ATIVIDADE: METODOS DE DIVISÃO DE SEGMENTOS E DA CIRCUFERENCIA.

Tamanho: px
Começar a partir da página:

Download "ATIVIDADE: METODOS DE DIVISÃO DE SEGMENTOS E DA CIRCUFERENCIA."

Transcrição

1 ANEXO 7 Referente a Ação 7 5. ATIVIDADE DE PREPARAÇÃO DOS BOLSISTAS ALUNOS MINI-CURSO Construções Geométricas: Esta atividade foi desenvolvida na Universidade com o objetivo de habilitar os bolsistas em procedimentos de construções Geométricas. UNIVERSIDADE FEDERAL DA PARAÍBAS PROJETO PIBID ATIVIDADE: METODOS DE DIVISÃO DE SEGMENTOS E DA CIRCUFERENCIA. 1) DIVISÃO DE UM SEGMENTO EM N PARTES IGUAIS: A) Pelos pontos A e B trace o segmento AB B) Por uma das extremidades, digamos a extremidade A, trace um segmento auxiliar de comprimento arbitrário formando um ângulo diferente de 180 com o segmento AB. C) Divida o segmento auxiliar em, N partes iguais, AA, 1 A, 1 2 A, 2 3 A,..., 3 4 A, N 1 n D) Ligue a extremidade AN do segmente AA, n à extremidade B do segmento AB formando o segmento A. n B E) Pelos pontos A 1, A 2, A 3,, A N 1, trace retas paralelas ao segmento A, n B F) Os pontos B 1, B 2, B 3, B N interseção das retas obtidas no item E) com o segmento AB, divide este segmento em N partes iguais. Examine a figura representada abaixo. A B1 B2 B3 B A1 A2 A3 A4 Justificativa: Use o teorema de Tales com a seguinte redação: Feixe de retas paralelas cortadas por retas transversais determinam segmentos proporcionais. Além do mais, se os segmentos determinados por uma transversal com as paralelas são iguais, então os segmentos determinados pela outra transversal com as paralelas também são iguais. 2) DIVISÃO DE UMA CIRCUNFERENCIA EM TRÊS PARTES IGUAIS: 1) Trace uma circunferência com centro em um ponto O e raio qualquer. 2) Trace dois diâmetros perpendiculares, AB e CD 3) Trace a mediatriz do raio AO, Obtendo os pontos E e F sobre a circunferência 4) Os arcos BE

2 Justificativa: Use o Teorema de Pitágoras. Encontre o comprimento dos segmentos EF, EB e FB, para constatar que são todos de mesmo comprimento, formando portanto um triângulo equilátero e, que portanto, estes segmentos determinam arcos de circunferência de mesmo comprimento, logo a circunferência fica dividida em três partes iguais. 3) DIVIDIR UMA CIRCUNFERÊNCIA EM CINCO PARTES IGUAIS. 1) Construa uma circunferência com centro O e raio r; 2) Construa dois diâmetros perpendiculares AB e CD; 3) Trace a mediatriz do segmento OB e obtenha um ponto E; 4) Centre o compasso no ponto E com abertura EC e obtenha o ponto F sobre o raio AO, ou sobre o diâmetro AB; 5) Centre o compasso no ponto C com abertura CF e obtenha o ponto G na circunferência; 6) O segmento CG divide a circunferência em cinco partes iguais. Justificativa: Use o teorema de Pitágoras para mostrar que CG = R 5 5, que é igual ao comprimento do lado do pentágono regular. 4) DIVIDIR UMA CIRCUNFERÊNCIA EM SETE PARTES IGUAIS. 1) Construa uma circunferência de centro O e raio r; 2) Construa dois diâmetros perpendiculares AB e CD; 3) Construa a mediatriz do raio OB, obtendo E sobre a circunferência e o ponto F sobre o raio OB; 4) O Segmento EF divide a circunferência em sete partes iguais. 2 Justificar: 5) DIVIDIR UMA CIRCUNFERÊNCIA EM NOVE PARTES IGUAIS. 1) Construa uma circunferência de centro O e raio r; 2) Construa dois diâmetros perpendiculares AB e CD; 3) Com centro no ponto C e abertura CO obtenho o ponto E sobre a circunferência, 4) com centro no ponto D e abertura DE obtenha o ponto F no prolongamento do OB 5) Com centro em F e abertura FC obtenha o ponto G no raio AO ;

3 6) O segmento AG divide a circunferência em nove partes iguais. Justificativa: Para construir o polígono de nove lados centre o compasso no ponto A e com abertura AG marque um ponto H sobre o círculo, em seguida com o compasso no ponto H e abertura AH marque o ponto sobre a circunferência, e assim sucessivamente até completar o polígono. 6) DIVIDIR UMA CIRCUNFERÊNCIA EM ONZE PARTES IGUAIS. 1) Construa uma circunferência de centro O e raio r; 2) Construa dois diâmetros perpendiculares AB e CD; 3) Com centro no ponto D e abertura DO obtenho o ponto E sobre a circunferência, 4) com centro no ponto A e abertura AO obtenha o ponto F sobre a circunferência 5) Com centro em E, e abertura EF obtenha o ponto G no raio OC ; 6) O segmento OG divide a circunferência em ONZE partes iguais.

4 OUTRO MÉTODO 1) CONSTRUA UMA CIRCUFENRÊNCIA COM DOIS DIÂMETROS PERPENDICULAR,AB e CD; 2) CONSTRUA O PONTO MÉDIO DO SEGMENTO OB. 3) CONSTRUA UM SEGMENTO CE e SEU PONTO MÉDIO F. 4) O SEGMENTO CF OU FE, É O LADO DO POLIGONO DE ONZE LADOS.

5 EXISTE UM MÉTODO QUE SUBSTITUI OS ANTERIORMENTE DESCRITOS, DENOMINADO MÉTODO DE BION OU RINALDINI. 1) Com centro num ponto O e raio dado trace uma circunferência; 2) Trace dois diâmetros perpendiculares, AB e CD; 3) Por um dos extremos de um dos diâmetros, pelo ponto C, trace uma semi-reta auxiliar; 4) Divida esta semi-reta em partes iguais a quantidade em que deseja dividir a circunferência; 5) Divida o diâmetro na quantidade de partes iguais em que dividiu a reta auxiliar pelo método de divisão de segmentos; 6) Com centro no ponto D e abertura DC e descreva um arco de circunferência e novamente com centro no C e Abertura CD construa um arco de Circunferência obtendo os pontos E e F no prolongamento do diâmetro AB, perpendicular ao diâmetro CD. 7) Pelos pontos E e F trace semi-reta passado pelos pontos do Diâmetro CD marcados com números pares; 8) Com as semi-reta que partem de E e passa por 0 que coincido com e a que passa por 2 obtendo o ponto G sobre a circunferência obtenha o segmento CG e assim sucessivamente até esgotar todos os pontos. Terminada esta etapa, está construída a divisão da circunferência em partes iguais. e FB dividem a circunferência em três partes iguais. SEGUNDA PARTE DO MINICURSO OFICINA Nesta oficina vamos construir segmentos usando somente uma régua sem marcas e um compasso. Dizemos que um segmento é construtível quando for possível construí-lo usando somente régua e compasso sem marcas. Para uma compreensão mais completa desta questão apela-se para procedimentos algébricos. Conhecendo-se dois segmentos, AB e CD vamos construir: a) Segmento soma; b) Segmento produto; c) Segmento quociente; d) Segmento raiz quadrada do produto. Antes porém vamos construir a mediatriz de um segmento e construir uma reta paralela a uma reta dada passando por um ponto fora da reta dada. O material usado é papel A4, régua e compasso sem marcas Procedimentos: Para obter a mediatriz de um segmento qualquer usando régua e compassos sem marcas procede-se da seguinte maneira: 1º Passo: constrói-se o segmento AB em seguida centra-se a ponta saca do compasso nas extremidades A e B do segmento e traça-se dois arcos de circunferências. Nas interseções destes dois arcos constrói-se dois postos P e Q, estes dois pontos determina uma única reta perpendicular ao

6 segmento, esta reta é denominada mediatriz do segmento AB. O ponto M é chamado ponto médio do segmento AB a) Segmento soma: Para construir o segmento representando a soma de segmento AB com o segmento CD, basta construir sobre uma mesma reta um segmento seguido do outro, isto é, sobre uma mesma reta, a partir de uma extremidade B do segmento AB constrói-se o segmento CD, fazendo-se o ponto C do segmento CD coincidir com o ponto B do segmento AB, a + b Observação: Para realizar as construções b, c e d, necessitamos saber construir uma rata t, paralela a uma reta r, passando por um ponto P, fora da reta r, que de acordo com o quinto postulado de Euclides, existe uma única nestas condições. Para isto considere uma reta r e um ponto P fora de r como na figura abaixo: Com a ponta seca do compasso no ponto P construa um ponto A sobre a reta r e com a ponta seca do compasso no ponto A e com abertura AP construa um ponto B sobre a reta r. Em seguida com a ponta seca do compasso no ponto A e abertura BP construa um ponto C, a reta por P e C é a única reta passando por P paralela à reta r. veja que os segmentos BP são Congruentes e, CA e BP são congruentes.

7 b) Obter um segmento de comprimento c que represente o produto do comprimento do segmento a pelo comprimento do segmento b, isto é, c = a b. Procedimento: Por um ponto O construa duas semi-retas perpendiculares em O, conforme figura abaixo. Sobre a semi-reta horizontal construa um segmento AO de comprimento a, e sobre a reta vertical construa um segmento OB de comprimento B. Sobre o segmento B a partir de O construa um segmento unitário OU. Ligue a extremidade U do segmento unitário OU à extremidade a do segmento OA, obtendo o segmento UA. Pela extremidade B, do segmento OB, construa um segmento paralelo ao segmento UA, que interceptará o prolongamento do segmento OA, em um ponto C, O segmento OC é o segmento produto, c = a b. Justificativa: Observe que os triângulos OAU e OCB são semelhantes, 1 b = a c Então 1. c = b. a c) Obter um segmento de comprimento c que represente o quociente do comprimento do segmento b pelo comprimento do segmento a, isto é, c = a/b. Procedimentos: Por um ponto O construa dois segmentos perpendiculares em O. No segmento vertical, a partir do ponto O construa dois segmentos de extremidades A e B representando, respectivamente, os segmentos de comprimentos a e b. No segmento horizontal construa um ponto U representando a extremidade de um segmento de comprimento unitário u. Construa o segmento AU e pelo ponto B construa uma reta paralela à reta suporte do segmento AU, na interseção desta reta com o prolongamento do segmento OU construa um ponto C. O segmento OC representa o quociente do segmento b pelo segmento a, veja figura abaixo Justificativa: Os triângulos OUA e OCB são semelhantes, portanto, b a = c 1

8 d) Construir um segmento de comprimento c que represente o produto dos comprimentos a e b de dois segmentos AB e CD. Procedimento: Construa o segmento AB seguido do segmento CD, isto é, um segmento de comprimento a + b Construa um semicírculo de diâmetro a + b. Pela extremidade B do segmento AB levante uma reta perpendicular ao diâmetro AD que intercepta o semicírculo num ponto E. Observe que o ângulo BD E é congruente ao ângulo AEB, Para justificar esta afirmação examine a figura abaixo, β + γ = 90 μ + θ = 90 { θ + β = 90 μ + γ = 90 Da primeira e da última equação, temos β = μ e da segunda e da quarta, temos θ = γ, portanto os triângulos AEB e BDE são semelhantes, cuja semelhança identifica o ângulo BD E com AEB, então; h a = b h Realizando as contas, temos, Mas h = BE, Logo BE = a b h 2 = a b

9 MAGIA DO PENTÂGONO 1) Construir o pentágono regular dado seu lado AB. Etapa 1 Com a ponta seca do compasso no ponto A e abertura AB construa a circunferência C1e, reciprocamente, com a ponta seca do compasso no ponto B e abertura BA construa a circunferência C2. Etapa 2 Nas interseções das circunferências C1 e C2 marque os pontos C e D e passe a mediatriz do segmento AB. Etapa 3 Com a ponta seca do compasso no ponto C e abertura do Compasso CA ou CB construa a circunferência C3, determinando o ponto O na interseção de C3 com a mediatriz de AB e os pontos G e E nas interseções com C1 e C2. Construa a reta r1 determinada por O e E e a reta r2 determinada por O e G, determinando os pontos F e H sobre as circunferências C1e C2. Os segmentos BH e AF são os outros dois lados do pentágono. Etapa 4 Pelos pontos A, B e H passe uma circunferência, que interceptará a mediatriz em I, os segmentos HI e FI são os outros dois lados do Pentágono. 2) Diagonais do pentágono, 1) Todas diagonais são iguais, isto é, tem o mesmo comprimento, porque formam cinco triângulos equiláteros congruentes, cujas bases são os lados l do pentágono.2) As diagonais é uma razão áurea dos lados, isto é, o comprimento da diagonal dividida pelo comprimento do lado é igual a, 1+ 5, 2 para obter esta razão, considere na figura abaixo as seguintes representações: EB = EC = AD = d e observe que AB //EC e AD //BC, então AG = l = FB = GC, Como o triângulo BEC é semelhante ao triângulo FEG e o triângulo EFA e isósceles. Considere EF = x = AF, então FG = l x. Aplicando a semelhança de triângulo temos, d x = l l x Por outro lado d = l + x, substituindo temos,

10 l + x = l x l x Realizando as contas, temos, l 2 xl x 2 = 0, daí obtém-se que, l x = = d 2 l Então resulta que a diagonal fica perfeitamente determinada, ou seja, d = l ( ) 2 3) Outra maneira de calcular o comprimento da diagonal do pentágono é usando a lei dos cossenos para um triângulo qualquer. Como todos as diagonais são iguais, considere a diagonal EB e o ângulo BA E, então temos pela lei dos cossenos, (EB) 2 = l 2 + l 2 2 l l cos(108 ) = 2 l 2 (1 + 0, ) = 2 l 2 (1, ) Então é imediato, (EB ) = l 2 (1, ) = l ) Obter o lado do Pentágono com função do raio da circunferência inscrita. Observe na figura ao lado que a maneira mais direta é apelar novamente para a lei dos cossenos, considerando o ângulo cujo verte é o ponto H, centro da circunferência Circunscrita e R o raio. l 2 = 2R 2 2R 2 cos(72 ) = 2R 2 (1 cos(72 )) = 2R 2 (1 0, ) = 2R 2 ( )

EXERCÍCIOS RESOLVIDOS ARCOS ARQUITETÔNICOS

EXERCÍCIOS RESOLVIDOS ARCOS ARQUITETÔNICOS Resumo. Maria Bernadete Barison apresenta exercícios e resoluções sobre ARCOS ARQUITETÔNICOS em Desenho Geométrico. Geométrica vol.1 n.8c. 2005. Desenhos construídos por: Enéias de A. Prado e Maria Bernadete

Leia mais

1 Processos Aproximativos

1 Processos Aproximativos Desenho Geométrico Professora: Sandra Maria Tieppo 1 Processos Aproximativos Um processo é chamado aproximativo quando existe nele um erro teórico. Muitas vezes tais processos podem ser convenientes haja

Leia mais

Aula 09 (material didático produzido por Paula Rigo)

Aula 09 (material didático produzido por Paula Rigo) EMBAP ESCOLA DE MÚSICA E BELAS ARTES DO PARANÁ DISCIPLINA DE DESENHO GEOMÉTRICO E GEOMETRIA DESCRITIVA Profª Eliane Dumke e-mail: eliane.dumke@gmail.com Aula 09 (material didático produzido por Paula Rigo)

Leia mais

Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo

Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo Índice Geometria plana Polígonos Triângulos Congruência de triângulos Semelhança de triângulos Relações métricas no triângulo retângulo Quadriláteros Teorema de Tales Esquadros de madeira www.ser.com.br

Leia mais

Circunferência. MA092 Geometria plana e analítica. Interior e exterior. Circunferência e círculo. Francisco A. M. Gomes

Circunferência. MA092 Geometria plana e analítica. Interior e exterior. Circunferência e círculo. Francisco A. M. Gomes Circunferência MA092 Geometria plana e analítica Francisco A. M. Gomes UNICAMP - IMECC Setembro de 2016 A circunferência é o conjunto dos pontos de um plano que estão a uma mesma distância (denominada

Leia mais

EXERCÍCIOS RESOLVIDOS SEGMENTOS PROPORCIONAIS

EXERCÍCIOS RESOLVIDOS SEGMENTOS PROPORCIONAIS 1 EXERCÍCIOS RESOLVIDOS SEGMENTOS PROPORCIONAIS 1. SÃO DADOS TRÊS SEGMENTOS, a = 3 cm, b = 2 cm e c = 2,5 cm. PEDE-SE ENCONTRAR A QUARTA PROPORCIONAL ENTRE a, b e c : PROCESSO I - Consideremos os três

Leia mais

DESENHO GEOMÉTRICO AULA 4T EXERCÍCIOS RESOLVIDOS

DESENHO GEOMÉTRICO AULA 4T EXERCÍCIOS RESOLVIDOS 1 DESENHO GEOMÉTRICO AULA 4T EXERCÍCIOS RESOLVIDOS 1. DIVIDIR O SEGMENTO AB = 5 CM EM MÉDIA E EXTREMA RAZÃO E INDICAR O SEGMENTO ÁUREO DE AB E TAMBÉM O SEGMENTO O QUAL AB É ÁUREO. Seja o segmento AB =

Leia mais

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE. Professor: João Carmo

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE. Professor: João Carmo INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE Professor: João Carmo INTRODUÇÃO Os ângulos são formados por duas semi-retas que têm a mesma origem O. OBS.: o ângulo é denominado

Leia mais

Grupo de exercícios I.2 - Geometria plana- Professor Xanchão

Grupo de exercícios I.2 - Geometria plana- Professor Xanchão Grupo de exercícios I - Geometria plana- Professor Xanchão 1 (G1 - utfpr 013) Um triângulo isósceles tem dois lados congruentes (de medidas iguais) e o outro lado é chamado de base Se em um triângulo isósceles

Leia mais

EXERCÍCIOS RESOLVIDOS TANGÊNCIA

EXERCÍCIOS RESOLVIDOS TANGÊNCIA 1 Resumo. Maria Bernadete Barison apresenta exercícios e resoluções sobre TANGÊNCIA em Desenho Geométrico. Geométrica vol.1 n.6c. 2005. Desenhos construídos por: Enéias de A. Prado. EXERCÍCIOS RESOLVIDOS

Leia mais

Aula 11 Polígonos Regulares

Aula 11 Polígonos Regulares MODULO 1 - AULA 11 Aula 11 Polígonos Regulares Na Aula 3, em que apresentamos os polígonos convexos, vimos que um polígono regular é um polígono convexo tal que: a) todos os lados são congruentes entre

Leia mais

MATEMÁTICA. A(6; 5) t IV) m t. c) Para 0 < θ <, resolva a equação: θ + cos θ + 1 =. sen 2 1

MATEMÁTICA. A(6; 5) t IV) m t. c) Para 0 < θ <, resolva a equação: θ + cos θ + 1 =. sen 2 1 MATEMÁTICA A diferença entre dois números inteiros positivos é. Ao multiplicar um pelo outro, um estudante cometeu um engano, tendo diminuído em 4 o algarismo das dezenas do produto. Para conferir seus

Leia mais

Desenho Geométrico e Concordâncias

Desenho Geométrico e Concordâncias UnB - FGA Desenho Geométrico e Concordâncias Disciplina: DIAC-1 Prof a Eneida González Valdés CONSTRUÇÕES GEOMÉTRICAS Todas as construções da geometria plana são importantes, há, entretanto algumas, que

Leia mais

Propriedades do ortocentro

Propriedades do ortocentro Programa límpico de Treinamento Curso de Geometria - Nível 3 Prof. Rodrigo ula 4 Propriedades do ortocentro ortocentro é o ponto de encontro das três alturas de um triângulo arbitrário. Se o triângulo

Leia mais

1ª Aula. Introdução à Geometria Plana GEOMETRIA. 3- Ângulos Consecutivos: 1- Conceitos Primitivos: a) Ponto A. b) Reta c) Semi-reta

1ª Aula. Introdução à Geometria Plana GEOMETRIA. 3- Ângulos Consecutivos: 1- Conceitos Primitivos: a) Ponto A. b) Reta c) Semi-reta 1ª Aula 3- Ângulos Consecutivos: Introdução à Geometria Plana 1- Conceitos Primitivos: a) Ponto A Na figura, os ângulos AÔB e BÔC são consecutivos, portanto AÔC=AÔB+AÔC b) Reta c) Semi-reta d) Segmento

Leia mais

Aula 7 Complementos. Exercício 1: Em um plano, por um ponto, existe e é única a reta perpendicular

Aula 7 Complementos. Exercício 1: Em um plano, por um ponto, existe e é única a reta perpendicular MODULO 1 - AULA 7 Aula 7 Complementos Apresentamos esta aula em forma de Exercícios Resolvidos, mas são resultados importantes que foram omitidos na primeira aula que tratou de Conceitos Básicos. Exercício

Leia mais

Módulo de Semelhança de Triângulos e Teorema de Tales. Semelhanças entre Figuras e Poĺıgonos. 8 o ano/9 a série E.F.

Módulo de Semelhança de Triângulos e Teorema de Tales. Semelhanças entre Figuras e Poĺıgonos. 8 o ano/9 a série E.F. Módulo de Semelhança de Triângulos e Teorema de Tales Semelhanças entre Figuras e Poĺıgonos. 8 o ano/9 a série E.F. Semelhança de Triângulos e Teorema de Tales Semelhanças entre Figuras e Polígonos. 1

Leia mais

I - INTRODUÇÃO 1. POSTULADOS DO DESENHO GEOMÉTRICO

I - INTRODUÇÃO 1. POSTULADOS DO DESENHO GEOMÉTRICO MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE EXPRESSÃO GRÁFICA Professora Deise Maria Bertholdi Costa Disciplina CD046 Expressão Gráfica I Curso Engenharia

Leia mais

Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b. a) a = 3, b, b R. b) a = 3 e b = 1. c) a = 3 e b 1. d) a 3

Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b. a) a = 3, b, b R. b) a = 3 e b = 1. c) a = 3 e b 1. d) a 3 01 Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b a) a = 3, b, b R b) a = 3 e b = 1 c) a = 3 e b 1 d) a 3 1 0 y = 3x + 1 m = 3 A equação que apresenta uma reta com o mesmo coeficiente angular

Leia mais

AVF - MA Gabarito

AVF - MA Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL AVF - MA13-016.1 - Gabarito Questão 01 [,00 pts ] Em um triângulo ABC de perímetro 9, o lado BC mede 3 e a distância entre os pés das bissetrizes interna

Leia mais

EXERCÍCIOS RESOLVIDOS - RETAS

EXERCÍCIOS RESOLVIDOS - RETAS 1 EXERCÍCIOS RESOLVIDOS - RETAS 1. CONSTRUIR A MEDIATRIZ DE UM SEGMENTO DADO AB = 7 CM: - Utilizando a régua trace o segmento AB de medida igual a 7 cm. - Com a ponta seca do compasso no ponto A, abra

Leia mais

CM127 - Lista 3. Axioma da Paralelas e Quadriláteros Notáveis. 1. Faça todos os exercícios dados em aula.

CM127 - Lista 3. Axioma da Paralelas e Quadriláteros Notáveis. 1. Faça todos os exercícios dados em aula. CM127 - Lista 3 Axioma da Paralelas e Quadriláteros Notáveis 1. Faça todos os exercícios dados em aula. 2. Determine as medidas x e y dos ângulos dos triângulos nos itens abaixo 3. Dizemos que um triângulo

Leia mais

MAT-230 Diurno 1ª Folha de Exercícios

MAT-230 Diurno 1ª Folha de Exercícios MAT-230 Diurno 1ª Folha de Exercícios Prof. Paulo F. Leite agosto de 2009 1 Problemas de Geometria 1. Num triângulo isósceles a mediana, a bissetriz e a altura relativas à base coincidem. 2. Sejam A e

Leia mais

PRIMEIRA LISTA DE EXERCICIOS DE GEOMETRIA PLANA E ESPACIAL

PRIMEIRA LISTA DE EXERCICIOS DE GEOMETRIA PLANA E ESPACIAL PRIMEIRA LISTA DE EXERCICIOS DE GEOMETRIA PLANA E ESPACIAL I) Completes a lacunas: a) Postulado 1 - Por dois pontos...passa uma e só uma reta b) Postulado 2 Para todo...ab e todo...cd exist um único...e

Leia mais

SOLUCÃO DAS ATIVIDADES COM GEOPLANO QUADRANGULAR

SOLUCÃO DAS ATIVIDADES COM GEOPLANO QUADRANGULAR SOLUCÃO DAS ATIVIDADES COM GEOPLANO QUADRANGULAR Observações. Os pinos do geoplano quadrangular são chamados de pontos. A distância horizontal ou vertical entre dois pontos consecutivos é estabelecida

Leia mais

RETAS E ARCOS Prof. Robson Naoto Shimizu

RETAS E ARCOS Prof. Robson Naoto Shimizu CONCORDÂNCIA ENTRE RETAS E ARCOS Prof. Robson Naoto Shimizu O QUE É? Concordar duas linhas, de mesma ou diferente espécie, é reuni-las de forma que nos pontos de contato se possa passar de uma para

Leia mais

A 1. Na figura abaixo, a reta r tem equação y = 2 2 x + 1 no plano cartesiano Oxy. Além disso, os pontos B 0. estão na reta r, sendo B 0

A 1. Na figura abaixo, a reta r tem equação y = 2 2 x + 1 no plano cartesiano Oxy. Além disso, os pontos B 0. estão na reta r, sendo B 0 MATEMÁTICA FUVEST Na figura abaixo, a reta r tem equação y = x + no plano cartesiano Oxy. Além disso, os pontos B 0, B, B, B 3 estão na reta r, sendo B 0 = (0,). Os pontos A 0, A, A, A 3 estão no eixo

Leia mais

Desenho e Projeto de Tubulação Industrial Nível II

Desenho e Projeto de Tubulação Industrial Nível II Desenho e Projeto de Tubulação Industrial Nível II Módulo I Aula 04 TRIÂNGULOS Triângulo é um polígono de três lados. É o polígono que possui o menor número de lados. Talvez seja o polígono mais importante

Leia mais

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - V

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - V MATEMÁTICA II LISTA DE GEOMETRIA PLANA - V 1) (PUC/MG) Na figura, ABCD é paralelogramo, BE AD e BF CD. Se BE = 1, BF = 6 e BC = 8, então AB mede a) 1 b) 13 c) 14 d) 15 e) 16 ) (CESGRANRIO) O losango ADEF

Leia mais

RETAS PARALELAS INTERCEPTADAS POR UMA TRANSVERSAL

RETAS PARALELAS INTERCEPTADAS POR UMA TRANSVERSAL GEOMETRIA PLANA MEDIDAS DE ÂNGULOS: Raso, se é igual a 180º; Nulo, se, é igual a 0º; Reto:é igual a 90 ; Agudo: é maior que 0 e menor que 90 ; Obtuso: é maior que 90 e menor que 180. IMPORTANTE: se a soma

Leia mais

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 4 Professor Marco Costa

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 4 Professor Marco Costa 1 Projeto Jovem Nota 10 1. (Ufscar 2001) Considere o triângulo de vértices A, B, C, representado a seguir. a) Dê a expressão da altura h em função de c (comprimento do lado AB) e do ângulo A (formado pelos

Leia mais

Congruência de triângulos

Congruência de triângulos Segmento: Pré-vestibular Coleção: Alfa, Beta e Gama Disciplina: Matemática Volume: 1 Unidade IV: Série 4 Resoluções Congruência de triângulos 1. a) 90 + 3x + x + x + 30 360 6x + 10 360 6x 40 x 40 b) 105

Leia mais

29 de abril de proenem.com.br

29 de abril de proenem.com.br GABARITO 9 de Resposta da questão 1: [E] Seja FG o eixo de simetria da bandeirinha. Logo, a bandeirinha pronta está representada na figura da alternativa [E]. Resposta da questão : [C] Excetuando se o

Leia mais

DESENHO GEOMÉTRICO Matemática - Unioeste Definição 1. Poligonal é uma figura formada por uma sequência de pontos (vértices)

DESENHO GEOMÉTRICO Matemática - Unioeste Definição 1. Poligonal é uma figura formada por uma sequência de pontos (vértices) DESENHO GEOMÉTRICO Matemática - Unioeste - 2010 1 Polígonos Definição 1. Poligonal é uma figura formada por uma sequência de pontos (vértices) A 1, A 2,..., A n e pelos segmentos (lados) A 1 A 2, A 2 A

Leia mais

Grupo 1 - N1M2 - PIC OBMEP 2011 Módulo 2 - Geometria. Resumo do Encontro 6, 22 de setembro de Questões de geometria das provas da OBMEP

Grupo 1 - N1M2 - PIC OBMEP 2011 Módulo 2 - Geometria. Resumo do Encontro 6, 22 de setembro de Questões de geometria das provas da OBMEP Grupo 1 - N1M2 - PIC OBMEP 2011 Módulo 2 - Geometria Resumo do Encontro 6, 22 de setembro de 2012 Questões de geometria das provas da OBMEP http://www.obmep.org.br/provas.htm 1. Áreas - capítulo 2 da apostila

Leia mais

Construções Elementares com Régua e Compasso

Construções Elementares com Régua e Compasso TERCEIRLISTDEEXERCÍCIOS Fundamentos da Matemática II MTEMÁTIC DCET UESC Humberto José ortolossi Construções Elementares com Régua e Compasso (Entregar todos os exercícios até o dia 20/04/2004) 1 Construindo

Leia mais

Cilindro. MA13 - Unidade 23. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT

Cilindro. MA13 - Unidade 23. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Cilindro MA13 - Unidade 23 Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Cilindro Em um plano H considere uma curva simples fechada C e seja r uma

Leia mais

Grupo de exercícios I - Geometria plana- Professor Xanchão

Grupo de exercícios I - Geometria plana- Professor Xanchão Grupo de exercícios I - Geometria plana- 1. (G1 - ifce 01) Na figura abaixo, R, S e T são pontos sobre a circunferência de centro O. Se x é o número real, tal que a = 5x e b = 3x + 4 são as medidas dos

Leia mais

OS PRISMAS. 1) Definição e Elementos :

OS PRISMAS. 1) Definição e Elementos : 1 OS PRISMAS 1) Definição e Elementos : Dados dois planos paralelos α e β, um polígono contido em um desses planos e um reta r, que intercepta esses planos, chamamos de PRISMA o conjunto de todos os segmentos

Leia mais

Polos Olímpicos de Treinamento. Aula 11. Curso de Geometria - Nível 2. Potência de ponto e eixo radical. Prof. Cícero Thiago

Polos Olímpicos de Treinamento. Aula 11. Curso de Geometria - Nível 2. Potência de ponto e eixo radical. Prof. Cícero Thiago olos Olímpicos de Treinamento Curso de Geometria - Nível 2 rof. Cícero Thiago Aula 11 otência de ponto e eixo radical 1. Definição Seja Γ uma circunferência de centro O e raio R. Seja um ponto que está

Leia mais

GEOMETRIA PLANA. 1) (UFRGS) Na figura abaixo, o vértice A do retângulo OABC está a 6 cm do vértice C. O raio do círculo mede

GEOMETRIA PLANA. 1) (UFRGS) Na figura abaixo, o vértice A do retângulo OABC está a 6 cm do vértice C. O raio do círculo mede GEOMETRI PLN 1) (UFRGS) Na figura abaixo, o vértice do retângulo O está a 6 cm do vértice. O raio do círculo mede O (a) 5 cm (b) 6 cm (c) 8 cm (d) 9 cm (e) 10 cm ) (UFRGS) Na figura abaixo, é o centro

Leia mais

Ficha Formativa de Matemática 7º Ano Tema 5 Figuras Geométricas

Ficha Formativa de Matemática 7º Ano Tema 5 Figuras Geométricas 1. Observa as linhas seguintes. 1.1. Identifica: a) as linhas poligonais; b) as linhas poligonais simples; c) as linhas poligonais fechadas. 1.2. Das linhas poligonais, identifica as que definem: a) polígonos

Leia mais

GEOMETRIA MÉTRICA ESPACIAL

GEOMETRIA MÉTRICA ESPACIAL GEOMETRIA MÉTRICA ESPACIAL .. PARALELEPÍPEDOS RETÂNGULOS Um paralelepípedo retângulo é um prisma reto cujas bases são retângulos. AB CD A' B' C' D' a BC AD B' C' A' D' b COMPRIMENTO LARGURA AA' BB' CC'

Leia mais

ATIVIDADES COM GEOPLANO QUADRANGULAR

ATIVIDADES COM GEOPLANO QUADRANGULAR ATIVIDADES COM GEOPLANO QUADRANGULAR Observações. Os pinos do geoplano quadrangular são chamados de pontos. A distância horizontal ou vertical entre dois pontos consecutivos é estabelecida como a unidade

Leia mais

ÂNGULOS. Dados dois pontos distintos, a reunião do conjunto desses dois pontos com o conjunto dos pontos que estão entre eles é o segmento de reta.

ÂNGULOS. Dados dois pontos distintos, a reunião do conjunto desses dois pontos com o conjunto dos pontos que estão entre eles é o segmento de reta. ÂNGULOS 1 CONSIDERAÇÕES PRELIMINARES 1.1 Notação de ponto, reta e plano: a) Letras: Ponto: letras maiúsculas: A, B, C,... Reta: letras minúsculas: a,b,c... Plano: letras gregas minúsculas: α, β, γ,...

Leia mais

Tema: Circunferência e Polígonos. Rotações

Tema: Circunferência e Polígonos. Rotações Nome: N.º: Turma: 9.º no Compilação de Exercícios de Exames Nacionais (EN) e de Testes Intermédios (TI) Tema: Circunferência e Polígonos. Rotações 1. Na figura está representado um decágono regular [ BCDEFGHIJ

Leia mais

OFICINA DE DOBRADURAS PARTE I

OFICINA DE DOBRADURAS PARTE I OFICINA DE DOBRADURAS PARTE I OFICINA DE DOBRADURAS - OBMEP APRESENTAÇÃO O uso de dobraduras no ensino de geometria está tornando-se cada vez mais reconhecido como um instrumento pedagógico interessante

Leia mais

I. Para concordar um arco com uma reta é necessário que o ponto de concordância e o centro do arco, estejam ambos sobre uma mesma perpendicular.

I. Para concordar um arco com uma reta é necessário que o ponto de concordância e o centro do arco, estejam ambos sobre uma mesma perpendicular. 9.CONCORDÂNCIAS T A N G E N T E S Chama-se concordância de duas linhas curvas ou de uma reta com uma curva, a ligação entre elas, executada de tal forma, que se possa passar de uma para outra, sem ângulo,

Leia mais

Aula 10 Triângulo Retângulo

Aula 10 Triângulo Retângulo Aula 10 Triângulo Retângulo Projeção ortogonal Em um plano, consideremos um ponto e uma reta. Chama-se projeção ortogonal desse ponto sobre essa reta o pé da perpendicular traçada do ponto à reta. Na figura,

Leia mais

MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO ESCOLHA A ÚNICA ALTERNATIVA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES

MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO ESCOLHA A ÚNICA ALTERNATIVA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO DECEx DEPA COLÉGIO MILITAR DO RIO DE JANEIRO (Casa de Thomaz Coelho/1889 9º Ano SubSeção de Matemática 1 a PARTE Múltipla Escolha Álgebra e Geometria ESCOLHA A

Leia mais

GEOMETRIA: POLÍGONOS

GEOMETRIA: POLÍGONOS Atividade: Polígonos (ECA 05 Atividade para 13/04/2015) Série: 1ª Série do Ensino Médio Etapa: 1ª Etapa 2014 Professor: Cadu Pimentel GEOMETRIA: POLÍGONOS ATENÇÃO: Estimados alunos, venho lembrar que somente

Leia mais

5. Desenhos geométricos

5. Desenhos geométricos 17 Exercícios: 1. Na folha A4 impressa escreva o alfabeto com letras maiúsculas e minúsculas e a numeração de 0 a 9, com letras verticias. Faça ainda a legenda da folha 2. Na folha A4 impressa escreva

Leia mais

1 A AVALIAÇÃO UNIDADE I COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C.

1 A AVALIAÇÃO UNIDADE I COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. A AVALIAÇÃO UNIDADE I -06 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. PROFA. MARIA ANTÔNIA C. GOUVEIA QUESTÃO 0 (Bahiana 05.) Os efeitos de um terremoto ocorrido em uma região

Leia mais

1 Geometria Analítica Plana

1 Geometria Analítica Plana UNIVERSIDADE ESTADUAL DO PARANÁ CAMPUS DE CAMPO MOURÃO Curso: Matemática, 1º ano Disciplina: Geometria Analítica e Álgebra Linear Professora: Gislaine Aparecida Periçaro 1 Geometria Analítica Plana A Geometria

Leia mais

x = 4 2sen30 0 = 4 2(1/2) = 2 2 e y = 4 2 cos 30 0 = 4 2( 3/2) = 2 6.

x = 4 2sen30 0 = 4 2(1/2) = 2 2 e y = 4 2 cos 30 0 = 4 2( 3/2) = 2 6. CURSO DE PRÉ CÁLCULO ONLINE - PET MATEMÁTICA / UFMG LISTA DE EXERCÍCIOS RESOLVIDOS: Exercício 1 Calcule o valor de x e y indicados na figura abaixo. Solução: No triângulo retângulo ABD, temos que AD mede

Leia mais

IME º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

IME º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR IME - 2003 1º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Seja z um número complexo de módulo unitário que satisfaz a condição z 2n 1, em que n é um número inteiro positivo.

Leia mais

EXERCÍCIOS RESOLVIDOS ESTUDO DA RETA

EXERCÍCIOS RESOLVIDOS ESTUDO DA RETA 1 EXERCÍCIOS RESOLVIDOS ESTUDO DA RETA 1. SEJA O CUBO DADO NA FIGURA ABAIXO CUJOS VÉRTICES AB PERTENCEM À LT. PERGUNTA-SE: A) QUE TIPO DE RETAS PASSA PELAS ARESTAS EF, EC, EG. B) QUE TIPO DE RETAS PASSA

Leia mais

Unidade. Educação Artística 171. l- Limpeza e organização com os materiais são requisitos básicos nesta disciplina.

Unidade. Educação Artística 171. l- Limpeza e organização com os materiais são requisitos básicos nesta disciplina. 2 Educação Artística 171 Unidade 1 l- Limpeza e organização com os materiais são requisitos básicos nesta disciplina. ll- O lápis é o responsável direto pela boa qualidade do desenho e é classificado,

Leia mais

Na figura: AC = 6 e BC = 2 3. Traçando CE e escrevendo BE = 54 AE, tem-se que

Na figura: AC = 6 e BC = 2 3. Traçando CE e escrevendo BE = 54 AE, tem-se que Resposta da questão 1: [B] A figura apresenta um arco de circunferência com um quadrado inscrito e um triângulo retângulo em um de seus lados. O lado do quadrado é igual a hipotenusa do triângulo. Pelo

Leia mais

CURSO DE CAPACITAÇÃO O USO DE FERRAMENTAS TECNOLÓGICAS E AS POSSIBILIDADES PEDAGÓGICAS NA FORMAÇÃO DOS DOCENTES NA REDE MUNICIPAL DE GURUPI TO

CURSO DE CAPACITAÇÃO O USO DE FERRAMENTAS TECNOLÓGICAS E AS POSSIBILIDADES PEDAGÓGICAS NA FORMAÇÃO DOS DOCENTES NA REDE MUNICIPAL DE GURUPI TO CURSO DE CAPACITAÇÃO O USO DE FERRAMENTAS TECNOLÓGICAS E AS POSSIBILIDADES PEDAGÓGICAS NA FORMAÇÃO DOS DOCENTES NA REDE MUNICIPAL DE GURUPI TO A UTILIZAÇÃO DO SOFTWARE GEOGEBRA COMO FERRAMENTA DE ENSINO

Leia mais

EXERCÍCIOS DE REVISÃO MATEMÁTICA II CONTEÚDO: Relações Métricas nos Triãngulos 3 a SÉRIE ENSINO MÉDIO

EXERCÍCIOS DE REVISÃO MATEMÁTICA II CONTEÚDO: Relações Métricas nos Triãngulos 3 a SÉRIE ENSINO MÉDIO EXERCÍCIOS DE REVISÃO MATEMÁTICA II CONTEÚDO: Relações Métricas nos Triãngulos 3 a SÉRIE ENSINO MÉDIO ======================================================================= 1) (FUVEST-SP) - Dados: MÔB

Leia mais

Atividade 01 Ponto, reta e segmento 01

Atividade 01 Ponto, reta e segmento 01 Atividade 01 Ponto, reta e segmento 01 1. Crie dois pontos livres. Movimente-os. 2. Construa uma reta passando por estes dois pontos. 3. Construa mais dois pontos livres em qualquer lugar da tela, e o

Leia mais

1) Em cada Prisma representado a seguir, calcule a área da base (A b ), a área lateral (A L ), a área total (A T ) e o volume (V):

1) Em cada Prisma representado a seguir, calcule a área da base (A b ), a área lateral (A L ), a área total (A T ) e o volume (V): EXERCÍCIOS DE FIXAÇÃO GEOMETRIA SÓLIDA ÁREAS E VOLUMES DE PRISMAS, CILINDROS E CONES 2 a SÉRIE ENSINO MÉDIO 2011 ==========================================================================================

Leia mais

Lista de exercícios sobre triângulos. (Comitê olímpico)

Lista de exercícios sobre triângulos. (Comitê olímpico) Lista de exercícios sobre triângulos. (Comitê olímpico) 1. (Ufpe) Na figura ilustrada abaixo, os segmentos AB, BC, CD, DE e EA são congruentes. Determine, em graus, a medida do ângulo CAD. 2. (Ufrj) O

Leia mais

esquerda e repetia esse processo até chegar ao ponto A novamente. a) Faça um esboço dessa figura com os três primeiros segmentos.

esquerda e repetia esse processo até chegar ao ponto A novamente. a) Faça um esboço dessa figura com os três primeiros segmentos. ATIVIDADES PARA RECUPERAÇÃO PARALELA - MATEMÁTICA PROFESSOR: CLAUZIR PAIVA NASCIMENTO TURMA: 8º ANO REVISÃO 1) A medida de um ângulo interno de um polígono é o dobro da medida do seu ângulo externo. Qual

Leia mais

PROFMAT AV2 MA

PROFMAT AV2 MA PROFMAT AV MA 11 011 Questão 1. Calcule as seguintes epressões: [ ] (1,0) (a) log n log n (1,0) (b) log a/ log, onde a > 0, > 0 e a base dos logaritmos é fiada arbitrariamente. (a) Como = n 1/n 3, temos

Leia mais

EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA

EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA - 015 1. (Unicamp 015) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0),

Leia mais

Área das figuras planas

Área das figuras planas AS ESPOSTAS ESTÃO NO FINAL DOS EXECÍCIOS. ) Calcule as áreas dos retângulos de base b e altura h nos seguintes casos: a) b = cm e h = 7cm b) b =,dm e h = dm c) b = m e h = m d) b =,m e h =,m ) Determine:

Leia mais

Proposta de teste de avaliação Matemática 9

Proposta de teste de avaliação Matemática 9 Proposta de teste de avaliação Matemática 9 Oo Nome da Escola no letivo 0-0 Matemática 9.º ano Nome do luno Turma N.º Data Professor - - 0 PRTE Nesta parte é permitido o uso da calculadora.. Relativamente

Leia mais

01- Assunto: Equação do 2º grau. Se do quadrado de um número real positivo x subtrairmos 4 unidades, vamos obter o número 140. Qual é o número x?

01- Assunto: Equação do 2º grau. Se do quadrado de um número real positivo x subtrairmos 4 unidades, vamos obter o número 140. Qual é o número x? EXERCÍCIO COMPLEMENTARES - MATEMÁTICA - 9º ANO - ENSINO FUNDAMENTAL - ª ETAPA ============================================================================================== 01- Assunto: Equação do º grau.

Leia mais

Geometria Espacial: Sólidos Geométricos

Geometria Espacial: Sólidos Geométricos Aluno(a): POLIEDROS E PRISMA (1º BIM) Noções Sobre Poliedros Denominam-se sólidos geométricos as figuras geométricas do espaço. Entre os sólidos geométricos, destacamos os poliedros e os corpos redondos.

Leia mais

Lista de Exercícios de Geometria

Lista de Exercícios de Geometria Núcleo Básico de Engenharias Geometria - Geometria Analítica Professor Julierme Oliveira Lista de Exercícios de Geometria Primeira Parte: VETORES 1. Sejam os pontos A(0,0), B(1,0), C(0,1), D(-,3), E(4,-5)

Leia mais

Escola Básica de Ribeirão (Sede) ANO LETIVO 2011/2012 Ficha de Trabalho Abril 2012 Nome: N.º: Turma: Compilação de Exercícios de Exames Nacionais (EN) e de Testes Intermédios (TI) Tema: Circunferência

Leia mais

DESENHO TÉCNICO ( AULA 02)

DESENHO TÉCNICO ( AULA 02) DESENHO TÉCNICO ( AULA 02) Posições da reta e do plano no espaço A geometria, ramo da Matemática que estuda as figuras geométricas, preocupa-se também com a posição que os objetos ocupam no espaço. A reta

Leia mais

ATIVIDADES COM VARETAS

ATIVIDADES COM VARETAS ATIVIDADES COM VARETAS Em todas as atividades é usado o Material: Varetas. Nos casos específicos onde o trabalho é realizado com varetas congruentes será especificado como Material: varetas do mesmo comprimento.

Leia mais

1. Área do triângulo

1. Área do triângulo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Geometria Plana II Prof.:

Leia mais

Unidade. Educação Artística 161. I- Limpeza e organização com os materiais são requisitos básicos nesta disciplina.

Unidade. Educação Artística 161. I- Limpeza e organização com os materiais são requisitos básicos nesta disciplina. Unidade 1 2 Educação Artística 161 Unidade 1 I- Limpeza e organização com os materiais são requisitos básicos nesta disciplina. II- O lápis é o responsável direto pela boa qualidade do desenho. Classificamos

Leia mais

AB AC BC. k PQ PR QR GEOMETRIA PLANA CONCEITOS BÁSICOS SEMELHANÇA DE TRIÂNGULOS. Triângulos isósceles

AB AC BC. k PQ PR QR GEOMETRIA PLANA CONCEITOS BÁSICOS SEMELHANÇA DE TRIÂNGULOS. Triângulos isósceles GEOMETRIA PLANA Triângulos isósceles CONCEITOS BÁSICOS Retas paralelas cortadas por uma transversal São aqueles que possuem dois lados iguais. Ligando o vértice A ao ponto médio da base BC, geramos dois

Leia mais

5. DESENHO GEOMÉTRICO

5. DESENHO GEOMÉTRICO 5. DESENHO GEOMÉTRICO 5.1. Retas Paralelas e Perpendiculares No traçado de retas paralelas ou perpendiculares é indispensável o manejo adequado dos esquadros. Na construção das retas perpendiculares e

Leia mais

SOLUÇÃO DAS ATIVIDADES COM GEOPLANO CIRCULAR

SOLUÇÃO DAS ATIVIDADES COM GEOPLANO CIRCULAR SOLUÇÃO DAS ATIVIDADES COM GEOPLANO CIRCULAR Observações. O geoplano circular utilizado tem 4 pinos no círculo. Os pinos do geoplano circular são chamados de pontos. Os pontos do círculo são enumerados

Leia mais

V = 12 A = 18 F = = 2 V=8 A=12 F= = 2

V = 12 A = 18 F = = 2 V=8 A=12 F= = 2 Por: Belchior, Ismaigna e Jannine Relação de Euler Em todo poliedro convexo é válida a relação seguinte: V - A + F = 2 em que V é o número de vértices, A é o número de arestas e F, o número de faces. Observe

Leia mais

Exercícios de testes intermédios

Exercícios de testes intermédios Exercícios de testes intermédios 1. Qual das expressões seguintes designa um número real positivo, para qualquer x pertencente 3 ao intervalo,? (A) sin x cos x (B) cos x tan x tan x sin x sin x tan x Teste

Leia mais

ÍNDICE: Relações Métricas num Triângulo Retângulo página: 2. Triângulo Retângulo página: 4. Áreas de Polígonos página: 5

ÍNDICE: Relações Métricas num Triângulo Retângulo página: 2. Triângulo Retângulo página: 4. Áreas de Polígonos página: 5 ÍNDICE: Relações Métricas num Triângulo Retângulo página: Triângulo Retângulo página: 4 Áreas de Polígonos página: 5 Área do Círculo e suas partes página: 11 Razão entre áreas de figuras planas semelhantes

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 5. Questão 3. alternativa C. alternativa E. alternativa B.

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 5. Questão 3. alternativa C. alternativa E. alternativa B. Questão TIPO DE PROVA: A Se um número natural n é múltiplo de 9ede, então, certamente, n é: a) múltiplo de 7 b) múltiplo de 0 c) divisível por d) divisível por 90 e) múltiplo de Se n é múltiplo de 9 e

Leia mais

Controle do Professor

Controle do Professor Controle do Professor Compensou as faltas CURSO: CIÊNCIA DA COMPUTAÇÃO DISCIPLINA: GEOMETRIA ANALÍTICA VETORIAL E INTRODUÇÃO À ÁLGEBRA LINEAR SÉRIE: 2º ANO TRABALHO DE COMPENSAÇÃO DE FALTAS DOS ALUNOS

Leia mais

Exercícios de Aprofundamento Mat Geom Espacial

Exercícios de Aprofundamento Mat Geom Espacial 1. (Fuvest 015) No cubo ABCDEFGH, representado na figura abaixo, cada aresta tem medida 1. Seja M um ponto na semirreta de origem A que passa por E. Denote por θ o ângulo BMH e por x a medida do segmento

Leia mais

1. Calcular x e y sabendo-se que (1, 2, x,...) e (12, y, 4,...) são grandezas inversamente proporcionais.

1. Calcular x e y sabendo-se que (1, 2, x,...) e (12, y, 4,...) são grandezas inversamente proporcionais. Nome: nº Professor(a): Série: 1ª EM. Turma: Data: / /2013 Sem limite para crescer Bateria de Exercícios de Matemática II 1º Trimestre 1. Calcular x e y sabendo-se que (1, 2, x,...) e (12, y, 4,...) são

Leia mais

CONTEÚDO E HABILIDADES MATEMÁTICA REVISÃO 1 REVISÃO 2 REVISÃO 3. Conteúdo:

CONTEÚDO E HABILIDADES MATEMÁTICA REVISÃO 1 REVISÃO 2 REVISÃO 3. Conteúdo: 2 Conteúdo: Aula Revisão 1: Geometria Polígonos: Classificação, nome, cálculo das diagonais e a soma dos ângulos internos. Congruência e Semelhança de triângulos 3 Conteúdo: Aula Revisão 2: Álgebra Polinômios:

Leia mais

Geometria. Nome: N.ª: Ano: Turma: POLÍGONOS = POLI (muitos) + GONOS (ângulos)

Geometria. Nome: N.ª: Ano: Turma: POLÍGONOS = POLI (muitos) + GONOS (ângulos) MATEMÁTICA 3º CICLO FICHA 16 Geometria regular inscrito numa circunferência Nome: N.ª: Ano: Turma: Data: / / 20 POLÍGONOS = POLI (muitos) + GONOS (ângulos) é uma figura plana limitada por segmentos de

Leia mais

Módulo Elementos Básicos de Geometria - Parte 3. Circunferência. Professores: Cleber Assis e Tiago Miranda

Módulo Elementos Básicos de Geometria - Parte 3. Circunferência. Professores: Cleber Assis e Tiago Miranda Módulo Elementos Básicos de Geometria - Parte Circunferência. 8 ano/e.f. Professores: Cleber Assis e Tiago Miranda Elementos Básicos de Geometria - Parte. Circunferência. 1 Exercícios Introdutórios Exercício

Leia mais

araribá matemática Quadro de conteúdos e objetivos Quadro de conteúdos e objetivos Unidade 1 Potências Unidade 2 Radiciação

araribá matemática Quadro de conteúdos e objetivos Quadro de conteúdos e objetivos Unidade 1 Potências Unidade 2 Radiciação Unidade 1 Potências 1. Recordando potências Calcular potências com expoente natural. Calcular potências com expoente inteiro negativo. Conhecer e aplicar em expressões as propriedades de potências com

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 22/05/10 PROFESSORES: CARIBÉ E ROBERTO CIDREIRA

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 22/05/10 PROFESSORES: CARIBÉ E ROBERTO CIDREIRA RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 22/05/10 PROFESSORES: CARIBÉ E ROBERTO CIDREIRA Dado um pentágono regular ABCDE, constrói-se uma circunferência pelos vértices B e E de

Leia mais

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA LISTA 9 RECORDAR É VIVER. é igual a:

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA LISTA 9 RECORDAR É VIVER. é igual a: INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA Disciplina: Matemática Professor: Marcello Amadeo Série: 9º ano / EF Estudante: Turma: LISTA 9 RECORDAR É VIVER POTENCIAÇÃO E RADICIAÇÃO (SEÇÃO OPCIONAL)

Leia mais

Exercícios de Matemática Geometria Analítica

Exercícios de Matemática Geometria Analítica Eercícios de Matemática Geometria Analítica. (UFRGS) Considere um sistema cartesiano ortogonal e o ponto P(. ) de intersecção das duas diagonais de um losango. Se a equação da reta que contém uma das diagonais

Leia mais

Figura disponível em: .

Figura disponível em: <http://soumaisenem.com.br/fisica/conhecimentos-basicos-e-fundamentais/grandezas-escalares-egrandezas-vetoriais>. n. 7 VETORES vetor é um segmento orientado; são representações de forças, as quais incluem direção, sentido, intensidade e ponto de aplicação; o módulo, a direção e o sentido caracterizam um vetor: módulo

Leia mais

MA13 Geometria AV2 2014

MA13 Geometria AV2 2014 MA1 Geometria AV 014 Questão 1 [,0 pt ] Na figura a seguir temos que BAC = /, BAD = y/, medidos em radianos, e AB =. Com base nessas informações: a Epresse a área dos triângulos ABC e ABD como funções

Leia mais

UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE

UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE www.elitecampinas.com.br Fone: (19) -71 O ELITE RESOLVE IME 004 PORTUGUÊS/INGLÊS Você na elite das universidades! UNICAMP 004 SEGUNDA FASE MATEMÁTICA www.elitecampinas.com.br Fone: (19) 51-101 O ELITE

Leia mais

Matemática: Trigonometria Vestibulares UNICAMP

Matemática: Trigonometria Vestibulares UNICAMP Matemática: Trigonometria Vestibulares 015-011 - UNICAMP 1. (Unicamp 015) A figura abaixo exibe um círculo de raio r que tangencia internamente um setor circular de raio R e ângulo central θ. a) Para θ

Leia mais

Definição da pirâmide. Seja D uma superfície poligonal contida em um plano α, e V um ponto não pertencente a esse plano.

Definição da pirâmide. Seja D uma superfície poligonal contida em um plano α, e V um ponto não pertencente a esse plano. Unidade 9 - Pirâmide Introdução Definição de pirâmide Denominação de Pirâmides Pirâmide regular Medida da superfície (área) de uma pirâmide regular Volume da pirâmide Introdução A palavra pirâmide, normalmente,

Leia mais

Matemática Régis Cortes GEOMETRIA PLANA

Matemática Régis Cortes GEOMETRIA PLANA GEOMETRIA PLANA 1 GEOMETRIA PLANA Congruência: dois segmentos ou ângulos são congruentes quando têm as mesmas medidas.  + Î = 180 graus Ê + Ô = 180 graus  + Ê + Î + Ô = 360 graus Quadrado l A = l 2 d

Leia mais