Desenho Geométrico e Concordâncias

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Desenho Geométrico e Concordâncias"

Transcrição

1 UnB - FGA Desenho Geométrico e Concordâncias Disciplina: DIAC-1 Prof a Eneida González Valdés

2 CONSTRUÇÕES GEOMÉTRICAS Todas as construções da geometria plana são importantes, há, entretanto algumas, que com maior freqüência, são usadas nos trabalhos de desenho, e portanto, precisam ser bem conhecidas. 1. Circunferência Diâmetro - é o segmento de reta que une 2 pontos da circunferência passando pelo centro. Diâmetro - é o segmento de reta que une 2 pontos da circunferência passando pelo centro. Raio - é o segmento de reta que une o centro a qualquer ponto da circunferência. Corda - é o segmento de reta que une 2 pontos da circunferência sem intersectar o centro. Arco de circunferência - é uma qualquer porção da circunferência. Semicircunferência - é a porção da circunferência limitada pelo centro. 2. Divisão de segmentos de retas em partes iguais. (por exemplo, em cinco partes) Traça-se pela extremidade do segmento (A), uma reta que forme um ângulo qualquer com AB, marcamse sobre ela 5 distâncias iguais de qualquer medida. Une-se a extremidade da última divisão com B por meio de uma reta e traça-se paralelas a ela; estas nos dividirão o segmento dado em 5 partes iguais. 3. Obtenção gráfica da média proporcional dado dois segmentos de retas (soma dos segmentos). Somam-se os segmentos a e b e traçamos uma semicircunferência de diâmetro igual à soma dos segmentos. 2

3 Da extremidade de a e origem de b, traçamos uma perpendicular que por sua vez corta a circunferência em c. o segmento obtido é a média proporcional procurada. 4. Obtenção gráfica da média proporcional dado dois segmentos de retas (pela diferença dos segmentos). Traçamos uma semicircunferência tendo por diâmetro o maior segmento De uma das extremidades do diâmetro marca-se o segmento a. Da outra extremidade de a levanta-se uma perpendicular que corta a semicircunferência no ponto c. Unindo-se a origem de b ao ponto c teremos a média proporcional. 5. Construir um triângulo dados os três lados. Transferimos para uma reta auxiliar um dos lados; seja por exemplo o lado AB. Com centro em A e uma abertura do compasso igual a AC, descreve-se um arco. Em B como centro e abertura do compasso igual ao segmento BC, traça-se outro arco, que cortará o primeiro. Este ponto C, unido com A nos dará o triângulo solução. 6. Construir um triângulo dado dois de seus lados e o ângulo formado por ele. Pela extremidade de uma semi-reta construi-se o ângulo dado. A partir do vértice marcam-se em um dos lados o segmento AB, e sobre o outro lado a AC, ambos de dimensões dadas. Unindo-se C com B teremos construído o triângulo enunciado. 3

4 7. Construir um triângulo retângulo, dados a hipotenusa e um dos catetos. Tomando a hipotenusa como diâmetro, traça-se uma semicircunferência. Com abertura do compasso igual a um dos catetos dado e centro em uma das extremidades do diâmetro traçamos um arco, que corta a semicircunferência em um ponto. Une-se a extremidade da hipotenusa a esse ponto e tem-se a solução. 8. Construir um triângulo isóscele dado o ângulo e o lado desigual. Por uma das extremidades do segmento AB, se traça um ângulo igual a C; bem como uma perpendicular a um dos lados do citado ângulo. Traça-se a seguir uma mediatriz ao segmento AB. Esta cortará a perpendicular em O, que será o centro da circunferência que circunscreve o triângulo solução. Como os lados são iguais num triângulo isósceles, basta que se trace de C segmentos de retas unindo as extremidades A e B. 9. Dividir a circunferência em n partes iguais (por exemplo em 7 partes) (processo geral de divisão atribuída a BION ou RINALDINI) Inicialmente traçam-se os eixos perpendiculares r e s. Em seguida divide-se o diâmetro vertical em 7 partes iguais (o mesmo número em que se quer dividir a circunferência). Com centro em A ou B e raio AB descreve-se que corta r em C. Ligando esses pontos aos números pares ou somente aos ímpares, tem-se a divisão pedida. (pode-se evitar o acúmulo de linhas obtendo apenas a 1 a divisão e marcar sucessivamente a mesma distância na circunferência) As figuras formadas pela união de pontos situadas na circunferência à mesma distância, chama-se polígonos regulares, que por sua vez recebem nomes particulares pelo número de lados que possuem. 4

5 10. Construir um hexágono regular conhecendo-se a grandeza do lado. (processo particular) Com centro em A e raio AB descreve-se o arco de círculo 1. Com centro em AB e mesmo raio traça-se o arco 2 que corta o primeiro, dando o ponto C. Com centro em C e raio igual a AB, traça-se a circunferência. Sobre a circunferência marca-se 6 vezes AB. 11. Determinar o centro de um arco de círculo dado. Marcam-se sobre o arco 3 pontos arbitrários: como conseqüência tem-se duas cordas. Traça-se as mediatrizes das mesmas, que se cruzam dando o ponto O centro da circunferência que contém o arco. 12. Traçar uma circunferência que passe por três pontos dados (não colineares). (O processo é o mesmo do problema anterior apenas com os dados inversos) 5

6 Traçam-se as duas cordas e seguidamente as mediatrizes das mesmas, no ponto que se cruzam está o centro da circunferência que contém os três pontos dados. CONCORDÂNCIA Chama-se CONCORDÂNCIA de linhas curvas ou retas com retas ou com curvas, à ligação sem ângulo impossível de separar a olho nu a passagem de uma curva para uma reta ou de uma curva para outra. A concordância como no caso de tangência se baseia em dois princípios básicos: Para concordar um arco com uma reta é necessário que o ponto de concordância e o centro do arco estejam ambos na mesma perpendicular à reta. Para concordar dois arcos, o ponto de concordância e os centros dos respectivos arcos, devem estar numa mesma reta que é normal aos arcos nos pontos de concordância. 13. Concordar dois segmentos de retas perpendiculares por meio de um arco de raio conhecido. Fazendo centro em A e com raio AB, traça-se um arco que corta as perpendiculares em T 1 e T 2. Com o mesmo raio e centro em T 1 e T 2, traçam-se arcos que se cortam em O; centro do arco solução. 6

7 14. Concordar duas linhas paralelas por meio de um arco. Levanta-se uma perpendicular r e s nos pontos A e B. Traça-se a seguir a mediatriz do segmento de reta que une A e B e obtém-se o ponto O. Com centro em O e raio igual AO ou OB traça-se o arco que unirá as retas dadas. 15. Concordar por meio de um arco de raio conhecido, duas retas r e s convergentes. Traçam-se duas retas auxiliares e paralelas às retas dadas r e s com distância conhecida AB, no ponto que se encontram estas retas auxiliares temos o ponto V. Do ponto V traça-se as perpendiculares a r e s, obtendo os pontos T 1 e T que serão os pontos de concordância, com centro em V e raio igual a VT 1 ou VT se obtém a solução do problema. 16. Concordar duas retas convergentes, por meio de um arco de raio conhecido. Utiliza-se o mesmo procedimento do problema anterior. 7

8 17. Concordar por meio de dois arcos iguais, duas retas paralelas conhecendo-se os pontos de concordância T 1 e T 2. Traçam-se a perpendicular pelos pontos T 1 e T 2 das retas dadas. Unir os pontos T 1 e T 2 por meio de um segmento de reta e traçar a mediatriz do mesmo, obtendo o ponto M. As mediatrizes dos segmentos T 1 M e T 2 M cortarão as perpendiculares em O e O 1, centros dos respectivos arcos solução. 18. Concordar os pontos T 1 e T 2 sobre as retas não paralelas, por meio de dois arcos conhecendo-se o raio de um deles. Levantar pelos pontos T 1 e T 2 perpendiculares às respectivas retas, prolongando a de T 2. Traça-se sobre a perpendicular de T 1 o ponto O cuja dimensão é igual ao raio r dado. Une-se o ponto O e O' e traça-se a mediatriz que corta a perpendicular OT 1 obtendo-se o ponto O 1. Une-se o ponto O 1 com o ponto O'. Com centro em O' e abertura do compasso igual a r traça-se o raio conhecido. Fazendo centro em O 1, e com abertura O 1 M, traça-se o raio solução. 8

9 19. Concordar duas retas a e b convergentes por meio de dois arcos diferentes, conhecendo-se o raio da menor e os pontos tangenciais T 1 e T 2. Pelos pontos T 1 e T 2 traçam-se as perpendiculares às retas a e b. Sobre as perpendiculares dos pontos T 1 e T 2 marcam-se a distância dada r e obtém-se os pontos O e O. Traça-se a mediatriz de O e O que corta perpendicular de T 1 em O 1. Une-se O a O 1 e prolonga-se para obter o limite dos arcos. Com centro em O e raio OT 1 obtém-se M. com centro em O' e abertura até M soluciona-se o problema. 20. Dada uma circunferência e uma reta r, concordar por meio de um arco conhecendo-se o ponto T de concordância sobre a reta. Pelo ponto T levanta-se uma perpendicular à reta r e prolonga-se para o semi plano inferior. Marca-se sobre a perpendicular a partir de T um segmento de reta igual a R (raio da circunferência dada) que determina o ponto A. A mediatriz de AO corta a perpendicular levantada por T no ponto O 1. Com centro em O 1 e raio a O 1 T traça-se um arco até encontrar o segmento de reta que une os pontos O 1 O (ponto de concordância). 21. Dada uma circunferência e o ponto de concordância T sobre a mesma, concordar por meio de uma arco com uma reta r. Une-se O e P prolonga-se por certo comprimento. Traça-se a seguir uma tangente pelo ponto P, que cortará o prolongamento de r em V. A bissetriz de V se dará sobre o prolongamento de OP em O 1. Traça-se uma perpendicular a r pelo ponto O 1 e determina-se o ponto de concordância T. Com centro em O 1 traça-se o arco PT, solução do problema. 9

10 22. Concordar uma circunferência a uma reta s dada, por meio de um arco de raio r conhecido. Traça-se uma paralela a s a uma distância r. Com raio igual a R + r e centro em O traça-se um arco que cortará a paralela em O 1. Pelo ponto O 1 traça-se uma perpendicular a s determinando T (ponto de concordância). Com centro em O 1 e raio O 1 T 1 ou O 1 T 2 traçar o arco solução. 23. Dada uma circunferência e uma reta s concordá-las por meio de um arco de raio r conhecido. Traça-se uma paralela a s a uma distância r. Com centro em O e raio igual a R - r traça-se um arco que cortará a paralela S1 em O 1. Por O 1 traça-se uma perpendicular a s e determina-se T; ponto de concordância. A seguir une-se O e O 1 e obtém-se no prolongamento o ponto T 1 (outro ponto de concordância). Com centro em O 1 e raio r traça-se o arco T, T 1 arco solução do problema. 10

11 24. Traçar um arco de raio conhecido que concorde com duas circunferências dadas. (Concordância interna) Com centro em O e raio igual a R + r traça-se uma circunferência auxiliar. Com centro em O e raio igual a R 1 + r traça-se outra circunferência auxiliar O cruzamento das duas circunferências auxiliares dará um ponto O 2. Com a união dos centros O e O 1 com O 2 obtém-se os pontos T e T 1, pontos de concordâncias. Basta tomar o centro O 2 e com abertura do compasso igual a r, traçar o arco solução. 25. Traçar um arco de raio conhecido que concorde com duas circunferências dadas. (Concordância externa) Com centro em O e raio igual a R 2 - R traça-se uma circunferência auxiliar. Com centro em O e raio igual a R 2 - R 1 traça-se outra circunferência auxiliar O cruzamento das duas circunferências auxiliares dará um ponto O 2. Com a união dos centros O e O 1 com O 2 obtém-se no prolongamento os pontos T e T 1, pontos de concordâncias. Com centro O 2 e com abertura do compasso igual a R 2, traça-se o arco solução. 26. Traçar um arco que concorde externa e internamente com duas circunferências dadas. Supondo-se que queira externa para circunferência de raio R e interna para a circunferência de raio R 1, procede-se como nos problemas 12 e 13 respectivamente. 11

12 27. Traçar tangente uma circunferência, por um ponto fora da curva.. Une-se o ponto P a O (centro da circunferência). Determina-se a seguir o ponto médio do segmento PO que é o ponto M. Com centro em M e raio MO, traça-se um arco que vai cortar a circunferência nos pontos T e T 1 que são os pontos de tangência Basta agora unir os pontos P a T e T 1 e tem-se a solução. 28. Traçar tangentes exteriores a duas circunferências dadas Inicialmente traça-se uma circunferência auxiliar concêntrica de raio igual a diferença das circunferências dadas. (R - r) Une-se o ponto O a O 1 (centros das circunferências). Determina-se a seguir o ponto médio do segmento O O 1 que é o ponto M. Com centro em M e raio MO ou MO 1, traça-se um arco de circunferência que cortará à circunferência auxiliar nos pontos T e T' que são os pontos de tangência Une-se os pontos O a T e T' e prolongando-os até cortar a circunferência R nos pontos T 1 e T 1 '; pontos de tangência. Traça-se os segmentos O 1 a T 2 e T 2 ' com a condição de serem paralelos aos pontos O T 1 e OT 1 ' respectivamente. A união dos pontos T 1 com T 2 e T 1 ' com T 2 ' dará as tangentes pedidas. 12

I. Para concordar um arco com uma reta é necessário que o ponto de concordância e o centro do arco, estejam ambos sobre uma mesma perpendicular.

I. Para concordar um arco com uma reta é necessário que o ponto de concordância e o centro do arco, estejam ambos sobre uma mesma perpendicular. 9.CONCORDÂNCIAS T A N G E N T E S Chama-se concordância de duas linhas curvas ou de uma reta com uma curva, a ligação entre elas, executada de tal forma, que se possa passar de uma para outra, sem ângulo,

Leia mais

EXERCÍCIOS RESOLVIDOS TANGÊNCIA

EXERCÍCIOS RESOLVIDOS TANGÊNCIA 1 Resumo. Maria Bernadete Barison apresenta exercícios e resoluções sobre TANGÊNCIA em Desenho Geométrico. Geométrica vol.1 n.6c. 2005. Desenhos construídos por: Enéias de A. Prado. EXERCÍCIOS RESOLVIDOS

Leia mais

EXERCÍCIOS RESOLVIDOS CIRCUNFERÊNCIA

EXERCÍCIOS RESOLVIDOS CIRCUNFERÊNCIA 1 EXERCÍCIOS RESOLVIDOS CIRCUNFERÊNCIA 1. RECUPERAR O CENTRO DE UMA CIRCUNFERÊNCIA DADA. Seja uma circunferência de raio 3 cm. Marque na circunferência três pontos quaisquer A, B e C. Trace as cordas AB

Leia mais

1 Construções geométricas fundamentais

1 Construções geométricas fundamentais UNIVERSIDADE FEDERAL DO PARANÁ Setor de Ciências Exatas Departamento de Expressão Gráfica 1 Construções geométricas fundamentais Prof ª Drª Adriana Augusta Benigno dos Santos Luz Jheniffer Chinasso de

Leia mais

5. Desenhos geométricos

5. Desenhos geométricos 17 Exercícios: 1. Na folha A4 impressa escreva o alfabeto com letras maiúsculas e minúsculas e a numeração de 0 a 9, com letras verticias. Faça ainda a legenda da folha 2. Na folha A4 impressa escreva

Leia mais

Profª.. Deli Garcia Ollé Barreto

Profª.. Deli Garcia Ollé Barreto CURVAS CÔNICAS Curvas cônicas são curvas resultantes de secções no cone reto circular. Cone reto circular é aquele cuja base é uma circunferência e a projeção do vértice sobre o plano da base é o centro

Leia mais

CONSTRUÇÕES GEOMÉTRICAS FUNDAMENTAIS

CONSTRUÇÕES GEOMÉTRICAS FUNDAMENTAIS UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE EXPRESSÃO GRÁFICA CONSTRUÇÕES GEOMÉTRICAS FUNDAMENTAIS 2 1 NOÇÕES DE GEOMETRIA PLANA 1.1 GEOMETRIA A necessidade de medir terras

Leia mais

RETAS E ARCOS Prof. Robson Naoto Shimizu

RETAS E ARCOS Prof. Robson Naoto Shimizu CONCORDÂNCIA ENTRE RETAS E ARCOS Prof. Robson Naoto Shimizu O QUE É? Concordar duas linhas, de mesma ou diferente espécie, é reuni-las de forma que nos pontos de contato se possa passar de uma para

Leia mais

EXERCÍCIOS RESOLVIDOS SEGMENTOS PROPORCIONAIS

EXERCÍCIOS RESOLVIDOS SEGMENTOS PROPORCIONAIS 1 EXERCÍCIOS RESOLVIDOS SEGMENTOS PROPORCIONAIS 1. SÃO DADOS TRÊS SEGMENTOS, a = 3 cm, b = 2 cm e c = 2,5 cm. PEDE-SE ENCONTRAR A QUARTA PROPORCIONAL ENTRE a, b e c : PROCESSO I - Consideremos os três

Leia mais

Quadrilátero convexo

Quadrilátero convexo EMBAP ESCOLA DE MÚSICA E BELAS ARTES DO PARANÁ DISCIPLINA DE DESENHO GEOMÉTRICO E GEOMETRIA DESCRITIVA Profª Eliane Dumke e-mail: eliane.dumke@gmail.com Aula 10 (material didático produzido por Paula Rigo)

Leia mais

DESENHO TÉCNICO ( AULA 02)

DESENHO TÉCNICO ( AULA 02) DESENHO TÉCNICO ( AULA 02) Posições da reta e do plano no espaço A geometria, ramo da Matemática que estuda as figuras geométricas, preocupa-se também com a posição que os objetos ocupam no espaço. A reta

Leia mais

Circunferência. MA092 Geometria plana e analítica. Interior e exterior. Circunferência e círculo. Francisco A. M. Gomes

Circunferência. MA092 Geometria plana e analítica. Interior e exterior. Circunferência e círculo. Francisco A. M. Gomes Circunferência MA092 Geometria plana e analítica Francisco A. M. Gomes UNICAMP - IMECC Setembro de 2016 A circunferência é o conjunto dos pontos de um plano que estão a uma mesma distância (denominada

Leia mais

1- Traçar uma perpendicular ao meio de um segmento AB - Método Mediatriz.

1- Traçar uma perpendicular ao meio de um segmento AB - Método Mediatriz. 1- Traçar uma perpendicular ao meio de um segmento AB - Método Mediatriz. 1º - traçar uma reta A-B 2º - ponta seca em A (abertura do compasso um pouco maior que a metade), risca em cima e risca embaixo.

Leia mais

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE. Professor: João Carmo

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE. Professor: João Carmo INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE Professor: João Carmo INTRODUÇÃO Circunferência é uma linha curva, plana, fechada e que tem todos os pontos que a constitui, equidistantes

Leia mais

DESENHO GEOMÉTRICO AULA 3T EXERCÍCIOS RESOLVIDOS

DESENHO GEOMÉTRICO AULA 3T EXERCÍCIOS RESOLVIDOS 1 DESENHO GEOMÉTRICO AULA 3T EXERCÍCIOS RESOLVIDOS 1. SÃO DADOS 3 SEGMENTOS, a = 3 cm, b = 2 cm e c = 2,5 cm. PEDE-SE ENCONTRAR A QUARTA PROPORCIONAL ENTRE a, b e c : PROCESSO I - Consideremos os 3 segmentos

Leia mais

Conceitos básicos de Geometria:

Conceitos básicos de Geometria: Conceitos básicos de Geometria: Os conceitos de ponto, reta e plano não são definidos. Compreendemos estes conceitos a partir de um entendimento comum utilizado cotidianamente dentro e fora do ambiente

Leia mais

DESENHO GEOMÉTRICO Matemática - Unioeste Definição 1. Poligonal é uma figura formada por uma sequência de pontos (vértices)

DESENHO GEOMÉTRICO Matemática - Unioeste Definição 1. Poligonal é uma figura formada por uma sequência de pontos (vértices) DESENHO GEOMÉTRICO Matemática - Unioeste - 2010 1 Polígonos Definição 1. Poligonal é uma figura formada por uma sequência de pontos (vértices) A 1, A 2,..., A n e pelos segmentos (lados) A 1 A 2, A 2 A

Leia mais

EXERCÍCIOS RESOLVIDOS - RETAS

EXERCÍCIOS RESOLVIDOS - RETAS 1 EXERCÍCIOS RESOLVIDOS - RETAS 1. CONSTRUIR A MEDIATRIZ DE UM SEGMENTO DADO AB = 7 CM: - Utilizando a régua trace o segmento AB de medida igual a 7 cm. - Com a ponta seca do compasso no ponto A, abra

Leia mais

Desenho Geométrico. Desenho Geométrico. Desenho Geométrico. Desenho Geometrico

Desenho Geométrico. Desenho Geométrico. Desenho Geométrico. Desenho Geometrico UNIVERSIDADE ESTADUAL VALE DO ACARAÚ- UVA DEPARTAMENTO DE MATEMÁTICA Desenho Geométrico Desenho Geométrico Desenho Geométrico Desenho Geometrico Daniel Caetano de Figueiredo Daniel Caetano de Figueiredo

Leia mais

PREPARATÓRIO PROFMAT/ AULA 8 Geometria

PREPARATÓRIO PROFMAT/ AULA 8 Geometria PREPARATÓRIO PROFMAT/ AULA 8 Geometria QUESTÕES DISCURSIVAS Questão 1. (PROFMAT-2012) As figuras a seguir mostram duas circunferências distintas, com centros C 1 e C 2 que se intersectam nos pontos A e

Leia mais

GEOMETRIA PLANA. 1) (UFRGS) Na figura abaixo, o vértice A do retângulo OABC está a 6 cm do vértice C. O raio do círculo mede

GEOMETRIA PLANA. 1) (UFRGS) Na figura abaixo, o vértice A do retângulo OABC está a 6 cm do vértice C. O raio do círculo mede GEOMETRI PLN 1) (UFRGS) Na figura abaixo, o vértice do retângulo O está a 6 cm do vértice. O raio do círculo mede O (a) 5 cm (b) 6 cm (c) 8 cm (d) 9 cm (e) 10 cm ) (UFRGS) Na figura abaixo, é o centro

Leia mais

Geometria Plana. Exterior do ângulo Ô:

Geometria Plana. Exterior do ângulo Ô: Geometria Plana Ângulo é a união de duas semiretas de mesma origem, não sendo colineares. Interior do ângulo Ô: Exterior do ângulo Ô: Dois ângulos são consecutivos se, e somente se, apresentarem um lado

Leia mais

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE. Professor: João Carmo

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE. Professor: João Carmo INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE Professor: João Carmo INTRODUÇÃO Os ângulos são formados por duas semi-retas que têm a mesma origem O. OBS.: o ângulo é denominado

Leia mais

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON PROFJWPS@GMAIL.COM DEFINIÇÕES GEOMETRIA PLANA Ponto: Um elemento do espaço que define uma posição. Reta: Conjunto infinito de pontos. Dois pontos são

Leia mais

I - INTRODUÇÃO 1. POSTULADOS DO DESENHO GEOMÉTRICO

I - INTRODUÇÃO 1. POSTULADOS DO DESENHO GEOMÉTRICO MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE EXPRESSÃO GRÁFICA Professora Deise Maria Bertholdi Costa Disciplina CD046 Expressão Gráfica I Curso Engenharia

Leia mais

EXERCÍCIOS RESOLVIDOS ARCOS ARQUITETÔNICOS

EXERCÍCIOS RESOLVIDOS ARCOS ARQUITETÔNICOS Resumo. Maria Bernadete Barison apresenta exercícios e resoluções sobre ARCOS ARQUITETÔNICOS em Desenho Geométrico. Geométrica vol.1 n.8c. 2005. Desenhos construídos por: Enéias de A. Prado e Maria Bernadete

Leia mais

1 Processos Aproximativos

1 Processos Aproximativos Desenho Geométrico Professora: Sandra Maria Tieppo 1 Processos Aproximativos Um processo é chamado aproximativo quando existe nele um erro teórico. Muitas vezes tais processos podem ser convenientes haja

Leia mais

EXERCÍCIOS RESOLVIDOS CURVAS CÔNICAS

EXERCÍCIOS RESOLVIDOS CURVAS CÔNICAS 1 EXERCÍCIOS RESOLVIDOS CURVAS CÔNICAS 1. ENCONTRAR OS FOCOS DE UMA ELIPSE SENDO DADOS O EIXO MAIOR E O MENOR. Sejam os eixos AA' e BB' dados que se intersectam no ponto O (centro da elipse). Coloque a

Leia mais

02 Do ponto P exterior a uma circunferência tiramos uma secante que corta a

02 Do ponto P exterior a uma circunferência tiramos uma secante que corta a 01 Em um triângulo AB AC 5 cm e BC cm. Tomando-se sobre AB e AC os pontos D e E, respectivamente, de maneira que DE seja paralela a BC e que o quadrilátero BCED seja circunscritível a um círculo, a distância

Leia mais

1ª Aula. Introdução à Geometria Plana GEOMETRIA. 3- Ângulos Consecutivos: 1- Conceitos Primitivos: a) Ponto A. b) Reta c) Semi-reta

1ª Aula. Introdução à Geometria Plana GEOMETRIA. 3- Ângulos Consecutivos: 1- Conceitos Primitivos: a) Ponto A. b) Reta c) Semi-reta 1ª Aula 3- Ângulos Consecutivos: Introdução à Geometria Plana 1- Conceitos Primitivos: a) Ponto A Na figura, os ângulos AÔB e BÔC são consecutivos, portanto AÔC=AÔB+AÔC b) Reta c) Semi-reta d) Segmento

Leia mais

Lista 3. Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 2.5, pág. 81 em diante.

Lista 3. Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 2.5, pág. 81 em diante. MA13 Exercícios das Unidades 4 e 5 2014 Lista 3 Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 2.5, pág. 81 em diante. 1) Seja ABCD um quadrilátero qualquer. Prove que os pontos médios

Leia mais

CONSTRUÇÕES GEOMÉTRICAS

CONSTRUÇÕES GEOMÉTRICAS CONSTRUÇÕES GEOMÉTRICAS 2014 ROF. CRISTIANO ARBEX INTRODUÇÃO Este material tem o objetivo de mostrar as principais construções geométricas utilizadas em Desenho Técnico. ara cada definição apresentada

Leia mais

I - INTRODUÇÃO II LUGARES GEOMÉTRICOS, ÂNGULOS E SEGMENTOS 1. POSTULADOS DO DESENHO GEOMÉTRICO

I - INTRODUÇÃO II LUGARES GEOMÉTRICOS, ÂNGULOS E SEGMENTOS 1. POSTULADOS DO DESENHO GEOMÉTRICO MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE EXPRESSÃO GRÁFICA Professores: Deise Maria Bertholdi Costa, Luzia Vidal de Souza, Paulo Henrique Siqueira,

Leia mais

Unidade. Educação Artística 171. l- Limpeza e organização com os materiais são requisitos básicos nesta disciplina.

Unidade. Educação Artística 171. l- Limpeza e organização com os materiais são requisitos básicos nesta disciplina. 2 Educação Artística 171 Unidade 1 l- Limpeza e organização com os materiais são requisitos básicos nesta disciplina. ll- O lápis é o responsável direto pela boa qualidade do desenho e é classificado,

Leia mais

EXERCÍCIOS RESOLVIDOS - ÂNGULOS

EXERCÍCIOS RESOLVIDOS - ÂNGULOS 1 EXERCÍCIOS RESOLVIDOS - ÂNGULOS 1. TRANSPORTAR UM ÂNGULO PARA SOBRE UMA SEMI-RETA: - Construa o ângulo BÔA qualquer e ao lado a semi-reta O'. - Abra no compasso a medida OA, coloque a ponta seca no ponto

Leia mais

RETAS E CIRCUNFERÊNCIAS

RETAS E CIRCUNFERÊNCIAS RETAS E CIRCUNFERÊNCIAS Diâmetro Corda que passa pelo centro da circunferência [EF] e [GH] Raio Segmento de reta que une o centro a um ponto da circunferência [OD] [AB], [IJ], [GH], são cordas - segmentos

Leia mais

RETA E CIRCUNFERÊNCIA

RETA E CIRCUNFERÊNCIA RETA E CIRCUNFERÊNCIA - 016 1. (Unifesp 016) Na figura, as retas r, s e t estão em um mesmo plano cartesiano. Sabe-se que r e t passam pela origem desse sistema, e que PQRS é um trapézio. a) Determine

Leia mais

Curso de Traçados de Caldeiraria

Curso de Traçados de Caldeiraria Curso de Traçados de Caldeiraria 3 4 LEVANTAR UMA PERPENDICULAR NO MEIO DE UMA RETA Fig. 1 AB, reta dada. Com ponta seca em A traçar dois arcos acima e abaixo da reta. Em seguida, com ponta seca em B traçar

Leia mais

Desenho e Projeto de Tubulação Industrial Nível II

Desenho e Projeto de Tubulação Industrial Nível II Desenho e Projeto de Tubulação Industrial Nível II Módulo I Aula 04 TRIÂNGULOS Triângulo é um polígono de três lados. É o polígono que possui o menor número de lados. Talvez seja o polígono mais importante

Leia mais

Aula 09 (material didático produzido por Paula Rigo)

Aula 09 (material didático produzido por Paula Rigo) EMBAP ESCOLA DE MÚSICA E BELAS ARTES DO PARANÁ DISCIPLINA DE DESENHO GEOMÉTRICO E GEOMETRIA DESCRITIVA Profª Eliane Dumke e-mail: eliane.dumke@gmail.com Aula 09 (material didático produzido por Paula Rigo)

Leia mais

UNIVERSIDADE ESTADUAL PAULISTA - UNESP.

UNIVERSIDADE ESTADUAL PAULISTA - UNESP. UNIVERSIDADE ESTADUAL PAULISTA - UNESP. CAMPUS DE PRESIDENTE PRUDENTE FACULDADE DE CIÊNCIAS E TECNOLOGIA - FCT. CURSO: Matemática DISCIPLINA: Desenho Geométrico e Geometria Descritiva. ALUNO (A):... Profª.:

Leia mais

ATIVIDADE: METODOS DE DIVISÃO DE SEGMENTOS E DA CIRCUFERENCIA.

ATIVIDADE: METODOS DE DIVISÃO DE SEGMENTOS E DA CIRCUFERENCIA. ANEXO 7 Referente a Ação 7 5. ATIVIDADE DE PREPARAÇÃO DOS BOLSISTAS ALUNOS MINI-CURSO Construções Geométricas: Esta atividade foi desenvolvida na Universidade com o objetivo de habilitar os bolsistas em

Leia mais

DESENHO GEOMÉTRICO AULA 4T EXERCÍCIOS RESOLVIDOS

DESENHO GEOMÉTRICO AULA 4T EXERCÍCIOS RESOLVIDOS 1 DESENHO GEOMÉTRICO AULA 4T EXERCÍCIOS RESOLVIDOS 1. DIVIDIR O SEGMENTO AB = 5 CM EM MÉDIA E EXTREMA RAZÃO E INDICAR O SEGMENTO ÁUREO DE AB E TAMBÉM O SEGMENTO O QUAL AB É ÁUREO. Seja o segmento AB =

Leia mais

6.1 equações canônicas de círculos e esferas

6.1 equações canônicas de círculos e esferas 6 C Í R C U LO S E E S F E R A S 6.1 equações canônicas de círculos e esferas Um círculo é o conjunto de pontos no plano que estão a uma certa distância r de um ponto dado (a, b). Desta forma temos que

Leia mais

MAT-230 Diurno 1ª Folha de Exercícios

MAT-230 Diurno 1ª Folha de Exercícios MAT-230 Diurno 1ª Folha de Exercícios Prof. Paulo F. Leite agosto de 2009 1 Problemas de Geometria 1. Num triângulo isósceles a mediana, a bissetriz e a altura relativas à base coincidem. 2. Sejam A e

Leia mais

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 97 / a QUESTÃO MÚLTIPLA ESCOLHA

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 97 / a QUESTÃO MÚLTIPLA ESCOLHA 11 1 a QUESTÃO MÚLTIPLA ESCOLHA ESCOLHA A ÚNICA RESPOSTA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES ABAIXO. 0 Item 01. O valor de 45 é a. ( ) 1 b. ( 1 ) c. ( ) 5 d. ( 1 ) 5 e. ( ) Item 0. Num Colégio, existem

Leia mais

Grupo 1 - PIC OBMEP 2011 Módulo 2 - Geometria. Resumo do Encontro 6, 22 de setembro de Questões de geometria das provas da OBMEP

Grupo 1 - PIC OBMEP 2011 Módulo 2 - Geometria. Resumo do Encontro 6, 22 de setembro de Questões de geometria das provas da OBMEP Grupo 1 - PIC OBMEP 2011 Módulo 2 - Geometria Resumo do Encontro 6, 22 de setembro de 2012 Questões de geometria das provas da OBMEP http://www.obmep.org.br/provas.htm 1. Área: conceito e áreas do quadrado

Leia mais

Prof. Luiz Carlos Moreira Santos. Questão 01)

Prof. Luiz Carlos Moreira Santos. Questão 01) Questão 01) A figura abaixo representa o perfil de uma escada cujos degraus têm todos a mesma extensão (vide figura), além de mesma altura. Se AB = m e BCA mede 0º, então a medida da extensão de cada degrau

Leia mais

Geometria. Nome: N.ª: Ano: Turma: POLÍGONOS = POLI (muitos) + GONOS (ângulos)

Geometria. Nome: N.ª: Ano: Turma: POLÍGONOS = POLI (muitos) + GONOS (ângulos) MATEMÁTICA 3º CICLO FICHA 16 Geometria regular inscrito numa circunferência Nome: N.ª: Ano: Turma: Data: / / 20 POLÍGONOS = POLI (muitos) + GONOS (ângulos) é uma figura plana limitada por segmentos de

Leia mais

GEOMETRIA PLANA. Prof. Fabiano

GEOMETRIA PLANA. Prof. Fabiano GEOMETRIA PLANA Prof. Fabiano POLÍGONOS REGULARES R.. a. O O O a R a R R = Raio - raio da circunf. circunscrita - distância do centro a um vértice a = Apótema - Raio da circunferência inscrita - distância

Leia mais

MATEMÁTICA Polígonos e circunferências. Circunferência

MATEMÁTICA Polígonos e circunferências. Circunferência MTEMÁTI ircunferência hama-se circunferência de centro e raio r ao conjuntos de pontos do plano cuja a distância ao ponto é igual a r. Uma circunferência de centro e raio r designa-se geralmente por (,

Leia mais

Questão 1 a) A(0; 0) e B(8; 12) b) A(-4; 8) e B(3; -9) c) A(3; -5) e B(6; -2) d) A(2; 3) e B(1/2; 2/3) e) n.d.a.

Questão 1 a) A(0; 0) e B(8; 12) b) A(-4; 8) e B(3; -9) c) A(3; -5) e B(6; -2) d) A(2; 3) e B(1/2; 2/3) e) n.d.a. APOSTILAS (ENEM) VOLUME COMPLETO Exame Nacional de Ensino Médio (ENEM) 4 VOLUMES APOSTILAS IMPRESSAS E DIGITAIS Questão 1 (UFPE) Determine o ponto médio dos segmentos seguintes, que têm medidas inteiras:

Leia mais

Geometria Descritiva 28/08/2012. Elementos Primitivos da Geometria

Geometria Descritiva 28/08/2012. Elementos Primitivos da Geometria Geometria Descritiva Prof. Luiz Antonio do Nascimento ladnascimento@gmail.com www.lnascimento.com.br A Geometria, como qualquer outra ciência, fundamenta-se em observações e experiências para estabelecer

Leia mais

Aula 11 Polígonos Regulares

Aula 11 Polígonos Regulares MODULO 1 - AULA 11 Aula 11 Polígonos Regulares Na Aula 3, em que apresentamos os polígonos convexos, vimos que um polígono regular é um polígono convexo tal que: a) todos os lados são congruentes entre

Leia mais

ARCOS CAD. bhttp://www.mat.uel.br/geometrica/cad/a8amat44.dwg

ARCOS CAD.  bhttp://www.mat.uel.br/geometrica/cad/a8amat44.dwg 1 1. INTRODUÇÃO. ARCOS CAD Nesta aula você aprenderá a construir arcos arquitetônicos compostos por arcos de circunferência utilizando os princípios da tangência e concordância. Nesta aula você aplicará

Leia mais

Plano de Recuperação Final EF2

Plano de Recuperação Final EF2 Professor: Cíntia e Pupo Ano: 9º Objetivos: Proporcionar ao aluno a oportunidade de resgatar os conteúdos trabalhados em Desenho Geométrico, nos quais apresentou defasagens e que lhe servirão como pré-requisitos

Leia mais

Seja AB = BC = CA = 4a. Sendo D o ponto de interseção da reta s com o lado AC temos, pelo teorema de Tales, AD = 3a e DC = a.

Seja AB = BC = CA = 4a. Sendo D o ponto de interseção da reta s com o lado AC temos, pelo teorema de Tales, AD = 3a e DC = a. GABARITO MA1 Geometria I - Avaliação 2-201/2 Questão 1. (pontuação: 2) As retas r, s e t são paralelas, como mostra a figura abaixo. A distância entre r e s é igual a e a distância entre s e t é igual

Leia mais

SAGRADO REDE DE EDUCAÇÃO PROFESSORA :MÁRCIA CONTE 3º ANO ENSINO MÉDIO 2012

SAGRADO REDE DE EDUCAÇÃO PROFESSORA :MÁRCIA CONTE 3º ANO ENSINO MÉDIO 2012 SAGRADO REDE DE EDUCAÇÃO PROFESSORA :MÁRCIA CONTE 3º ANO ENSINO MÉDIO 2012 -POLÍGONOS REGULARES -APÓTEMAS DE BASES REGULARES -PONTOS NOTÁVEIS NO TRIÂNGULO -COMPRIMENTO DA CIRCUNFERÊNCIA -ÁREA DO CÍRCULO

Leia mais

2) Construir um triângulo ABC dados o lado a=4cm, h a =3cm e b/c=3/5.

2) Construir um triângulo ABC dados o lado a=4cm, h a =3cm e b/c=3/5. 77 ) Construir um triângulo ABC dados o lado a=4cm, h a =3cm e b/c=3/5. 3) Obter o ponto do qual possamos ver um segmento dado AB segundo um ângulo α tal que a razão das distâncias do mesmo às extremidades

Leia mais

Matemática Régis Cortes GEOMETRIA PLANA

Matemática Régis Cortes GEOMETRIA PLANA GEOMETRIA PLANA 1 GEOMETRIA PLANA Congruência: dois segmentos ou ângulos são congruentes quando têm as mesmas medidas.  + Î = 180 graus Ê + Ô = 180 graus  + Ê + Î + Ô = 360 graus Quadrado l A = l 2 d

Leia mais

Geometria Analítica - AFA

Geometria Analítica - AFA Geometria Analítica - AFA x = v + (AFA) Considerando no plano cartesiano ortogonal as retas r, s e t, tais que (r) :, (s) : mx + y + m = 0 e (t) : x = 0, y = v analise as proposições abaixo, classificando-

Leia mais

Professor Alexandre Assis. Lista de exercícios de Geometria

Professor Alexandre Assis. Lista de exercícios de Geometria 1. A figura representa três círculos idênticos no interior do triângulo retângulo isósceles ABC. 3. Observando a figura a seguir, determine (em cm): a) o valor de x. b) a medida do segmento AN, sabendo

Leia mais

Aula 24 mtm B GEOMETRIA ESPACIAL

Aula 24 mtm B GEOMETRIA ESPACIAL Aula 24 mtm B GEOMETRIA ESPACIAL Entes Geométricos Ponto A T Reta r s Plano Espaço y α z x Entes Geométricos Postulados ou Axiomas Teorema a 2 = b 2 + c 2 S i =180 Determinação de uma reta Posições relativas

Leia mais

Unidade. Educação Artística 161. I- Limpeza e organização com os materiais são requisitos básicos nesta disciplina.

Unidade. Educação Artística 161. I- Limpeza e organização com os materiais são requisitos básicos nesta disciplina. Unidade 1 2 Educação Artística 161 Unidade 1 I- Limpeza e organização com os materiais são requisitos básicos nesta disciplina. II- O lápis é o responsável direto pela boa qualidade do desenho. Classificamos

Leia mais

TEOREMA DE CEVA E MENELAUS. Teorema 1 (Teorema de Ceva). Sejam AD, BE e CF três cevianas do triângulo ABC, conforme a figura abaixo.

TEOREMA DE CEVA E MENELAUS. Teorema 1 (Teorema de Ceva). Sejam AD, BE e CF três cevianas do triângulo ABC, conforme a figura abaixo. TEOREMA DE CEVA E MENELAUS Definição 1. A ceviana de um triângulo é qualquer segmento de reta que une um dos vértices do triângulo a um ponto pertencente à reta suporte do lado oposto a este vértice. Teorema

Leia mais

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - V

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - V MATEMÁTICA II LISTA DE GEOMETRIA PLANA - V 1) (PUC/MG) Na figura, ABCD é paralelogramo, BE AD e BF CD. Se BE = 1, BF = 6 e BC = 8, então AB mede a) 1 b) 13 c) 14 d) 15 e) 16 ) (CESGRANRIO) O losango ADEF

Leia mais

5. DESENHO GEOMÉTRICO

5. DESENHO GEOMÉTRICO 5. DESENHO GEOMÉTRICO 5.1. Retas Paralelas e Perpendiculares No traçado de retas paralelas ou perpendiculares é indispensável o manejo adequado dos esquadros. Na construção das retas perpendiculares e

Leia mais

I - INTRODUÇÃO 1. POSTULADOS DO DESENHO GEOMÉTRICO

I - INTRODUÇÃO 1. POSTULADOS DO DESENHO GEOMÉTRICO UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE EXPRESSÃO GRÁFICA DISCIPLINA: EXPRESSÃO GRÁFICA I CURSO: ARQUITETURA AUTORES: Luzia Vidal de Souza Deise Maria Bertholdi Costa Paulo Henrique Siqueira I -

Leia mais

Exercícios de testes intermédios

Exercícios de testes intermédios Exercícios de testes intermédios 1. Qual das expressões seguintes designa um número real positivo, para qualquer x pertencente 3 ao intervalo,? (A) sin x cos x (B) cos x tan x tan x sin x sin x tan x Teste

Leia mais

COLÉGIO SHALOM Ensino Fundamental 8 Ano Prof.º: Wesley Disciplina Geometria Aluno (a):. No.

COLÉGIO SHALOM Ensino Fundamental 8 Ano Prof.º: Wesley Disciplina Geometria Aluno (a):. No. COLÉGIO SHALOM Ensino Fundamental 8 Ano Prof.º: Wesley Disciplina Geometria Aluno (a):. No. Trabalho de Recuperação Data: / 12/2016 Valor: Orientações: -Responder manuscrito; -Cópias de colegas, entrega

Leia mais

SOLUÇÃO DAS ATIVIDADES COM GEOPLANO CIRCULAR

SOLUÇÃO DAS ATIVIDADES COM GEOPLANO CIRCULAR SOLUÇÃO DAS ATIVIDADES COM GEOPLANO CIRCULAR Observações. O geoplano circular utilizado tem 4 pinos no círculo. Os pinos do geoplano circular são chamados de pontos. Os pontos do círculo são enumerados

Leia mais

A equação da circunferência

A equação da circunferência A UA UL LA A equação da circunferência Introdução Nas duas últimas aulas você estudou a equação da reta. Nesta aula, veremos que uma circunferência desenhada no plano cartesiano também pode ser representada

Leia mais

GEOMETRIA PLANA. Segmentos congruentes: Dois segmentos ou ângulos são congruentes quando têm as mesmas medidas.

GEOMETRIA PLANA. Segmentos congruentes: Dois segmentos ou ângulos são congruentes quando têm as mesmas medidas. PARTE 01 GEOMETRIA PLANA Introdução A Geometria está apoiada sobre alguns postulados, axiomas, definições e teoremas, sendo que essas definições e postulados são usados para demonstrar a validade de cada

Leia mais

Estudo de Geometria. Iniciação ao. » Passeio no Parque» Circunferências

Estudo de Geometria. Iniciação ao. » Passeio no Parque» Circunferências Iniciação ao Estudo de Geometria com TI-Nspire» Passeio no Parque» Circunferências P Estrada Parque CONTEÚDO ELABORADO PELO GRUPO T 3 PORTUGAL, UTILIZADO NAS SESSÕES PRÁTICAS DOS DIAS T 3 2014 I. Passeio

Leia mais

3ª Série do Ensino Médio

3ª Série do Ensino Médio 3ª Série do Ensino Médio 01. Num laboratório, foi feito um estudo sobre a evolução de uma população de vírus. Ao final de um minuto do início das observações, existia 1 elemento na população; ao final

Leia mais

RETAS PARALELAS INTERCEPTADAS POR UMA TRANSVERSAL

RETAS PARALELAS INTERCEPTADAS POR UMA TRANSVERSAL GEOMETRIA PLANA MEDIDAS DE ÂNGULOS: Raso, se é igual a 180º; Nulo, se, é igual a 0º; Reto:é igual a 90 ; Agudo: é maior que 0 e menor que 90 ; Obtuso: é maior que 90 e menor que 180. IMPORTANTE: se a soma

Leia mais

Propriedades do ortocentro

Propriedades do ortocentro Programa límpico de Treinamento Curso de Geometria - Nível 3 Prof. Rodrigo ula 4 Propriedades do ortocentro ortocentro é o ponto de encontro das três alturas de um triângulo arbitrário. Se o triângulo

Leia mais

LISTA DE EXERCÍCIOS DE REVISÃO DE MATEMÁTICA 2º ANO PROF.: ARI

LISTA DE EXERCÍCIOS DE REVISÃO DE MATEMÁTICA 2º ANO PROF.: ARI 01.: (FATEC) Um terreno retangular tem 170 m de perímetro. e a razão entre as medidas dos lados é 0,7, então a área desse terreno, em metros quadrados, é igual a: a) 7000 b) 5670 c) 4480 d) 1750 e) 1120

Leia mais

APOSTILA I DAC CRIADO POR DÉBORA M. BUENO FRANCO PROFESSORA DE DESENHO ASSISTIDO POR COMPUTADOR FACULDADE EDUCACIONAL DE ARAUCÁRIA - FACEAR

APOSTILA I DAC CRIADO POR DÉBORA M. BUENO FRANCO PROFESSORA DE DESENHO ASSISTIDO POR COMPUTADOR FACULDADE EDUCACIONAL DE ARAUCÁRIA - FACEAR APOSTILA I DAC Alunos O material aqui disponibilizado deve ser entendido como material de apoio às aulas de Desenho Assistido por Computador, não substituindo de qualquer forma o conteúdo da disciplina

Leia mais

ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO

ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO 2011-2012 Sólidos Geométricos NOME: Nº TURMA: Polígonos Um polígono é uma figura geométrica plana limitada por uma linha fechada.

Leia mais

CATÁLOGOS DE ATIVIDADES DA TENDÊNCIA TIC S. Alesson e Júlio

CATÁLOGOS DE ATIVIDADES DA TENDÊNCIA TIC S. Alesson e Júlio CATÁLOGOS DE ATIVIDADES DA TENDÊNCIA TIC S Alesson e Júlio CABRI- GEOMETRY TÍTULO SÉRIE OBJETIVOS ASSUNTO Construção de um 6º ano Identificar as triângulo Equilátero características do Construção de um

Leia mais

LISTA DE EXERCÍCIOS MAT GEOMETRIA E DESENHO GEOMÉTRICO I

LISTA DE EXERCÍCIOS MAT GEOMETRIA E DESENHO GEOMÉTRICO I LISTA DE EXERCÍCIOS MAT 230 - GEOMETRIA E DESENHO GEOMÉTRICO I 1. Numa geometria de incidência, o plano tem 5 pontos. Quantas retas tem este plano? A resposta é única? 2. Exibir um plano de incidência

Leia mais

Márcio Dinis do Nascimento de Jesus

Márcio Dinis do Nascimento de Jesus Márcio Dinis do Nascimento de Jesus Trabalho 2 Construções com o Cinderella! Departamento de Matemática Faculdade de Ciências e Tecnologia Universidade de Coimbra 2013 2 Construções com o Cinderella! Trabalho

Leia mais

Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo

Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo Índice Geometria plana Polígonos Triângulos Congruência de triângulos Semelhança de triângulos Relações métricas no triângulo retângulo Quadriláteros Teorema de Tales Esquadros de madeira www.ser.com.br

Leia mais

E.E.M.FRANCISCO HOLANDA MONTENEGRO PLANO DE CURSO ENSINO MÉDIO

E.E.M.FRANCISCO HOLANDA MONTENEGRO PLANO DE CURSO ENSINO MÉDIO E.E.M.FRANCISCO HOLANDA MONTENEGRO PLANO DE CURSO ENSINO MÉDIO DISCIPLINA: GEOMETRIA SÉRIE: 1º ANO (B, C e D) 2015 PROFESSORES: Crislany Bezerra Moreira Dias BIM. 1º COMPETÊNCIAS/ HABILIDADES D48 - Identificar

Leia mais

Polos Olímpicos de Treinamento. Aula 11. Curso de Geometria - Nível 2. Potência de ponto e eixo radical. Prof. Cícero Thiago

Polos Olímpicos de Treinamento. Aula 11. Curso de Geometria - Nível 2. Potência de ponto e eixo radical. Prof. Cícero Thiago olos Olímpicos de Treinamento Curso de Geometria - Nível 2 rof. Cícero Thiago Aula 11 otência de ponto e eixo radical 1. Definição Seja Γ uma circunferência de centro O e raio R. Seja um ponto que está

Leia mais

Exercícios de Matemática Geometria Analítica

Exercícios de Matemática Geometria Analítica Eercícios de Matemática Geometria Analítica. (UFRGS) Considere um sistema cartesiano ortogonal e o ponto P(. ) de intersecção das duas diagonais de um losango. Se a equação da reta que contém uma das diagonais

Leia mais

Cilindro. MA13 - Unidade 23. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT

Cilindro. MA13 - Unidade 23. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Cilindro MA13 - Unidade 23 Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Cilindro Em um plano H considere uma curva simples fechada C e seja r uma

Leia mais

PROBLEMAS SELECIONADOS DE DESENHO GEOMÉTRICO Parte III: Cônicas e Outras Curvas. Sergio Lima Netto

PROBLEMAS SELECIONADOS DE DESENHO GEOMÉTRICO Parte III: Cônicas e Outras Curvas. Sergio Lima Netto PROBLEMAS SELECIONADOS DE DESENHO GEOMÉTRICO Parte III: Cônicas e Outras Curvas Sergio Lima Netto sergioln@lps.ufrj.br versão 3b dezembro de 2008 Foi feito um grande esforço para reproduzir os desenhos

Leia mais

Construções Fundamentais. r P r

Construções Fundamentais. r P r 1 Construções Fundamentais 1. De um ponto traçar a reta paralela à reta dada. + r 2. De um ponto traçar a perpendicular à reta r, sabendo que o ponto é exterior a essa reta; e de um ponto P traçar a perpendicular

Leia mais

GEOMETRIA. Esse quadradinho no ângulo O significa que é um ângulo reto e sua medida equivale a 90 graus.

GEOMETRIA. Esse quadradinho no ângulo O significa que é um ângulo reto e sua medida equivale a 90 graus. GEOMETRIA Ângulos É a abertura existente entre duas semi-retas que tem a mesma origem. Ângulo reto é formado por duas semi-retas perpendiculares, ou seja, uma horizontal e uma vertical sendo o ponto de

Leia mais

Faculdade Pitágoras. Desenho Técnico. Engenharias. Prof.: Flaudilenio Eduardo Lima

Faculdade Pitágoras. Desenho Técnico. Engenharias. Prof.: Flaudilenio Eduardo Lima Faculdade Pitágoras Desenho Técnico Engenharias Prof.: Flaudilenio Eduardo Lima UNIDADE 1 LINHAS RETAS, CÍRCULOS E ARCOS Proposta do Curso Introdução Principais pontos Capacitar o aluno a se expressar

Leia mais

Aula 3 Polígonos Convexos

Aula 3 Polígonos Convexos MODULO 1 - AULA 3 Aula 3 Polígonos Convexos Conjunto convexo Definição: Um conjunto de pontos chama-se convexo se, quaisquer que sejam dois pontos distintos desse conjunto, o segmento que tem esses pontos

Leia mais

Nome: nº Professor(a): UBERLAN / CRISTIANA Série: 3ª EM Turmas: 3301 / 3302 Data: / /2013

Nome: nº Professor(a): UBERLAN / CRISTIANA Série: 3ª EM Turmas: 3301 / 3302 Data: / /2013 Nome: nº Professor(a): UBERLAN / CRISTIANA Série: 3ª EM Turmas: 3301 / 3302 Data: / /2013 Sem limite para crescer Bateria de Exercícios de Matemática II 1) A área do triângulo, cujos vértices são (1, 2),

Leia mais

Instituto Federal de Educação, Ciência e Tecnologia Rio Grande do Sul Campus Rio Grande CAPÍTULO 4 GEOMETRIA ANALÍTICA

Instituto Federal de Educação, Ciência e Tecnologia Rio Grande do Sul Campus Rio Grande CAPÍTULO 4 GEOMETRIA ANALÍTICA Instituto Federal de Educação, Ciência e Tecnologia Rio Grande do Sul Campus Rio Grande CAPÍTULO 4 GEOMETRIA ANALÍTICA 4. Geometria Analítica 4.1. Introdução Geometria Analítica é a parte da Matemática,

Leia mais

Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b. a) a = 3, b, b R. b) a = 3 e b = 1. c) a = 3 e b 1. d) a 3

Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b. a) a = 3, b, b R. b) a = 3 e b = 1. c) a = 3 e b 1. d) a 3 01 Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b a) a = 3, b, b R b) a = 3 e b = 1 c) a = 3 e b 1 d) a 3 1 0 y = 3x + 1 m = 3 A equação que apresenta uma reta com o mesmo coeficiente angular

Leia mais

Alguns Lugares Geométricos

Alguns Lugares Geométricos QUINT LIST DE EXERCÍCIOS Fundamentos da Matemática II MTEMÁTIC DCET UESC Humberto José ortolossi lguns Lugares Geométricos (Entregar todos os exercícios até o dia 18/05/2004) 1 Exercícios de revisão Um

Leia mais

Escola Secundária de Alberto Sampaio Ficha Formativa de Matemática A Geometria II O produto escalar na definição de lugares geométricos

Escola Secundária de Alberto Sampaio Ficha Formativa de Matemática A Geometria II O produto escalar na definição de lugares geométricos Escola Secundária de Alberto Sampaio Ficha Formativa de Matemática A Geometria II O produto escalar na definição de lugares geométricos º Ano No plano Mediatriz de um segmento de reta [AB] Sendo M o ponto

Leia mais

Exercícios de Aprofundamento Mat Geom Espacial

Exercícios de Aprofundamento Mat Geom Espacial 1. (Fuvest 015) No cubo ABCDEFGH, representado na figura abaixo, cada aresta tem medida 1. Seja M um ponto na semirreta de origem A que passa por E. Denote por θ o ângulo BMH e por x a medida do segmento

Leia mais

CURSO DE CAPACITAÇÃO O USO DE FERRAMENTAS TECNOLÓGICAS E AS POSSIBILIDADES PEDAGÓGICAS NA FORMAÇÃO DOS DOCENTES NA REDE MUNICIPAL DE GURUPI TO

CURSO DE CAPACITAÇÃO O USO DE FERRAMENTAS TECNOLÓGICAS E AS POSSIBILIDADES PEDAGÓGICAS NA FORMAÇÃO DOS DOCENTES NA REDE MUNICIPAL DE GURUPI TO CURSO DE CAPACITAÇÃO O USO DE FERRAMENTAS TECNOLÓGICAS E AS POSSIBILIDADES PEDAGÓGICAS NA FORMAÇÃO DOS DOCENTES NA REDE MUNICIPAL DE GURUPI TO A UTILIZAÇÃO DO SOFTWARE GEOGEBRA COMO FERRAMENTA DE ENSINO

Leia mais