ÁREA E PERÍMETRO EXERCÍCIOS DE CONCURSOS

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "ÁREA E PERÍMETRO EXERCÍCIOS DE CONCURSOS"

Transcrição

1 ÁREA E PERÍMETRO EXERCÍCIOS DE CONCURSOS E0059 (EXATUS) PM-ES 2012 QUESTÃO 66 A área de um triângulo equilátero de arestas medindo 8 cm é igual a: RESOLUÇÃO

2 E0565 (EXATUS) PM-ES 2012 QUESTÃO Tifany escreveu algumas sentenças em seu caderno: I Todo paralelogramo é um retângulo. II Todo quadrado é um retângulo. III Circunferência é a linha que limita um círculo. IV A soma dos ângulos internos de um triângulo é 240º. Está correto o que Tifany escreveu:

3 a) apenas em I. b) apenas em II. c) apenas em IV. d) apenas em II e III. e) apenas em III e IV. RESOLUÇÃO I Falsa Nem todo paralelogramo é retângulo, pois não tem ângulos retos II Verdadeira Todo quadrado é retângulo, porque tem ângulos reto III Verdadeira A circunferência é, de fato, a linha que limita um círculo IV Falsa A soma dos ângulos internos de um triângulo não é 240º, mas 180º. Assim, apenas a II e III são verdadeiras E0431 (EPCAR-2013) Considere um quadrado ABCD de lado m. Seja P o ponto do lado AB tal que DP = CB +BP. A área do trapézio DCBP é x% da área do quadrado ABCD. O número x está compreendido entre: a) 60 e 62 b) 62 e 64

4 c) 64 e 66 d) 66 e 68 RESOLUÇÃO opção B E0428 (EPCAR-13) Uma escola tem 10 salas de aula. Em todas elas cada uma das quatro paredes mede 500 cm de comprimento e 0,3 dam de altura. Deseja-se pintar as paredes dessas salas com tinta branca e para isso foram comprados galões de 36 dl por R$ 54,00 cada um. O pintor calculou que, para pintar cada 12m² de parede, gastará 3 litros dessa tinta e um tempo de 24 minutos. Sabe-se que ele cobra R$ 20,00 por hora trabalhada. Com base nessas informações, é correto afirmar que a) serão necessários mais de 41 galões de 3,6 l para essa pintura. b) para pintar todas as paredes serão gastos menos de R$ 2 000,00 com tinta. c) serão necessárias apenas 18 horas de trabalho para pintar as 10 salas de aula. d) o pintor receberá, em reais, ao final da pintura, o valor equivalente ao de 8 galões de tinta. RESOLUÇÃO OPÇÃO A

5 NÚMEROS DECIMAIS EXERCÍCIOS DE FIXAÇÃO NÚMEROS DECIMAIS EXERCÍCIOS DE FIXAÇÃO E1184 Represente as dízimas periódicas como fração: a) 3,38 = 338/100 Observe que tem 2 casas à direita da vírgula. isso significa que o denominador (debaixo) será 100. Apagando a vírgula, fica 338. Esse é o numerador. Assim, temos a fração 338/100 b) 4,79 = 479/100 c) 10,43 = 1.043/100 d) 8,07 = 807/100 E1183 Represente as dízimas periódicas como fração: a) 0,003 b) 0,015 c) 13,001 d) 4,435

6 RESOLUÇÃO a) 0,003 = 3/1000 b) 0,015 = 15/1000 c) 13,001 = /1000 d) 4,435 = 4.435/1000 E1182 Represente as dízimas periódicas como fração: a) 3,09 b) 0,001 c) 1,03 d) 0,009 RESOLUÇÃO a) 3,09 = 309/100 b) 0,001 = 1/1000 c) 1,03 = 103/100 d) 0,009 = 9/1000 E0331 Represente as dízimas periódicas como fração: a) 0,333 b) 0,777 c) 0,222 d) 0,88 e) 0,1111

7 RESOLUÇÃO a) 0,333 O algarismo que se repete é o 3. Então, o numerador é 3. O denominador será 9, 99 ou 999 Depende da quantidade de algarismo no numerador. Como o numerador tem apenas 1 algarismo, o denominador terá apenas um 9. R: 3/9 b) 0,777 = 7/9 c) 0,222 = 2/9 d) 0,88888 = 8/9 e) 0,1111 = 1/9 E1181 Represente as dízimas periódicas como fração: a) 0,22222 b) 0,44 c) 0,6666 d) 0,555 e) 0, RESPOSTAS a) 0,22222 = 2/9 b) 0, = 4/9 c) 0,6666 = 6/9 d) 0,555 = 5/9

8 e) 0, = 1/9 AS QUATRO OPERAÇÕES DIVISÃO EXERCÍCIOS DE FIXAÇÃO AS QUATRO OPERAÇÕES: DIVISÃO EXERCÍCIOS DE FIXAÇÃO E0199 Calcule 141 : 360. RESOLUÇÃO

9 ÁREA DA COROA CIRCULAR EXERCÍCIOS DE FIXAÇÃO

10 COROA CIRCULAR EXERCÍCIOS DE FIXAÇÃO E0247 Calcule a área da coroa circular abaixo: RESOLUÇÃO MÉTODO 2D: FÓRMULA

11 MÉTODO 1D: Calcule a área do círculo maior e depois a do menor. Diminua uma pela outra.

12 E0248 Calcule a área da coroa circular, sabendo que o raio do círculo inscrito (de dentro) é 2 e o diâmetro do círculo maior é 8. RESOLUÇÃO

13 ANÁLISE COMBINATÓRIA EXERCÍCIOS DO ENEM E0082 (ENEM 2012 QUESTÃO 136) O diretor de uma escola convidou os 280 alunos de terceiro ano a participarem de uma brincadeira. Suponha que existem 5 objetos e 6 personagens numa casa de 9 cômodos; um dos personagens esconde um dos objetos em um dos cômodos da casa. O objetivo da brincadeira é adivinhar qual objeto foi escondido por qual personagem e em qual cômodo da casa o objeto foi escondido. Todos os alunos decidiram participar. A cada vez um aluno e sorteado e da a sua resposta. As respostas devem ser sempre distintas das anteriores, e um mesmo aluno não pode ser sorteado mais de uma vez. Se a resposta do aluno estiver correta, ele é declarado vencedor e a brincadeira é encerrada. O diretor sabe que algum aluno acertará a resposta porque há: a) 10 alunos a mais do que possíveis respostas distintas. b) 20 alunos a mais do que possíveis respostas distintas.

14 c) 119 alunos a mais do que possíveis respostas distintas. d) 260 alunos a mais do que possíveis respostas distintas. e) 270 alunos a mais do que possíveis respostas distintas RESOLUÇÃO Ao todo, há 280 alunos envolvidos. Estão disponíveis 5 objetos e 6 personagens numa casa de 9 cômodos. Quantas maneiras diferentes pode-se haver formação?.. 5 x 6 x 9 Ao todo, temos 5 x 6 x 9, que dá 270. Se há 270 maneiras de formação e são 280 alunos, o diretor pôde garantir que algum aluno acertaria, pois há 10 alunos a mais do que possíveis respostas distintas. JUROS SIMPLES EXERCÍCIOS DE FIXAÇÃO E1244 Calcule quanto um capital de R$ 550,00 rende, quando aplicado a regime de juros simples a uma taxa de 3% a.m., durante 4 meses RESOLUÇÃO POR FRAÇÃO

15 3% a.m (ao mês) durante 4 meses dá 12% 12% de /100 x /100 66,00 R: 66,00 de juros RESOLUÇÃO USANDO REGRA DE TRÊS Capital = 100% Juros = taxa Temos C = 550,00 taxa = 3% ao mês. Como são 4 meses, teremos 12% (3% x 4 meses) Substituindo, 550,00 = 100% x = 12% multiplicando cruzado: 100x = x = / 100 x = 66 Os juros são R$ 66,00 E1245 Calcule quanto um capital de R$ 550,00 rende, quando aplicado a regime

16 de juros simples a uma taxa de 4,5%, durante 1 ano. RESOLUÇÃO POR FRAÇÃO 4,5% a.m (ao mês) durante 12 meses (1 ano) dá 54% 54% de /100 x / ,00 R: R$ 297,00 de juros RESOLUÇÃO POR REGRA DE TRÊS Capital = 100% Juros = taxa Temos C = 550,00 taxa = 4,5% ao mês. Como são 12 meses (1 ano), teremos 54% (4,5% x 12 meses) Substituindo, 550,00 = 100% x = 54% multiplicando cruzado: 100x = x = / 100 x = 297

17 Os juros são R$ 297,00 E1246 Calcule quanto um capital de R$ 550,00 rende, quando aplicado a regime de juros simples a uma taxa de 6% a.a., durante 7 meses RESOLUÇÃO POR FRAÇÃO 6% a.a (ao ano) durante 7 meses. Primeiro é interessante descobrir a taxa mensal. Se são 6% ao ano, dividindo por 12 acharemos a taxa por mês. 6 : 12 = 0,5 por mês.. 0,5 por mês, em 7 meses dará 3,5% (0,5 x 7 meses) 3,5% de 550 3,5/100 x /100 19,25 R: R$ 19,25 de juros RESOLUÇÃO USANDO REGRA DE TRÊS Capital = 100% Juros = taxa Temos C = 550,00 taxa = 6% ao mês, dá 0,5% ao mês. Como são 7 meses, teremos 3,5% (0,5% x 7 meses)

18 Substituindo, 550,00 = 100% x = 3,5% multiplicando cruzado: 100x = x = / 100 x = 19,25 Os juros são R$ 19,25 USANDO A CALCULADORA 550 x 3.5 % = 19,25 E1247 Calcule quanto um capital de R$ 550,00 rende, quando aplicado a regime de juros simples a uma taxa de 0,5% a.d.., durante 2 meses RESOLUÇÃO POR FRAÇÃO 0,5% a.d (ao dia) durante 2 meses. É interessante calcular a taxa mensal. Os meses nos juros simples sempre terão 30 dias. 0,5% x 30 dias = 15% ao mês. 15% ao mês durante 2 meses dá 30%. 30% de /100 x /100

19 165 R: 165,00 de juros RESOLUÇÃO USANDO REGRA DE TRÊS Capital = 100% Juros = taxa Temos C = 550,00 taxa = 0,5% ao dia, equivale a 15% ao mês. Como são 2 meses, teremos 30% Substituindo, 550,00 = 100% x = 30% multiplicando cruzado: 100x = x = 1.650/ 100 x = 165 Os juros são R$ 165,00 E1248 Qual é o juro que um capital de R$ 140,00 rende se aplicado no regime de juros simples com taxa de 0,8% a.m., durante 9 meses? RESOLUÇÃO

20 R: R$ 10,08 E1249 Sabendo que um capital c, aplicado a juros simples, rende em 4 meses o equivalente a 1/5 de seu valor, determine a taxa de juros mensal. RESOLUÇÃO Sabe-se que o capital é c e que o juro é 1/5 desse valor. Como ele quer a resposta em porcentagem (taxa), é interessante usar o capital em taxa, também. O capital é 100%. Assim, a taxa de juros é 1/5 desses 100%, ou seja, 20% (1/5 é o mesmo que dividir em 5 partes e pegar 1 parte. Assim, temos 100% dividido por 5, que dá 20%). E1250 Júlio aplicou, sob regime de juros simples, a importância de R$ 7.500,00, com taxa de 2,5% a.m., por um período de dois trimestres. De acordo com estes dados, Qual era o montante no fim desse período? RESOLUÇÃO

21 E1251 Devido a pagamentos de impostos, os R$ 8.625,00 a ser retirado por Júlio sofrerá uma redução de 3%. Qual será o valor líquido retirado após este investimento? RESOLUÇÃO = 100% x = 3% Multiplicando cruzado: 100x = x = /100 x = 258,75. Perceba que esta valor é da redução. O enunciado pede o valor final (montante). Logo, era R$ 8.625,00 e reduziu R$ 258,75, indo para R$ 8.366,25. R: R$ 8.366,25. OUTRA SOLUÇÃO Você pode, ao invés de igualar a 3%, igualar a 97%. Isso porque o valor inicial é 100% e sofreu uma redução de 3%, ficando 97%.

22 Assim, teríamos = 100% x = 97% 100x = x = /100 x = 8.366,25 Note que a resposta é essa. Todavia, vou continuar padronizando a resolução usando o capital e os juros. E0211 Ao ser aplicado no regime de juros simples, um capital rende, após 14 meses, juros de R$ 566,44 a taxa de 17% a.m. a) Qual é o montante obtido após um semestre? b) Quantos reais de juros esse capital renderá se aplicado durante 2 anos? c) Aproximadamente, quantos reais de juros esse capital rende por dia? RESOLUÇÃO a) Qual é o montante obtido após um semestre?

23 b) Quantos reais de juros esse capital renderá se aplicado durante 2 anos?

24 c) Aproximadamente, quantos reais de juros esse capital rende por dia? E1177 ANÁLISE COMBINATÓRIA ORDEM DE UM NÚMERO (DEIXADOS PARA TRÁS) Com 2,5,6,e 7 podemos formar números de 4 algarismos e colocá-los em ordem crescente. Entre esses números está o Calcule em que ordem ele está. Como fazer pelo MÉTODO DEIXADOS PARA TRÁS.

25 I. FAÇA 3 TABELAS COM 4, 3 E 2 COLUNAS. Entendendo melhor: São 4 algarismos. Então, teremos 4 tabelas. A primeira tabela tem 4 colunas. A segunda tem 3 colunas. A terceira tem 2 colunas. II. PREENCHA A 1ª TABELA COM 6, A SEGUNDA COM 2 E A TERCEIRA COM 1 Entendendo melhor: A 1ª tabela terá sempre 6 em cada coluna Isso porque temos 4 algarismos, o que nos dá 4!, que é = 24 Se temos 24 números para 4 algarismos, então, temos 6 números para cada algarismo. Ou seja, para tabela com 4 colunas, temos 4! / 4 = 24/4 = 6 A 2ª tabela terá 3 colunas, 2 em cada uma delas.

26 2 2 2 Isso porque erem 4 algarismos, mas utilizamos 1 deles para a dezena de milhar, sobrando apenas 3 algarismos. 3 algarismos nos dá 3!, que é = 6. 6 números para dividir para 3 algarismos fica 2 números em cada coluna. A 3ª tabela terá 2 colunas, com 1 em cada uma delas. 1 1 Fica assim: III. Escreva na 1ª tabela os algarismos disponíveis. Neste exemplo, temos 2,3,5 e 7. Queremos o número Para a 1º tabela, queremos o 7 (7.265). Então, marcamos um x embaixo dele X

27 Observe que para chegar no 7, passamos pelas tabelas do 2,3 e 5, deixando 6 algarismos de cada um para trás X Tirando o 7, sobram para a segunda tabela os algarismos 2,5 e X Queremos o número 2 (7.265). Marcamos x debaixo dele X X Observe que, para chegar no 2 não deixamos nenhum para trás. Escolhido o 2, sobram o 5 e 6 para a próxima tabela X X Queremos o 6 (7.265). Marcamos um x embaixo dele X X 1 X Repare que, para chegar ao algarismo 6, deixamos para trás 1 algarismo 5. III. SOME TODOS OS ALGARISMOS DEIXADOS PARA TRÁS E ACRESCENTE 1.

28 X X 1 X 1ª tabela: deixados para trás. 2ª tabela: 0 deixado para trás. 3ª tabela: 1 deixado para trás. Somando: = 19. Sempre acrescentaremos 1 para saber a ordem: = 20. Logo, o número é o 20º. Confira os números na ordem: 2,5,6,7 São 4 algarismos, formamos 4! = = 24 números. 2567: 1º número 2576: 2º número 2657: 3º número 2675: 4º número 2756: 5º número 2765: 6º número 5267: 7º número 5276: 8º número 5627: 9º número 5672: 10º número 5726: 11º número 5762: 12º número 6257: 13º número 6275: 14º número 6527: 15º número 6572: 16º número 6725: 17º número 6752: 18º número 7256: 19º número 7265: 20º número 7526: 21º número 7562: 22º número 7625: 23º número 7652: 24º número

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 6 Professor Marco Costa

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 6 Professor Marco Costa 1 Projeto Jovem Nota 10 1. (Fgv 97) No plano cartesiano, os vértices de um triângulo são A (5,2), B (1,3) e C (8,-4). a) Obtenha a medida da altura do triângulo, que passa por A. b) Calcule a área do triângulo

Leia mais

COLÉGIO SHALOM Ensino Fundamental 8 Ano Prof.º: Wesley Disciplina Geometria Aluno (a):. No.

COLÉGIO SHALOM Ensino Fundamental 8 Ano Prof.º: Wesley Disciplina Geometria Aluno (a):. No. COLÉGIO SHALOM Ensino Fundamental 8 Ano Prof.º: Wesley Disciplina Geometria Aluno (a):. No. Trabalho de Recuperação Data: / 12/2016 Valor: Orientações: -Responder manuscrito; -Cópias de colegas, entrega

Leia mais

1. Área do triângulo

1. Área do triângulo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Geometria Plana II Prof.:

Leia mais

LISTA DE EXERCÍCIOS PARA PROVA FINAL/2015

LISTA DE EXERCÍCIOS PARA PROVA FINAL/2015 ESCOLA ADVENTISTA SANTA EFIGÊNIA EDUCAÇÃO INFANTIL E ENSINO FUNDAMENTAL Rua Prof Guilherme Butler, 792 - Barreirinha - CEP 82.700-000 - Curitiba/PR Fone: (41) 3053-8636 - e-mail: ease.acp@adventistas.org.br

Leia mais

Geometria Plana Exercícios de Áreas e Razão entre Áreas

Geometria Plana Exercícios de Áreas e Razão entre Áreas Prof. Marcelo ampos Silva - marcelocs00@gmail.com Geometria Plana Exercícios de Áreas e Razão entre Áreas 0 - s figuras abaixo representam, respectivamente, um terreno com área de.000 m e uma maquete do

Leia mais

Módulo Unidades de Medidas de Comprimentos e Áreas. Unidades de Medida de Área e Exercícios. 6 ano/e.f.

Módulo Unidades de Medidas de Comprimentos e Áreas. Unidades de Medida de Área e Exercícios. 6 ano/e.f. Módulo Unidades de Medidas de Comprimentos e Áreas Unidades de Medida de Área e Exercícios. 6 ano/e.f. Unidades de Medidas de Comprimentos e Áreas. Unidades de Medida de Área e Exercícios. 1 Exercícios

Leia mais

Álgebra. Progressão geométrica (P.G.)

Álgebra. Progressão geométrica (P.G.) Progressão geométrica (P.G.). Calcule o valor de sabendo que: a) + 6 e 0-6 formam nessa ordem uma P.G.. b) + e + 6 formam nessa ordem uma P.G. crescente.. Calcule o seto termo de uma progressão geométrica

Leia mais

AVALIAÇÃO DE MATEMÁTICA DA UNIDADE I-2013 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ

AVALIAÇÃO DE MATEMÁTICA DA UNIDADE I-2013 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ a AVALIAÇÃO DE MATEMÁTICA DA UNIDADE I-0 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. PROFA, MARIA ANTÔNIA C. GOUVEIA 0 - (ESPM RS) Um capital aplicado à taxa de juros simples de

Leia mais

MATEMÁTICA SARGENTO DA FAB

MATEMÁTICA SARGENTO DA FAB MATEMÁTICA BRUNA PAULA 1 COLETÂNEA DE QUESTÕES DE MATEMÁTICA DA EEAr (QUESTÕES RESOLVIDAS) QUESTÃO 1 (EEAr 2013) Se x é um arco do 1º quadrante, com sen x a e cosx b, então é RESPOSTA: d QUESTÃO 2 (EEAr

Leia mais

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - V

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - V MATEMÁTICA II LISTA DE GEOMETRIA PLANA - V 1) (PUC/MG) Na figura, ABCD é paralelogramo, BE AD e BF CD. Se BE = 1, BF = 6 e BC = 8, então AB mede a) 1 b) 13 c) 14 d) 15 e) 16 ) (CESGRANRIO) O losango ADEF

Leia mais

PROVAS DE NÍVEL MÉDIO DA FUNDATEC

PROVAS DE NÍVEL MÉDIO DA FUNDATEC PROVAS DE NÍVEL MÉDIO DA FUNDATEC Obs: Algumas questões das provas abaixo continham questões que não estavam de acordo com o edital atual da Câmara/POA. Nesses casos, cada questão foi retirada ou adaptada.

Leia mais

GGM Geometria Básica - UFF Lista 4 Profa. Lhaylla Crissaff. 1. Encontre a área de um losango qualquer em função de suas diagonais. = k 2.

GGM Geometria Básica - UFF Lista 4 Profa. Lhaylla Crissaff. 1. Encontre a área de um losango qualquer em função de suas diagonais. = k 2. 1. Encontre a área de um losango qualquer em função de suas diagonais. 2. Se dois triângulos ABC e DEF são semelhantes com razão de semelhança k, mostre que A ABC A DEF = k 2. 3. Na figura 1, ABCD e EF

Leia mais

Exercício 1) Uma praça circular tem 200 m de raio. Quantos metros de grade serão necessários para cerca-la?

Exercício 1) Uma praça circular tem 200 m de raio. Quantos metros de grade serão necessários para cerca-la? O círculo e o número π As formas circulares aparecem com freqüência nas construções e nos objetos presente em nosso mundo. As formas circulares estão presentes: nas moedas, nos discos, roda do carro...

Leia mais

Roteiro de estudos 3º trimestre. GEOMETRIA. Orientação de estudos

Roteiro de estudos 3º trimestre. GEOMETRIA. Orientação de estudos Roteiro de estudos 3º trimestre. GEOMETRIA O roteiro foi montado especialmente para reforçar os conceitos dados em aula. Com os exercícios você deve fixar os seus conhecimentos e encontrar dificuldades

Leia mais

VESTIBULAR UFPE UFRPE / ª ETAPA NOME DO ALUNO: ESCOLA: SÉRIE: TURMA: MATEMÁTICA 2

VESTIBULAR UFPE UFRPE / ª ETAPA NOME DO ALUNO: ESCOLA: SÉRIE: TURMA: MATEMÁTICA 2 VESTIULR UFPE UFRPE / 1998 2ª ETP NOME DO LUNO: ESOL: SÉRIE: TURM: MTEMÁTI 2 01. nalise as afirmações: 0-0) 4 + 2 + 4 2 = 12 (as raízes quadradas são as positivas) 4 1-1) = 0,666... 11 log 2-2) 2 = 2 2

Leia mais

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 4 Professor Marco Costa

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 4 Professor Marco Costa 1 Projeto Jovem Nota 10 1. (Ufscar 2001) Considere o triângulo de vértices A, B, C, representado a seguir. a) Dê a expressão da altura h em função de c (comprimento do lado AB) e do ângulo A (formado pelos

Leia mais

Circunferência. MA092 Geometria plana e analítica. Interior e exterior. Circunferência e círculo. Francisco A. M. Gomes

Circunferência. MA092 Geometria plana e analítica. Interior e exterior. Circunferência e círculo. Francisco A. M. Gomes Circunferência MA092 Geometria plana e analítica Francisco A. M. Gomes UNICAMP - IMECC Setembro de 2016 A circunferência é o conjunto dos pontos de um plano que estão a uma mesma distância (denominada

Leia mais

3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo

3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo 3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo LISTA DE ESTUDO.. Áreas 1. Calcule a área da região mais escura. 2. Um quadrado tem área de 25 cm 2. O que

Leia mais

PREPARATÓRIO PROFMAT/ AULA 8 Geometria

PREPARATÓRIO PROFMAT/ AULA 8 Geometria PREPARATÓRIO PROFMAT/ AULA 8 Geometria QUESTÕES DISCURSIVAS Questão 1. (PROFMAT-2012) As figuras a seguir mostram duas circunferências distintas, com centros C 1 e C 2 que se intersectam nos pontos A e

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web . (Ufpr 07) Rafaela e Henrique participaram de uma atividade voluntária que consistiu na pintura da fachada de uma instituição de caridade. No final do dia, restaram duas latas de tinta idênticas (de mesmo

Leia mais

Grupo 1 - N1M2 - PIC OBMEP 2011 Módulo 2 - Geometria. Resumo do Encontro 6, 22 de setembro de Questões de geometria das provas da OBMEP

Grupo 1 - N1M2 - PIC OBMEP 2011 Módulo 2 - Geometria. Resumo do Encontro 6, 22 de setembro de Questões de geometria das provas da OBMEP Grupo 1 - N1M2 - PIC OBMEP 2011 Módulo 2 - Geometria Resumo do Encontro 6, 22 de setembro de 2012 Questões de geometria das provas da OBMEP http://www.obmep.org.br/provas.htm 1. Áreas - capítulo 2 da apostila

Leia mais

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO ANO 2015 PROFESSOR (a) DISCIPLINA Bruno Rezende Pereira Matemática ALUNO (a) SÉRIE 3º Ano do Ensino Médio

Leia mais

EXERCICIOS - ÁREAS E ÂNGULOS:

EXERCICIOS - ÁREAS E ÂNGULOS: EXERCICIOS - ÁREAS E ÂNGULOS: 32 - Sabendo-se que um ângulo externo de um triângulo retângulo mede 287, quais os valores dos ângulos internos deste? 37 - Assinale qual dos polígonos abaixo possui todos

Leia mais

CADERNO DE EXERCÍCIOS 1C

CADERNO DE EXERCÍCIOS 1C CADERNO DE EXERCÍCIOS 1C Ensino Fundamental Matemática Questão 1 2 Conteúdo Fração. Interpretação de problema envolvendo a relação parte todo. Soma de frações. Cálculo de área e situações problema envolvendo

Leia mais

C O L É G I O F R A N C O - B R A S I L E I R O

C O L É G I O F R A N C O - B R A S I L E I R O C O L É G I O F R A N C O - B R A S I L E I R O Nome: N.º: Turma: Professor: IRAN MARCELINO Ano: ª Data: / / 014 CONTEÚDO: LISTA DE RECUPERAÇÃO (MATEMÁTICA ) Equação modular Inequação modular Áreas de

Leia mais

UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE

UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE www.elitecampinas.com.br Fone: (19) -71 O ELITE RESOLVE IME 004 PORTUGUÊS/INGLÊS Você na elite das universidades! UNICAMP 004 SEGUNDA FASE MATEMÁTICA www.elitecampinas.com.br Fone: (19) 51-101 O ELITE

Leia mais

RAZÕES TRIGONOMÉTRICAS AULA ESCRITA

RAZÕES TRIGONOMÉTRICAS AULA ESCRITA RAZÕES TRIGONOMÉTRICAS AULA ESCRITA 1. Apresentação É hora de revisar as Razões Trigonométricas. Boas aulas! 2 INTRODUÇÃO Vimos que Trigonometria é o ramo da matemática que estuda as medidas do triângulo,

Leia mais

QUESTÃO 16 A figura abaixo representa um pentágono regular, do qual foram prolongados os lados AB e DC até se encontrarem no ponto F.

QUESTÃO 16 A figura abaixo representa um pentágono regular, do qual foram prolongados os lados AB e DC até se encontrarem no ponto F. Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA O 8 Ọ ANO EM 0 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 6 A figura abaixo representa um pentágono regular, do qual foram

Leia mais

O ORIGINAL ENCONTRA-SE ASSINADO E ARQUIVADO NA STE/CMBH

O ORIGINAL ENCONTRA-SE ASSINADO E ARQUIVADO NA STE/CMBH CONCURSO DE ADMISSÃO 201/2016 PROVA DE MATEMÁTICA 1º ANO DO ENSINO MÉDIO CONFERÊNCIA: Membro da CEOCP (Mat / 1º EM) Presidente da CEI Dir Ens CPOR / CM-BH PÁGINA 1 RESPONDA ÀS QUESTÕES DE 1 A 20 E TRANSCREVA

Leia mais

Projeto Jovem Nota 10 Cilindros e Cones Lista A Professor Marco Costa

Projeto Jovem Nota 10 Cilindros e Cones Lista A Professor Marco Costa 1. Um tanque, na forma de um cilindro circular reto, tem altura igual a 3 m e área total (área da superfície lateral mais áreas da base e da tampa) igual a 20. m2. Calcule, em metros, o raio da base deste

Leia mais

RACIOCÍNIO LÓGICO

RACIOCÍNIO LÓGICO RACIOCÍNIO LÓGICO 01. Bruno fez 1(um) jogo na SENA, apostando nos 6 (seis) números 8, 18, 28, 30, 40 e 50. Automaticamente, Bruno também estará concorrendo à quina (grupo de 5 números), à quadra (grupo

Leia mais

Área das figuras planas

Área das figuras planas AS ESPOSTAS ESTÃO NO FINAL DOS EXECÍCIOS. ) Calcule as áreas dos retângulos de base b e altura h nos seguintes casos: a) b = cm e h = 7cm b) b =,dm e h = dm c) b = m e h = m d) b =,m e h =,m ) Determine:

Leia mais

2. (G2 - utfpr 2014) A área do círculo, em cm 2, cuja circunferência mede 10π cm, é: a) 10 π. b) 36 π. c) 64 π. d) 50 π. e) 25 π.

2. (G2 - utfpr 2014) A área do círculo, em cm 2, cuja circunferência mede 10π cm, é: a) 10 π. b) 36 π. c) 64 π. d) 50 π. e) 25 π. Grupo de exercícios II - Geometria plana- 1. (G - ifsp 014) Um restaurante foi representado em sua planta por um retângulo PQRS. Um arquiteto dividiu sua área em: cozinha (C), área de atendimento ao público

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A 11º Ano Versão 1 Nome: Nº Turma: Apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias Quando,

Leia mais

Colégio Naval 2008/2009 (PROVA VERDE)

Colégio Naval 2008/2009 (PROVA VERDE) Colégio Naval 008/009 (PROVA VERDE) 01) Um triângulo retângulo, de lados expressos por números inteiros consecutivos, está inscrito em um triângulo eqüilátero T de lado x. Se o maior cateto é paralelo

Leia mais

TEOREMA DE PITÁGORAS AULA ESCRITA

TEOREMA DE PITÁGORAS AULA ESCRITA TEOREMA DE PITÁGORAS AULA ESCRITA 1. Introdução O Teorema de Pitágoras é uma ferramenta importante na matemática. Ele permite calcular a medida de alguma coisa que não conseguimos com o uso de trenas ou

Leia mais

APOSTILA DE MATEMÁTICA PM/PA 2016

APOSTILA DE MATEMÁTICA PM/PA 2016 APOSTILA DE MATEMÁTICA PM/PA 2016 Olá, tudo bem? Sou o Prof. Arthur Lima, e resumi nas próximas páginas os pontos do edital de MATEMÁTICA da POLÍCIA MILITAR DO PARÁ, cujas provas serão aplicadas pela banca

Leia mais

Colégio Naval 2003 (prova verde)

Colégio Naval 2003 (prova verde) Colégio Naval 00 (prova verde) 01) Analise as seguintes afirmativas sobre um sistema S se duas equações do primeiro grau com duas incógnitas X e Y. I - S sempre terá ao menos uma solução, se os seus termos

Leia mais

Exercícios de Revisão

Exercícios de Revisão Professor: Cassio Kiechaloski Mello Disciplina: Matemática Exercícios de Revisão Geometria Analítica Geometria Plana Geometria Espacial Números Complexos Polinômios Na prova de recuperação final, não será

Leia mais

REVISÃO DOS CONTEÚDOS

REVISÃO DOS CONTEÚDOS REVISÃO DOS CONTEÚDOS As quatro operações fundamentais As operações fundamentais da matemática são quatro: Adição (+), Subtração (-), Multiplicação (* ou x ou.) e Divisão (: ou / ou ). Em linguagem comum,

Leia mais

CÁLCULO DE ÁREA DAS FIGURAS PLANAS. Professor: Marcelo Silva. Natal-RN, agosto de 2013

CÁLCULO DE ÁREA DAS FIGURAS PLANAS. Professor: Marcelo Silva. Natal-RN, agosto de 2013 CÁLCULO DE ÁREA DAS FIGURAS PLANAS Professor: Marcelo Silva Natal-RN, agosto de 013 ÁREA A reunião de um polígono com sua região interior é denominada superfície do polígono. A medida da superfície é expressa

Leia mais

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III 0 Dois círculos de centros A e B são tangentes exteriormente e tangenciam interiormente um círculo de centro C. Se AB = cm, AC = 7 cm e BC = 3 cm, então o raio

Leia mais

C) D) E) A) 410,00 B) 460,00 C) 425,00 D) 435,00 E) 420,00 A) ,00 B) ,00 C) 2.400,00 D) ,00 E) 21.

C) D) E) A) 410,00 B) 460,00 C) 425,00 D) 435,00 E) 420,00 A) ,00 B) ,00 C) 2.400,00 D) ,00 E) 21. MATEMÁTICA NÍVEL FUNDAMENTAL I. PORCENTAGEM 1.Fração Percentual 20%= 0,2 35%= 0,35 4%= 0,04 2. Cálculo da porcentagem de um número Exs: a) Calcular 25% de 600 0,25 x 600 = 150 b) Calcular 8% de 50 0,08

Leia mais

Áreas parte 1. Rodrigo Lucio Silva Isabelle Araújo

Áreas parte 1. Rodrigo Lucio Silva Isabelle Araújo Áreas parte 1 Rodrigo Lucio Silva Isabelle Araújo Introdução Desde os egípcios, que procuravam medir e demarcar suas terras, até hoje, quando topógrafos, engenheiros e arquitetos fazem seus mapeamentos

Leia mais

Polígonos PROFESSOR RANILDO LOPES 11.1

Polígonos PROFESSOR RANILDO LOPES 11.1 Polígonos PROFESSOR RANILDO LOPES 11.1 Polígonos Polígono é uma figura geométrica plana e fechada formada apenas por segmentos de reta que não se cruzam no mesmo plano. Exemplos 11.1 Elementos de um polígono

Leia mais

Aula 30 Área de superfícies: parte I

Aula 30 Área de superfícies: parte I Aula 30 Área de superfícies: parte I Objetivos Determinar áreas de algumas superfícies curvas. Introdução Supona que um pintor utilize x litros de tinta para pintar uma parede quadrada de 1 m de lado e

Leia mais

Abril Educação Conjuntos numéricos Aluno(a): Número: Ano: Professor(a): Data: Nota:

Abril Educação Conjuntos numéricos Aluno(a): Número: Ano: Professor(a): Data: Nota: Abril Educação Conjuntos numéricos Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 Explique com as suas palavras por que zero é chamado de elemento neutro da adição. Questão 2 Qual é a única

Leia mais

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 00 / 01 QUESTÃO ÚNICA

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 00 / 01 QUESTÃO ÚNICA 14 QUESTÃO ÚNICA MÚLTIPLA ESCOLHA ESCOLHA A ÚNICA RESPOSTA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES À ESQUERDA Item 01. Um conjunto A contém os cinco primeiros números naturais, os cinco primeiros números

Leia mais

Prova Final de Matemática

Prova Final de Matemática PROVA FINAL DO 3.º CICLO do Ensino BÁSICO Decreto-Lei n.º 39/0, de 5 de julho Prova Final de Matemática 3.º Ciclo do Ensino Básico Prova 9/.ª Chamada 8 Páginas Duração da Prova: 90 minutos. Tolerância:

Leia mais

UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios

UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios 1. Um triângulo isósceles tem base medindo 8cm e lados iguais com medidas de 5cm. Qual é a área do triângulo? 2. Em um triângulo retângulo,

Leia mais

Canguru Matemático sem Fronteiras 2012

Canguru Matemático sem Fronteiras 2012 http://wwwmatucpt/canguru/ Destinatários: alunos dos 10 o e 11 o anos de escolaridade Nome: Turma: Duração: 1h 0min Não podes usar calculadora Em cada questão deves assinalar a resposta correta As questões

Leia mais

ESCOLA ADVENTISTA SANTA EFIGÊNIA EDUCAÇÃO INFANTIL E ENSINO FUNDAMENTAL

ESCOLA ADVENTISTA SANTA EFIGÊNIA EDUCAÇÃO INFANTIL E ENSINO FUNDAMENTAL ESCOLA ADVENTISTA SANTA EFIGÊNIA EDUCAÇÃO INFANTIL E ENSINO FUNDAMENTAL Rua Prof Guilherme Butler, 792 - Barreirinha - CEP 82.700-000 - Curitiba/PR Fone: (41) 3053-8636 - e-mail: ease.acp@adventistas.org.br

Leia mais

Soluções Comentadas Matemática Curso Mentor Centro Federal de Educação Tecnológica CEFET. Barbosa, L.S.

Soluções Comentadas Matemática Curso Mentor Centro Federal de Educação Tecnológica CEFET. Barbosa, L.S. Soluções Comentadas Matemática Curso Mentor Centro Federal de Educação Tecnológica CEFET Barbosa, L.S. leonardosantos.inf@gmail.com 28 de outubro de 201 2 Sumário I Provas 5 1 Vestibular 2011/2012 7 1.1

Leia mais

INSTRUÇÕES PARA REALIZAÇÃO DA PROVA

INSTRUÇÕES PARA REALIZAÇÃO DA PROVA PROVA MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO DECEx - DEPA (Casa de Thomaz Coelho/1889) CONCURSO DE ADMISSÃO AO 1º ANO DO ENSINO MÉDIO 2012/2013 11 DE NOVEMBRO DE 2012 INSTRUÇÕES PARA REALIZAÇÃO DA PROVA

Leia mais

QUESTÃO 03 (OBMEP) Os quadrados abaixo tem todos o mesmo tamanho. Em qual deles a região sombreada tem a maior área?

QUESTÃO 03 (OBMEP) Os quadrados abaixo tem todos o mesmo tamanho. Em qual deles a região sombreada tem a maior área? / /017 QUESTÃO 01 A parte sombreada da malha quadriculada representa um terreno de propriedade do senhor Josias. Ele quer construir algumas casas nesse terreno. Considere que cada quadrícula da malha equivale

Leia mais

Material de aula. Régua Compasso Par de esquadros (30 e 45 ) Borracha Lápis ou lapiseira Papel sulfite ou caderno de desenho

Material de aula. Régua Compasso Par de esquadros (30 e 45 ) Borracha Lápis ou lapiseira Papel sulfite ou caderno de desenho Desenho Técnico Material de aula Régua Compasso Par de esquadros (30 e 45 ) Borracha Lápis ou lapiseira Papel sulfite ou caderno de desenho Geometria Conversão de unidades Polígonos e sólidos Escala Desenho

Leia mais

UERJ/EsFAO/APM D.JoãoVI

UERJ/EsFAO/APM D.JoãoVI UERJ/EsFAO/APM D.JoãoVI Neste caderno você encontrará um conjunto de 32 (trinta e duas) páginas numeradas seqüencialmente, contendo 15 (quinze) questões de cada uma das seguintes disciplinas:, Química,

Leia mais

RESOLUÇÃO DA PROVA DO COLÉGIO NAVAL DE 2006 (PROVA VERDE):

RESOLUÇÃO DA PROVA DO COLÉGIO NAVAL DE 2006 (PROVA VERDE): RESOLUÇÃO DA PROVA DO COLÉGIO NAVAL DE 006 (PROVA VERDE): 1) Observe o sistema de equações lineares abaixo. x y 3 1 S 1: x 7y Sendo (x 1,y 1 ) solução de S 1, o resultado de (6 )x1 (1 3)y1 é igual a a)

Leia mais

Roteiro de Estudos - RECUPERAÇÃO FINAL

Roteiro de Estudos - RECUPERAÇÃO FINAL Roteiro de Estudos - RECUPERAÇÃO FINAL Nome completo: nº Disciplina: Geometria Ano: 9 Data: / / Professor: André Moreira Instruções Gerais: 1) Leia atentamente as questões. Confira sempre os resultados

Leia mais

LISTA DE EXERCÍCIO GEOMETRIA PLANA

LISTA DE EXERCÍCIO GEOMETRIA PLANA QUESTÃO 01 A parte sombreada da malha quadriculada representa um terreno de propriedade do senhor Josias. Ele quer construir algumas casas nesse terreno. LISTA DE EXECÍCIO GEOMETIA PLANA Considere que

Leia mais

POLÍGONOS REGULARES. Segmento: ENSINO MÉDIO. Tipo de Atividade: LISTA DE EXERCÍCIOS. 06/2017 Turma: 2 A

POLÍGONOS REGULARES. Segmento: ENSINO MÉDIO. Tipo de Atividade: LISTA DE EXERCÍCIOS. 06/2017 Turma: 2 A Segmento: ENSINO MÉDIO Disciplina: GEOMETRIA Tipo de Atividade: LISTA DE EXERCÍCIOS Prof. Marcelo 06/017 Turma: A POLÍGONOS REGULARES 1) Considere um quadrado com 3 cm de lado, inscrito em um círculo.

Leia mais

O quadrado e outros quadriláteros

O quadrado e outros quadriláteros Acesse: http://fuvestibular.com.br/ A UUL AL A O quadrado e outros quadriláteros Para pensar No mosaico acima, podemos identificar duas figuras bastante conhecidas: o quadrado, de dois tamanhos diferentes,

Leia mais

Nome: N.º: endereço: data: Telefone: PARA QUEM CURSA O 6 Ọ ANO DO ENSINO FUNDAMENTAL EM 2016 Disciplina: MaTeMÁTiCa

Nome: N.º: endereço: data: Telefone:   PARA QUEM CURSA O 6 Ọ ANO DO ENSINO FUNDAMENTAL EM 2016 Disciplina: MaTeMÁTiCa Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA O 6 Ọ ANO DO ENSINO FUNDAMENTAL EM 206 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 6 (FUNCAB) Complete os círculos com os algarismos,,

Leia mais

(PROVA DE MATEMÁTICA DO CONCURSO DE ADMISSÃO À 1ª SÉRIE CMB ANO 2005 / 06) MÚLTIPLA-ESCOLHA. (Marque com um X a única alternativa certa.

(PROVA DE MATEMÁTICA DO CONCURSO DE ADMISSÃO À 1ª SÉRIE CMB ANO 2005 / 06) MÚLTIPLA-ESCOLHA. (Marque com um X a única alternativa certa. (PROVA DE MATEMÁTICA DO CONCURSO DE ADMISSÃO À 1ª SÉRIE CMB ANO 005 / 06) MÚLTIPLA-ESCOLHA (Marque com um X a única alternativa certa.) QUESTÃO 01. Os números a, b, c são inteiros positivos tais que a

Leia mais

(CONCURSO PÚBLICO DE ADMISSÃO AO COLÉGIO NA VAL /CPACN-2015)

(CONCURSO PÚBLICO DE ADMISSÃO AO COLÉGIO NA VAL /CPACN-2015) MARINHA DO BRASIL DIRETORIA DE ENSINO DA MARINHA (CONCURSO PÚBLICO DE ADMISSÃO AO COLÉGIO NA VAL /CPACN-2015) NÃO ESTÁ AUTORIZADA A UTILIZAÇÃO DE MATERIAL EXTRA MATEMATICA 1) Seja S a soma dos valores

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web MATEMÁTICA XXVII ENEM. (Enem 202) Certo vendedor tem seu salário mensal calculado da seguinte maneira: ele ganha um valor fixo de R$750,00, mais uma comissão de R$3,00 para cada produto vendido. Caso ele

Leia mais

MATEMÁTICA - 1 o ANO MÓDULO 52 POLÍGONOS E QUADRILÁTEROS

MATEMÁTICA - 1 o ANO MÓDULO 52 POLÍGONOS E QUADRILÁTEROS MTEMÁTI - 1 o NO MÓULO 52 POLÍGONOS E QURILÁTEROS B b a c d B E B E B β X γ Y W α Z θ B B B B B B B B B M N B M N Fixação 1) Qual o polígono convexo que tem 90 diagonais? Fixação F 2) diferença entre

Leia mais

Soluções Comentadas Matemática Curso Mentor Aprendizes-Marinheiros. Barbosa, L.S.

Soluções Comentadas Matemática Curso Mentor Aprendizes-Marinheiros. Barbosa, L.S. Soluções Comentadas Matemática Curso Mentor Aprendizes-Marinheiros Barbosa, L.S. leonardosantos.inf@gmail.com 6 de dezembro de 2014 2 Sumário I Provas 5 1 Matemática 2013/2014 7 2 Matemática 2014/2015

Leia mais

COLÉGIO DE APLICAÇÃO DOM HÉLDER CÂMARA EXERCÍCIOS COMPLEMENTARES I DISCIPLINA : MATEMÁTICA PROFESSOR (A): ALUNO (A) 4º ano

COLÉGIO DE APLICAÇÃO DOM HÉLDER CÂMARA EXERCÍCIOS COMPLEMENTARES I DISCIPLINA : MATEMÁTICA PROFESSOR (A): ALUNO (A) 4º ano COLÉGIO DE APLICAÇÃO DOM HÉLDER CÂMARA EXERCÍCIOS COMPLEMENTARES I DISCIPLINA : MATEMÁTICA PROFESSOR (A): ALUNO (A) 4º ano DATA PARA ENTREGA: / /2017 1. Determine os números correspondentes as decomposições

Leia mais

Atividades de fixação 1 semestre / 8 ano

Atividades de fixação 1 semestre / 8 ano Querido (a) aluno (a), Atividades de fixação 1 semestre / 8 ano Os exercícios a seguir contemplarão alguns dos conteúdos abordados durante esse semestre. Faça com seriedade... 1-Expresse os números abaixo

Leia mais

R.: c) Use < ou >, no espaço abaixo, para comparar a altura de Tipiti à do irmão.

R.: c) Use < ou >, no espaço abaixo, para comparar a altura de Tipiti à do irmão. PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - 5º ANO - ENSINO FUNDAMENTAL ========================================================================== 01- Leia um trecho de um livro, no

Leia mais

RETAS E CIRCUNFERÊNCIAS

RETAS E CIRCUNFERÊNCIAS RETAS E CIRCUNFERÊNCIAS Diâmetro Corda que passa pelo centro da circunferência [EF] e [GH] Raio Segmento de reta que une o centro a um ponto da circunferência [OD] [AB], [IJ], [GH], são cordas - segmentos

Leia mais

Conteúdos Exame Final

Conteúdos Exame Final Componente Curricular: Matemática Série/Ano: 6º ANO Professora Fernanda S. Hamerski Conteúdos Exame Final. Frações * Comparação de frações e representação por desenho * Operações com frações (adição, subtração,

Leia mais

GABARITO PROVA A GABARITO PROVA B. Colégio Providência Avaliação por Área A B C D. Matemática e suas tecnologias. 2ª ETAPA Data: 31/08/2015

GABARITO PROVA A GABARITO PROVA B. Colégio Providência Avaliação por Área A B C D. Matemática e suas tecnologias. 2ª ETAPA Data: 31/08/2015 Colégio Providência Avaliação por Área Matemática e suas tecnologias 2ª ETAPA Data: 31/08/2015 1ª SÉRIE ENSINO MÉDIO GABARITO PROVA A A B C D 1 XXXX xxxxx xxxxx xxxxx 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Leia mais

LISTA DE EXERCÍCIOS P4 3º BIM 2015 POTÊNCIAS PARTE 1. 1) Calcule: a) b) c) d) 2) (PUC-SP) Calcule: a) 2 4. b) 4 2 d) 3) (FUVEST SP) Qual a metade de

LISTA DE EXERCÍCIOS P4 3º BIM 2015 POTÊNCIAS PARTE 1. 1) Calcule: a) b) c) d) 2) (PUC-SP) Calcule: a) 2 4. b) 4 2 d) 3) (FUVEST SP) Qual a metade de LISTA DE EXERCÍCIOS P4 º BIM 0 PARTE POTÊNCIAS ) Calcule: a) 0, b) 0, c) 0, d),4 e), f) 8 8, ) (PUC-SP) Calcule: a) 4 c) 4 e) 4 b) 4 d) 4 f) 4 ) (FUVEST SP) Qual a metade de 4) Calcule: a) 0 b)? ) Calcule

Leia mais

Soluções Comentadas Matemática Curso Mentor Colégio Naval. Barbosa, L.S.

Soluções Comentadas Matemática Curso Mentor Colégio Naval. Barbosa, L.S. Soluções Comentadas Matemática Curso Mentor Colégio Naval Barbosa, L.S. leonardosantos.inf@gmail.com 30 de dezembro de 2013 2 Sumário I Provas 5 1 Matemática 2013/2014 7 II Soluções 11 2 Matemática 2013/2014

Leia mais

A lei dos senos. Na Aula 42 vimos que a Lei dos co-senos é. a 2 = b 2 + c 2-2bc cos Â

A lei dos senos. Na Aula 42 vimos que a Lei dos co-senos é. a 2 = b 2 + c 2-2bc cos  A UA UL LA A lei dos senos Introdução Na Aula 4 vimos que a Lei dos co-senos é uma importante ferramenta matemática para o cálculo de medidas de lados e ângulos de triângulos quaisquer, isto é, de triângulos

Leia mais

1ª Avaliação. 1) Obtenha a fórmula que define a função linear f, sabendo que (3) 7 f =.

1ª Avaliação. 1) Obtenha a fórmula que define a função linear f, sabendo que (3) 7 f =. 1ª Avaliação 1) Obtenha a fórmula que define a função linear f, sabendo que (3) 7 f. ) Determine o domínio da função abaio. f ( ) 3 3 8 9 + 14 3) Determine o domínio da função abaio. f ( ) 1 ( 3)( ) 4)

Leia mais

CENTRO EDUCACIONAL SESC CIDADANIA

CENTRO EDUCACIONAL SESC CIDADANIA CENTRO EDUCACIONAL SESC CIDADANIA Prof. (a): Heloísa Andréia LRR MATEMÁTICA III 2º TRIMESTRE Se não existe esforço, não existe progresso (F. Douglas) ENSINO MÉDIO Aluno(a): SÉRIE 3ª TURMA DATA: / /2017

Leia mais

MATEMÁTICA MÓDULO 16 CONE E CILINDRO. Professor Haroldo Filho

MATEMÁTICA MÓDULO 16 CONE E CILINDRO. Professor Haroldo Filho MATEMÁTICA Professor Haroldo Filho MÓDULO 16 CONE E CILINDRO 1. CILINDRO CIRCULAR Considere dois planos paralelos, α e β, seja R um círculo no plano α, seja s uma reta secante aos dois planos que não intersecta

Leia mais

Questão 2. Questão 1. Questão 3. Resposta. Resposta. Resposta

Questão 2. Questão 1. Questão 3. Resposta. Resposta. Resposta ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço a ela reservado. Não basta escrever apenas o resultado final: é necessário mostrar os cálculos ou o raciocínio utilizado. Questão Emumasalaháumalâmpada,umatelevisão

Leia mais

1 POTÊNCIA DE PONTO 2 CIRCUNFERÊNCIAS TANGENTES. 1.1 Potência de ponto interior. 1.2 Potência de ponto exterior

1 POTÊNCIA DE PONTO 2 CIRCUNFERÊNCIAS TANGENTES. 1.1 Potência de ponto interior. 1.2 Potência de ponto exterior Matemática 2 Pedro Paulo GEOMETRIA PLANA XV 1 POTÊNCIA DE PONTO Sejam um ponto interior ou exterior a uma circunferência e uma reta que passa por e corta a circunferência nos pontos e. A potência do ponto

Leia mais

EMENTA ESCOLAR I Trimestre Ano 2017 Disciplina: Matemática Professor: Flávio Calônico Júnior Turma: 2 ano do Ensino Médio

EMENTA ESCOLAR I Trimestre Ano 2017 Disciplina: Matemática Professor: Flávio Calônico Júnior Turma: 2 ano do Ensino Médio EMENTA ESCOLAR I Trimestre Ano 2017 Disciplina: Matemática Professor: Flávio Calônico Júnior Turma: 2 ano do Ensino Médio Datas 14/fevereiro 17/fevereiro 21/fevereiro 24/fevereiro 28/fevereiro 03/março

Leia mais

NOCÕES DE GEOMETRIA APROVADOS CURSO PREPARATÓRIO RESOLUÇÃO DE QUESTÕES BANCA FGV PARTE 3 RACIOCÍNIO MATEMÁTICO - PROF. LUCÉLIA TAVEIRA ALUNO: FONE:

NOCÕES DE GEOMETRIA APROVADOS CURSO PREPARATÓRIO RESOLUÇÃO DE QUESTÕES BANCA FGV PARTE 3 RACIOCÍNIO MATEMÁTICO - PROF. LUCÉLIA TAVEIRA ALUNO: FONE: APROVADOS CURSO PREPARATÓRIO RESOLUÇÃO DE QUESTÕES BANCA FGV PARTE 3 RACIOCÍNIO MATEMÁTICO - PROF. LUCÉLIA TAVEIRA ALUNO: FONE: SITE: www.cursoaprovados.com.br FANPAGE: CURSO PREPARATÓRIO APROVADOSAPROVADOS

Leia mais

Grupo 1 - PIC OBMEP 2011 Módulo 2 - Geometria. Resumo do Encontro 6, 22 de setembro de Questões de geometria das provas da OBMEP

Grupo 1 - PIC OBMEP 2011 Módulo 2 - Geometria. Resumo do Encontro 6, 22 de setembro de Questões de geometria das provas da OBMEP Grupo 1 - PIC OBMEP 2011 Módulo 2 - Geometria Resumo do Encontro 6, 22 de setembro de 2012 Questões de geometria das provas da OBMEP http://www.obmep.org.br/provas.htm 1. Área: conceito e áreas do quadrado

Leia mais

Exercícios de Revisão

Exercícios de Revisão Exercícios de Revisão Lista de Exercícios. Um artesão de joias tem a sua disposição pedras brasileiras de três cores: vermelhas, azuis e verdes. Ele pretende produzir joias constituídas por uma liga metálica,

Leia mais

Prova Vestibular ITA 2000

Prova Vestibular ITA 2000 Prova Vestibular ITA Versão. ITA - (ITA ) Sejam f, g : R R definidas por f ( ) = e g cos 5 ( ) =. Podemos afirmar que: f é injetora e par e g é ímpar. g é sobrejetora e f é bijetora e g é par e f é ímpar

Leia mais

Combinatória e Probabilidade

Combinatória e Probabilidade Combinatória e Probabilidade 1. (Enem) Considere o seguinte jogo de apostas: Numa cartela com 60 números disponíveis, um apostador escolhe de 6 a 10 números. Dentre os números disponíveis, serão sorteados

Leia mais

Primeira aplicação: Capital no valor de R$ ,00, durante 3 meses, sob o regime de capitalização simples a uma taxa de 10% ao ano.

Primeira aplicação: Capital no valor de R$ ,00, durante 3 meses, sob o regime de capitalização simples a uma taxa de 10% ao ano. 95. (Analista Judiciário Contadoria TRF 3ª Região 2016/FCC) Em um contrato é estabelecido que uma pessoa deverá pagar o valor de R$ 5.000,00 daqui a 3 meses e o valor de R$ 10.665,50 daqui a 6 meses. Esta

Leia mais

Geometria Euclidiana Plana

Geometria Euclidiana Plana CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 014. Geometria Euclidiana Plana Parte II Joyce Danielle de Araújo - Engenharia de Produção Vitor Bruno - Engenharia Civil Introdução Desde os egípcios,

Leia mais

Prova Final de Matemática

Prova Final de Matemática PROVA FINAL DO 3.º CICLO do Ensino BÁSICO Decreto-Lei n.º 139/01, de 5 de julho Prova Final de Matemática 3.º Ciclo do Ensino Básico Prova 9/1.ª Chamada 1 Páginas Entrelinha 1,5 Duração da Prova: 90 minutos.

Leia mais

Colégio FAAT Ensino Fundamental e Médio

Colégio FAAT Ensino Fundamental e Médio Colégio FAAT Ensino Fundamental e Médio Recuperação do 3 Bimestre Matemática Prof. Leandro Conteúdo: Capítulo 7: Fatorial de um número. Permutação simples e com repetições. Arranjo e combinação. Lista

Leia mais

ADIÇÃO E SUBTRAÇÃO DE ARCOS ADIÇÃO E SUBTRAÇÃO DE ARCOS EXERCÍCIOS DE FIXAÇÃO

ADIÇÃO E SUBTRAÇÃO DE ARCOS ADIÇÃO E SUBTRAÇÃO DE ARCOS EXERCÍCIOS DE FIXAÇÃO ADIÇÃO E SUBTRAÇÃO DE ARCOS AULA ESCRITA EXERCÍCIOS DE FIXAÇÃO ADIÇÃO E SUBTRAÇÃO DE ARCOS EXERCÍCIOS DE FIXAÇÃO E0176 Calcule o seno de 345º. RESOLUÇÃO CONJUNTOS AULA ESCRITA EXERCÍCIOS DE FIXAÇÃO EXERCÍCIOS

Leia mais

Equipe de Matemática MATEMÁTICA

Equipe de Matemática MATEMÁTICA Aluno (a): Série: 3ª Turma: TUTORIAL 9R Ensino Médio Equipe de Matemática Data: Áreas de Figuras Planas MATEMÁTICA O estudo da área de figuras planas está ligado aos conceitos relacionados à Geometria

Leia mais

CONCURSO DE ADMISSÃO 2013/2014 1º ANO/ENS. MÉDIO MATEMÁTICA PÁG. 1

CONCURSO DE ADMISSÃO 2013/2014 1º ANO/ENS. MÉDIO MATEMÁTICA PÁG. 1 ONURSO DE DMISSÃO 01/014 1º NO/ENS MÉDIO MTEMÁTI PÁG 1 PROV DE MTEMÁTI Marque no cartão-resposta anexo a única opção correta correspondente a cada questão 1 O valor de (a) (b) (c) (d) 4 1 1 16 1 0,75 4

Leia mais

Roteiro de estudos para recuperação final

Roteiro de estudos para recuperação final Roteiro de estudos para recuperação final Disciplina: Matemática 1 Professor (a): Pedro Costa Júnior Semelhança de triângulos. Apostila 2 - Bernoulli: 6V Módulo: 5 Frente B Páginas: 37 a 44. Fixação (3

Leia mais

ÍNDICE: Relações Métricas num Triângulo Retângulo página: 2. Triângulo Retângulo página: 4. Áreas de Polígonos página: 5

ÍNDICE: Relações Métricas num Triângulo Retângulo página: 2. Triângulo Retângulo página: 4. Áreas de Polígonos página: 5 ÍNDICE: Relações Métricas num Triângulo Retângulo página: Triângulo Retângulo página: 4 Áreas de Polígonos página: 5 Área do Círculo e suas partes página: 11 Razão entre áreas de figuras planas semelhantes

Leia mais

30's Volume 22 Matemática

30's Volume 22 Matemática 30's Volume Matemática www.cursomentor.com 0 de julho de 015 Q1. Um homem de x + 6 5 altura x + 97 m de altura está de pé próximo a um poste de m. Neste 50 5 caso qual a medida da sombra do homem neste

Leia mais

UNICAMP ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

UNICAMP ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR UNICAMP - 2006 2ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Um carro irá participar de uma corrida em que terá que percorrer 70 voltas, em uma pista com 4,4 km de extensão.

Leia mais