22

Save this PDF as:
Tamanho: px
Começar a partir da página:

Download "22"

Transcrição

1 01 Sejam os conjuntos : X,10, 1, ; : conjunto vazio Y : Conjunto dos números pares positivos que são primos Z : Conjunto dos múltiplos de que têm um algarismo e que não são negativos É falso afirmar que (A) X Y (B) X Y,10, 1 (C) X Y 5 X X Y (E) Z Y 8 Z A soma das raízes da equação (A) 0, 5 (B) 10, 5 (C), 5 0, 5 (E), 5 é : 0 Um ret ângulo t em dim ensões 8 cm e 6 cm. De cada vértice traça-se a bissetriz interna. A área do quadrilátero cujos vértices são as interseções das bissetrizes é: (A) cm (B) cm (C) 6 cm cm (E) 1 cm 0 A som a dos valores reais de k que fazem com que a equação k 1 k k 0 tenha uma de suas raízes igual ao quadrado da outra é : (A) (B) (C) 5 6 (E) 05 A 1,A,A,A,A 5,A 6,A, A 8 são os vértices consecutivos de um octógono regular de 6 cm de lado. Ligando- se os pontos A 1,A,A, A obtém-se um trapézio cujo área é de : (A) 18 1cm (B) cm (C) 1cm 6 cm (E) cm

2 Depois de transform arm os o sistem a abaio em um do diferentes de e y têm para módulo da diferença : 1 o grau, os valores de m ódulo (A) 1 (B) 5 (C) (E) y y y y y y , ,00 O valor mais aproimado de é :,... (A) 0, 05 (B) 0, 15 (C) 0, 15 0, 085 (E) 0, 5 08 Se na equação a b c 0 a m édia harm ônica das raízes é igual ao dobro da m édia aritmética destas raízes, podemos afirmar que : (A) b ac (B) b ac (C) b ac b ac (E) 8ac b 09 O piso de um a cozinha tem 0,05 hm de com prim ent o e 0,5 dam de largura. Sabendo-se que para ladrilhar a cozinha foram usados ladrilhos quadrados de lado 15 cm, ao preço unit ário de R $0, 0 e que com prou-se 8% a mais do número de ladrilhos necessários para eventuais perdas, a despesa na compra de ladrilho foi de (A) R $, 00 (B) R $, 00 (C) R $, 00 R $, 00 (E) R $, O com prim ento do arco de um setor circular com 6 cm de área, de um círculo com 1 cm de raio é : (A) cm (B) cm (C) cm cm (E) cm 11

3 A divisão de um núm ero inteiro e positivo A pelo núm ero inteiro positivo B dá o quociente Q e deia o resto R. Se aum entarm os o dividendo A e 9 unidades, m antendo o m esm o divisor B, a divisão dá eata e o quociente aum enta de unidades. O m enor valor da soma A B que satisfaz as condições acima é (A) 9 (B) 11 (C) 8 10 (E) 1 1 Cert a m áquina, t rabalhando horas que deveria trabalhar no fosse de horas diárias seria : (A) 18 horas (B),5horas (C) horas horas (E) Nenhuma hora 1 5 horas por dia, produz 100 peças em dias. O núm ero de o 6 dia, para produzir 180 peças se o regim e de trabalho Num triângulo de lado: a 18cm, b 6cm e c 8cm a projeção do lado c sobre o lado b mede : (A) cm (B) cm (C),5 cm,5 cm (E) 5cm 1 O produto de dois núm eros inteiros é 880. O prim eiro destes núm eros é um quadrado perfeito e o segundo não é quadrado perfeito, m as a raiz quadrada do segundo por falta ecede a raiz quadrada do primeiro de unidades. O maior destes dois números é : (A) múltiplo de 15 (B) menor que 50 (C) maior que 90 menor que 68 (E) maior que 0 15 Um triângulo retângulo tem os catetos m edidos cm cada um. Tomando-se os catetos e a hipotenusa como lados, construirmos eternamente quadrados cujos centros são os pontos A, B e C. A área do triângulo ABC é : 9 (A) cm (B) 18 cm (C) 9 cm 9 cm (E) 6 cm 16

4 Determ ine a área da figura hachurada OBCD sabendo que : OB R, do círculo; CD é o paralelo a OB; AB e XY são diâmetros perpendiculares. OD R ; O é o centro R (A) (B) R ( R ( (C) ) ) B C Y D O A (E) R R 1 X 1 Sejam : N : o conjunto dos inteiros não negativos Z : o conjunto dos números inteiros Q : o conjunto dos números racionais podemos afirmar que : (A) N 0 Z 0 1 (B) Z Q 0 (C) Q 5 0 Z Q (E) N Z Q = 0 N 18 Dois ângulos internos e opostos de um quadrilátero inscrito em um circunferência são proporcionais aos números e 5. O menor desses ângulos mede : 5

5 (A) " " º ' (B) 5 º ' 5 (C) 6" 5" º ' 5 º ' 5 6" 51 º 5 ' 19 A soma dos valores inteiros e positivos de que satisfazem a inequação : 1 dá : (A) 8 (B) 10 (C) 6 9 (E) 1 0 Um losango é int eiro a um a circunferência de 6 cm de raio, de m aneira que a diagonal m aior do losango coincide com um diâm etro da circunferência. Sabendo que um dos ângulos internos do losango tem 60 º podemos afirmar que a área deste losango é : (A) 1 cm (B) cm (C) 8 cm 6 cm (E) 6 cm 1 Se P a b c e e que P 1 6, podemos afirmar que P (A) tem valor negativo para (B) tem valor máimo igual a (C) tem valor máimo igual a 11 tem valor máimo igual a 5 P k é o seu valor numérico para k e sabendo que P P 0 (E) tem valor mínimo igual a 5 Um ponto P dista d de uma circunferência de raio R. Do ponto P traçam-se as tangentes PA e PB à circunferência. A epressão da flecha menor da corda AB é : d R dr (A) (B) d R d R (C) d R d R 6

6 R dr d (E) d dr R Num t riângulo de vért ices A,B, C, os lados opost os m edem respect ivam ent e a 1cm, b 1cm e c 5 cm. O círculo inscrito tem centro em O e tangencia os lados a e b respectivamente nos pontos T e P. A área do quadrilátero CTOPmede : (A) 6 cm (B) 10 cm (E) 0 cm (C) 8 cm cm O quociente de dois núm eros inteiros dá e o m ínim o m últiplo com um entre esses dois números é 1680, o máimo divisor comum terá (A) 1 divisores (B) 16 divisores (C) 8 divisores 10 divisores (E) 0 divisores 5 A som a de todos os valores inteiros e positivos de P que fazem com que seja negativo para qualquer valor de é : (A) 1 (B) 8 (C) 10 1 (E) 15 y P P

02 O resto da divisão por 11 do resultado da expressão

02 O resto da divisão por 11 do resultado da expressão 0 Num colégio verificou-se que 0não alunos têm pai e mãe professores. Qual o número de alunos do colégio, sabendo-se que 55 alunos possuem pelo menos um dos pais professor e que não eistem alunos irmão?

Leia mais

rapazes presentes. Achar a porcentagem das moças que estudam nessa Universidade, em relação ao efetivo da Universidade.

rapazes presentes. Achar a porcentagem das moças que estudam nessa Universidade, em relação ao efetivo da Universidade. 01 Marcar a frase certa: (A) Todo número terminado em 0 é divisível por e por 5. (B) Todo número cuja soma de seus algarismos é 4 ou múltiplo de 4, é divisível por 4 (C) O produto de dois números é igual

Leia mais

02 Do ponto P exterior a uma circunferência tiramos uma secante que corta a

02 Do ponto P exterior a uma circunferência tiramos uma secante que corta a 01 Em um triângulo AB AC 5 cm e BC cm. Tomando-se sobre AB e AC os pontos D e E, respectivamente, de maneira que DE seja paralela a BC e que o quadrilátero BCED seja circunscritível a um círculo, a distância

Leia mais

61

61 0 Dado dois conjuntos de A e B tais que : - O número de subconjuntos de A está compreendido entre 0e 0. - B tem subconjuntos não vazios O produto cartesiano de A por B tem (A) 8 elementos (B) elementos

Leia mais

da população têm cabelos pretos e olhos castanhos e que a população que tem cabelos pretos é 10%

da população têm cabelos pretos e olhos castanhos e que a população que tem cabelos pretos é 10% 0 Três pessoas resolveram percorrer um trajeto da seguinte maneira: a primeira andaria a metade do percurso mais km, a segunda a metade do que falta mais km e finalmente a terceira que andaria a metade

Leia mais

Polígonos PROFESSOR RANILDO LOPES 11.1

Polígonos PROFESSOR RANILDO LOPES 11.1 Polígonos PROFESSOR RANILDO LOPES 11.1 Polígonos Polígono é uma figura geométrica plana e fechada formada apenas por segmentos de reta que não se cruzam no mesmo plano. Exemplos 11.1 Elementos de um polígono

Leia mais

02 Um paralelogramo está inscrito em uma circunferência e um de seus ângulos internos mede em graus 7 x 20º. O valor de x é : "1 "1 7 (C)

02 Um paralelogramo está inscrito em uma circunferência e um de seus ângulos internos mede em graus 7 x 20º. O valor de x é : 1 1 7 (C) 01 Um quadrilátero é circunscritível a um círculo e tem os lados roorcionais aos números 6, 18, e 6 e a soma das medidas de dois lados oostos dá 1. Podemos dizer que o roduto dos dois lados maiores dá

Leia mais

Lista 23 - GEOMETRIA ANALÍTICA - II

Lista 23 - GEOMETRIA ANALÍTICA - II Lista - GEOMETRIA ANALÍTICA - II 1) (UFSM) Sejam o ponto A(, ) e a reta r, bissetriz do 1 o quadrante. A equação da reta que passa pelo ponto A, perpendicular à reta r, é (A) y = + - y = y = - + 8 y +

Leia mais

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 99 / 00 PROVA DE CIÊNCIAS EXATAS DA. 1 a é equivalente a a

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 99 / 00 PROVA DE CIÊNCIAS EXATAS DA. 1 a é equivalente a a 13 1 a PARTE - MATEMÁTICA MÚLTIPLA ESCOLHA ESCOLHA A ÚNICA RESPOSTA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES À ESQUERDA Item 01. Se a R e a 0, a expressão: 1 a é equivalente a a a.( ) 1 b.( ) c.( ) a

Leia mais

Circunferência. MA092 Geometria plana e analítica. Interior e exterior. Circunferência e círculo. Francisco A. M. Gomes

Circunferência. MA092 Geometria plana e analítica. Interior e exterior. Circunferência e círculo. Francisco A. M. Gomes Circunferência MA092 Geometria plana e analítica Francisco A. M. Gomes UNICAMP - IMECC Setembro de 2016 A circunferência é o conjunto dos pontos de um plano que estão a uma mesma distância (denominada

Leia mais

1º S I M U L A D O - ITA IME - M A T E M Á T I C A

1º S I M U L A D O - ITA IME - M A T E M Á T I C A Professor: Judson Santos / Luciano Santos Aluno(a): nº Data: / /0 º S I M U L A D O - ITA IME - M A T E M Á T I C A - 0 0) Seja N o conjunto dos inteiros positivos. Dados os conjuntos A = {p N; p é primo}

Leia mais

6. ( CN - 83 ) Se o lado de um quadrado aumentar de 30% de seu comprimento, a sua área aumentará de: A) 55% B) 47% C) 30% D) 69% E) 90%

6. ( CN - 83 ) Se o lado de um quadrado aumentar de 30% de seu comprimento, a sua área aumentará de: A) 55% B) 47% C) 30% D) 69% E) 90% 1 1. ( CN - 8 ) Duas retas tangenciam uma circunferência, de centro P e 8cm de raio, nos pontos R e S. O ângulo entre essas tangentes é de 10. A área do triângulo PRS em cm, é: 16 B) 16 C) 16 D) 8 E) 8.

Leia mais

Exercícios de Matemática Geometria Analítica

Exercícios de Matemática Geometria Analítica Eercícios de Matemática Geometria Analítica. (UFRGS) Considere um sistema cartesiano ortogonal e o ponto P(. ) de intersecção das duas diagonais de um losango. Se a equação da reta que contém uma das diagonais

Leia mais

MARINHA DO BRASIL DIRETORIA DE ENSINO DA MARINHA (CONCURSO PÚBLICO DE ADMISSÃO A O COLEGIO NAVAL / CPACN-2013) MATEMÁTICA

MARINHA DO BRASIL DIRETORIA DE ENSINO DA MARINHA (CONCURSO PÚBLICO DE ADMISSÃO A O COLEGIO NAVAL / CPACN-2013) MATEMÁTICA MARINHA DO BRASIL DIRETORIA DE ENSINO DA MARINHA (CONCURSO PÚBLICO DE ADMISSÃO A O COLEGIO NAVAL / CPACN203) NÃO ESTÁ AUTORIZADA A UTILIZAÇÃO DE MATERIAL EXTRA MATEMÁTICA . Prova Amarela ) Sejam P + +

Leia mais

PROMILITARES 08/08/2018 MATEMÁTICA. Professor Rodrigo Menezes

PROMILITARES 08/08/2018 MATEMÁTICA. Professor Rodrigo Menezes MATEMÁTICA Professor Rodrigo Menezes Colégio Naval 2012/2013 QUESTÃO 1 Sejam P = 1 + 1 3 1 + 1 5 1 + 1 7 1 + 1 9 1 + 1 11 e Q = 1 1 5 1 1 7 1 1 9 1 1 11 Qual é o valor de P Q? a) 2 b) 2 c) 5 d) 3 e) 5

Leia mais

Prova : Amarela DIRETORIA DE ENSINO DA MARINHA MARINHA DO BRASIL MATEMÁTICA (PROCESSO SELETIVO DE ADMISSÃO AO COLÉGIO NAVAL / PSACN-2009)

Prova : Amarela DIRETORIA DE ENSINO DA MARINHA MARINHA DO BRASIL MATEMÁTICA (PROCESSO SELETIVO DE ADMISSÃO AO COLÉGIO NAVAL / PSACN-2009) MARINHA DO BRASIL DIRETORIA DE ENSINO DA MARINHA (PROCESSO SELETIVO DE ADMISSÃO AO COLÉGIO NAVAL / PSACN2009) NÃO ESTÁ AUTORIZADA A UTILIZAÇÃO DE MATERIAL EXTRA Prova : Amarela MATEMÁTICA 1) Num quadrado

Leia mais

Exercícios Propostos. Exercício 1: Cinco retas distintas em um plano cortam-se em n pontos. Determine o maior valor que n pode assumir.

Exercícios Propostos. Exercício 1: Cinco retas distintas em um plano cortam-se em n pontos. Determine o maior valor que n pode assumir. Exercícios Propostos Exercício 1: Cinco retas distintas em um plano cortam-se em n pontos. Determine o maior valor que n pode assumir. Exercício 2: As bissetrizes de dois ângulos adjacentes AÔB e BÔC são,

Leia mais

a) 64. b) 32. c) 16. d) 8. e) 4.

a) 64. b) 32. c) 16. d) 8. e) 4. GEOMETRIA PLANA 1 1) (UFRGS) Observe com atenção o retângulo ABCD, na figura abaixo. Considerando as relações existentes entre as sua dimensões e a diagonal, a área desse retângulo será igual a ) (UFRGS)

Leia mais

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III 0 Dois círculos de centros A e B são tangentes exteriormente e tangenciam interiormente um círculo de centro C. Se AB = cm, AC = 7 cm e BC = 3 cm, então o raio

Leia mais

96 A área hachurada na figura abaixo onde ABCDé um quadrado de área S, igual a: S 12 (B) 14 (C) 18 (D) 70 (E) 420

96 A área hachurada na figura abaixo onde ABCDé um quadrado de área S, igual a: S 12 (B) 14 (C) 18 (D) 70 (E) 420 0 onsidere a seguinte questão já resolvida por um aluno: Numere a segunda coluna de acordo com a ª ª OLN ª OLN () soma dos quadrados de três e cinco. () Menos três ao quadrado. () O quadrado da soma de

Leia mais

Prova Vestibular ITA 2000

Prova Vestibular ITA 2000 Prova Vestibular ITA Versão. ITA - (ITA ) Sejam f, g : R R definidas por f ( ) = e g cos 5 ( ) =. Podemos afirmar que: f é injetora e par e g é ímpar. g é sobrejetora e f é bijetora e g é par e f é ímpar

Leia mais

RETA E CIRCUNFERÊNCIA

RETA E CIRCUNFERÊNCIA RETA E CIRCUNFERÊNCIA - 016 1. (Unifesp 016) Na figura, as retas r, s e t estão em um mesmo plano cartesiano. Sabe-se que r e t passam pela origem desse sistema, e que PQRS é um trapézio. a) Determine

Leia mais

6. Considere. igual a : (A) f (x) + 2x f(x) = 0 (B) f (x) x f(x) = 0 (C) f (x) + f(x) = 0 (D) f (x) f(x) = 0 (E) f (x) 2x f(x) = 0

6. Considere. igual a : (A) f (x) + 2x f(x) = 0 (B) f (x) x f(x) = 0 (C) f (x) + f(x) = 0 (D) f (x) f(x) = 0 (E) f (x) 2x f(x) = 0 QUESTÃO ÚNICA 0,000 pontos distribuídos em 50 itens Marque no cartão de respostas a única alternativa que responde de maneira correta ao pedido de cada item.. O valor da área, em unidades de área, limitada

Leia mais

Lista 5. Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 4.1, pág. 147 em diante.

Lista 5. Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 4.1, pág. 147 em diante. MA13 Exercícios das Unidades 8, 9 e 10 2014 Lista 5 Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 4.1, pág. 147 em diante. 1) As retas r, s e t são paralelas com s entre r e t. As transversais

Leia mais

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 4 Professor Marco Costa

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 4 Professor Marco Costa 1 Projeto Jovem Nota 10 1. (Ufscar 2001) Considere o triângulo de vértices A, B, C, representado a seguir. a) Dê a expressão da altura h em função de c (comprimento do lado AB) e do ângulo A (formado pelos

Leia mais

BANCO DE QUESTÕES - GEOMETRIA - 8º ANO - ENSINO FUNDAMENTAL

BANCO DE QUESTÕES - GEOMETRIA - 8º ANO - ENSINO FUNDAMENTAL PROFESSOR: EQUIPE E TEÁTI O E QUESTÕES - GEOETRI - 8º O - ESIO FUETL ============================================================================ 01- Um polígono de 4 lados chama-se: () quadrado. () paralelogramo.

Leia mais

(A) 3 (B) 1 (A) (B) (D) (E) ( 2 + 2) 2x 2 3x 2 = 0 é: (A) (2, 1 2 ) (B) ( 14 5, 1) (C) ( 1 2. (E) x + x = b a.

(A) 3 (B) 1 (A) (B) (D) (E) ( 2 + 2) 2x 2 3x 2 = 0 é: (A) (2, 1 2 ) (B) ( 14 5, 1) (C) ( 1 2. (E) x + x = b a. Pré-F 2017 Simulado #6 12 de julho de 2017 Q1. (EsS) Os preços de duas peças de fazenda estão entre si como 7 está para 8. Sabendo-se que o triplo do preço de uma menos o dobro do preço da outra vale R$

Leia mais

GEOMETRIA PLANA. 1) (UFRGS) Na figura abaixo, o vértice A do retângulo OABC está a 6 cm do vértice C. O raio do círculo mede

GEOMETRIA PLANA. 1) (UFRGS) Na figura abaixo, o vértice A do retângulo OABC está a 6 cm do vértice C. O raio do círculo mede GEOMETRI PLN 1) (UFRGS) Na figura abaixo, o vértice do retângulo O está a 6 cm do vértice. O raio do círculo mede O (a) 5 cm (b) 6 cm (c) 8 cm (d) 9 cm (e) 10 cm ) (UFRGS) Na figura abaixo, é o centro

Leia mais

Colégio Naval 2003 (prova verde)

Colégio Naval 2003 (prova verde) Colégio Naval 00 (prova verde) 01) Analise as seguintes afirmativas sobre um sistema S se duas equações do primeiro grau com duas incógnitas X e Y. I - S sempre terá ao menos uma solução, se os seus termos

Leia mais

ITA18 - Revisão. LMAT10A-1 - ITA 2017 (objetivas) Questão 1

ITA18 - Revisão. LMAT10A-1 - ITA 2017 (objetivas) Questão 1 ITA18 - Revisão LMAT10A-1 - ITA 2017 (objetivas) Questão 1 Sejam X e Y dois conjuntos finitos com X Y e X Y. Considere as seguintes afirmações: 1. Existe uma bijeção f : X Y. 2. Existe uma função injetora

Leia mais

MATEMÁTICA SARGENTO DA FAB

MATEMÁTICA SARGENTO DA FAB MATEMÁTICA BRUNA PAULA 1 COLETÂNEA DE QUESTÕES DE MATEMÁTICA DA EEAr (QUESTÕES RESOLVIDAS) QUESTÃO 1 (EEAr 2013) Se x é um arco do 1º quadrante, com sen x a e cosx b, então é RESPOSTA: d QUESTÃO 2 (EEAr

Leia mais

Colégio Naval 2002 (prova azul)

Colégio Naval 2002 (prova azul) Colégio Naval 00 (prova azul) 01) O número de múltiplos de 1 compreendidos entre 357 e 3578 é igual a (A) 68 (B) 69 (C) 70 (D) 71 (E) 7 1ª SOLUÇÃO: Seja A o número que denota a quantidade no intervalo

Leia mais

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 97 / a QUESTÃO MÚLTIPLA ESCOLHA

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 97 / a QUESTÃO MÚLTIPLA ESCOLHA 11 1 a QUESTÃO MÚLTIPLA ESCOLHA ESCOLHA A ÚNICA RESPOSTA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES ABAIXO. 0 Item 01. O valor de 45 é a. ( ) 1 b. ( 1 ) c. ( ) 5 d. ( 1 ) 5 e. ( ) Item 0. Num Colégio, existem

Leia mais

Matemática B Extensivo V. 7

Matemática B Extensivo V. 7 GRITO Matemática Etensivo V. 7 Eercícios ) D ) D ) I. Falso. O diâmetro é dado por. r. cm. II. Verdadeiro. o volume é dado por π. r² π. ² π cm² III. Verdadeiro. (, ) (, ) e assim, ( )² + ( )² r² fica ²

Leia mais

Área das figuras planas

Área das figuras planas AS ESPOSTAS ESTÃO NO FINAL DOS EXECÍCIOS. ) Calcule as áreas dos retângulos de base b e altura h nos seguintes casos: a) b = cm e h = 7cm b) b =,dm e h = dm c) b = m e h = m d) b =,m e h =,m ) Determine:

Leia mais

LISTA DE REVISÃO MENSAL 1º ANO 2º TRIMESTRE PROF. JADIEL

LISTA DE REVISÃO MENSAL 1º ANO 2º TRIMESTRE PROF. JADIEL LISTA DE REVISÃO MENSAL 1º ANO º TRIMESTRE PROF. JADIEL 1) (Unesp 016) Em um terreno retangular ABCD, de 0 m, serão construídos um deque e um lago, ambos de superfícies retangulares de mesma largura, com

Leia mais

36ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO

36ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO 6ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (Ensino Médio) GABARITO GABARITO NÍVEL ) C 6) A ) D 6) A ) D ) A 7) A ) E 7) B ) E ) A 8) E ) B 8) E ) A ) C 9) C ) D 9) E ) B ) A 0) B ) A 0)

Leia mais

Qual o raio de um círculo com 53,38 cm de perímetro? (considera = 3,14) Qual o diâmetro de um círculo com 37,68 cm de perímetro?

Qual o raio de um círculo com 53,38 cm de perímetro? (considera = 3,14) Qual o diâmetro de um círculo com 37,68 cm de perímetro? Qual o raio de um círculo com 53,38 cm de perímetro? (considera = 3,14) Qual o diâmetro de um círculo com 37,68 cm de perímetro? (considera = 3,14) Qual o perímetro de um círculo com 18 cm de raio? (considera

Leia mais

Achar o valor de: 6 ( (B) 20 (C) 2 3 (F) N.R.A. (E)

Achar o valor de: 6 ( (B) 20 (C) 2 3 (F) N.R.A. (E) 01 char o valor de: 6 ( 5 1,75,1777... ) () 17 5 (B) 0 48 7 0 que taxa mensal deve ser colocado um capital durante certo tempo, para que o juro recebido seja o triplo do que receberá na taxa anual de %?

Leia mais

RETAS E CIRCUNFERÊNCIAS

RETAS E CIRCUNFERÊNCIAS RETAS E CIRCUNFERÊNCIAS Diâmetro Corda que passa pelo centro da circunferência [EF] e [GH] Raio Segmento de reta que une o centro a um ponto da circunferência [OD] [AB], [IJ], [GH], são cordas - segmentos

Leia mais

LISTA DE EXERCÍCIOS DE REVISÃO DE MATEMÁTICA 2º ANO PROF.: ARI

LISTA DE EXERCÍCIOS DE REVISÃO DE MATEMÁTICA 2º ANO PROF.: ARI 01.: (FATEC) Um terreno retangular tem 170 m de perímetro. e a razão entre as medidas dos lados é 0,7, então a área desse terreno, em metros quadrados, é igual a: a) 7000 b) 5670 c) 4480 d) 1750 e) 1120

Leia mais

30's Volume 15 Matemática

30's Volume 15 Matemática 30's Volume 1 Matemática www.cursomentor.com 9 de junho de 014 Q1. Considere os segmentos AB = x, BC =, CD = x + 1 e DE = x 18 e que AB = CD. Encontre x. BC DE Q. Em um triângulo ABC, AM é bissetriz interna

Leia mais

Prova : Amarela DIRETORIA DE ENSINO DA MARINHA MARINHA DO BRASIL (PROCESSO SELETIVO DE ADMISSÃO A0 COLÉGIO NAVAL / PSACN-2008) MATEMÁTICA

Prova : Amarela DIRETORIA DE ENSINO DA MARINHA MARINHA DO BRASIL (PROCESSO SELETIVO DE ADMISSÃO A0 COLÉGIO NAVAL / PSACN-2008) MATEMÁTICA MARINHA DO BRASIL DIRETORIA DE ENSINO DA MARINHA (PROCESSO SELETIVO DE ADMISSÃO A0 COLÉGIO NAVAL / PSACN2008) NÃO ESTÁ AUTORIZADA A UTILIZAÇÃO DE MATERIAL EXTRA Prova : Amarela MATEMÁTICA 1) Sabendose

Leia mais

Rua Baronesa, sala Praça Seca - Rio de Janeiro Tel:

Rua Baronesa, sala Praça Seca - Rio de Janeiro Tel: Rua Baronesa, 70 - sala 06 - Praça Seca - Rio de Janeiro Tel: 90608-990666 COLÉGIO NAVAL - 97 - Matemática Provas anteriores do Colégio Naval - 97 - Matemática 0. Achar o valor de: 6 (,7+,777... + ) 8

Leia mais

Lista 3. Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 2.5, pág. 81 em diante.

Lista 3. Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 2.5, pág. 81 em diante. MA13 Exercícios das Unidades 4 e 5 2014 Lista 3 Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 2.5, pág. 81 em diante. 1) Seja ABCD um quadrilátero qualquer. Prove que os pontos médios

Leia mais

1. Posição de retas 11 Construindo retas paralelas com régua e compasso 13

1. Posição de retas 11 Construindo retas paralelas com régua e compasso 13 Sumário CAPÍTULO 1 Construindo retas e ângulos 1. Posição de retas 11 Construindo retas paralelas com régua e compasso 13 2. Partes da reta 14 Construindo segmentos congruentes com régua e compasso 15

Leia mais

Aula 11 Polígonos Regulares

Aula 11 Polígonos Regulares MODULO 1 - AULA 11 Aula 11 Polígonos Regulares Na Aula 3, em que apresentamos os polígonos convexos, vimos que um polígono regular é um polígono convexo tal que: a) todos os lados são congruentes entre

Leia mais

Professor Mascena Cordeiro

Professor Mascena Cordeiro www.mascenacordeiro.com Professor Mascena Cordeiro º Ano Ensino Médio M A T E M Á T I C A. Determine os valores de m pertencentes ao conjunto dos números reais, tal que os pontos (0, -), (, m) e (-, -)

Leia mais

Triângulos classificação

Triângulos classificação Triângulos classificação Quanto aos ângulos Acutângulo: possui três ângulos agudos. Quanto aos lados Equilátero: três lados de mesma medida. Obs.: os três ângulos internos têm medidas de 60º. Retângulo:

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Chamada

Prova final de MATEMÁTICA - 3o ciclo a Chamada Prova final de MATEMÁTICA - 3o ciclo 013-1 a Chamada Proposta de resolução 1. Como o João escolhe 1 de entre 9 bolas, o número de casos possíveis para as escolhas do João são 9. Como os números, 3, 5 e

Leia mais

INSTRUÇÕES PARA REALIZAÇÃO DA PROVA

INSTRUÇÕES PARA REALIZAÇÃO DA PROVA COLÉGIIO MIILIITR DE BRSÍÍLII CONCURSO DE DMISSÃO 00 PROV DE MTEMÁTIIC RELIZÇÃO: OUT 0 1ª SÉRIIE Chefe da Seção INSTRUÇÕES PR RELIZÇÃO D PROV 1. CONFIR SU PROV a. Sua prova contém 10 (dez) páginas numeradas

Leia mais

LISTA DE REVISÃO PROVA MENSAL MATEMÁTICA 1º ANO 2º TRIMESTRE ÁLGEBRA

LISTA DE REVISÃO PROVA MENSAL MATEMÁTICA 1º ANO 2º TRIMESTRE ÁLGEBRA LISTA DE REVISÃO PROVA MENSAL MATEMÁTICA 1º ANO º TRIMESTRE ÁLGEBRA 1) Se o preço de um produto aumentou 0% anteontem e 0% hoje, então, de anteontem para hoje, esse preço aumentou: A) 50% B) 54% C) 55%

Leia mais

MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO COLÉGIO MILITAR DO RECIFE PROVA DE MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO

MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO COLÉGIO MILITAR DO RECIFE PROVA DE MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO DEP DEPA COLÉGIO MILITAR DO RECIFE 1 DE OUTUBRO DE 006 Página 1 / 8 ITEM 01 Sendo E (3 11) 11 7, encontramos para E simplificada um valor igual a: A ( ) 7 11 B

Leia mais

Instruções para a realização da Prova Leia com muita atenção

Instruções para a realização da Prova Leia com muita atenção Nível 3 Instruções para a realização da Prova Leia com muita atenção Prova da segunda fase Caro Aluno, Parabéns pela sua participação na décima segunda edição da Olimpíada de Matemática de São José do

Leia mais

Geometria Plana 1 (UEM-2013) Em um dia, em uma determinada região plana, o Sol nasce às 7 horas e se põe às 19 horas. Um observador, nessa região, deseja comparar a altura de determinados objetos com o

Leia mais

Nome: nº Professor(a): UBERLAN / CRISTIANA Série: 3ª EM Turmas: 3301 / 3302 Data: / /2013

Nome: nº Professor(a): UBERLAN / CRISTIANA Série: 3ª EM Turmas: 3301 / 3302 Data: / /2013 Nome: nº Professor(a): UBERLAN / CRISTIANA Série: 3ª EM Turmas: 3301 / 3302 Data: / /2013 Sem limite para crescer Bateria de Exercícios de Matemática II 1) A área do triângulo, cujos vértices são (1, 2),

Leia mais

PREPARATÓRIO PROFMAT/ AULA 8 Geometria

PREPARATÓRIO PROFMAT/ AULA 8 Geometria PREPARATÓRIO PROFMAT/ AULA 8 Geometria QUESTÕES DISCURSIVAS Questão 1. (PROFMAT-2012) As figuras a seguir mostram duas circunferências distintas, com centros C 1 e C 2 que se intersectam nos pontos A e

Leia mais

Plano de Recuperação Semestral EF2

Plano de Recuperação Semestral EF2 Série/Ano: 9º ANO MATEMÁTICA Objetivo: Proporcionar ao aluno a oportunidade de rever os conteúdos trabalhados durante o semestre nos quais apresentou dificuldade e que servirão como pré-requisitos para

Leia mais

INSTRUÇÕES. Esta prova é individual e sem consulta à qualquer material.

INSTRUÇÕES. Esta prova é individual e sem consulta à qualquer material. OPRM 07 Nível 3 (Ensino Médio) Primeira Fase 09/06/7 ou 0/06/7 Duração: 3 horas Nome: Escola: Aplicador(a): INSTRUÇÕES Escreva seu nome, o nome da sua escola e nome do APLICADOR nos campos acima. Esta

Leia mais

SOLUÇÃO DAS ATIVIDADES COM GEOPLANO CIRCULAR

SOLUÇÃO DAS ATIVIDADES COM GEOPLANO CIRCULAR SOLUÇÃO DAS ATIVIDADES COM GEOPLANO CIRCULAR Observações. O geoplano circular utilizado tem 4 pinos no círculo. Os pinos do geoplano circular são chamados de pontos. Os pontos do círculo são enumerados

Leia mais

A solução do sistema de equações lineares. x 2y 2z = 1 x 2z = 3. 2y = 4. { z = 1. x = 5 y = 2. y = 2 z = 1

A solução do sistema de equações lineares. x 2y 2z = 1 x 2z = 3. 2y = 4. { z = 1. x = 5 y = 2. y = 2 z = 1 MATEMÁTICA e A solução do sistema de equações lineares y z = z = 3 é: y z = a) = 5, y = e z =. b) = 5, y = e z =. c) = 5, y = e z =. d) = 5, y = e z =. e) = 5, y = e z =. y z = z = 3 y z = y z = y = z

Leia mais

Av. João Pessoa, 100 Magalhães Laguna / Santa Catarina CEP

Av. João Pessoa, 100 Magalhães Laguna / Santa Catarina CEP Disciplina: Matemática Curso: Ensino Médio Professor(a): Flávio Calônico Júnior Turma: 3ª Série E M E N T A II Trimestre 2013 Conteúdos Programáticos Data 21/maio 28/maio Conteúdo FUNÇÃO MODULAR Interpretação

Leia mais

Professor Alexandre Assis. Lista de exercícios de Geometria

Professor Alexandre Assis. Lista de exercícios de Geometria 1. A figura representa três círculos idênticos no interior do triângulo retângulo isósceles ABC. 3. Observando a figura a seguir, determine (em cm): a) o valor de x. b) a medida do segmento AN, sabendo

Leia mais

Colégio RESOLUÇÃO. Dessa maneira, a média geométrica entre, 8 e 9 é: Portanto, a média geométrica entre, 8, é um número maior que zero e menor que 1.

Colégio RESOLUÇÃO. Dessa maneira, a média geométrica entre, 8 e 9 é: Portanto, a média geométrica entre, 8, é um número maior que zero e menor que 1. Colégio Nome: N.º: Endereço: Data: Telefone: E-mail: Disciplina: MATEMÁTICA Prova: DESAFIO PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 2019 QUESTÃO 16 1 1 1 1. Determinando a média geométrica entre

Leia mais

INSTRUÇÕES. Esta prova é individual e sem consulta à qualquer material.

INSTRUÇÕES. Esta prova é individual e sem consulta à qualquer material. OPRM 016 Nível Segunda Fase 4/09/16 Duração: 4 Horas e 30 minutos Nome: Escola: Aplicador(a): INSTRUÇÕES Escreva seu nome, o nome da sua escola e nome do APLICADOR(A) nos campos acima. Esta prova contém

Leia mais

PROCESSO SELETIVO ADMISSÃO COLÉGIO NAVAL (PSA CN/2 004) (la FASE) Prova : Amarela MATEMÁTICA

PROCESSO SELETIVO ADMISSÃO COLÉGIO NAVAL (PSA CN/2 004) (la FASE) Prova : Amarela MATEMÁTICA PROCEO ELETIVO DE ADMIÃO AO COLÉGIO NAVAL (PA CN/2 004) (la FAE) Prova : Amarela MATEMÁTICA 1) F Na figura acima, ABCD é um quadrado de área 104 e o ponto O é o centro do semicírculo de diâmetro AB.A área

Leia mais

GGM Geometria Básica - UFF Lista 4 Profa. Lhaylla Crissaff. 1. Encontre a área de um losango qualquer em função de suas diagonais. = k 2.

GGM Geometria Básica - UFF Lista 4 Profa. Lhaylla Crissaff. 1. Encontre a área de um losango qualquer em função de suas diagonais. = k 2. 1. Encontre a área de um losango qualquer em função de suas diagonais. 2. Se dois triângulos ABC e DEF são semelhantes com razão de semelhança k, mostre que A ABC A DEF = k 2. 3. Na figura 1, ABCD e EF

Leia mais

LISTA DE RECUPERAÇÃO DE GEOMETRIA 1º ANO 2º TRIMESTRE

LISTA DE RECUPERAÇÃO DE GEOMETRIA 1º ANO 2º TRIMESTRE LISTA DE RECUPERAÇÃO DE GEOMETRIA 1º ANO 2º TRIMESTRE 1) Na figura a seguir, o ponto O é o centro da circunferência, AB e AC são segmentos tangentes e o raio da circunferência mede o dobro de x. O perímetro

Leia mais

NOTAÇÕES. : inversa da matriz M : produto das matrizes M e N : segmento de reta de extremidades nos pontos A e B

NOTAÇÕES. : inversa da matriz M : produto das matrizes M e N : segmento de reta de extremidades nos pontos A e B NOTAÇÕES R C : conjunto dos números reais : conjunto dos números complexos i : unidade imaginária i = 1 det M : determinante da matriz M M 1 MN AB : inversa da matriz M : produto das matrizes M e N : segmento

Leia mais

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 6 Professor Marco Costa

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 6 Professor Marco Costa 1 Projeto Jovem Nota 10 1. (Fgv 97) No plano cartesiano, os vértices de um triângulo são A (5,2), B (1,3) e C (8,-4). a) Obtenha a medida da altura do triângulo, que passa por A. b) Calcule a área do triângulo

Leia mais

VESTIBULAR UFPE UFRPE / ª ETAPA

VESTIBULAR UFPE UFRPE / ª ETAPA VSTIULR UFP UFRP / 1999 2ª TP NOM O LUNO: SOL: SÉRI: TURM: MTMÁTI 2 01. O triângulo da ilustração abaixo é isósceles ( = ) e = = (isto é,, trissectam ): nalise as afirmações: 0-0) Os ângulos, e são congruentes.

Leia mais

CIRCUNFERÊNCIA E CÍRCULO

CIRCUNFERÊNCIA E CÍRCULO IRUNFRÊNI ÍRUL 01 ( FUVST) medida do ângulo ˆ inscrito na circunferência de centro é, em graus, ) 100 ) 110 ) 10 ) 15 35º 0 0 ( U ) bserve a figura. la mostra dois círculos de mesmo raio com centros em

Leia mais

Lista de Exercícios 1 - Caio Milani e Gabriel Mendes (1º Ano)

Lista de Exercícios 1 - Caio Milani e Gabriel Mendes (1º Ano) Lista de Exercícios 1 - Caio Milani e Gabriel Mendes (1º Ano) Polígonos 1. Calcule o número de diagonais de um icoságono (20 lados). 2. Determine o polígono cujo número de diagonais é o triplo do número

Leia mais

Circunferência e círculo. Posições relativas de ponto e circunferência. Posições relativas de reta e circunferência

Circunferência e círculo. Posições relativas de ponto e circunferência. Posições relativas de reta e circunferência Circunferência e círculo Circunferência de centro O e raio r é o lugar geométrico dos pontos do plano que estão a uma distância r do ponto O. Observação O conjunto constituído dos pontos de uma circunferência

Leia mais

3º trimestre SALA DE ESTUDOS Data: 11/17 Ensino Médio 3º ano A, B e C. Prof. Maurício Nome: nº

3º trimestre SALA DE ESTUDOS Data: 11/17 Ensino Médio 3º ano A, B e C. Prof. Maurício Nome: nº º trimestre SALA DE ESTUDOS Data: 11/17 Ensino Médio º ano A, B e C. Prof. Maurício Nome: nº CONTEÚDOS: EQUAÇÃO DA RETA E EQUAÇÃO DA CIRCUNFERÊNCIA. 1. (Eear 017) O triângulo ABC a) escaleno b) isósceles

Leia mais

(A) 30 (B) 6 (C) 200 (D) 80 (E) 20 (A) 6 (B) 10 (C) 15 (D) 8 (E) 2 (A) 15 (B) 2 (C) 6 (D) 27 (E) 4 (A) 3 (B) 2 (C) 6 (D) 27 (E) 4

(A) 30 (B) 6 (C) 200 (D) 80 (E) 20 (A) 6 (B) 10 (C) 15 (D) 8 (E) 2 (A) 15 (B) 2 (C) 6 (D) 27 (E) 4 (A) 3 (B) 2 (C) 6 (D) 27 (E) 4 TEOREMA DE TALES 1. Na figura abaixo as retas r, s e t são (A) 0 (B) 6 (C) 00 (E) 0. Três retas paralelas são cortadas por duas Se AB = cm; BC = 6 cm e XY = 10 cm a medida, em cm, de XZ é: (A) 0 (B) 10

Leia mais

Desenho Geométrico. Desenho Geométrico. Desenho Geométrico. Desenho Geometrico

Desenho Geométrico. Desenho Geométrico. Desenho Geométrico. Desenho Geometrico UNIVERSIDADE ESTADUAL VALE DO ACARAÚ- UVA DEPARTAMENTO DE MATEMÁTICA Desenho Geométrico Desenho Geométrico Desenho Geométrico Desenho Geometrico Daniel Caetano de Figueiredo Daniel Caetano de Figueiredo

Leia mais

Matemática capítulo 2

Matemática capítulo 2 Matemática capítulo Eercícios propostos. Marque os seguintes pontos no plano cartesiano: (,), (,), (-,), D(-,-), E(,-), F(-,), G(,) θ. Determine os valores de a que satisfazem as condições dadas: a) O

Leia mais

Axiomas e Proposições

Axiomas e Proposições Axiomas e Proposições Axiomas: I Incidência I.1 Existem infinitos pontos no plano. I.2 Por dois pontos distintos (ou seja, diferentes) passa uma única reta. I.3 Dada uma reta, existem infinitos pontos

Leia mais

MARINHA DO BRASIL DIRETORIA DE ENSINO DA MARINHA (PROCESSO SELETIVO DE ADMISSÃO AO COLÉGIO NAVAL / PSACN-2006) Prova : Amarela MATEMÁTICA

MARINHA DO BRASIL DIRETORIA DE ENSINO DA MARINHA (PROCESSO SELETIVO DE ADMISSÃO AO COLÉGIO NAVAL / PSACN-2006) Prova : Amarela MATEMÁTICA MARINHA DO BRASIL DIRETORIA DE ENSINO DA MARINHA (PROCESSO SELETIVO DE ADMISSÃO AO COLÉGIO NAVAL / PSACN-2006) Prova : Amarela MATEMÁTICA ) Observe o sistema de equações lineares abaixo. s x4 +y45= 2 2x+

Leia mais

MATEMÁTICA 3 GEOMETRIA PLANA

MATEMÁTICA 3 GEOMETRIA PLANA MATEMÁTICA 3 GEOMETRIA PLANA Professor Renato Madeira MÓDULO 13 Circunferência e Círculo Circunferência é o lugar geométrico dos pontos do plano cujas distâncias a um ponto fixo (centro) são iguais a uma

Leia mais

p q ~p ~q p q p ~ q p q ~ p q ~ p ~q F F V V F V V V F

p q ~p ~q p q p ~ q p q ~ p q ~ p ~q F F V V F V V V F PROVA DE MATEMÁTICA ª ÉRIE E.M. _COLÉGIO ANCHIETA BA Elaboração: PROF. OCTAMAR MARQQUE. Resolução e comentários: PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA. 01. upondo a, b, c, d R, qual das proposições a

Leia mais

Questão 01 EB EA = EC ED. 6 x = 3. x =

Questão 01 EB EA = EC ED. 6 x = 3. x = Questão 0 Seja E um ponto eterno a uma circunferência. Os segmentos EA e ED interceptam essa circunferência nos pontos B e A, e, C e D, respectivamente. A corda AF da circunferência intercepta o segmento

Leia mais

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - V

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - V MATEMÁTICA II LISTA DE GEOMETRIA PLANA - V 1) (PUC/MG) Na figura, ABCD é paralelogramo, BE AD e BF CD. Se BE = 1, BF = 6 e BC = 8, então AB mede a) 1 b) 13 c) 14 d) 15 e) 16 ) (CESGRANRIO) O losango ADEF

Leia mais

Conceitos básicos de Geometria:

Conceitos básicos de Geometria: Conceitos básicos de Geometria: Os conceitos de ponto, reta e plano não são definidos. Compreendemos estes conceitos a partir de um entendimento comum utilizado cotidianamente dentro e fora do ambiente

Leia mais

2) Aplicando as relações métricas nos triângulos retângulos abaixo, determine o valor da incógnita: a) b)

2) Aplicando as relações métricas nos triângulos retângulos abaixo, determine o valor da incógnita: a) b) Roteiro de Estudo: Matemática 9º ANO 3ºTRIMESTRE ( prova mensal)- prof. Lilian RELEMBRANDO... 1) O valor de x no triângulo retângulo abaixo é: a) 10. b) 12. c) 15. x A d) 18. 9 B 25 C 2) Aplicando as relações

Leia mais

1ª Aula. Introdução à Geometria Plana GEOMETRIA. 3- Ângulos Consecutivos: 1- Conceitos Primitivos: a) Ponto A. b) Reta c) Semi-reta

1ª Aula. Introdução à Geometria Plana GEOMETRIA. 3- Ângulos Consecutivos: 1- Conceitos Primitivos: a) Ponto A. b) Reta c) Semi-reta 1ª Aula 3- Ângulos Consecutivos: Introdução à Geometria Plana 1- Conceitos Primitivos: a) Ponto A Na figura, os ângulos AÔB e BÔC são consecutivos, portanto AÔC=AÔB+AÔC b) Reta c) Semi-reta d) Segmento

Leia mais

Concluimos dai que o centro da circunferência é C = (6, 4) e o raio é

Concluimos dai que o centro da circunferência é C = (6, 4) e o raio é QUESTÕES-AULA 17 1. A equação x 2 + y 2 12x + 8y + 0 = 0 representa uma circunferência de centro C = (a, b) e de raio R. Determinar o valor de a + b + R. Solução Completamos quadrados na expressão dada.

Leia mais

Áreas IME (A) (B) (C) (D) 104 (E) e 2

Áreas IME (A) (B) (C) (D) 104 (E) e 2 Áreas IME 1. (IME 010) Seja ABC um triângulo de lados AB, BC e AC iguais a 6, 8, e 18, respectivamente. Considere o círculo de centro O isncrito nesse triângulo. A distância AO vale: 104 (A) 6 104 (B)

Leia mais

Módulo Quadriláteros. Relação de Euler para Quadriláteros. 9 ano E.F. Professores Cleber Assis e Tiago Miranda

Módulo Quadriláteros. Relação de Euler para Quadriláteros. 9 ano E.F. Professores Cleber Assis e Tiago Miranda Módulo Quadriláteros Relação de Euler para Quadriláteros 9 ano E.F. Professores Cleber Assis e Tiago Miranda Quadriláteros Relação de Euler para Quadriláteros 2 Exercícios de Fixação Exercício 5. Seja

Leia mais

Aula 10 Triângulo Retângulo

Aula 10 Triângulo Retângulo Aula 10 Triângulo Retângulo Projeção ortogonal Em um plano, consideremos um ponto e uma reta. Chama-se projeção ortogonal desse ponto sobre essa reta o pé da perpendicular traçada do ponto à reta. Na figura,

Leia mais

30's Volume 22 Matemática

30's Volume 22 Matemática 30's Volume Matemática www.cursomentor.com 0 de julho de 015 Q1. Um homem de x + 6 5 altura x + 97 m de altura está de pé próximo a um poste de m. Neste 50 5 caso qual a medida da sombra do homem neste

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. alternativa E. alternativa C. alternativa E

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. alternativa E. alternativa C. alternativa E Questão TIPO DE PROVA: A Pedro e Luís tinham, em conjunto, a importância de R$690,00. Pedro gastou de seu 5 dinheiro e Luís gastou do que possuía, ficando ambos com quantias iguais. Pedro ti- nha a quantia

Leia mais

Primeiramente é importante destacar um aspecto referente a definições, nomenclatura e classificações.

Primeiramente é importante destacar um aspecto referente a definições, nomenclatura e classificações. FIGURAS BIDIMENSIONAIS Primeiramente é importante destacar um aspecto referente a definições, nomenclatura e classificações. O termo "polígono", por exemplo, aparece em alguns textos como uma figura plana

Leia mais

Lista de exercícios Prof. Ulisses Motta

Lista de exercícios Prof. Ulisses Motta Lista de exercícios Prof. Ulisses Motta 1. (Ufpe) Na figura a seguir, os retângulos ABCD e A'B'C'D' têm o mesmo centro e lados iguais a 5 cm e 9 cm. Qual o diâmetro da maior circunferência contida na região

Leia mais

Grupo de exercícios I - Geometria plana- Professor Xanchão

Grupo de exercícios I - Geometria plana- Professor Xanchão Grupo de exercícios I - Geometria plana- 1. (G1 - ifce 01) Na figura abaixo, R, S e T são pontos sobre a circunferência de centro O. Se x é o número real, tal que a = 5x e b = 3x + 4 são as medidas dos

Leia mais

Quadro de conteúdos MATEMÁTICA

Quadro de conteúdos MATEMÁTICA Quadro de conteúdos MATEMÁTICA 1 Apresentamos a seguir um resumo dos conteúdos trabalhados ao longo dos quatro volumes do Ensino Fundamental II, ou seja, um panorama dos temas abordados na disciplina de

Leia mais

NOTAÇÕES. R N C i z. ]a, b[ = {x R : a < x < b} (f g)(x) = f(g(x)) n. = a 0 + a 1 + a a n, sendo n inteiro não negativo.

NOTAÇÕES. R N C i z. ]a, b[ = {x R : a < x < b} (f g)(x) = f(g(x)) n. = a 0 + a 1 + a a n, sendo n inteiro não negativo. R N C i z det A d(a, B) d(p, r) AB Â NOTAÇÕES : conjunto dos números reais : conjunto dos números naturais : conjunto dos números complexos : unidade imaginária: i = 1 : módulo do número z C : determinante

Leia mais

Matemática. Nesta aula iremos aprender as. 1 Ponto, reta e plano. 2 Posições relativas de duas retas

Matemática. Nesta aula iremos aprender as. 1 Ponto, reta e plano. 2 Posições relativas de duas retas Matemática Aula 5 Geometria Plana Alexandre Alborghetti Londero Nesta aula iremos aprender as noções básicas de Geometria Plana. 1 Ponto, reta e plano Estes elementos primitivos da geometria euclidiana

Leia mais