APOSTILA DE MATEMÁTICA PM/PA 2016

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "APOSTILA DE MATEMÁTICA PM/PA 2016"

Transcrição

1 APOSTILA DE MATEMÁTICA PM/PA 2016 Olá, tudo bem? Sou o Prof. Arthur Lima, e resumi nas próximas páginas os pontos do edital de MATEMÁTICA da POLÍCIA MILITAR DO PARÁ, cujas provas serão aplicadas pela banca FADESP em 31/Julho/2016. Além deste breve resumo, veja em seguida a resolução das questões da prova da PM/PA 2007, que foi realizada também pela mesma banca (a prova de 2012 foi da UEPA). Conheça meu curso completo de MATEMÁTICA (vídeos e aulas escritas) para a PM/PA 2016 aqui: Números inteiros: operações e propriedades. Números racionais, representação fracionária e decimal: operações e propriedades. Mínimo múltiplo comum. Porcentagem. Números naturais: aqueles de contagem natural {0, 1, 2, 3,...} Números inteiros: naturais e seus opostos {... -2, -1, 0, 1, 2,...} Números racionais: podem ser escritos na forma A, onde A e B são inteiros. Três tipos: B - são racionais: frações, números com casas decimais finitas (ex.: 0,8751), dízimas periódicas (ex.: 0, ou simplesmente 0,3 ); - este conjunto inclui todos os inteiros, que por sua vez inclui todos os naturais. Mínimo múltiplo comum (MMC): o MMC entre dois números é o menor número que é múltiplo de ambos os números. Ex.: o MMC entre 10 e 15 é o número 30. Por outro lado, veja que o número 30 é divisível por 10 e também por para obter o MMC, basta fatorar os números, usando todos os divisores necessários até tornar os dois números iguais a 1. Ex.: Prof. Arthur Lima 1

2 10 15 Fatores (mantido, pois não é divisível por 2) (mantido, pois não é divisível por 3) (chegamos ao valor 1 para ambos os números, portanto temos o MMC) MMC = 2 x 3 x 5 = 30 Porcentagem: quantia de interesse Porcentagem = 100% OU SEJA, quantia de interesse = porcentagem total total número percentual fração número decimal 20% 20/100 0,20 Aumentar um valor em x% é igual a multiplicá-lo por (1 + x%). Reduzir um valor em x% é igual a multiplicá-lo por (1 x%). De equivale à multiplicação: portanto, 20% de 300 é igual a 20% x 300. Razão e proporção. Regra de três simples. - Grandezas diretamente proporcionais: crescem e decrescem juntas. Resolva montando uma regra de três e fazendo a multiplicação cruzada ; - Grandezas inversamente proporcionais: uma aumenta quando a outra diminui. Antes da multiplicação cruzada, inverta os valores de uma grandeza. - Passos para resolver uma regra de três composta: 1) identificar, usando setas, as grandezas que são diretamente proporcionais e as que são inversamente proporcionais em relação a grandeza que queremos descobrir (aquela que possui o X). 2) inverter as colunas que forem inversamente proporcionais à grandeza que queremos. 3) igualar a razão onde está a grandeza X com o produto das outras razões. Prof. Arthur Lima 2

3 Equação do 1º grau. Sistema de equações do 1º grau. Relação entre grandezas: tabelas e gráficos. Média aritmética simples. - Produtos notáveis mais importantes: ( a b) a 2 a b b ( a b) a 2 a b b ( a b) ( a b) a b Equação de 1º grau: a.x + b = 0 (sua raiz é x = -b/a) - Método da substituição em sistema de equações de 1º grau: com duas equações e duas variáveis, isole uma variável na primeira equação e substitua na segunda. - média aritmética simples: consiste na soma de todos os valores, dividida pela quantidade total de valores. Soma dos valores Média = Quantidade total ou seja, Soma dos valores Média Quantidade total - propriedades relativas à média de um conjunto de dados: - somando-se ou subtraindo-se um valor constante em todos os valores, a média desse novo conjunto será somada ou subtraída do mesmo valor. - multiplicando-se ou dividindo-se todos os dados por um valor constante, a média desse novo conjunto será multiplicada ou dividida pelo mesmo valor. - o valor da média é calculado utilizando todos os valores da amostra. Portanto, qualquer alteração nesses valores poderá alterar a média. Assim, costumamos dizer que a média é afetada pelos valores extremos da distribuição. Prof. Arthur Lima 3

4 Sistema métrico: medidas de tempo, comprimento, superfície e capacidade. Noções de geometria: forma, perímetro, área, volume, teorema de Pitágoras. Veja as principais unidades do sistema métrico em amarelo nas tabelas abaixo, seus múltiplos e submúltiplos, e como efetuar as conversões: Unidades de comprimento (distância) Milímetro Centímetro Decímetro Metro Decâmetro Hectômetro Quilômetro (mm) (cm) (dm) (m) (dam) (hm) (km) 1000mm 100cm 10dm 1m 0,1dam 0,01hm 0,001km Multiplicar por 10 Dividir por 10 Unidades de superfície (área) Milímetro Centímetro Decímetro Metro Decâmetro Hectômetro Quilômetro quadrado quadrado quadrado quadrado quadrado quadrado quadrado (mm 2 ) (cm 2 ) (dm 2 ) (m 2 ) (dam 2 ) (hm 2 ) (km 2 ) mm cm 2 100dm 2 1m 2 0,01dam 2 0,0001hm 2 0,000001km 2 Multiplicar por 100 Dividir por 100 Unidades de capacidade (volume) Milímetro cúbico (mm 3 ) Centímetro cúbico (cm 3 ) Decímetro cúbico (dm 3 ) Metro cúbico (m 3 ) Decâmetro cúbico (dam 3 ) Hectômetro cúbico (hm 3 ) Quilômetro cúbico (km 3 ) mm cm dm 3 1m 3 0,001dam 3 0,000001hm 3 0, km 3 Multiplicar por 1000 Dividir por 1000 ** lembre que 1 litro = 1dm 3, e que 1000 litros = 1m 3 - Perímetro: soma dos comprimentos dos lados de uma figura plana; - Áreas das principais figuras planas: Figura Área Figura Área Quadrado Retângulo A = b x h A L Área = base x altura Área = lado ao quadrado 2 Prof. Arthur Lima 4

5 Trapézio A b B h 2 Losango D d A 2 Área = (base menor + base maior) x altura / 2 Área = (diagonal menor x diagonal maior) / 2 Paralelogramo b h A = b x h Área = base x altura Triângulo*** b h A 2 Área = (base x altura) / 2 b Círculo A r 2 Área = pi x raio ao quadrado *** Teorema de Pitágoras (triângulos retângulos): hipotenusa 2 = (cateto1) 2 + (cateto2) 2 Conheça meu curso completo de MATEMÁTICA (vídeos e aulas escritas) para a PM/PA 2016 aqui: - Volumes das principais figuras espaciais: Figura Área Figura Área Cubo Paralelepípedo V = Ab x h H L C Volume = área da base x altura V = C x L x H Volume = comprimento A x largura x altura A A V A 3 Volume = aresta ao cubo Cilindro H V = Ab x h Volume = área da base x altura 2 V R H Cone H G Ab H V 3 Volume = área da R Volume = pi x raio ao quadrado x altura R base x altura / 3 Prof. Arthur Lima 5

6 Pirâmide Prisma Ab H V 3 Volume = área da base x altura / 3 H V = Ab x h Volume = área da base x altura L Esfera V = 4 R 3 /3 Volume = 4 x pi x raio ao cubo / 3 E aí, vamos resolver juntos as questões da prova da POLÍCIA MILITAR DO PARÁ de 2007? Esta foi a última prova aplicada pela FADESP, que é a mesma banca do concurso de 2016! 1. FADESP Soldado PM/PA 2007) Dos 100 soldados que participavam de um curso de formação de cabos, 40 gostavam de praticar voleibol, 68 gostavam de praticar futebol e 14 não gostavam de praticar esses esportes. A quantidade de soldados que gostavam de praticar tanto voleibol quanto futebol é igual a (A) 18. (B) 22. (C) 30. Prof. Arthur Lima 6

7 (D) 46. Sendo V e F os conjuntos de soldados que gostavam de voleibol e futebol, respectivamente, podemos dizer que: n(v) = 40 n(f) = 68 Como, das 100 pessoas, 14 não gostavam de nenhum desses esportes, então = 86 gostavam de pelo menos um dos esportes. Ou seja, n(v ou F) = 86 Usando a fórmula para dois conjuntos, temos: n(v ou F) = n(v) + n(f) n(v e F) 86 = n(v e F) n(v e F) = n(v e F) = 22 Resposta: B Isto é, 22 pessoas gostavam de ambos os esportes. 2. FADESP Soldado PM/PA 2007) Se numa festa a quantidade de moças está para a quantidade de rapazes na razão de 13 para 12, então a porcentagem de moças presentes é (A) 46%. (B) 48%. (C) 50%. (D) 52% Para cada 13 moças, temos 12 rapazes. Portanto, em um grupo de = 25 pessoas na festa, teremos 13 moças e 12 rapazes. Portanto, o percentual de mulheres na festa é: Percentual = mulheres / total Percentual = 13 / 25 Prof. Arthur Lima 7

8 Multiplicando numerador e denominador por 4, ficamos com: Percentual = 52 / 100 Percentual = 52% Resposta: D 3. FADESP Soldado PM/PA 2007) A prova de um concurso continha 60 questões, e os pontos eram calculados pela fórmula P = 3C 2E + 120, onde C era a quantidade de questões certas e E a de questões erradas. Um candidato que obteve 225 pontos acertou: (A) 45 questões. (B) 30 questões. (C) 20 questões. (D) 15 questões. O total de questões é igual a 60. Portanto, se acertamos C questões, o número de questões erradas é de 60 C. Ou seja, E = 60 C. Sabendo que o candidato fez 225 pontos, podemos escrever que: P = 3C 2E = 3C 2(60 C) = 3C C = 5C C = 225 / 5 C = 450 / 10 C = 45 Resposta: A Ou seja, o candidato acertou 45 questões. 4. FADESP Soldado PM/PA 2007) Sabendo-se que uma pessoa consome aproximadamente 800 metros cúbicos de água por ano e que o planeta dispõe de, no máximo, 9000 quilômetros cúbicos de água para o consumo por ano, pode-se afirmar que a capacidade máxima de habitantes que o planeta suporta, considerando-se apenas a disponibilidade de água para consumo, é aproximadamente: Prof. Arthur Lima 8

9 (A) (B) (C) (D) Cada pessoa consome 800 metros cúbicos. O planeta possui quilômetros cúbicos de água. Para transformar quilômetros cúbicos em metros cúbicos, devemos multiplicar por três vezes consecutivas (para ir de km 3 para hm 3, depois para dam 3, e então para m 3 ). Ou seja, km 3 = x x x m km 3 = m 3 Portanto, se 1 habitante consome 800m 3, vejamos quantos habitantes precisamos para consumir m 3 : 1 pessoa m 3 N pessoas m 3 Resposta: C 1 x = N x = N x = N x = N x 2 N = pessoas 5. FADESP Soldado PM/PA 2007) Para encher um recipiente com capacidade de 15 litros, a quantidade mínima de vezes que terei de utilizar uma garrafa de refrigerante com capacidade para 600 ml é (A) 20. (B) 25. (C) 30. (D) 35. Sendo N o número de vezes que vamos usar a garrafa de 600ml (ou melhor, de 0,6 litro), podemos dizer que: Prof. Arthur Lima 9

10 Resposta: B N x 0,6 litro = 15 litros N = 15 / 0,6 N = 150 / 6 N = 50 / 2 N = 25 vezes 6. FADESP Soldado PM/PA 2007) O trabalho realizado por três máquinas durante 6 horas por dia, em 2 dias, custa R$ 1.800,00. Se uma máquina apresentar defeito e parar de funcionar, o custo da operação por 4 dias, com um funcionamento de 5 horas por dia, é igual a (A) R$ 1.850,00. (B) R$ 1.900,00. (C) R$ 1.950,00. (D) R$ 2.000,00. Podemos esquematizar as informações do enunciado assim: Máquinas Horas por dia Dias Custo C Veja que o número de máquinas caiu de 3 para 2, afinal uma parou de funcionar. Queremos descobrir o custo C na segunda situação. Precisamos agora avaliar quais grandezas são diretamente proporcionais e quais são inversamente proporcionais em relação ao Custo, que é o que queremos descobrir. Intuitivamente, observe que quanto MAIOR o número de máquinas, MAIOR o custo. Da mesma forma, quanto MAIS horas por dia, MAIOR é o custo. E quanto MAIS dias de trabalho, MAIOR é o custo. Todas as grandezas são diretamente proporcionais ao custo. Podemos montar nossa proporção, deixando a coluna da nossa variável (custo) de um lado e as demais colunas do outro lado da igualdade: C Prof. Arthur Lima 10

11 Resposta: D O custo é de reais C C C x 10 = 9C 200 x 10 = C 2000 = C Para responder às DUAS próximas questões, leia atentamente o texto abaixo. Considere pi aproximadamente igual a 3. Para realizar o Teste de Aptidão Física (TAF), as Forças Armadas utilizam uma pista cujas laterais são semelhantes a um retângulo com a largura igual à metade do comprimento, tendo, nas extremidades do comprimento, dois semicírculos. 7. FADESP Soldado PM/PA 2007) Se o comprimento da pista é igual a 420 m, então o raio dos semicírculos é igual a (A) 30 m. (B) 35 m. (C) 40 m. (D) 45 m. A pista tem a forma de um retângulo onde a largura é a metade do comprimento, ou seja, o comprimento C é o dobro da largura L, ou melhor, C = 2L: As laterais são semicírculos: Prof. Arthur Lima 11

12 Note que o comprimento total da pista é igual à soma dos dois segmentos de medida 2L, e mais os 2 semicírculos, que juntos formam um círculo. Este círculo tem diâmetro com medida L, de modo que o seu raio mede L/2. O comprimento deste círculo é: Comprimento do círculo = 2 x pi x raio Comprimento = 2 x 3 x L/2 Comprimento = 3L Assim, sabendo que o comprimento total da pista é de 420 metros, podemos escrever que: Comprimento total da pista = círculo + segmentos retos 420 = 3L + 2L + 2L 420 = 7L L = 420 / 7 L = 60 metros Resposta: A O raio de cada semicírculo é de L/2 = 60/2 = 30 metros. 8. FADESP Soldado PM/PA 2007) A área, em metros quadrados, ocupada pela pista é igual a (A) (B) (C) (D) Prof. Arthur Lima 12

13 A área total da pista é a soma da área de um círculo de raio 30 metros com a área de um retângulo de largura L = 60 metros e comprimento 2L = 120 metros. Ou seja, Área total = área do círculo + área do retângulo Área total = pi x raio 2 + largura x comprimento Área total = 3 x x 120 Área total = 3 x x 1200 Área total = Área total = 9900 m 2 Resposta: D 9. FADESP Soldado PM/PA 2007) Nos Jogos da Polícia Militar, a delegação de um batalhão obteve 37 medalhas. Sendo o número de medalhas de prata 20% superior ao das de ouro, e o número de medalhas de bronze 25% superior ao das de prata, o número de medalhas de prata obtido por essa delegação foi de (A) 17. (B) 15. (C) 12. (D) 10. Seja N o número de medalhas de ouro. As medalhas de prata são 20% a mais, ou seja, Prata = Ouro x (1+20%) Prata = N x (1 + 0,20) Prata = N x (1,20) Prata = 1,2N As medalhas de bronze são 25% a mais que as de prata: Bronze = Prata x (1 + 25%) Bronze = Prata x (1 + 0,25) Bronze = Prata x (1,25) Bronze = 1,2N x (1,25) Bronze = 1,2x1,25xN Bronze = 1,5N Prof. Arthur Lima 13

14 O total de medalhas é 37, ou seja, 37 = ouro + prata + bronze 37 = N + 1,2N + 1,5N 37 = 3,7N N = 37 / 3,7 N = 10 medalhas de ouro Resposta: C O número de medalhas de prata é 1,2N = 1,2x10 = FADESP Soldado PM/PA 2007) Ao se aumentar em 2 m um dos lados de uma sala de forma quadrangular, e o outro lado em 3 m, a sala tornou-se retangular, com 56 m 2 de área. Então, a medida, em metros, do lado do quadrado era igual a (A) 5. (B) 6. (C) 7. (D) 8. Suponha que o lado do quadrado original media L. Ao aumentar um lado em 2m e o outro em 3m, ficamos com um retângulo com largura L+2 e comprimento L+3. Sabendo que a área deste retângulo é de 56m 2, podemos dizer que: Área do retângulo = largura x comprimento 56 = (L+2) x (L+3) Nesta expressão acima podemos testar as opções de resposta. Testando L = 5 (alternativa A), temos o seguinte: (L+2) x (L+3) = (5+2) x (5+3) = 7 x 8 = 56 Portanto, veja que chegamos em 56m 2, o que demonstra que o lado do quadrado original era mesmo L = 5 metros. Prof. Arthur Lima 14

15 Resposta: A 11. FADESP Soldado PM/PA 2007) Dois amigos dividiram uma conta de R$135,00. O mais velho apresentou certa quantia e o mais novo completou com dois terços da quantia apresentada pelo mais velho. O valor que o mais novo apresentou foi igual a (A) R$ 84,00. (B) R$ 74,00. (C) R$ 64,00. (D) R$ 54,00. Seja V a quantia paga pelo mais velho. O mais novo pagou 2/3 disto, ou seja, 2V/3. O total pago foi de 135 reais, ou seja, V + 2V/3 = 135 3V/3 + 2V/3 = 135 5V/3 = 135 V = 135 x 3/5 V = 27 x 3 V = 81 reais Resposta: D Portanto, o mais novo pagou: 2V/3 = 2x81/3 = 2x27 = 54 reais 12. FADESP Soldado PM/PA 2007) Uma pessoa, após receber seu salário, gasta um quinto com transporte e, do que sobra, gasta um terço com alimentação, restando-lhe ainda R$ 480,00. Seu salário é (A) R$ 810,00. (B) R$ 840,00. (C) R$ 870,00. (D) R$ 900,00. Prof. Arthur Lima 15

16 MATEMÁTICA P/ POLÍCIA MILITAR DO PARÁ Seja S o salário da pessoa. Subtraindo 1/5 deste salário (transporte), sobram 4/5 do salário, isto é, 4S/5. Deste restante, são gastos 1/3 com alimentação, sobrando 2/3 disto, que corresponde a 480 reais. Ou seja, 2/3 de (4S/5) = 480 2/3 x (4S/5) = 480 4S/5 = 480 x 3/2 4S/5 = 240 x 3 4S/5 = 720 S = 720 x 5/4 S = 180 x 5 S = 900 reais Resposta: D Conheça meu curso completo de MATEMÁTICA (vídeos e aulas escritas) para a PM/PA 2016 aqui: TENHA UMA EXCELENTE PROVA! Saudações, Prof. Arthur Lima Acompanhe vídeos gratuitos no meu canal do Youtube: Curta meu Facebook e acompanhe várias outras dicas: Prof. Arthur Lima 16

1.0. Conceitos Utilizar os critérios de divisibilidade por 2, 3, 5 e Utilizar o algoritmo da divisão de Euclides.

1.0. Conceitos Utilizar os critérios de divisibilidade por 2, 3, 5 e Utilizar o algoritmo da divisão de Euclides. Conteúdo Básico Comum (CBC) Matemática - do Ensino Fundamental do 6º ao 9º ano Os tópicos obrigatórios são numerados em algarismos arábicos Os tópicos complementares são numerados em algarismos romanos

Leia mais

Conteúdo: PERÍMETRO E ÁREA DE FIGURAS PLANAS

Conteúdo: PERÍMETRO E ÁREA DE FIGURAS PLANAS Nome: nº Data: / / Professor: Lucas Factor Curso/Série 8º Ano Ensino Fundamental II Conteúdo: PERÍMETRO E ÁREA DE FIGURAS PLANAS Os cálculos de perímetro e área são necessários, seja para a compra de um

Leia mais

3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo

3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo 3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo LISTA DE ESTUDO.. Áreas 1. Calcule a área da região mais escura. 2. Um quadrado tem área de 25 cm 2. O que

Leia mais

MATEMÁTICA PLANEJAMENTO 3º BIMESTRE º B - 11 Anos

MATEMÁTICA PLANEJAMENTO 3º BIMESTRE º B - 11 Anos PREFEITURA MUNICIPAL DE IPATINGA ESTADO DE MINAS GERAIS SECRETARIA MUNICIPAL DE EDUCAÇÃO DEPARTAMENTO PEDAGÓGICO/ SEÇÃO DE ENSINO FORMAL Centro de Formação Pedagógica CENFOP MATEMÁTICA PLANEJAMENTO 3º

Leia mais

3º TRIMESTRE DE 2016

3º TRIMESTRE DE 2016 COLÉGIO MILITAR DO RIO E JANEIRO LISTA DE EXERCÍCIOS COMPLEMENTARES GEOMETRIA ESPACIAL º ANO DO ENSINO MÉDIO Equipe: Prof. Cap Boente, Prof Magda, Prof Fernando e Prof Zamboti 3º TRIMESTRE DE 06 PRISMAS

Leia mais

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO ANO 2015 PROFESSOR (a) DISCIPLINA Bruno Rezende Pereira Matemática ALUNO (a) SÉRIE 3º Ano do Ensino Médio

Leia mais

ÁREA E PERÍMETRO EXERCÍCIOS DE CONCURSOS

ÁREA E PERÍMETRO EXERCÍCIOS DE CONCURSOS ÁREA E PERÍMETRO EXERCÍCIOS DE CONCURSOS E0059 (EXATUS) PM-ES 2012 QUESTÃO 66 A área de um triângulo equilátero de arestas medindo 8 cm é igual a: RESOLUÇÃO E0565 (EXATUS) PM-ES 2012 QUESTÃO 92 92 Tifany

Leia mais

Material de aula. Régua Compasso Par de esquadros (30 e 45 ) Borracha Lápis ou lapiseira Papel sulfite ou caderno de desenho

Material de aula. Régua Compasso Par de esquadros (30 e 45 ) Borracha Lápis ou lapiseira Papel sulfite ou caderno de desenho Desenho Técnico Material de aula Régua Compasso Par de esquadros (30 e 45 ) Borracha Lápis ou lapiseira Papel sulfite ou caderno de desenho Geometria Conversão de unidades Polígonos e sólidos Escala Desenho

Leia mais

Matéria: Matemática Assunto: Volume Prof. Dudan

Matéria: Matemática Assunto: Volume Prof. Dudan Matéria: Matemática Assunto: Volume Prof. Dudan Matemática VOLUME DEFINIÇÃO As medidas de volume possuem grande importância nas situações envolvendo capacidades de sólidos. Podemos definir volume como

Leia mais

C) D) E) A) 410,00 B) 460,00 C) 425,00 D) 435,00 E) 420,00 A) ,00 B) ,00 C) 2.400,00 D) ,00 E) 21.

C) D) E) A) 410,00 B) 460,00 C) 425,00 D) 435,00 E) 420,00 A) ,00 B) ,00 C) 2.400,00 D) ,00 E) 21. MATEMÁTICA NÍVEL FUNDAMENTAL I. PORCENTAGEM 1.Fração Percentual 20%= 0,2 35%= 0,35 4%= 0,04 2. Cálculo da porcentagem de um número Exs: a) Calcular 25% de 600 0,25 x 600 = 150 b) Calcular 8% de 50 0,08

Leia mais

Aula demonstrativa Apresentação... 2 Modelos de questões resolvidas FADESP... 4 Relação das questões comentadas... 8 Gabaritos...

Aula demonstrativa Apresentação... 2 Modelos de questões resolvidas FADESP... 4 Relação das questões comentadas... 8 Gabaritos... Aula demonstrativa Apresentação... 2 Modelos de questões resolvidas FADESP... 4 Relação das questões comentadas... 8 Gabaritos... 9 1 Apresentação Olá, pessoal! Tudo bem com vocês? Como vocês bem sabem,

Leia mais

Grandeza superfície Outras medidas de comprimento

Grandeza superfície Outras medidas de comprimento Noções de medida As primeiras noções de medida foram adquiridas com o auxílio de algumas partes do corpo humano, tornandoseunidades de medida o pé, o passo, o palmo, os dedos. É importante ressaltar que

Leia mais

MEDIDAS. O tamanho de uma régua, a distância entre duas cidades, a altura de um poste e a largura de uma sala tudo isso é medido em comprimento.

MEDIDAS. O tamanho de uma régua, a distância entre duas cidades, a altura de um poste e a largura de uma sala tudo isso é medido em comprimento. MEDIDAS Comprimento O tamanho de uma régua, a distância entre duas cidades, a altura de um poste e a largura de uma sala tudo isso é medido em comprimento. Existem várias unidades que podem ser utilizadas

Leia mais

Equipe de Matemática MATEMÁTICA

Equipe de Matemática MATEMÁTICA Aluno (a): Série: 3ª Turma: TUTORIAL 9R Ensino Médio Equipe de Matemática Data: Áreas de Figuras Planas MATEMÁTICA O estudo da área de figuras planas está ligado aos conceitos relacionados à Geometria

Leia mais

OPERAÇÕES COM NÚMEROS RACIONAIS, DECIMAIS, FRAÇÕES, MDC, MMC E DIVISORES.

OPERAÇÕES COM NÚMEROS RACIONAIS, DECIMAIS, FRAÇÕES, MDC, MMC E DIVISORES. OPERAÇÕES COM NÚMEROS RACIONAIS, DECIMAIS, FRAÇÕES, MDC, MMC E DIVISORES. 1) Calcule o valor das expressões: a) 19,6 + 3,04 + 0,076 = b) 17 + 4,32 + 0,006 = c) 4,85-2,3 = d) 9,9-8,76 = e) (0,378-0,06)

Leia mais

Exercícios de Revisão

Exercícios de Revisão Professor: Cassio Kiechaloski Mello Disciplina: Matemática Exercícios de Revisão Geometria Analítica Geometria Plana Geometria Espacial Números Complexos Polinômios Na prova de recuperação final, não será

Leia mais

Atividade: Escalas utilizadas em mapas

Atividade: Escalas utilizadas em mapas Atividade: Escalas utilizadas em mapas I. Introdução: Os mapas são representações gráficas reduzidas de uma determinada região e de grande importância para vários profissionais como engenheiros, geógrafos,

Leia mais

Planificação Anual Departamento 1.º Ciclo

Planificação Anual Departamento 1.º Ciclo Modelo Dep-01 Agrupamento de Escolas do Castêlo da Maia Planificação Anual Departamento 1.º Ciclo Ano 4º Ano letivo 2013.2014 Disciplina: Matemática Turmas: 4º ano Professores: todos os docentes do 4º

Leia mais

Geometria Espacial - AFA

Geometria Espacial - AFA Geometria Espacial - AFA 1. (AFA) O produto da maior diagonal pela menor diagonal de um prisma hexagonal regular de área lateral igual a 1 cm e volume igual a 1 cm é: 10 7. 0 7. 10 1. (D) 0 1.. (AFA) Qual

Leia mais

MÓDULO VII SISTEMAS DE UNIDADES DE MEDIDA 2ª PARTE

MÓDULO VII SISTEMAS DE UNIDADES DE MEDIDA 2ª PARTE MÓDULO VII SISTEMAS DE UNIDADES DE MEDIDA 2ª PARTE No módulo anterior, estudamos os Sistemas de Unidades de Comprimento, Massa e de Tempo. Nesse módulo iremos estudar outros Sistemas de Unidades de Medidas,

Leia mais

MATEMÁTICA PLANEJAMENTO 4º BIMESTRE º B - 11 Anos

MATEMÁTICA PLANEJAMENTO 4º BIMESTRE º B - 11 Anos PREFEITURA MUNICIPAL DE IPATINGA ESTADO DE MINAS GERAIS SECRETARIA MUNICIPAL DE EDUCAÇÃO DEPARTAMENTO PEDAGÓGICO/ SEÇÃO DE ENSINO FORMAL Centro de Formação Pedagógica CENFOP MATEMÁTICA PLANEJAMENTO 4º

Leia mais

TEMA I: Interagindo com os números e funções

TEMA I: Interagindo com os números e funções 31 TEMA I: Interagindo com os números e funções D1 Reconhecer e utilizar característictas do sistema de numeração decimal. D2 Utilizar procedimentos de cálculo para obtenção de resultados na resolução

Leia mais

Módulo Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera. Cilindro. Professores Cleber Assis e Tiago Miranda

Módulo Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera. Cilindro. Professores Cleber Assis e Tiago Miranda Módulo Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera Cilindro. 3 ano/e.m. Professores Cleber Assis e Tiago Miranda Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera.

Leia mais

Prova Final de Matemática

Prova Final de Matemática PROVA FINAL DO 3.º CICLO do Ensino BÁSICO Decreto-Lei n.º 39/0, de 5 de julho Prova Final de Matemática 3.º Ciclo do Ensino Básico Prova 9/.ª Chamada 8 Páginas Duração da Prova: 90 minutos. Tolerância:

Leia mais

2º ANO Reconhecer e utilizar características do sistema de numeração decimal, tais como agrupamentos e trocas na base 10 e princípio do valor posicion

2º ANO Reconhecer e utilizar características do sistema de numeração decimal, tais como agrupamentos e trocas na base 10 e princípio do valor posicion PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO DESCRITORES DE MATEMÁTICA PROVA - 3º BIMESTRE 2011 2º ANO Reconhecer e utilizar

Leia mais

Ordenar ou identificar a localização de números racionais na reta numérica.

Ordenar ou identificar a localização de números racionais na reta numérica. Ordenar ou identificar a localização de números racionais na reta numérica. Estabelecer relações entre representações fracionárias e decimais dos números racionais. Resolver situação-problema utilizando

Leia mais

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I. 2º Teste de avaliação versão1 Grupo I

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I. 2º Teste de avaliação versão1 Grupo I Escola Secundária com º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I º Teste de avaliação versão1 Grupo I As cinco questões deste grupo são de escolha múltipla. Para cada

Leia mais

Desenho e Projeto de Tubulação Industrial Nível II

Desenho e Projeto de Tubulação Industrial Nível II Desenho e Projeto de Tubulação Industrial Nível II Módulo I Aula 04 SUPERFÍCIE E ÁREA Medir uma superfície é compará-la com outra, tomada como unidade. O resultado da comparação é um número positivo, ao

Leia mais

RESISTÊNCIA DOS MATERIAIS

RESISTÊNCIA DOS MATERIAIS 2 RESISTÊNCIA DOS MATERIAIS Revisão de Matemática Faremos aqui uma pequena revisão de matemática necessária à nossa matéria, e sem a qual poderemos ter dificuldades em apreender os conceitos básicos e

Leia mais

1. Um exemplo de número irracional é (A) 4, (B) 4, (C) 4, (D) 3,42 4,

1. Um exemplo de número irracional é (A) 4, (B) 4, (C) 4, (D) 3,42 4, 1. Um exemplo de número irracional é (A) 4,2424242... (B) 4,2426406... (C) 4,2323... (D) 3,42 4,2426406... Solução: Número irracional é o número decimal infinito e não periódico. (A) A parte decimal é

Leia mais

GEOMETRIA ESPACIAL TETRAEDRO HEXAEDRO OCTAEDRO DODECAEDRO ICOSAEDRO REGULARES RETO POLIEDROS OBLÍQUO PRISMA REGULAR IRREGULARES RETA OBLÍQUA PIRÂMIDE

GEOMETRIA ESPACIAL TETRAEDRO HEXAEDRO OCTAEDRO DODECAEDRO ICOSAEDRO REGULARES RETO POLIEDROS OBLÍQUO PRISMA REGULAR IRREGULARES RETA OBLÍQUA PIRÂMIDE GEOMETRIA ESPACIAL SÓLIDOS GEOMÉTRICOS POLIEDROS REGULARES SÓLIDOS DE REVOLUÇÃO IRREGULARES CONE TETRAEDRO HEXAEDRO OCTAEDRO DODECAEDRO ICOSAEDRO ESFERA CILINDRO PRISMA PIRÂMIDE RETO OBLÍQUO RETO RETO

Leia mais

Como você mediria a sua apostila sem utilizar uma régua? Medir é comparar duas grandezas, utilizando uma delas como padrão.

Como você mediria a sua apostila sem utilizar uma régua? Medir é comparar duas grandezas, utilizando uma delas como padrão. Unidades de Medidas Como você mediria a sua apostila sem utilizar uma régua? Medir é comparar duas grandezas, utilizando uma delas como padrão. Como os antigos faziam para realizar medidas? - Na antiguidade:

Leia mais

DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (7º Ano) METAS CURRICULARES/CONTEÚDOS... 1º Período

DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (7º Ano) METAS CURRICULARES/CONTEÚDOS... 1º Período ANO LETIVO 2015/2016 DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (7º Ano) METAS CURRICULARES/CONTEÚDOS... 1º Período Metas / Objetivos Conceitos / Conteúdos Aulas Previstas Números e

Leia mais

01- Assunto: Equação do 2º grau. Se do quadrado de um número real positivo x subtrairmos 4 unidades, vamos obter o número 140. Qual é o número x?

01- Assunto: Equação do 2º grau. Se do quadrado de um número real positivo x subtrairmos 4 unidades, vamos obter o número 140. Qual é o número x? EXERCÍCIO COMPLEMENTARES - MATEMÁTICA - 9º ANO - ENSINO FUNDAMENTAL - ª ETAPA ============================================================================================== 01- Assunto: Equação do º grau.

Leia mais

7.º Ano. Planificação Matemática 2016/2017. Escola Básica Integrada de Fragoso 7.º Ano

7.º Ano. Planificação Matemática 2016/2017. Escola Básica Integrada de Fragoso 7.º Ano 7.º Ano Planificação Matemática 201/2017 Escola Básica Integrada de Fragoso 7.º Ano Geometria e medida Números e Operações Domínio Subdomínio Conteúdos Objetivos gerais / Metas Números racionais - Simétrico

Leia mais

7º Ano. Planificação Matemática 2014/2015. Escola Básica Integrada de Fragoso 7º Ano

7º Ano. Planificação Matemática 2014/2015. Escola Básica Integrada de Fragoso 7º Ano 7º Ano Planificação Matemática 2014/2015 Escola Básica Integrada de Fragoso 7º Ano Domínio Subdomínio Conteúdos Objetivos gerais / Metas Números e Operações Números racionais - Simétrico da soma e da diferença

Leia mais

(PROVA DE MATEMÁTICA DO CONCURSO DE ADMISSÃO À 5ª SÉRIE CMB ANO 2006 / 07) MÚLTIPLA-ESCOLHA. (Marque com um X a única alternativa certa)

(PROVA DE MATEMÁTICA DO CONCURSO DE ADMISSÃO À 5ª SÉRIE CMB ANO 2006 / 07) MÚLTIPLA-ESCOLHA. (Marque com um X a única alternativa certa) MÚLTIPLA-ESCOLHA (Marque com um X a única alternativa certa) Item 01. Sabendo-se que = mdc(8,7) de ( - A) B. ) zero ) 1 ) 56 ) 62 ) 63 A e B = mmc (9,7) Item 02. Determine o valor da expressão 1 + 2 +

Leia mais

PLANIFICAÇÃO ANUAL 2015/ º Ano Matemática. METAS Domínios/Conteúdos Objetivos Descritores de Desempenho

PLANIFICAÇÃO ANUAL 2015/ º Ano Matemática. METAS Domínios/Conteúdos Objetivos Descritores de Desempenho METAS Domínios/Conteúdos Objetivos Descritores de Desempenho Número e Operações - Números naturais 1. Contar 1.1. Reconhecer que se poderia prosseguir a contagem indefinidamente introduzindo regras de

Leia mais

MATEMÁTICA PLANEJAMENTO 2º BIMESTRE º B - 11 Anos

MATEMÁTICA PLANEJAMENTO 2º BIMESTRE º B - 11 Anos PREFEITURA MUNICIPAL DE IPATINGA ESTADO DE MINAS GERAIS SECRETARIA MUNICIPAL DE EDUCAÇÃO DEPARTAMENTO PEDAGÓGICO/ SEÇÃO DE ENSINO FORMAL Centro de Formação Pedagógica CENFOP MATEMÁTICA PLANEJAMENTO 2º

Leia mais

Módulo de Geometria Espacial I - Fundamentos. Poliedros. 3 ano/e.m.

Módulo de Geometria Espacial I - Fundamentos. Poliedros. 3 ano/e.m. Módulo de Geometria Espacial I - Fundamentos Poliedros. ano/e.m. Geometria Espacial I - Fundamentos Poliedros. 1 Exercícios Introdutórios Exercício 1. Um poliedro convexo tem 6 faces e 1 arestas. Determine

Leia mais

Matéria: Matemática Assunto: Sistema Métrico Decimal Prof. Dudan

Matéria: Matemática Assunto: Sistema Métrico Decimal Prof. Dudan Matéria: Matemática Assunto: Sistema Métrico Decimal Prof. Dudan Matemática Sistema Métrico Decimal Definição: O SISTEMA MÉTRICO DECIMAL é parte integrante do Sistema de Medidas. É adotado no Brasil tendo

Leia mais

1) Em cada Prisma representado a seguir, calcule a área da base (A b ), a área lateral (A L ), a área total (A T ) e o volume (V):

1) Em cada Prisma representado a seguir, calcule a área da base (A b ), a área lateral (A L ), a área total (A T ) e o volume (V): EXERCÍCIOS DE FIXAÇÃO GEOMETRIA SÓLIDA ÁREAS E VOLUMES DE PRISMAS, CILINDROS E CONES 2 a SÉRIE ENSINO MÉDIO 2011 ==========================================================================================

Leia mais

Roteiro de Estudos - RECUPERAÇÃO FINAL

Roteiro de Estudos - RECUPERAÇÃO FINAL Roteiro de Estudos - RECUPERAÇÃO FINAL Nome completo: nº Disciplina: Geometria Ano: 9 Data: / / Professor: André Moreira Instruções Gerais: 1) Leia atentamente as questões. Confira sempre os resultados

Leia mais

INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA II EXERCÍCIOS DE RECUPERAÇÃO FINAL 2016

INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA II EXERCÍCIOS DE RECUPERAÇÃO FINAL 2016 INSTITUTO GEREMÁRIO DANTAS Educação Infantil, Ensino Fundamental e Médio Fone: (1) 1087900 Rio de Janeiro RJ www.igd.com.br Aluno(a): º Ano:C1 Nº Professora: Marcilene Siqueira Gama COMPONENTE CURRICULAR:

Leia mais

Cubo Um paralelepípedo retângulo com todas as arestas congruentes ( a= b = c) recebe o nome de cubo. Dessa forma, as seis faces são quadrados.

Cubo Um paralelepípedo retângulo com todas as arestas congruentes ( a= b = c) recebe o nome de cubo. Dessa forma, as seis faces são quadrados. ALUNO(A) AULA 002 MATEMÁTICA DATA 18 / 10 /2013 PROFESSOR: Paulo Roberto Weissheimer AULA 002 - DE MATEMÁTICA Geometria Espacial Relação de Euler Em todo poliedro convexo é válida a relação seguinte: V

Leia mais

PROVA DE MATEMÁTICA CONCURSO DE ADMISSÃO 2012/2013 1º ANO DO ENSINO MÉDIO

PROVA DE MATEMÁTICA CONCURSO DE ADMISSÃO 2012/2013 1º ANO DO ENSINO MÉDIO CONCURSO DE ADMISSÃO 01/013 PROVA DE MATEMÁTICA 1º ANO DO ENSINO MÉDIO CONFERÊNCIA: Membro da CEOCP (Mat / 1º EM) Presidente da CEI Dir Ens CPOR / CMBH PÁGINA 1 RESPONDA AS QUESTÕES DE 1 A 0 E TRANSCREVA

Leia mais

Matemática Geometria Espacial. Professor Bacon

Matemática Geometria Espacial. Professor Bacon Matemática Geometria Espacial Professor Bacon Prismas Volume Fórmula Geral: V= A.base x Altura (h) Área lateral = soma das áreas laterais Um caminhão basculante tem a carroceria com as dimensões indicadas

Leia mais

4 º Ano Matemática. METAS Domínios/Conteúdos Objetivos Descritores de Desempenho

4 º Ano Matemática. METAS Domínios/Conteúdos Objetivos Descritores de Desempenho METAS Domínios/Conteúdos Objetivos Descritores de Desempenho Ao longo do ano Números e Operações 3. Resolver problemas 3.1. Resolver problemas de vários passos envolvendo as quatro operações. setembro/

Leia mais

Plano Curricular de Matemática 4.º Ano - Ano Letivo 2016/2017

Plano Curricular de Matemática 4.º Ano - Ano Letivo 2016/2017 4.º Ano - Ano Letivo 2016/2017 1.º Período - Números naturais Números e operações Contar Estender as regras de construção dos numerais decimais para classes de grandeza indefinida; Conhecer os diferentes

Leia mais

Aula demonstrativa Apresentação... 2 Modelos de questões resolvidas AOCP... 3 Relação das questões comentadas... 7 Gabarito... 8

Aula demonstrativa Apresentação... 2 Modelos de questões resolvidas AOCP... 3 Relação das questões comentadas... 7 Gabarito... 8 Aula demonstrativa Apresentação... 2 Modelos de questões resolvidas AOCP... 3 Relação das questões comentadas... 7 Gabarito... 8 1 Apresentação Olá, pessoal! Tudo bem com vocês? Como vocês bem sabem, saiu

Leia mais

UNIVERSIDADE ANHANGUERA UNIDERP E N G E N H A R I A C I V I L N 5 0. Aluno: R.A :

UNIVERSIDADE ANHANGUERA UNIDERP E N G E N H A R I A C I V I L N 5 0. Aluno: R.A : UNIVERSIDADE ANHANGUERA UNIDERP E N G E N H A R I A C I V I L N 5 0 Aluno: R.A : 1) Realize as operações abaixo: a) 45 45 59 + 86º54 12 = b) 128º42 57 + 325º41 52 = c) 120º00 00 56º24º03 = d) 178º20 30

Leia mais

Programação anual. 6 º.a n o. Sistemas de numeração Sequência dos números naturais Ideias associadas às operações fundamentais Expressões numéricas

Programação anual. 6 º.a n o. Sistemas de numeração Sequência dos números naturais Ideias associadas às operações fundamentais Expressões numéricas Programação anual 6 º.a n o 1. Números naturais 2. Do espaço para o plano Sistemas de numeração Sequência dos números naturais Ideias associadas às operações fundamentais Expressões numéricas Formas geométricas

Leia mais

Geometria Espacial PRISMA RETO DE BASE TRIANGULAR (OU PRISMA TRIANGULAR)

Geometria Espacial PRISMA RETO DE BASE TRIANGULAR (OU PRISMA TRIANGULAR) Espacial 1 PRISMAS Os prismas são sólidos geométricos bastante recorrentes em Espacial. Podemos definir o prisma da seguinte forma: PRISMA RETO DE BASE TRIANGULAR (OU PRISMA TRIANGULAR) Prisma é um sólido

Leia mais

SISTEMA MÉTRICO DECIMAL

SISTEMA MÉTRICO DECIMAL 1 - Medida de comprimento SISTEMA MÉTRICO DECIMAL No sistema métrico decimal, a unidade fundamental para medir comprimentos é o metro, cuja abreviação é m. Existem os múltiplos e os submúltiplos do metro,

Leia mais

Conteúdo programático por disciplina Matemática 6 o ano

Conteúdo programático por disciplina Matemática 6 o ano 60 Conteúdo programático por disciplina Matemática 6 o ano Caderno 1 UNIDADE 1 Significados das operações (adição e subtração) Capítulo 1 Números naturais O uso dos números naturais Seqüência dos números

Leia mais

Nome: N.º: endereço: data: Telefone: PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM Disciplina: MaTeMÁTiCa

Nome: N.º: endereço: data: Telefone:   PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM Disciplina: MaTeMÁTiCa Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA A ạ SÉRIE DO ENSINO MÉDIO EM 03 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 6 (OBMEP) Se dividirmos um cubo de m de aresta em

Leia mais

Garantia de aprovação escolar

Garantia de aprovação escolar 1) Uma pessoa caminha em uma pista plana com a forma de triângulo retângulo. Ao dar uma volta completa na pista com velocidade constante de caminhada, ela percorre 600 e 800 metros nos trajetos correspondentes

Leia mais

ESCALA DE PROFICIÊNCIA DE MATEMÁTICA 5º ANO DO ENSINO FUNDAMENTAL

ESCALA DE PROFICIÊNCIA DE MATEMÁTICA 5º ANO DO ENSINO FUNDAMENTAL ESCALA DE PROFICIÊNCIA DE MATEMÁTICA 5º ANO DO ENSINO FUNDAMENTAL Nível* Nível 1: 125-150 Nível 2: 150-175 Nível 3: 175-200 Nível 4: 200-225 Descrição do Nível - O estudante provavelmente é capaz de: Determinar

Leia mais

Gabarito. 6. a) Quatro mil, setecentos e sessenta e nove unidades.

Gabarito. 6. a) Quatro mil, setecentos e sessenta e nove unidades. O COTIDIANO E OS NÚMEROS CAPÍTULO 1 Um pouco da história dos números 1. a) 32 d) 311 22 e) 1.000.110 211 f) 1.000.101 2. Não. DC = 600 e CD = 400. 3. a) VIII d) LI g) CIII CVI e) CDII h) CCCVIII DCCCIII

Leia mais

V = 12 A = 18 F = = 2 V=8 A=12 F= = 2

V = 12 A = 18 F = = 2 V=8 A=12 F= = 2 Por: Belchior, Ismaigna e Jannine Relação de Euler Em todo poliedro convexo é válida a relação seguinte: V - A + F = 2 em que V é o número de vértices, A é o número de arestas e F, o número de faces. Observe

Leia mais

MATEMÁTICA Nº DE INSCRIÇÃO. C Adm 5ª Série MATEMÁTICA Tempo de duração da prova Confere: Página 1 de

MATEMÁTICA Nº DE INSCRIÇÃO. C Adm 5ª Série MATEMÁTICA Tempo de duração da prova Confere: Página 1 de Página 1 de 10 MATEMÁTICA 01. Quando se fala em sistema de numeração decimal pensamos nos dedos das mãos. Muitos alunos fazem contas de adição e subtração olhando para os dedos das mãos, e isso não pode

Leia mais

Exercícios e problemas propostos 1. A fotografia é de uma escultura, o Cubo da Ribeira, no

Exercícios e problemas propostos 1. A fotografia é de uma escultura, o Cubo da Ribeira, no Tema 6 Sólidos geométricos 15 Exercícios e problemas propostos 1. A fotografia é de uma escultura, o Cubo da Ribeira, no Porto. O cubo tem metros de aresta. Determina: 1.1 o volume do cubo, em m ; 1. a

Leia mais

Módulo Geometria Espacial II - volumes e áreas de prismas e pirâmides. Volumes e o Princípio de Cavalieri. 3 ano/e.m.

Módulo Geometria Espacial II - volumes e áreas de prismas e pirâmides. Volumes e o Princípio de Cavalieri. 3 ano/e.m. Módulo Geometria Espacial II - volumes e áreas de prismas e pirâmides Volumes e o Princípio de Cavalieri. 3 ano/e.m. Volumes e o Princípio de Cavalieri. Geometria Espacial II - volumes e áreas de prismas

Leia mais

CADERNO DE EXERCÍCIOS 1B

CADERNO DE EXERCÍCIOS 1B CADERNO DE EXERCÍCIOS B Ensino Fundamental Ciências da Natureza I Questão Conteúdo Habilidade da Matriz da EJA/FB Fração Soma de frações Multiplicação de frações Subtração de frações Divisão de frações

Leia mais

2 ÁREAS E VOLUME DO TETRAEDRO REGULAR 1 TETRAEDRO REGULAR. 2.1 Área lateral. 2.2 Área da base. 2.3 Área total. 2.4 Volume

2 ÁREAS E VOLUME DO TETRAEDRO REGULAR 1 TETRAEDRO REGULAR. 2.1 Área lateral. 2.2 Área da base. 2.3 Área total. 2.4 Volume Matemática Pedro Paulo GEOMETRIA ESPACIAL VI são 1 TETRAEDRO REGULAR É uma piramide regular triangular, cujas faces triângulos equiláteros de lado 2 ÁREAS E VOLUME DO TETRAEDRO REGULAR 2.1 Área lateral

Leia mais

MATRIZ DE REFERÊNCIA - SPAECE MATEMÁTICA 5 o ANO DO ENSINO FUNDAMENTAL TEMAS E SEUS DESCRITORES

MATRIZ DE REFERÊNCIA - SPAECE MATEMÁTICA 5 o ANO DO ENSINO FUNDAMENTAL TEMAS E SEUS DESCRITORES MATEMÁTICA 5 o ANO DO ENSINO FUNDAMENTAL I INTERAGINDO COM OS NÚMEROS E FUNÇÕES D1 Reconhecer e utilizar características do sistema de numeração decimal. Utilizar procedimentos de cálculo para obtenção

Leia mais

Onde: É no triângulo retângulo que vale a máxima Pitagórica: O quadrado da. a b c

Onde: É no triângulo retângulo que vale a máxima Pitagórica: O quadrado da. a b c 1 Sumário TRIGONOMETRIA... GEOMETRIA ESPACIAL...8 Geometria Plana Fórmulas Básicas...8 Prismas... 11 Cilindro... 18 Pirâmide... 1 Cone... 4 Esferas... 7 REFERÊNCIAS BIBLIOGRÁFICAS... TRIGONOMETRIA Trigonometria

Leia mais

1 ELEMENTOS DO CONE 3 ÁREAS E VOLUME DO CONE 2 SECÇÃO MERIDIANA. 3.1 Área lateral. 3.2 Área da base. 3.3 Área total. 3.4 Volume

1 ELEMENTOS DO CONE 3 ÁREAS E VOLUME DO CONE 2 SECÇÃO MERIDIANA. 3.1 Área lateral. 3.2 Área da base. 3.3 Área total. 3.4 Volume Matemática Pedro Paulo GEOMETRIA ESPACIAL VII 1 ELEMENTOS DO CONE Cone é um sólido formado por um círculo que é a base e um ponto fora do plano da base que é o vértice, que é ligado a todos os pontos do

Leia mais

PLANO DE ESTUDOS DE MATEMÁTICA - 7.º ANO

PLANO DE ESTUDOS DE MATEMÁTICA - 7.º ANO DE MATEMÁTICA - 7.º ANO Ano Letivo 2014 2015 PERFIL DO ALUNO No domínio dos Números e Operações, o aluno deve ser capaz de multiplicar e dividir números racionais relativos. No domínio da Geometria e Medida,

Leia mais

PROCESSO SELETIVO/ O DIA GABARITO 1 1 MATEMÁTICA QUESTÕES DE 01 A 15

PROCESSO SELETIVO/ O DIA GABARITO 1 1 MATEMÁTICA QUESTÕES DE 01 A 15 PROCESSO SELETIVO/005 1 O DIA GABARITO 1 1 MATEMÁTICA QUESTÕES DE 01 A 15 01. As prefeituras das cidades A, B e C construíram uma ponte sobre o rio próximo a estas cidades. A ponte dista 10 km de A, 1

Leia mais

Grandezas geométricas: perímetros, áreas e volumes

Grandezas geométricas: perímetros, áreas e volumes Grandezas geométricas: perímetros, áreas e volumes Aula 12 Ricardo Ferreira Paraizo e-tec Brasil Matemática Instrumental Meta Apresentar as grandezas geométricas: perímetro, área e volume. Objetivos Após

Leia mais

3 ÁREAS E VOLUME DO TRONCO DE PIRÂMIDE 1 TRONCO DE PIRÂMIDE 2 SEMELHANÇA ENTRE AS PIRÂMIDES. 3.1 Área lateral. 3.2 Área das bases. 3.

3 ÁREAS E VOLUME DO TRONCO DE PIRÂMIDE 1 TRONCO DE PIRÂMIDE 2 SEMELHANÇA ENTRE AS PIRÂMIDES. 3.1 Área lateral. 3.2 Área das bases. 3. Matemática Pedro Paulo GEOMETRIA ESPACIAL VIII 1 TRONCO DE PIRÂMIDE Chamaremos de tronco de pirâmide de bases paralelas a porção da pirâmide limitada por sua base e por uma secção transversal qualquer

Leia mais

PLANO DE ESTUDOS DE MATEMÁTICA 7.º ANO

PLANO DE ESTUDOS DE MATEMÁTICA 7.º ANO DE MATEMÁTICA 7.º ANO Ano Letivo 2015 2016 PERFIL DO ALUNO No domínio dos Números e Operações, o aluno deve ser capaz de multiplicar e dividir números racionais relativos. No domínio da Geometria e Medida,

Leia mais

Disciplina: Matemática. Período: I. Professor (a): Maria Aparecida Holanda Veloso e Liliane Cristina de Oliveira Vieira

Disciplina: Matemática. Período: I. Professor (a): Maria Aparecida Holanda Veloso e Liliane Cristina de Oliveira Vieira COLÉGIO LA SALLE BRASILIA Associação Brasileira de Educadores Lassalistas ABEL SGAS Q. 906 Conj. E C.P. 320 Fone: (061) 3443-7878 CEP: 70390-060 - BRASÍLIA - DISTRITO FEDERAL Disciplina: Matemática Período:

Leia mais

Matemática - 3C12/14/15/16/26 Lista 2

Matemática - 3C12/14/15/16/26 Lista 2 Matemática - 3C12/14/15/16/26 Lista 2 Poliedros Convexos 1) Determine qual é o poliedro convexo e fechado que tem 6 vértices e 12 arestas. 2) Determine o nº de vértices de dodecaedro convexo que tem 20

Leia mais

GUIA DE AULAS - MATEMÁTICA - SITE: EDUCADORES.GEEKIELAB.COM.BR

GUIA DE AULAS - MATEMÁTICA - SITE: EDUCADORES.GEEKIELAB.COM.BR GUIA DE AULAS - MATEMÁTICA - SITE: EDUCADORES.GEEKIELAB.COM.BR Olá, Professor! Assim como você, a Geekie também quer ajudar os alunos a atingir todo seu potencial e a realizar seus sonhos. Por isso, oferecemos

Leia mais

Lista2 de exercícios-prismas- 3C17/3C27- Prof. Liana-(20/06/2016)

Lista2 de exercícios-prismas- 3C17/3C27- Prof. Liana-(20/06/2016) singular Lista2 de exercícios-prismas- 3C17/3C27- Prof. Liana-(20/06/2016) 1. (Ita) Dado um prisma hexagonal regular, sabe-se que sua altura mede 3 cm e que sua área lateral é o dobro da área de sua base.

Leia mais

Inscrição e circunscrição de sólidos geométricos. Esfera e cubo Esfera e cilindro Esfera e cone reto Cilindro e cone reto

Inscrição e circunscrição de sólidos geométricos. Esfera e cubo Esfera e cilindro Esfera e cone reto Cilindro e cone reto Inscrição e circunscrição de sólidos geométricos Esfera e cubo Esfera e cilindro Esfera e cone reto Cilindro e cone reto Introdução Nosso último estudo em Geometria será destinado aos sólidos inscritos

Leia mais

Matemática Régis Cortes SISTEMA MÉTRICO

Matemática Régis Cortes SISTEMA MÉTRICO SISTEMA MÉTRICO 1 Unidades de medida ou sistemas de medida Para podermos comparar um valor com outro, utilizamos uma grandeza predefinida como referência, grandeza esta chamada de unidade padrão. As unidades

Leia mais

ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO

ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO 2011-2012 Sólidos Geométricos NOME: Nº TURMA: Polígonos Um polígono é uma figura geométrica plana limitada por uma linha fechada.

Leia mais

COLÉGIO ETIP NIVELAMENTO BÁSICO DE MATEMÁTICA ENSINO MÉDIO INTEGRADO À INFORMÁTICA PROFESSOR RUBENS SOARES

COLÉGIO ETIP NIVELAMENTO BÁSICO DE MATEMÁTICA ENSINO MÉDIO INTEGRADO À INFORMÁTICA PROFESSOR RUBENS SOARES COLÉGIO ETIP NIVELAMENTO BÁSICO DE MATEMÁTICA ENSINO MÉDIO INTEGRADO À INFORMÁTICA PROFESSOR RUBENS SOARES SANTO ANDRÉ 2012 MEDIDAS DE SUPERFÍCIES (ÁREA): No sistema métrico decimal, devemos lembrar que,

Leia mais

Professor conteudista: Renato Zanini

Professor conteudista: Renato Zanini Matemática Básica Professor conteudista: Renato Zanini Sumário Matemática Básica Unidade I 1 OS NÚMEROS REAIS: REPRESENTAÇÕES E OPERAÇÕES... EXPRESSÕES LITERAIS E SUAS OPERAÇÕES...6 3 RESOLVENDO EQUAÇÕES...7

Leia mais

UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE

UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE www.elitecampinas.com.br Fone: (19) -71 O ELITE RESOLVE IME 004 PORTUGUÊS/INGLÊS Você na elite das universidades! UNICAMP 004 SEGUNDA FASE MATEMÁTICA www.elitecampinas.com.br Fone: (19) 51-101 O ELITE

Leia mais

PROVAS DE NÍVEL MÉDIO DA FUNDATEC

PROVAS DE NÍVEL MÉDIO DA FUNDATEC PROVAS DE NÍVEL MÉDIO DA FUNDATEC Obs: Algumas questões das provas abaixo continham questões que não estavam de acordo com o edital atual da Câmara/POA. Nesses casos, cada questão foi retirada ou adaptada.

Leia mais

B { } e o produto. . Resolve a equação. x admite raízes m e a sua altura mede da base. Calcula o comprimento da diagonal

B { } e o produto. . Resolve a equação. x admite raízes m e a sua altura mede da base. Calcula o comprimento da diagonal Escola Secundária com 3ºCEB de Lousada Ficha de Trabalho de Matemática do 9º ano - nº Data / / 010 Assunto: Preparação para o teste nº Lições nº, e Apresentação dos Conteúdos e Objectivos para o º Teste

Leia mais

LISTA DE EXERCÍCIOS 9º ano 2º bim. Prof. Figo, Cebola, Sandra e Natália

LISTA DE EXERCÍCIOS 9º ano 2º bim. Prof. Figo, Cebola, Sandra e Natália 1. A idade de Paulo, em anos, é um número inteiro par que satisfaz a desigualdade x - x + 5 < 0. O número que representa a idade de Paulo pertence ao conjunto a) {1, 1, 14}. b) {15, 16, 17}. c) {18, 19,

Leia mais

Prof. Daniel Almeida. 100 x x = (x 2 +9) = x 2 +12x+36 4x 2 +36= x 2 +12x+36 3 x 2-12x=0

Prof. Daniel Almeida. 100 x x = (x 2 +9) = x 2 +12x+36 4x 2 +36= x 2 +12x+36 3 x 2-12x=0 Fala Galera!! Resolução da prova da COPEL. Questões bem distribuidas em relação a totalidade do edital mas com uma parte de geometria muito grande para um edital que dizia na parte de geometria principais

Leia mais

MEDIDAS LINEARES. Um metro equivale à distância linear percorrida pela luz no vácuo, durante um intervalo de 1/ segundo.

MEDIDAS LINEARES. Um metro equivale à distância linear percorrida pela luz no vácuo, durante um intervalo de 1/ segundo. MEDIDAS LINEARES Um metro equivale à distância linear percorrida pela luz no vácuo, durante um intervalo de 1/299.792.458 segundo. Nome e símbolo As unidades do Sistema Internacional podem ser escritas

Leia mais

2 CILINDRO E ESFERA 1 CUBO E ESFERA. 2.1 Cilindro inscrito. 1.1 Cubo inscrito. 2.2 Cilindro circunscrito. 1.2 Cubo circunscrito

2 CILINDRO E ESFERA 1 CUBO E ESFERA. 2.1 Cilindro inscrito. 1.1 Cubo inscrito. 2.2 Cilindro circunscrito. 1.2 Cubo circunscrito Matemática Pedro Paulo GEOMETRIA ESPACIAL XI A seguir, nós vamos analisar a relação entre alguns sólidos e as esferas. Os sólidos podem estar inscritos ou circunscritos a uma esfera. Lembrando: A figura

Leia mais

Números irracionais. Dinâmica 3. 1ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO

Números irracionais. Dinâmica 3. 1ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Reforço escolar M ate mática Números irracionais Dinâmica 3 1ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Matemática 1ª do Ensino Médio Numérico Aritmético Números Irracionais Aluno Primeira Etapa

Leia mais

APOSTILA DE APOIO PEDAGÓGICO 9º ANO

APOSTILA DE APOIO PEDAGÓGICO 9º ANO GOVERNO MUNICIPAL DE CAUCAIA SECRETARIA MUNICIPAL DE EDUCAÇÃO - SME COORDENADORIA DE DESENVOLVIMENTO PEDAGÓGICO ANOS FINAIS APOSTILA DE APOIO PEDAGÓGICO 9º ANO 2º ENCONTRO DE MATEMÁTICA PROFESSORES FORMADORES:

Leia mais

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON PROFJWPS@GMAIL.COM DEFINIÇÕES GEOMETRIA PLANA Ponto: Um elemento do espaço que define uma posição. Reta: Conjunto infinito de pontos. Dois pontos são

Leia mais

PLANIFICAÇÃO

PLANIFICAÇÃO PLANIFICAÇÃO 2015-2016 Agrupamento de Escolas Domingos Sequeira Área Disciplinar: Matemática Ano de Escolaridade: 4ºano Mês: setembro/ outubro Números Naturais Contar Reconhecer que se poderia prosseguir

Leia mais

G A B A R I T O G A B A R I T O

G A B A R I T O G A B A R I T O Prova Anglo P-2 G A B A R I T O Tipo D-9-05/2011 01. C 07. A 13. D 19. C 02. C 08. B 14. B 20. B 03. D 09. C 15. D 21. D 04. A 10. A 16. D 22. A 05. B 11. B 17. C 00 06. D 12. C 18. A 00 841201911 PROVA

Leia mais

MATEMÁTICA - 3o ciclo Áreas e Volumes (9 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Áreas e Volumes (9 o ano) Propostas de resolução MATEMÁTICA - o ciclo Áreas e Volumes (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Como planificação da superfície lateral de cilindro é um retângulo, cujas medidas

Leia mais

EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE

EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE 1ª. SÉRIE Exercícios de PA e PG 1. Determinar o 61º termo da PA ( 9,13,17,21,...) Resp. 249 2. Determinar a razão da PA ( a 1,a 2, a 3,...) em que o primeiro

Leia mais

QUESTÃO ÚNICA MÚLTIPLA ESCOLHA. 10,00 (dez) pontos distribuídos em 20 itens

QUESTÃO ÚNICA MÚLTIPLA ESCOLHA. 10,00 (dez) pontos distribuídos em 20 itens QUESTÃO ÚNICA MÚLTIPLA ESCOLHA 10,00 (dez) pontos distribuídos em 20 itens Marque no cartão de respostas a única alternativa que responde de maneira correta ao pedido de cada item: MATEMÁTICA 1. Um professor

Leia mais

OS PRISMAS. 1) Definição e Elementos :

OS PRISMAS. 1) Definição e Elementos : 1 OS PRISMAS 1) Definição e Elementos : Dados dois planos paralelos α e β, um polígono contido em um desses planos e um reta r, que intercepta esses planos, chamamos de PRISMA o conjunto de todos os segmentos

Leia mais

Caderno 1: 35 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora)

Caderno 1: 35 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora) Prova Final de Matemática 3.º Ciclo do Ensino Básico Decreto-Lei n.º 139/01, de 5 de julho Prova 9/1.ª Chamada Caderno 1: 7 Páginas Duração da Prova (CADERNO 1 + CADERNO ): 90 minutos. Tolerância: 30 minutos.

Leia mais

a) R$ 8,20 b) R$ 8,40 c) R$ 8,60 d) R$ 8,80 e) R$ 9,00

a) R$ 8,20 b) R$ 8,40 c) R$ 8,60 d) R$ 8,80 e) R$ 9,00 Aula n ọ 03 01. Um engenheiro, precisando calcular a área de um terreno com forma quadrangular (conforme a figura abaixo), utilizou como referencial as duas ruas, A e B, que se cruzavam perpendicularmente.

Leia mais