA (CE 319) 1 Introdução Antes foi estudado a geometria, e com o enfoque no plano, por isso Geometria

Leia mais

Aula 24 mtm B GEOMETRIA ESPACIAL

Aula 24 mtm B GEOMETRIA ESPACIAL Aula 24 mtm B GEOMETRIA ESPACIAL Entes Geométricos Ponto A T Reta r s Plano Espaço y α z x Entes Geométricos Postulados ou Axiomas Teorema a 2 = b 2 + c 2 S i =180 Determinação de uma reta Posições relativas

Leia mais

Geometria Espacial PRISMA RETO DE BASE TRIANGULAR (OU PRISMA TRIANGULAR)

Geometria Espacial PRISMA RETO DE BASE TRIANGULAR (OU PRISMA TRIANGULAR) Espacial 1 PRISMAS Os prismas são sólidos geométricos bastante recorrentes em Espacial. Podemos definir o prisma da seguinte forma: PRISMA RETO DE BASE TRIANGULAR (OU PRISMA TRIANGULAR) Prisma é um sólido

Leia mais

DESENHO GEOMÉTRICO AULA 3T EXERCÍCIOS RESOLVIDOS

DESENHO GEOMÉTRICO AULA 3T EXERCÍCIOS RESOLVIDOS 1 DESENHO GEOMÉTRICO AULA 3T EXERCÍCIOS RESOLVIDOS 1. SÃO DADOS 3 SEGMENTOS, a = 3 cm, b = 2 cm e c = 2,5 cm. PEDE-SE ENCONTRAR A QUARTA PROPORCIONAL ENTRE a, b e c : PROCESSO I - Consideremos os 3 segmentos

Leia mais

EXERCÍCIOS RESOLVIDOS SEGMENTOS PROPORCIONAIS

EXERCÍCIOS RESOLVIDOS SEGMENTOS PROPORCIONAIS 1 EXERCÍCIOS RESOLVIDOS SEGMENTOS PROPORCIONAIS 1. SÃO DADOS TRÊS SEGMENTOS, a = 3 cm, b = 2 cm e c = 2,5 cm. PEDE-SE ENCONTRAR A QUARTA PROPORCIONAL ENTRE a, b e c : PROCESSO I - Consideremos os três

Leia mais

a média de gols da primeira rodada, M G a média de gols das duas primeiras rodadas e x o número de gols da segunda rodada, tem-se 15 + x 15 M G

a média de gols da primeira rodada, M G a média de gols das duas primeiras rodadas e x o número de gols da segunda rodada, tem-se 15 + x 15 M G MATEMÁTICA O número de gols marcados nos 6 jogos da primeira rodada de um campeonato de futebol foi 5,,,, 0 e. Na segunda rodada, serão realizados mais 5 jogos. Qual deve ser o número total de gols marcados

Leia mais

Geometria Plana. Exterior do ângulo Ô:

Geometria Plana. Exterior do ângulo Ô: Geometria Plana Ângulo é a união de duas semiretas de mesma origem, não sendo colineares. Interior do ângulo Ô: Exterior do ângulo Ô: Dois ângulos são consecutivos se, e somente se, apresentarem um lado

Leia mais

Matemática Uma circunferência de raio 12, tendo AB e CD como diâmetros, está ilustrada na figura abaixo. Indique a área da região hachurada.

Matemática Uma circunferência de raio 12, tendo AB e CD como diâmetros, está ilustrada na figura abaixo. Indique a área da região hachurada. Matemática 2 01. Pedro tem 6 bolas de metal de mesmo peso p. Para calcular p, Pedro colocou 5 bolas em um dos pratos de uma balança e a que restou, juntamente com um cubo pesando 100g, no outro prato,

Leia mais

Ângulos entre retas Retas e Planos Perpendiculares. Walcy Santos

Ângulos entre retas Retas e Planos Perpendiculares. Walcy Santos Ângulos entre retas Retas e Planos Perpendiculares Walcy Santos Ângulo entre duas retas A idéia do ângulo entre duas retas será adaptado do conceito que temos na Geometria Plana. Se duas retas são concorrentes

Leia mais

1ª Aula. Introdução à Geometria Plana GEOMETRIA. 3- Ângulos Consecutivos: 1- Conceitos Primitivos: a) Ponto A. b) Reta c) Semi-reta

1ª Aula. Introdução à Geometria Plana GEOMETRIA. 3- Ângulos Consecutivos: 1- Conceitos Primitivos: a) Ponto A. b) Reta c) Semi-reta 1ª Aula 3- Ângulos Consecutivos: Introdução à Geometria Plana 1- Conceitos Primitivos: a) Ponto A Na figura, os ângulos AÔB e BÔC são consecutivos, portanto AÔC=AÔB+AÔC b) Reta c) Semi-reta d) Segmento

Leia mais

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE. Professor: João Carmo

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE. Professor: João Carmo INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE Professor: João Carmo INTRODUÇÃO Circunferência é uma linha curva, plana, fechada e que tem todos os pontos que a constitui, equidistantes

Leia mais

Segunda Etapa 2ª ETAPA 2º DIA 11/12/2006

Segunda Etapa 2ª ETAPA 2º DIA 11/12/2006 Segunda Etapa ª ETP º DI 11/1/006 CDERNO DE PROVS FÍSIC MTEMÁTIC GEOMETRI GRÁFIC IOLOGI GEOGRFI PORTUGUÊS LITERTUR INGLÊS ESPNHOL FRNCÊS TEORI MUSICL COMISSÃO DE PROCESSOS SELETIVOS E TREINMENTOS Geometria

Leia mais

Apostila De Matemática ESFERA

Apostila De Matemática ESFERA Apostila De Matemática ESFERA ESFERA Consideremos um ponto O e um segmento de medida r. Chama-se esfera de centro O e raio r ao conjunto dos pontos P do espaço, tais que a distancia OP seja menor ou igual

Leia mais

REVISÃO UNICAMP Ensino Médio Geometria Prof. Sérgio Tambellini

REVISÃO UNICAMP Ensino Médio Geometria Prof. Sérgio Tambellini REVISÃO UNICAMP Ensino Médio Geometria Prof. Sérgio Tambellini Aluno :... GEOMETRIA PLANA Questão 1 - (UNICAMP SP/015) A figura abaixo exibe um círculo de raio r que tangencia internamente um setor circular

Leia mais

COLÉGIO XIX DE MARÇO excelência em educação 3ª PROVA SUBSTITUTIVA DE MATEMÁTICA Professor(a): Cláudia e Gustavo Valor da Prova: 65 pontos

COLÉGIO XIX DE MARÇO excelência em educação 3ª PROVA SUBSTITUTIVA DE MATEMÁTICA Professor(a): Cláudia e Gustavo Valor da Prova: 65 pontos ª PROA SUBSTITUTIA DE MATEMÁTICA 01 Aluno(a): Nº Ano: º Turma: Data: Nota: Professor(a): Cláudia e Gustavo alor da Prova: 5 pontos Orientações gerais: 1) Número de questões desta prova: 17 ) alor das questões:

Leia mais

(UFG GO/2005/1ª Fase) Preparou-se gelatina que foi colocada, ainda em estado líquido, em recipientes, como mostram as figuras abaixo.

(UFG GO/2005/1ª Fase) Preparou-se gelatina que foi colocada, ainda em estado líquido, em recipientes, como mostram as figuras abaixo. (UFG GO/2005/1ª Fase) Preparou-se gelatina que foi colocada, ainda em estado líquido, em recipientes, como mostram as figuras abaixo. Sabendo que toda a quantidade de gelatina que foi preparada coube em

Leia mais

Projeto Jovem Nota 10 Cilindros - Lista 2 Professor Marco Costa 1. (Fgv 96) Um produto é embalado em recipientes com formato de cilindros retos.

Projeto Jovem Nota 10 Cilindros - Lista 2 Professor Marco Costa 1. (Fgv 96) Um produto é embalado em recipientes com formato de cilindros retos. 1. (Fgv 96) Um produto é embalado em recipientes com formato de cilindros retos. O cilindro A tem altura 20cm e raio da base 5cm. O cilindro B tem altura 10cm e raio da base de 10cm. a) Em qual das duas

Leia mais

Onde: É no triângulo retângulo que vale a máxima Pitagórica: O quadrado da. a b c

Onde: É no triângulo retângulo que vale a máxima Pitagórica: O quadrado da. a b c 1 Sumário TRIGONOMETRIA... GEOMETRIA ESPACIAL...8 Geometria Plana Fórmulas Básicas...8 Prismas... 11 Cilindro... 18 Pirâmide... 1 Cone... 4 Esferas... 7 REFERÊNCIAS BIBLIOGRÁFICAS... TRIGONOMETRIA Trigonometria

Leia mais

GEOMETRIA PLANA. 1) (UFRGS) Na figura abaixo, o vértice A do retângulo OABC está a 6 cm do vértice C. O raio do círculo mede

GEOMETRIA PLANA. 1) (UFRGS) Na figura abaixo, o vértice A do retângulo OABC está a 6 cm do vértice C. O raio do círculo mede GEOMETRI PLN 1) (UFRGS) Na figura abaixo, o vértice do retângulo O está a 6 cm do vértice. O raio do círculo mede O (a) 5 cm (b) 6 cm (c) 8 cm (d) 9 cm (e) 10 cm ) (UFRGS) Na figura abaixo, é o centro

Leia mais

4.1 Superfície Cilíndrica

4.1 Superfície Cilíndrica 4.1 Superfície Cilíndrica Uma superfície cilíndrica (ou simplesmente cilindro) é a superfície gerada por uma reta que se move ao longo de uma curva plana, denominada diretriz, paralelamente a uma reta

Leia mais

Matemática Geometria Espacial. Professor Bacon

Matemática Geometria Espacial. Professor Bacon Matemática Geometria Espacial Professor Bacon Prismas Volume Fórmula Geral: V= A.base x Altura (h) Área lateral = soma das áreas laterais Um caminhão basculante tem a carroceria com as dimensões indicadas

Leia mais

GEOMETRIA PLANA. Segmentos congruentes: Dois segmentos ou ângulos são congruentes quando têm as mesmas medidas.

GEOMETRIA PLANA. Segmentos congruentes: Dois segmentos ou ângulos são congruentes quando têm as mesmas medidas. PARTE 01 GEOMETRIA PLANA Introdução A Geometria está apoiada sobre alguns postulados, axiomas, definições e teoremas, sendo que essas definições e postulados são usados para demonstrar a validade de cada

Leia mais

Aula 29 Volume de pirâmides, cones e esferas

Aula 29 Volume de pirâmides, cones e esferas MÓULO 2 - UL 29 ula 29 Volume de pirâmides, cones e esferas Objetivos alcular o volume de uma pirâmide. alcular o volume de um cone. alcular o volume de uma esfera. Introdução Sabemos que se cortarmos

Leia mais

ATIVIDADE: METODOS DE DIVISÃO DE SEGMENTOS E DA CIRCUFERENCIA.

ATIVIDADE: METODOS DE DIVISÃO DE SEGMENTOS E DA CIRCUFERENCIA. ANEXO 7 Referente a Ação 7 5. ATIVIDADE DE PREPARAÇÃO DOS BOLSISTAS ALUNOS MINI-CURSO Construções Geométricas: Esta atividade foi desenvolvida na Universidade com o objetivo de habilitar os bolsistas em

Leia mais

PROJECÇÃO DE SÓLIDOS

PROJECÇÃO DE SÓLIDOS PROJECÇÃO DE SÓLIDOS I- GENERALIDADES 1- BREVES NOÇÕES SOBRE SUPERFÍCIES 1.1- Noção Uma superfície pode definir-se como sendo o lugar geométrico gerado por uma linha (geratriz) que se desloca, segundo

Leia mais

Unidade 10 Geometria Espacial. Esfera

Unidade 10 Geometria Espacial. Esfera Unidade 10 Geometria Espacial Esfera Esfera Na série anterior, você estudou dois dos chamadas corpos redondos: o cilindro e o cone Estudaremos outro sólido que sem dúvida, aparece com extrema frequência

Leia mais

c) F( 4, 2) r : 2x+y = 3 c) a = 3 F 1 = (0,0) F 2 = (1,1)

c) F( 4, 2) r : 2x+y = 3 c) a = 3 F 1 = (0,0) F 2 = (1,1) Lista de Exercícios Estudo Analítico das Cônicas e Quádricas 1. Determine o foco, o vértice, o parâmetro e a diretriz da parábola P e faça um esboço. a) P : y 2 = 4x b) P : y 2 +8x = 0 c) P : x 2 +6y =

Leia mais

MATEMÁTICA - 3 o ANO MÓDULO 56 SÓLIDOS DE REVOLUÇÃO, SEMELHANÇA E TRONCO

MATEMÁTICA - 3 o ANO MÓDULO 56 SÓLIDOS DE REVOLUÇÃO, SEMELHANÇA E TRONCO MATEMÁTICA - 3 o ANO MÓDULO 56 SÓLIDOS DE REVOLUÇÃO, SEMELHANÇA E TRONCO BC B C A D A D Triângulo Retângulo Cone emicírculo Esfera 4 12 16 12 8 6 Cone Cone semelhante + Tronco de Cone Pirâmide Pirâmide

Leia mais

Geometria Analítica - AFA

Geometria Analítica - AFA Geometria Analítica - AFA x = v + (AFA) Considerando no plano cartesiano ortogonal as retas r, s e t, tais que (r) :, (s) : mx + y + m = 0 e (t) : x = 0, y = v analise as proposições abaixo, classificando-

Leia mais

Turma 3.a série Professor(a)

Turma 3.a série Professor(a) Caderno de Questões Bimestre.o Questões 10 Disciplina Geometria Espacial Testes 00 Páginas 10 Turma 3.a série Professor(a) Período M Data da Prova 0/06/01 Verifique cuidadosamente se sua prova atende aos

Leia mais

3 ÁREAS E VOLUME DO TRONCO DE PIRÂMIDE 1 TRONCO DE PIRÂMIDE 2 SEMELHANÇA ENTRE AS PIRÂMIDES. 3.1 Área lateral. 3.2 Área das bases. 3.

3 ÁREAS E VOLUME DO TRONCO DE PIRÂMIDE 1 TRONCO DE PIRÂMIDE 2 SEMELHANÇA ENTRE AS PIRÂMIDES. 3.1 Área lateral. 3.2 Área das bases. 3. Matemática Pedro Paulo GEOMETRIA ESPACIAL VIII 1 TRONCO DE PIRÂMIDE Chamaremos de tronco de pirâmide de bases paralelas a porção da pirâmide limitada por sua base e por uma secção transversal qualquer

Leia mais

Desenho Geométrico e Concordâncias

Desenho Geométrico e Concordâncias UnB - FGA Desenho Geométrico e Concordâncias Disciplina: DIAC-1 Prof a Eneida González Valdés CONSTRUÇÕES GEOMÉTRICAS Todas as construções da geometria plana são importantes, há, entretanto algumas, que

Leia mais