Desenvolvimento de um gerador de malhas para o estudo do escoamento transônico em um aerofólio

Tamanho: px
Começar a partir da página:

Download "Desenvolvimento de um gerador de malhas para o estudo do escoamento transônico em um aerofólio"

Transcrição

1 Desenvolvimento de um gerador de malhas para o estudo do escoamento transônico em um aerofólio Leo Moreira Lima. ITA Instituto tecnológico de Aeronáutica, São José dos Campos, SP, , Brasil. Bolsista PIBIC-CNPq. Marcos A. Ortega. ITA Instituto tecnológico de Aeronáutica, São José dos Campos, SP, , Brasil. Este trabalho teve seu enfoque no estudo de alguns métodos numéricos para geração de malhas para o estudo do escoamento sobre um dado aerofólio. Inicialmente foi feito um estudo introdutório sobre as três categorias de malhas: as estruturadas, as não estruturadas e as malhas híbridas. Identificando as vantagens e desvantagens de cada uma na resolução final do aerofólio. Posteriormente, escolhemos dois métodos de geração de malhas estruturadas: o método algébrico e o por equações diferenciais parciais elípticas. Feita a análise de ambos os métodos, pudemos escolher qual seguir e finalmente gerar a malha para o aerofólio NACA0011, o método escolhido foi o por equações diferenciais parciais elípticas, descrito no corpo do artigo. Por fim, encontramos no método do volume finito para problemas hiperbólicos uma oportunidade de dar prosseguimento ao trabalho numa área bastante explorada atualmente, sendo assim, o trabalho se resumiu ao estudo sobre o fenômeno das ondas de choque, paralelamente ao do método em si. 1. Introdução: Ao se realizar a análise numérica de um escoamento sobre um aerofólio, precisamos gerar malhas que representem o domínio físico no domínio computacional, isto é, precisamos discretizar o domínio físico para então avaliar os valores de pressão, velocidade, temperatura, massa específica, etc. a partir das equações diferenciais parciais que representam o problema físico. A geração da malha, no entanto, não constitui um problema trivial, já que os pontos de controle devem estar distribuídos de forma a garantir precisão física e otimizar o tempo de processamento. Há vários critérios a ser satisfeitos para que a malha possa ser considerada ideal, como por exemplo, a concentração dos pontos de acordo com a distância ao aerofólio e a ortogonalidade da malha, apenas para citar alguns. Este projeto tem por objetivo a confecção de um programa capaz de gerar malhas satisfatórias para a análise do escoamento em torno de um aerofólio dado. 2. Geração de malhas a partir da resolução de um sistema de equações diferenciais parciais elípticas: O método por equações diferenciais parciais elípticas é uma boa opção quando se quer soluções suaves e bom controle dos pontos no interior do grid, porém, com eles não podemos garantir ortogonalidade ou conformidade. A estratégia utilizada para gerar a malha é resolver numericamente um sistema de EDPs elípticas com funções de controle P e Q. A escolha do método para resolver o sistema é livre, no entanto, Thompson (1985) sugere que utilizamos o método SOR. Eis o sistema: ξ + ξ = P( ξ, η) xx η + η = Q( ξ, η) xx No domínio computacional, temos: yy yy α x 2 βx + γx = g[ Px + Qx ] (1) ξξ ξη ηη ξ ξ

2 α xy 2 βy + γ y = g[ Py + Qy ] (2) ξη ηη ξ ξ Onde: α = x + y η η β = xx + yy γ = x + y η ξ η ξ ξ ξ xξ + yξ xηxξ + yηyξ η ξ + η ξ η+ η ( ξ η η ξ) g = = x y x y xx yy x y 2 Figura 4: Malha no domínio físico.

3 Figura 5: Domínio Computacional. Discretizando as equações (1) e (2), temos: (1.a): β g α xi+ 1, j 2xi, j + xi 1, j xi+ 1, j+ 1 xi+ 1, j 1 xi 1, j+ 1 + xi 1, j 1 + γ xi, j xi, j + xi, j 1 + P( xi + 1, j xi 1, j ) + Q( xi, j 1 + xi, j 1 ) = (1.b): β g α yi+ 1, j 2yi, j + yi 1, j yi+ 1, j+ 1 yi+ 1, j 1 yi 1, j yi 1, j 1 + γ yi, j yi, j + yi, j 1 + P( yi + 1, j yi 1, j ) + Q( yi, j 1 + yi, j 1 ) = Onde: 1 α = (, 1, 1 ) (, 1, 1 ) 4 xi j+ xi j + yi j+ y i j 1 β = ( 1, 1, )(, 1, 1 ) ( 1, 1, )(, 1, 1 ) 4 xi+ j xi j xi j+ xi j + yi+ j yi j yi j + y i j 1 ( γ = xi 1, j xi 1, j ) ( yi 1, j yi 1, j ) g = ( xi+ 1, j xi 1, j )( yi, j+ 1 yi, j 1 ) ( xi, j+ 1 xi, j 1)( yi+ 1, j yi 1, j) 16 A partir dessas equações, é possível isolar x i,j e y i,j e resolver o sistema de equações algébricas utilizando o método iterativo SOR (Gauss-Seidel com parâmetro de relaxamento), porém, para garantir a convergência, precisamos dar um chute inicial sensato. Para estabelecer os pontos iniciais, posicionamos o aerofólio no centro de uma circunferência e dividimos sua corda em i máx -1 segmentos. Para cada ponto P na corda, utilizamos a equação do perfil do aerofólio (equação (3), dada a seguir) e definimos a ordenada do ponto P de forma que P seja a projeção de P no eixo das abscissas, feito isso, traçamos a reta que liga a origem dos eixos coordenados ao ponto P, sua interseção com a borda da circunferência será o ponto Q, dividimos então o segmento PQ em j máx -1 intervalos de diferentes comprimentos. 2

4 O comprimento de cada subintervalo será definido por uma stretching function, nós ao longo do segmento PQ serão nós onde o contador i (ou a variável é constante, para nós localizados na superfície do aerofólio o valor de j será 1 e para nós na fronteira da circunferência o valor de j será j máx, analogamente os valores de serão e, respectivamente. Para definir a distância entre os pontos na reta onde a abscissa é zero, utilizamos o seguinte algoritmo: Primeiro definimos a distância entre o ponto P (na borda do aerofólio) e seu ponto adjacente (abscissa do ponto R) da seguinte forma: x 1 r P' Q' 1 r = jmáx 1, onde r é o fator de espaçamento. Marcamos o ponto x - x (abscissa do ponto R) e projetamos no segmento PQ para encontrar o ponto R em questão. Definimos x = x.r e achamos o ponto seguinte no eixo das abscissas. Repetimos o procedimento anterior j máx -1 vezes. Vale observar que a linearidade nos permite marcar os pontos no eixo das abscissas utilizando a stretching function e então projetá-los no segmento PQ, uma vez que, por semelhança de triângulos, a razão entre as distâncias será a mesma. Figura 6: Esquema da distribuição inicial de pontos. O perfil do aerofólio é dado por: Onde: 1/ 3 4 ( ) y = t a x + a x+ a x + a x + a x (3)

5 a1 = a2 = a3 = a4 = a = t = espessura do aerofólio. Para resolver o sistema de equações diferenciais parciais, utilizamos o método SOR (Gauss-Seidel com parâmetro de relaxamento), como já foi explicado, para um maior aprofundamento neste método, consulte a referência [2]. Por fim, o programa foi rodado e plotaram-se os resultados que aparecem nas Figs. 7 e 8. Frame Dec 2007 foil_grid y x Figura 7: Malha final gerada pelo TecPlot.

6 Figura 8: Zoom na malha gerada pelo TecPlot. 3. Agradecimentos: Agradeço ao CNPq pelo apoio financeiro (Bolsa Pibic), ao orientador Marcos Aurélio Ortega e ao Instituto Tecnológico de Aeronáutica pela infra-estrutura. 4. Referências: [1] Anderson, J.D, Jr. 1984, Fundamentals of Aerodynamics, McGraw Hill, New York. [2] Fletcher, C.A.J., 1988, Computational Techiques for Fluid Dynamics, Vol. I & II, Springer- Verlag, Berlin. [3] Ortega, M.A., 1994, Dinâmica dos Gases, Notas de Aula. [4] Ortega, M.A. 2001, Código Foil programado em Fortran.

ANÁLISE DE MALHAS COMPUTACIONAIS EM TORNO DE PEÇAS DE INTERESSE EM ENGENHARIA AERONÁUTICA

ANÁLISE DE MALHAS COMPUTACIONAIS EM TORNO DE PEÇAS DE INTERESSE EM ENGENHARIA AERONÁUTICA ANÁLISE DE MALHAS COMPUTACIONAIS EM TORNO DE PEÇAS DE INTERESSE EM ENGENHARIA AERONÁUTICA Bruno Quadros Rodrigues IC saraiva06@bol.com.br Nide Geraldo docouto R. F. Jr PQ nide@ita.br Instituto Tecnológico

Leia mais

Capítulo 4 - Equações Diferenciais às Derivadas Parciais

Capítulo 4 - Equações Diferenciais às Derivadas Parciais Capítulo 4 - Equações Diferenciais às Derivadas Parciais Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática Aplicada - Mestrados Eng. Química

Leia mais

ANÁLISE DO ESCOAMENTO SOBRE AEROFÓLIOS USANDO A TÉCNICA DOS VOLUMES FINITOS

ANÁLISE DO ESCOAMENTO SOBRE AEROFÓLIOS USANDO A TÉCNICA DOS VOLUMES FINITOS ANÁLISE DO ESCOAMENTO SOBRE AEROFÓLIOS USANDO A TÉCNICA DOS VOLUMES FINITOS Stéfano Bruno Ferreira IC Aluno de graduação do curso de Engenharia Aeronáutica do Instituto Tecnológico de Aeronáutica Bolsista

Leia mais

CI202 - Métodos Numéricos

CI202 - Métodos Numéricos CI202 - Métodos Numéricos Lista de Exercícios 2 Zeros de Funções Obs.: as funções sen(x) e cos(x) devem ser calculadas em radianos. 1. Em geral, os métodos numéricos para encontrar zeros de funções possuem

Leia mais

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 02. Prof. Dr. Marco Antonio Leonel Caetano

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 02. Prof. Dr. Marco Antonio Leonel Caetano MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação Aula 02 Prof. Dr. Marco Antonio Leonel Caetano 1 Guia de Estudo para Aula 02 Comandos de Repetição - O Comando FOR - O comando IF com o comando

Leia mais

Introdução ao Método dos Elementos Finitos Conceitos Iniciais Divisão do Domínio e Funções de Base Aplicação do Método dos Resíduos Ponderados ao

Introdução ao Método dos Elementos Finitos Conceitos Iniciais Divisão do Domínio e Funções de Base Aplicação do Método dos Resíduos Ponderados ao Universidade Federal do Ceará Centro de Tecnologia Departamento de Engenharia Elétrica Programa de Educação Tutorial Autor: Bruno Pinho Meneses Orientadores: Janailson Rodrigues Lima Prof. Dr. Ricardo

Leia mais

LCAD. Introdução ao Curso de Métodos Numéricos I. LCAD - Laboratório de Computação de Alto Desempenho

LCAD. Introdução ao Curso de Métodos Numéricos I. LCAD - Laboratório de Computação de Alto Desempenho LCAD - Laboratório de Computação de Alto Desempenho LCAD Introdução ao Curso de Métodos Numéricos I Lucia Catabriga Departamento de Informática CT/UFES Processo de Solução Fenômeno Natural Modelo Matemático

Leia mais

MÉTODO DOS ELEMENTOS FINITOS COMO FERRAMENTA DIDÁTICA PARA O ENSINO DE ELETROSTÁTICA E MAGNETOSTÁTICA

MÉTODO DOS ELEMENTOS FINITOS COMO FERRAMENTA DIDÁTICA PARA O ENSINO DE ELETROSTÁTICA E MAGNETOSTÁTICA MÉTODO DOS ELEMENTOS FINITOS COMO FERRAMENTA DIDÁTICA PARA O ENSINO DE ELETROSTÁTICA E MAGNETOSTÁTICA Danilo Nobre Oliveira danilonobre@danilonobre.eng.br Ginúbio Braga Ferreira ginubio@gmail.com Universidade

Leia mais

Figura 7.20 - Vista frontal dos vórtices da Figura 7.18. Vedovoto et al. (2006).

Figura 7.20 - Vista frontal dos vórtices da Figura 7.18. Vedovoto et al. (2006). 87 Figura 7.20 - Vista frontal dos vórtices da Figura 7.18. Vedovoto et al. (2006). Figura 7.21 - Resultado qualitativo de vórtices de ponta de asa obtidos por Craft et al. (2006). 88 A visualização do

Leia mais

USO DE CURVAS EXPONENCIAIS-LOGARÍTMICAS PARA A SUAVIZAÇÃO E CORREÇÃO DE IRREGULARIDADES NA CURVATURA DE DUTOS DE COMPRESSORES AXIAIS

USO DE CURVAS EXPONENCIAIS-LOGARÍTMICAS PARA A SUAVIZAÇÃO E CORREÇÃO DE IRREGULARIDADES NA CURVATURA DE DUTOS DE COMPRESSORES AXIAIS Anais do 12 O Encontro de Iniciação Científica e Pós-Graduação do ITA XII ENCITA / 2006 Instituto Tecnológico de Aeronáutica São José dos Campos SP Brasil Outubro 16 a 19 2006 USO DE CURVAS EXPONENCIAIS-LOGARÍTMICAS

Leia mais

UNIVERSIDADE FEDERAL FLUMINENSE

UNIVERSIDADE FEDERAL FLUMINENSE UNIVERSIDADE FEDERAL FLUMINENSE Escola de Engenharia Industrial Metalúrgica de Volta Redonda PROVAS RESOLVIDAS DE CÁLCULO VETORIAL Professora Salete Souza de Oliveira Aluna Thais Silva de Araujo P1 Turma

Leia mais

Palavras chave: plasma, escoamento supersônico, reentrada atmosférica, bocal CD cônico, CFD.

Palavras chave: plasma, escoamento supersônico, reentrada atmosférica, bocal CD cônico, CFD. Anais do 15 O Encontro de Iniciação Científica e Pós-Graduação do ITA XV ENCITA / 9 Instituto Tecnológico de Aeronáutica São José dos Campos SP Brasil Outubro 19 a 9. APLICAÇÃO DA SIMULAÇÃO COMPUTACIONAL

Leia mais

MÉTODO DOS ELEMENTOS FINITOS

MÉTODO DOS ELEMENTOS FINITOS INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS ENGENHARIA E TECNOLOGIA ESPACIAIS MECÂNICA ESPACIAL E CONTROLE MESTRADO MÉTODO DOS ELEMENTOS FINITOS Seminário de Dinâmica Orbital I CMC-203-0 Prof. Dr. Mário

Leia mais

Tópico 8 Funções de Duas ou Mais Variáveis Consulta Indicada: ANTON, H. Cálculo: Um novo horizonte. Volume 2. Páginas 311 a 323.

Tópico 8 Funções de Duas ou Mais Variáveis Consulta Indicada: ANTON, H. Cálculo: Um novo horizonte. Volume 2. Páginas 311 a 323. PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL Faculdade de Matemática - Departamento de Matemática Cálculo B (Informática) Turmas 18 e 138 Tópico 8 Funções de Duas ou Mais Variáveis Consulta Indicada:

Leia mais

DINÂMICA DOS FLUIDOS COMPUTACIONAL. CFD = Computational Fluid Dynamics

DINÂMICA DOS FLUIDOS COMPUTACIONAL. CFD = Computational Fluid Dynamics DINÂMICA DOS FLUIDOS COMPUTACIONAL CFD = Computational Fluid Dynamics 1 Problemas de engenharia Métodos analíticos Métodos experimentais Métodos numéricos 2 Problemas de engenharia FENÔMENO REAL (Observado

Leia mais

1. Sendo (x+2, 2y-4) = (8x, 3y-10), determine o valor de x e de y. 2. Dado A x B = { (1,0); (1,1); (1,2) } determine os conjuntos A e B. 3. (Fuvest) Sejam A=(1, 2) e B=(3, 2) dois pontos do plano cartesiano.

Leia mais

PROJETO DE ELEMENTOS DE MÁQUINA AUXILIADO POR COMPUTADOR

PROJETO DE ELEMENTOS DE MÁQUINA AUXILIADO POR COMPUTADOR Anais do 14 O Encontro de Iniciação Científica e Pós-Graduação do ITA XIV ENCITA / 2008 Instituto Tecnológico de Aeronáutica, São José dos Campos, SP, Brasil, Outubro, 20 a 23, 2008. PROJETO DE ELEMENTOS

Leia mais

PROFº. LUIS HENRIQUE MATEMÁTICA

PROFº. LUIS HENRIQUE MATEMÁTICA Geometria Analítica A Geometria Analítica, famosa G.A., ou conhecida como Geometria Cartesiana, é o estudo dos elementos geométricos no plano cartesiano. PLANO CARTESIANO O sistema cartesiano de coordenada,

Leia mais

Diferenciais Parciais

Diferenciais Parciais Capítulo Solução Numérica de Equações Diferenciais Parciais. Introdução Uma equações diferencial parcial (EDP) pode ser escrita na forma geral a φ x + b φ x y + φ c y + d φ x + e φ + fφ+ g = 0 (.) y onde

Leia mais

Conversão Matricial. Prof. Fernando V. Paulovich http://www.icmc.usp.br/~paulovic paulovic@icmc.usp.br. 20 de maio de 2011. SCC0250 - Computação Gráca

Conversão Matricial. Prof. Fernando V. Paulovich http://www.icmc.usp.br/~paulovic paulovic@icmc.usp.br. 20 de maio de 2011. SCC0250 - Computação Gráca Conversão Matricial SCC0250 - Computação Gráca Prof. Fernando V. Paulovich http://www.icmc.usp.br/~paulovic paulovic@icmc.usp.br Instituto de Ciências Matemáticas e de Computação (ICMC) Universidade de

Leia mais

2) Se z = (2 + i).(1 + i).i, então a) 3 i b) 1 3i c) 3 i d) 3 + i e) 3 + i. ,será dado por: quando x = i é:

2) Se z = (2 + i).(1 + i).i, então a) 3 i b) 1 3i c) 3 i d) 3 + i e) 3 + i. ,será dado por: quando x = i é: Aluno(a) Nº. Ano: º do Ensino Médio Exercícios para a Recuperação de MATEMÁTICA - Professores: Escossi e Luciano NÚMEROS COMPLEXOS 1) Calculando-se corretamente as raízes da função f(x) = x + 4x + 5, encontram-se

Leia mais

Eixo Temático ET-09-009 - Energia ESTUDO DA TERMOFLUIDODINÂMICA DE UM SECADOR SOLAR DE EXPOSIÇÃO DIRETA: MODELAGEM E SIMULAÇÃO

Eixo Temático ET-09-009 - Energia ESTUDO DA TERMOFLUIDODINÂMICA DE UM SECADOR SOLAR DE EXPOSIÇÃO DIRETA: MODELAGEM E SIMULAÇÃO 426 Eixo Temático ET-09-009 - Energia ESTUDO DA TERMOFLUIDODINÂMICA DE UM SECADOR SOLAR DE EXPOSIÇÃO DIRETA: MODELAGEM E SIMULAÇÃO Maria Teresa Cristina Coelho¹; Jailton Garcia Ramos; Joab Costa dos Santos;

Leia mais

Uma Ferramenta para otimização em Engenharia Mecânica e aplicações na Fundição Eletromagnética de Metais

Uma Ferramenta para otimização em Engenharia Mecânica e aplicações na Fundição Eletromagnética de Metais Uma Ferramenta para otimização em Engenharia Mecânica e aplicações na Fundição Eletromagnética de Metais Departamento de Engenharia Mecânica COPPE UFRJ STIC-AMSUD, Novembro de 2009 Conteúdo Preliminares

Leia mais

MAT 2352 - Cálculo Diferencial e Integral II - 2 semestre de 2012 Registro das aulas e exercícios sugeridos - Atualizado 13.11.

MAT 2352 - Cálculo Diferencial e Integral II - 2 semestre de 2012 Registro das aulas e exercícios sugeridos - Atualizado 13.11. MT 2352 - Cálculo Diferencial e Integral II - 2 semestre de 2012 Registro das aulas e exercícios sugeridos - tualizado 13.11.2012 1. Segunda-feira, 30 de julho de 2012 presentação do curso. www.ime.usp.br/

Leia mais

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Lic. Eng. Biomédica e Bioengenharia-2009/2010 Para determinarmos um valor aproximado das raízes de uma equação não linear, convém notar inicialmente

Leia mais

As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem:

As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem: 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia. Introdução O Cálculo Numérico

Leia mais

Exercícios de Matemática Geometria Analítica - Circunferência

Exercícios de Matemática Geometria Analítica - Circunferência Exercícios de Matemática Geometria Analítica - Circunferência ) (Unicamp-000) Sejam A e B os pontos de intersecção da parábola y = x com a circunferência de centro na origem e raio. a) Quais as coordenadas

Leia mais

Aplicativo visual para problemas de transferência de calor 1

Aplicativo visual para problemas de transferência de calor 1 Artigos Aplicativo visual para problemas de transferência de calor 1 Lin Chau Jen, Gerson Rissetti, André Guilherme Ferreira, Adilson Hideki Yamagushi, Luciano Falconi Coelho Uninove. São Paulo SP [Brasil]

Leia mais

Métodos Estatísticos II 1 o. Semestre de 2010 ExercíciosProgramados1e2 VersãoparaoTutor Profa. Ana Maria Farias (UFF)

Métodos Estatísticos II 1 o. Semestre de 2010 ExercíciosProgramados1e2 VersãoparaoTutor Profa. Ana Maria Farias (UFF) Métodos Estatísticos II 1 o. Semestre de 010 ExercíciosProgramados1e VersãoparaoTutor Profa. Ana Maria Farias (UFF) Esses exercícios abrangem a matéria das primeiras semanas de aula (Aula 1) Os alunos

Leia mais

MECÂNICA DOS FLUIDOS 2 ME262

MECÂNICA DOS FLUIDOS 2 ME262 UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE TECNOLOGIA E GEOCIÊNCIAS (CTG) DEPARTAMENTO DE ENGENHARIA MECÂNICA (DEMEC) MECÂNICA DOS FLUIDOS ME6 Prof. ALEX MAURÍCIO ARAÚJO (Capítulo 5) Recife - PE Capítulo

Leia mais

3.3 Espaço Tridimensional - R 3 - versão α 1 1

3.3 Espaço Tridimensional - R 3 - versão α 1 1 1 3.3 Espaço Tridimensional - R 3 - versão α 1 1 3.3.1 Sistema de Coordenadas Tridimensionais Como vimos no caso do R, para localizar um ponto no plano precisamos de duas informações e assim um ponto P

Leia mais

Cálculo Numérico Computacional Lista 09 integral aproximada

Cálculo Numérico Computacional Lista 09 integral aproximada ORIENTAÇÃO ORIENTAÇÃO 2 Cálculo Numérico Computacional Lista 09 integral aproximada tarcisio@member.ams.org T. Praciano-Pereira Dep. de Matemática alun@: Univ. Estadual Vale do Acaraú 3 de março de 2008

Leia mais

Computação Gráfica 04

Computação Gráfica 04 Universidade Federal do Vale do São Francisco Curso de Engenharia de Computação Computação Gráfica 04 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav

Leia mais

Análise Combinatória. Prof. Thiago Figueiredo

Análise Combinatória. Prof. Thiago Figueiredo Análise Combinatória Prof. Thiago Figueiredo (Escola Naval) Um tapete de 8 faixas deve ser pintado com cores azul, preta e branca. A quantidade de maneiras que podemos pintar esse tapete de modo que as

Leia mais

Computação Gráfica Interativa

Computação Gráfica Interativa Computação Gráfica Interativa conceitos, fundamentos geométricos e algoritmos 1. Introdução Computação Gráfica é a criação, armazenamento e a manipulação de modelos de objetos e suas imagens pelo computador.

Leia mais

UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS CCT CURSO DE TECNOLOGIA EM SISTEMAS DE INFORMAÇÃO

UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS CCT CURSO DE TECNOLOGIA EM SISTEMAS DE INFORMAÇÃO UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS CCT CURSO DE TECNOLOGIA EM SISTEMAS DE INFORMAÇÃO COMPUTER AIDED ENGINEERING - CAE FABIANO RAMOS DOS SANTOS SERGIO DA COSTA FERREIRA

Leia mais

CENTRO UNIVERSITÁRIO DA SERRA DOS ÓRGÃOS. Curso de Matemática

CENTRO UNIVERSITÁRIO DA SERRA DOS ÓRGÃOS. Curso de Matemática Introdução ao GeoGebra software livre 0 CENTRO UNIVERSITÁRIO DA SERRA DOS ÓRGÃOS Curso de Matemática Primeiros Passos Com o Software Livre GeoGebra Março de 2010 Prof. Ilydio Pereira de Sá Introdução ao

Leia mais

Universidade Federal da Bahia

Universidade Federal da Bahia Universidade Federal da Bahia Instituto de Matemática DISCIPLINA: CALCULO B UNIDADE III - LISTA DE EXERCÍCIOS Atualizado 2008.2 Domínio, Imagem e Curvas/Superfícies de Nível y2 è [1] Determine o domínio

Leia mais

Simulação Numérica Direta de Escoamentos Transicionais e Turbulentos

Simulação Numérica Direta de Escoamentos Transicionais e Turbulentos Simulação Numérica Direta de Escoamentos Transicionais e Turbulentos Simulação numérica direta (DNS), Formalismo, Equações Navier-Stokes no espaço espectral, Considerações sobre métodos numéricos para

Leia mais

Avaliação de modelos numéricos de CFD para o estudo do escoamento de água da piscina do RMB

Avaliação de modelos numéricos de CFD para o estudo do escoamento de água da piscina do RMB 2013 International Nuclear Atlantic Conference - INAC 2013 Recife, PE, Brazil, November 24-29, 2013 ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN ISBN: 978-85-99141-05-2 Avaliação de modelos numéricos

Leia mais

Obs.: São cartesianos ortogonais os sistemas de coordenadas

Obs.: São cartesianos ortogonais os sistemas de coordenadas MATEMÁTICA NOTAÇÕES : conjunto dos números complexos : conjunto dos números racionais : conjunto dos números reais : conjunto dos números inteiros = {0,,, 3,...} * = {,, 3,...} Ø: conjunto vazio A\B =

Leia mais

PROVA DE MATEMÁTICA DA UFPE. VESTIBULAR 2013 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFPE. VESTIBULAR 2013 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFPE VESTIBULAR 0 a Fase Profa. Maria Antônia Gouveia. 0. A ilustração a seguir é de um cubo com aresta medindo 6cm. A, B, C e D são os vértices indicados do cubo, E é o centro da

Leia mais

LISTA DE EXERCÍCIOS DE CAMPOS CONSERVATIVOS NO PLANO E NO ESPAÇO. CURVAS PARAMETRIZADAS, INTEGRAIS DE LINHA (COM RESPEITO A COMPRIMENTO DE ARCO).

LISTA DE EXERCÍCIOS DE CAMPOS CONSERVATIVOS NO PLANO E NO ESPAÇO. CURVAS PARAMETRIZADAS, INTEGRAIS DE LINHA (COM RESPEITO A COMPRIMENTO DE ARCO). LISTA DE EXERCÍCIOS DE CAMPOS CONSERVATIVOS NO PLANO E NO ESPAÇO. CURVAS PARAMETRIZADAS, INTEGRAIS DE LINHA (COM RESPEITO A COMPRIMENTO DE ARCO. PROFESSOR: RICARDO SÁ EARP OBS: Faça os exercícios sobre

Leia mais

APLICAÇÕES DA DERIVADA

APLICAÇÕES DA DERIVADA Notas de Aula: Aplicações das Derivadas APLICAÇÕES DA DERIVADA Vimos, na seção anterior, que a derivada de uma função pode ser interpretada como o coeficiente angular da reta tangente ao seu gráfico. Nesta,

Leia mais

Brasília, 09 de dezembro de 2014

Brasília, 09 de dezembro de 2014 Brasília, 09 de dezembro de 2014 Proposta de Uso de Barcaça Frontal Triangular para Fins de Diminuição de Arrasto de Proas de Comboios da Navegação Interior, e a Possibilidade de Frenagem Auxiliada Pela

Leia mais

UTILIZAÇÃO DA DINÂMICA DOS FLUIDOS COMPUTACIONAL NA COMPLEMENTAÇÃO DO ENSINO DA DISCIPLINA FENÔMENOS DE TRANSPORTE

UTILIZAÇÃO DA DINÂMICA DOS FLUIDOS COMPUTACIONAL NA COMPLEMENTAÇÃO DO ENSINO DA DISCIPLINA FENÔMENOS DE TRANSPORTE Anais do XXXIV COBENGE. Passo Fundo: Ed. Universidade de Passo Fundo, Setembro de 2006. ISBN 85-7515-371-4 UTILIZAÇÃO DA DINÂMICA DOS FLUIDOS COMPUTACIONAL NA COMPLEMENTAÇÃO DO ENSINO DA DISCIPLINA FENÔMENOS

Leia mais

CAMPOS CONSERVATIVOS NO PLANO

CAMPOS CONSERVATIVOS NO PLANO CAMPOS CONSERVATIVOS NO PLANO Ricardo Bianconi Primeiro Semestre de 2008 Revisado em Fevereiro de 2015 Resumo Relacionamos os conceitos de campos irrotacionais, campos conservativos e forma do domínio

Leia mais

Derivação Implícita e Taxas Relacionadas

Derivação Implícita e Taxas Relacionadas Capítulo 14 Derivação Implícita e Taxas Relacionadas 14.1 Introdução A maioria das funções com as quais trabalhamos até agora é da forma y = f(x), em que y é dado diretamente ou, explicitamente, por meio

Leia mais

GA Estudo das Retas. 1. (Pucrj 2013) O triângulo ABC da figura abaixo tem área 25 e vértices A = (4, 5), B = (4, 0) e C = (c, 0).

GA Estudo das Retas. 1. (Pucrj 2013) O triângulo ABC da figura abaixo tem área 25 e vértices A = (4, 5), B = (4, 0) e C = (c, 0). GA Estudo das Retas 1. (Pucrj 01) O triângulo ABC da figura abaixo tem área 5 e vértices A = (, 5), B = (, 0) e C = (c, 0). A equação da reta r que passa pelos vértices A e C é: a) y x 7 x b) y 5 x c)

Leia mais

DIMENSIONAMENTO DE UMA BIELA DE COMPRESSOR HERMÉTICO QUANTO À FADIGA ATRAVÉS DE ANÁLISE POR ELEMENTOS FINITOS

DIMENSIONAMENTO DE UMA BIELA DE COMPRESSOR HERMÉTICO QUANTO À FADIGA ATRAVÉS DE ANÁLISE POR ELEMENTOS FINITOS XIX Congresso Nacional de Estudantes de Engenharia Mecânica - 13 a 17/08/2012 São Carlos-SP Artigo CREEM2012 DIMENSIONAMENTO DE UMA BIELA DE COMPRESSOR HERMÉTICO QUANTO À FADIGA ATRAVÉS DE ANÁLISE POR

Leia mais

MAT 2455 - Cálculo Diferencial e Integral III para Engenharia 1 ā Prova - 1o semestre de 2005

MAT 2455 - Cálculo Diferencial e Integral III para Engenharia 1 ā Prova - 1o semestre de 2005 MAT 4 - Cálculo iferencial e Integral III para Engenharia ā Prova - o semestre de Questão. Calcule: (,- ). (a) (. pontos) (b) (. pontos) x e + d dx (x + ) (x ) dx d, onde é o triângulo de vértices (,),

Leia mais

CÁLCULO: VOLUME III MAURICIO A. VILCHES - MARIA LUIZA CORRÊA. Departamento de Análise - IME UERJ

CÁLCULO: VOLUME III MAURICIO A. VILCHES - MARIA LUIZA CORRÊA. Departamento de Análise - IME UERJ CÁLCULO: VOLUME III MAURICIO A. VILCHES - MARIA LUIZA CORRÊA Departamento de Análise - IME UERJ 2 Copyright by Mauricio A. Vilches Todos os direitos reservados Proibida a reprodução parcial ou total 3

Leia mais

curso de extensão Análise de Escoamentos através de Dinâmica dos Fluidos Computacional

curso de extensão Análise de Escoamentos através de Dinâmica dos Fluidos Computacional iesss - instituto de pesquisa, desenvolvimento e capacitação curso de extensão Análise de Escoamentos através de Dinâmica dos Fluidos Computacional curso de extensão instituto P&D Análise de Escoamentos

Leia mais

Resolução da Prova da Escola Naval 2009. Matemática Prova Azul

Resolução da Prova da Escola Naval 2009. Matemática Prova Azul Resolução da Prova da Escola Naval 29. Matemática Prova Azul GABARITO D A 2 E 2 E B C 4 D 4 C 5 D 5 A 6 E 6 C 7 B 7 B 8 D 8 E 9 A 9 A C 2 B. Os 6 melhores alunos do Colégio Naval submeteram-se a uma prova

Leia mais

Utilização de Software Livre no Controle Estatístico de Processo

Utilização de Software Livre no Controle Estatístico de Processo Utilização de Software Livre no Controle Estatístico de Processo Wagner André dos Santos Conceição (UEM) wasconceicao@bol.com.br Paulo Roberto Paraíso (UEM) paulo@deq.uem.br Mônica Ronobo Coutinho (UNICENTRO)

Leia mais

Objetivos. Apresentar as superfícies regradas e superfícies de revolução. Analisar as propriedades que caracterizam as superfícies regradas e

Objetivos. Apresentar as superfícies regradas e superfícies de revolução. Analisar as propriedades que caracterizam as superfícies regradas e MÓDULO 2 - AULA 13 Aula 13 Superfícies regradas e de revolução Objetivos Apresentar as superfícies regradas e superfícies de revolução. Analisar as propriedades que caracterizam as superfícies regradas

Leia mais

Modelagem de Campos Vetoriais Utilizando Autômatos Celulares e Elementos Finitos

Modelagem de Campos Vetoriais Utilizando Autômatos Celulares e Elementos Finitos Modelagem de Campos Vetoriais Utilizando Autômatos Celulares e Elementos Finitos Renata Vieira Palazzo 1,2, Antônio Carlos da Rocha Costa 1, Graçaliz Pereira Dimuro 1 1 Escola de Informática Universidade

Leia mais

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O :

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O : ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA INTRODUÇÃO AO ESTUDO DAS FUNÇÕES PROF. CARLINHOS NOME: N O : 1 FUNÇÃO IDÉIA INTUITIVA DE FUNÇÃO O conceito de função é um dos mais importantes da matemática.

Leia mais

Título: Sistemas Lineares no CAp UFRJ: Interpretações Algébrica e Gráfica

Título: Sistemas Lineares no CAp UFRJ: Interpretações Algébrica e Gráfica Autor Letícia Guimarães Rangel Co-autor(es): Fernando Celso Villar Marinho Lílian Káram Parente Cury Spiller Rita Maria Cardoso Meirelles Tipo de Pesquisa Ensino Médio Números e Operações Componente Curricular

Leia mais

Representação no Plano Cartesiano INTRODUÇÃO A FUNÇÃO

Representação no Plano Cartesiano INTRODUÇÃO A FUNÇÃO INTRODUÇÃO A FUNÇÃO Def: Dado dois conjuntos que tenham uma relação, chama-se função quando todo elemento do primeiro tiver associado um único elemento do segundo conjunto. Ou seja, f é função de A em

Leia mais

computador-cálculo numérico perfeita. As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem:

computador-cálculo numérico perfeita. As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem: 1 UNIVERSIDADE FEDERAL DE VIÇOSA Departamento de Matemática - CCE Cálculo Numérico - MAT 271 Prof.: Valéria Mattos da Rosa As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia

Leia mais

2 Estudo dos Acoplamentos

2 Estudo dos Acoplamentos 24 2 Estudo dos Acoplamentos Um problema acoplado é aquele em que dois ou mais sistemas físicos interagem entre si e cujo acoplamento pode ocorrer através de diferentes graus de interação (Zienkiewicz

Leia mais

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%)

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Distribuição das 1.048 Questões do I T A 94 (8,97%) 104 (9,92%) 69 (6,58%) Equações Irracionais 09 (0,86%) Equações Exponenciais 23 (2, 101 (9,64%) Geo. Espacial Geo. Analítica Funções Conjuntos 31 (2,96%)

Leia mais

Sistemas lineares. Ricardo Biloti biloti@ime.unicamp.br 2S/2015. Cálculo Numérico UNICAMP. http://goo.gl/7dzpr

Sistemas lineares. Ricardo Biloti biloti@ime.unicamp.br 2S/2015. Cálculo Numérico UNICAMP. http://goo.gl/7dzpr Sistemas lineares Ricardo Biloti biloti@ime.unicamp.br Cálculo Numérico UNICAMP 2S/205 http://goo.gl/7dzpr Licença Seus direitos e deveres são: Você é livre para copiar e redistribuir este material, em

Leia mais

( ) = = MATEMÁTICA. Prova: 28/07/13. Questão 17. Questão 18

( ) = = MATEMÁTICA. Prova: 28/07/13. Questão 17. Questão 18 Prova: 8/07/13 MATEMÁTICA Questão 17 A equação x 3 4 x + 5x + 3 = 0 possui as raízes m, p e q. O valor da expressão m + p + q é pq mq mp (A). (B) 3. (C). (D) 3. Gabarito: Letra A. A expressão é igual a:

Leia mais

José Álvaro Tadeu Ferreira

José Álvaro Tadeu Ferreira UNIVERSIDADE FEDERAL DE OURO PRETO Instituto de Ciências Exatas e Biológicas Departamento de Computação José Álvaro Tadeu Ferreira Cálculo Numérico Notas de aulas Resolução de Equações Não Lineares Ouro

Leia mais

MATERIAIS DE APOIO ÀS SESSÕES PRÁTICAS

MATERIAIS DE APOIO ÀS SESSÕES PRÁTICAS MATERIAIS DE APOIO ÀS SESSÕES PRÁTICAS I. Simplesmente Funções Considera: a função f, de domínio IR \ 4, definida por 2 f x ; 4 x a função g, de domínio IR, definida por 1 3 3 2 g x x x 4x 5 6 2 1. Determina

Leia mais

SISTEMAS COM AMORTECIMENTO NÃO-PROPORCIONAL NO DOMÍNIO DA FREQÜÊNCIA

SISTEMAS COM AMORTECIMENTO NÃO-PROPORCIONAL NO DOMÍNIO DA FREQÜÊNCIA SISTEMAS COM AMORTECIMENTO NÃO-PROPORCIONAL NO DOMÍNIO DA FREQÜÊNCIA Zacarias Martin Chamberlain Pravia Professor - Faculdade de Engenharia e Arquitetura - Universidade de Passo Fundo/UFP zacarias@upf.br

Leia mais

Figura 1-1. Entrada de ar tipo NACA. 1

Figura 1-1. Entrada de ar tipo NACA. 1 1 Introdução Diversos sistemas de uma aeronave, tais como motor, ar-condicionado, ventilação e turbinas auxiliares, necessitam captar ar externo para operar. Esta captura é feita através da instalação

Leia mais

Módulo 2 Unidade 7. Função do 2 grau. Para início de conversa... Imagine você sentado. em um ônibus, indo. para a escola, jogando uma

Módulo 2 Unidade 7. Função do 2 grau. Para início de conversa... Imagine você sentado. em um ônibus, indo. para a escola, jogando uma Módulo 2 Unidade 7 Função do 2 grau Para início de conversa... Imagine você sentado em um ônibus, indo para a escola, jogando uma caneta para cima e pegando de volta na mão. Embora para você a caneta só

Leia mais

Matemática. Subtraindo a primeira equação da terceira obtemos x = 1. Substituindo x = 1 na primeira e na segunda equação obtém-se o sistema

Matemática. Subtraindo a primeira equação da terceira obtemos x = 1. Substituindo x = 1 na primeira e na segunda equação obtém-se o sistema Matemática 01. A ilustração a seguir é de um cubo com aresta medindo 6 cm. A, B, C e D são os vértices indicados do cubo, E é o centro da face contendo C e D, e F é o pé da perpendicular a BD traçada a

Leia mais

Cálculo Numérico Computacional Exercícios lista 04 Raizes aproximadas

Cálculo Numérico Computacional Exercícios lista 04 Raizes aproximadas 1 Cálculo Numérico Computacional Exercícios lista 04 Raizes aproximadas Varredura, método da tangente Prof. Tarcisio Praciano-Pereira Dep. de Matemática tarcisio@member.ams.org aluno: Univ. Estadual Vale

Leia mais

Matriz Curricular de Matemática 6º ao 9º ano 6º ano 6º Ano Conteúdo Sistemas de Numeração Sistema de numeração Egípcio Sistema de numeração Romano Sistema de numeração Indo-arábico 1º Trimestre Conjunto

Leia mais

Vestibular 2ª Fase Resolução das Questões Discursivas

Vestibular 2ª Fase Resolução das Questões Discursivas COMISSÃO PERMANENTE DE SELEÇÃO COPESE PRÓ-REITORIA DE GRADUAÇÃO PROGRAD CONCURSO VESTIBULAR 010 Prova de Matemática Vestibular ª Fase Resolução das Questões Discursivas São apresentadas abaixo possíveis

Leia mais

Seja D R. Uma função vetorial r(t) com domínio D é uma correspondência que associa a cada número t em D exatamente um vetor r(t) em R 3

Seja D R. Uma função vetorial r(t) com domínio D é uma correspondência que associa a cada número t em D exatamente um vetor r(t) em R 3 1 Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire Cálculo Vetorial Texto 01: Funções Vetoriais Até agora nos cursos de Cálculo só tratamos de funções cujas imagens

Leia mais

Leitura e interpretação de gráficos: Cada vez mais os vestibulares exigem essa competência

Leitura e interpretação de gráficos: Cada vez mais os vestibulares exigem essa competência Leitura e interpretação de gráficos: Cada vez mais os vestibulares exigem essa competência Por: George Schlesinger Existem diversos tipos de gráficos: linhas, barras, pizzas etc. Estudaremos aqui os gráficos

Leia mais

Aula 7 Valores Máximo e Mínimo (e Pontos de Sela)

Aula 7 Valores Máximo e Mínimo (e Pontos de Sela) Aula 7 Valores Máximo e Mínimo (e Pontos de Sela) MA - Cálculo II Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade Estadual

Leia mais

A função do primeiro grau

A função do primeiro grau Módulo 1 Unidade 9 A função do primeiro grau Para início de conversa... Já abordamos anteriormente o conceito de função. Mas, a fim de facilitar e aprofundar o seu entendimento, vamos estudar algumas funções

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ CURSO DE ENGENHARIA CIVIL DISCIPLINA DE CÁLCULO DIFERENCIAL E INTEGRAL I

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ CURSO DE ENGENHARIA CIVIL DISCIPLINA DE CÁLCULO DIFERENCIAL E INTEGRAL I 1) Considerações gerais sobre os conjuntos numéricos. Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

Módulo de Geometria Anaĺıtica 1. Paralelismo e Perpendicularismo. 3 a série E.M.

Módulo de Geometria Anaĺıtica 1. Paralelismo e Perpendicularismo. 3 a série E.M. Módulo de Geometria Anaĺıtica 1 Paralelismo e Perpendicularismo 3 a série EM Geometria Analítica 1 Paralelismo e Perpendicularismo 1 Exercícios Introdutórios Exercício 1 Determine se as retas de equações

Leia mais

2. Método de Monte Carlo

2. Método de Monte Carlo 2. Método de Monte Carlo O método de Monte Carlo é uma denominação genérica tendo em comum o uso de variáveis aleatórias para resolver, via simulação numérica, uma variada gama de problemas matemáticos.

Leia mais

Complemento IV Introdução aos Algoritmos Genéticos

Complemento IV Introdução aos Algoritmos Genéticos Complemento IV Introdução aos Algoritmos Genéticos Esse documento é parte integrante do material fornecido pela WEB para a 2ª edição do livro Data Mining: Conceitos, técnicas, algoritmos, orientações e

Leia mais

Ponto, reta e plano no espaço tridimensional, cont.

Ponto, reta e plano no espaço tridimensional, cont. Ponto, reta e plano no espaço tridimensional, cont. Matemática para arquitetura Ton Marar 1. Posições relativas Posição relativa entre pontos Dois pontos estão sempre alinhados. Três pontos P 1 = (x 1,

Leia mais

OTIMIZAÇÃO DO AEROFÓLIO NACA PARA UM VEÍCULO AÉREO NÃO TRIPULADO COM APLICAÇÃO AGRÍCOLA

OTIMIZAÇÃO DO AEROFÓLIO NACA PARA UM VEÍCULO AÉREO NÃO TRIPULADO COM APLICAÇÃO AGRÍCOLA Mecánica Computacional Vol XXIX, págs. 3657-3669 (artículo completo) Eduardo Dvorkin, Marcela Goldschmit, Mario Storti (Eds.) Buenos Aires, Argentina, 15-18 Noviembre 2010 OTIMIZAÇÃO DO AEROFÓLIO NACA

Leia mais

COMPARAÇÃO DE MÉTODOS NUMÉRICOS PARA CASOS SIMPLI ICADOS DE CIRCULAÇÃO EM CORPOS D ÁGUA RASOS

COMPARAÇÃO DE MÉTODOS NUMÉRICOS PARA CASOS SIMPLI ICADOS DE CIRCULAÇÃO EM CORPOS D ÁGUA RASOS COMPARAÇÃO DE MÉTODOS NUMÉRICOS PARA CASOS SIMPLI ICADOS DE CIRCULAÇÃO EM CORPOS D ÁGUA RASOS Jaqueline Gomes Moura, José Paulo Soares de Azevedo e lávio Cesar Borba Mascarenhas Programa de Engenharia

Leia mais

MATEMÁTICA - 3 o ANO MÓDULO 23 EQUAÇÃO DA RETA

MATEMÁTICA - 3 o ANO MÓDULO 23 EQUAÇÃO DA RETA MATEMÁTICA - 3 o ANO MÓDULO 23 EQUAÇÃO DA RETA y y a y P A y b B R T xb x xa x y y a A y b M xb xa x y y x x r s a 3 a 2 a a 1 b c b + c Como pode cair no enem (CESGRANRIO) As escalas termométricas Celsius

Leia mais

< 0, conclui-se, de acordo com o teorema 1, que existem zeros de f (x) Pode-se também chegar às mesmas conclusões partindo da equação

< 0, conclui-se, de acordo com o teorema 1, que existem zeros de f (x) Pode-se também chegar às mesmas conclusões partindo da equação . Isolar os zeros da função f ( )= 9 +. Resolução: Pode-se construir uma tabela de valores para f ( ) e analisar os sinais: 0 f ( ) + + + + + Como f ( ) f ( ) < 0, f ( 0 ) f ( ) < 0 e f ( ) f ( ) < 0,

Leia mais

Módulo de Geometria Anaĺıtica Parte 2. Distância entre Ponto e Reta. Professores Tiago Miranda e Cleber Assis

Módulo de Geometria Anaĺıtica Parte 2. Distância entre Ponto e Reta. Professores Tiago Miranda e Cleber Assis Módulo de Geometria Anaĺıtica Parte Distância entre Ponto e Reta a série E.M. Professores Tiago Miranda e Cleber Assis Geometria Analítica Parte Distância entre Ponto e Reta 1 Exercícios Introdutórios

Leia mais

Universidade Federal do Paraná

Universidade Federal do Paraná Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Matematica Prof. Juan Carlos Vila Bravo Curitiba, 1 de Dezembro de 005 1. A posição de uma particula é dada por: r(t) = (sen t)i+(cost)j

Leia mais

APÊNDICES ATIVIDADES OBJETOS DE APRENDIZAGEM

APÊNDICES ATIVIDADES OBJETOS DE APRENDIZAGEM APÊNDICES ATIVIDADES OBJETOS DE APRENDIZAGEM APÊNDICE A - Análise dos softwares GeoGebra e Winplot I Objetivo: Identificar o software que será utilizado para desenvolver as atividades. II Metodologia:

Leia mais

CONSTRUÇÃO DE GRÁFICOS

CONSTRUÇÃO DE GRÁFICOS GOVERNO DO ESTADO DO RIO DE JANEIRO FUNDAÇÃO DE APOIO À ESCOLA TÉCNICA FAETEC ESCOLA TÉCNICA ESTADUAL SANTA CRUZ ETESC DISCIPLINA DE QUÍMICA EXPERIMENTAL Profs.: Ana Cristina, Denis Dutra e José Lucas

Leia mais

MATERIAL DE DIVULGAÇÃO DA EDITORA MODERNA

MATERIAL DE DIVULGAÇÃO DA EDITORA MODERNA MATERIAL DE DIVULGAÇÃO DA EDITORA MODERNA Professor, nós, da Editora Moderna, temos como propósito uma educação de qualidade, que respeita as particularidades de todo o país. Desta maneira, o apoio ao

Leia mais

Esboço de Gráficos (resumo)

Esboço de Gráficos (resumo) Esboço de Gráficos (resumo) 1 Máximos e Mínimos Definição: Diz-se que uma função tem um valor máximo relativo (máximo local) em c se existe um intervalo ( a, b) aberto contendo c tal que f ( c) f ( x)

Leia mais

(x, y) = (a, b) + t*(c-a, d-b) ou: x = a + t*(c-a) y = b + t*(d-b)

(x, y) = (a, b) + t*(c-a, d-b) ou: x = a + t*(c-a) y = b + t*(d-b) Equação Vetorial da Reta Dois pontos P e Q, definem um único vetor v = PQ, que representa uma direção. Todo ponto R cuja direção PR seja a mesma de PQ está contido na mesma reta definida pelos pontos P

Leia mais

Primitivas Gráficas. Prof. Márcio Bueno {cgtarde,cgnoite}@marciobueno.com. Fonte: Material do Prof. Robson Pequeno de Sousa e do Prof.

Primitivas Gráficas. Prof. Márcio Bueno {cgtarde,cgnoite}@marciobueno.com. Fonte: Material do Prof. Robson Pequeno de Sousa e do Prof. Primitivas Gráficas Prof. Márcio Bueno {cgtarde,cgnoite}@marciobueno.com Fonte: Material do Prof. Robson Pequeno de Sousa e do Prof. Robson Lins Traçado de Primitivas em Dispositivos Matriciais Conversão

Leia mais

CÁLCULO DE ZEROS DE FUNÇÕES REAIS

CÁLCULO DE ZEROS DE FUNÇÕES REAIS 15 CÁLCULO DE ZEROS DE FUNÇÕES REAIS Um dos problemas que ocorrem mais frequentemente em trabalhos científicos é calcular as raízes de equações da forma: f() = 0. A função f() pode ser um polinômio em

Leia mais

Álgebra Linear. Mauri C. Nascimento Departamento de Matemática UNESP/Bauru. 19 de fevereiro de 2013

Álgebra Linear. Mauri C. Nascimento Departamento de Matemática UNESP/Bauru. 19 de fevereiro de 2013 Álgebra Linear Mauri C. Nascimento Departamento de Matemática UNESP/Bauru 19 de fevereiro de 2013 Sumário 1 Matrizes e Determinantes 3 1.1 Matrizes............................................ 3 1.2 Determinante

Leia mais

Teoria : Estruturas de Dados. Estrutura Vetorial. Quais tipos de dados são representados por estruturas vetoriais? Mapa temático:

Teoria : Estruturas de Dados. Estrutura Vetorial. Quais tipos de dados são representados por estruturas vetoriais? Mapa temático: Universidade do Estado de Santa Catarina UDESC Centro de ciências Humanas e da Educação FAED Mestrado em Planejamento Territorial e Desenvolvimento Socio- Ambiental - MPPT Disciplina: Geoprocessamento

Leia mais

MATEMÁTICA APLICADA FIGURAS PLANAS

MATEMÁTICA APLICADA FIGURAS PLANAS MATEMÁTICA APLICADA FIGURAS PLANAS Áreas e Perímetros de Figuras Planas Quadrado A = L x L A = L² Onde: A = Área (m², cm², mm²,...) L = Lado (m, cm, mm,...) P = Perímetro P = L + L + L + L P =. L Retângulo

Leia mais

Introdução ao Projeto de Aeronaves. Aula 13 Grupo Moto-Propulsor e Seleção de Hélices

Introdução ao Projeto de Aeronaves. Aula 13 Grupo Moto-Propulsor e Seleção de Hélices Introdução ao Projeto de Aeronaves Aula 13 Grupo Moto-Propulsor e Seleção de Hélices Tópicos Abordados Grupo Moto-Propulsor. Motores para a Competição AeroDesign. Características das Hélices. Modelo Propulsivo.

Leia mais