ANÁLISE DE MALHAS COMPUTACIONAIS EM TORNO DE PEÇAS DE INTERESSE EM ENGENHARIA AERONÁUTICA

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "ANÁLISE DE MALHAS COMPUTACIONAIS EM TORNO DE PEÇAS DE INTERESSE EM ENGENHARIA AERONÁUTICA"

Transcrição

1 ANÁLISE DE MALHAS COMPUTACIONAIS EM TORNO DE PEÇAS DE INTERESSE EM ENGENHARIA AERONÁUTICA Bruno Quadros Rodrigues IC Nide Geraldo docouto R. F. Jr PQ Instituto Tecnológico de Aeronáutica Praça Marechal Eduardo Gomes, 50 Vila das Acácias CEP São José dos Campos SP - Brasil Resumo A Dinâmica dos Fluidos Computacional (CFD), em franca expansão, constitui a principal motivação do presente trabalho, no qual é introduzido um método em que um sistema de equações diferenciais parciais elípticas é resolvido com o objetivo de transformar o domínio físico de interesse, que é contínuo, num domínio computacional, que é um conjunto discreto de pontos uniformemente distribuídos (malha estruturada). Esse método é aplicado à análise de um aerofólio NACA-001 e um bocal convergente- divergente. Abstract In this work we introduce a partial differential method from Computational Fluid Dynamics in which a system of elliptical partial differential equations has to be solved in order to locate points on a relevant physical region whilst the computational domain is a discrete rectangular set of uniformly distributed points. This method is approached with the purpose of applying it to the analysis of a NACA-001 aerofoil and a convergent-divergent nozzle. 1. PROCEDIMENTOS 1.1 Domínio físico x Domínio Computacional O domínio físico é a região, em torno da peça, sobre a qual serão feitas as análises inerentes à dinâmica dos fluidos. Já o domínio computacional, como já foi mencionado, é uma região retangular cujos pontos internos estão igualmente espaçados (malha estruturada). Infelizmente a maioria dos domínios físicos de interesse não são simples como os retangulares. Portanto impor um domínio computacional retangular a tais problemas, que é o que se espera, exigiria algumas interpolações para a implementação das condições de contorno, o que causaria imprecisões nas regiões de maior sensibilidade. Para vencer esse tipo de dificuldade, deve ser usada uma transformação de coordenadas tal que se consiga converter o domínio físico no computacional, como ilustrado a seguir. Figura 1: domínio físico (esboço acima) e domínio computacional (abaixo).

2 1. Soluções numéricas das EDPs elípticas 1..1 Distribuição de pontos Antes de resolver as EDPs elípticas deve-se estabelecer uma distribuição inicial de pontos em torno da peça. Para a construção dessa malha rudimentar o primeiro passo é discretizar as abscissas dos pontos entre (0,0) e (1,0). Posteriormente passa-se à implementação da geometria do NACA-001. Deve-se dar atenção ainda à geometria do bordo de fuga do aerofólio a fim de fechar a curva que define o seu perfil. Feito isso, o próximo passo é a implementação da fronteira externa que delimita o domínio físico, a qual será circular, centrada na peça. A partir de então devem-se ligar os pontos da fronteira externa com os pontos sobre o perfil por meio de retas que não devem ter pontos em comum. Também deve-se dividir cada reta obtida em um número definido de pontos, que por sua vez serão unidos por novas retas. Assim serão geradas varias circunferências concêntricas nas regiôes mais distantes do aerofólio, e ao mesmo tempo curvas que se adaptem à sua geometria nas regiôes mais próximas. O resultado é mostrado abaixo. Figura a: Malha inicial Figura b: Detalhe da malha inicial A partir de agora é que começará a ser feito o refinamento desta malha a partir das EDPs. Já se sabe a princípio que a resolução dessas equações depende do tipo de discretização do domínio de interesse e da discretização delas próprias. Será usado aqui um sistema de equações elípticas de Laplace, como mostrado a seguir: ξ xx + ξ yy = 0 η xx + η yy = 0 onde ξ e η são as coordenadas no domínio computacional. Entretanto, para que seja possível resolver essas equações no domínio computacional, as variáveis dependentes (x e y) e as independentes (ξ e η) devem ser permutadas segundo uma transformação inversa (vide Ref.1), obtendo-se: onde α x ξξ β x ξη + γ x ηη = 0 α y ξξ β y ξη + γ y ηη = 0 α = x η + y η β = x ξ x η + y ξ y η γ = x ξ + y ξ Essas equações irão fornecer a localização dos pontos no domínio físico. Note-se que elas são não-lineares e, por isso mesmo, de difícil resolução. Daí a importância do emprego dos métodos numéricos.

3 Se forem substituídas as equações de diferença finita centrada de segunda ordem no sistema acima (vide Ref.1), teremos então equações puramente algébricas, que serão solucionadas iterativamente e que devem ser satisfeitas para cada ponto do domínio computacional. Feitas as devidas substituições, obtêm-se as seguintes equações: X i,j = { a.[x i+1,j + x i-1,j ] / ( ξ) + c.[x i,j+1 + x i,j-i ] / ( η) b.[x i+1,j+1 x i+1,j-1 + x i-1,j-1 x i-1,j+1 ] / ξ η} / [a / ( ξ) + c / ( η) ] y i,j = { a.[y i+1,j + y i-1,j ] / ( ξ) + c.[y i,j+1 + y i,j-i ] / ( η) b.[y i+1,j+1 y i+1,j-1 + y i-1,j-1 y i-1,j+1 ] / ξ η} / [a / ( ξ) + c / ( η) ] A figura 3 mostra o que se obtém a partir da resolução das equações acima para todos os pontos do domínio computacional. Trata-se de uma malha com linhas mais suaves e cuja distribuição confirma o caráter elíptico das EDPs em torno da geometria do aerofólio. Figura 3: Detalhe da malha suavizada Para que se possa refinar a malha, devem-se usar funções capazes de alterar a distribuição das linhas da malha. Para esse fim será usado o sistema de equações elípticas de Poisson abaixo: ξ xx + ξ yy = P(ξ, η) η xx + η yy = Q(ξ, η) Manipuladas segundo o mesmo procedimento de permuta de variáveis usado nas equações de Laplace, essas equações fornecem: αx ξξ βx ξη + γx ηη = -g [Px ξ + Qx η ] αy ξξ βy ξη + γy ηη = -g [Py ξ + Qy η ] onde α = x η + y η β = x ξ x η + y ξ y η γ = x ξ + y ξ g = (x ξ y η + x η y ξ ) P(ξ, η) = - a n.sgn(ξ ξ n ).exp[-c n ξ -ξ n ] -b m. sgn(ξ ξ m ).exp{-d m [(ξ ξ m ) + (η -η m ) ] 1/ } Q(ξ, η) = -a n.sgn(η η n).exp[-c n η - η n ] -b m. sgn(η η m).exp{-d m [(ξ ξ m ) + (η -η m ) ] 1/ }

4 onde P e Q são denominadas Funções de Controle, cujos coeficientes (a n, c n, b m e d m ) são responsáveis por concentrar linhas nas áreas de maior sensibilidade. Definidos os coeficientes dessas funções, obtém-se a malha ilustrada abaixo. Deve-se notar a concentração de linhas nas proximidades do aerofólio, onde as análises de escoamento necessitam de maior precisão. Figura 4: Malha refinada em torno do aerofólio A malha acima, comumente denominada O-grid, pode ser mais convenientemente usada quando se quer analisar as regiões próximas à superfície do aerofólio. Entretanto, muitas vezes é necessário conhecer as soluções das equações da dinâmica dos fluidos em pontos distantes, como no caso da análise de turbulência na esteira que se forma à jusante do aerofólio submetido a um escoamento. Neste caso um outro tipo de malha melhor se aplica. Trata-se da malha conhecida como C- grid,cujo detalhe é ilustrado abaixo. Figura 5: Detalhe da malha -C inicial Um outro tipo de geometria muito utilizada em aerodinâmica é o bocal convergentedivergente. Quanto à disposição das linhas dentro do bocal, usa-se o modelo abaixo.

5 H Figura 6: Linhas dentro do bocal y 5 y 4 y 3 y y 1 Assim, segue-se à seguinte idealização matemática: Δ Δ Δ Δ Δ y1+ y + y3 + y4 + y5 = H Δ Δ ε y = y1(1 + ) Δ Δ ε Δ ε y3 = y(1 + ) = y1(1 + ) Δ Δ ε Δ ε 3 y4 = y3(1 + ) = y1(1 + ) Δ Δ ε Δ ε 4 y = y (1 + ) = y (1 + ) Somando-se os termos acima, obtém-se: Δ ε ε ε ε 3 4 y 1 (1 + ) + (1 + ) + (1 + ) + (1 + ) = H Na expressão acima o termo ε é um escalar denominado fator de esticamento da malha, que faz o papel das Funções de Controle usadas nas malhas anteriores. Raciocínio análogo é usado para as linhas verticais da grade. Analogamente aos casos anteriores, obtêm-se a malha rudimentar e a malha refinada, mostradas abaixo, com devida atenção dada à região da garganta. Figura 7: Malha inicial

6 Figura 8a: Malha inicial na garganta Figura 8b: Malha refinada na garganta A figura 9b acima mostra a malha refinada na garganta, obtida impondo-se valores adequados para os fatores de esticamento em x e y. Como resultado, o que se tem agora é uma malha com maior densidade de linhas na região da garganta e nas proximidades das paredes do bocal. 3. CONCLUSÃO As malhas obtidas neste trabalho não foram testadas, ou seja, sobre elas não foram feitas quaisquer simulações de escoamento para comprovar se a densidade de linhas imposta pelos dados de entrada é suficiente para que se obtivessem resultados precisos. A principal preocupação aqui foi como gerar malhas computacionais e, como se pode perceber, o objetivo foi atingido na medida em que foi possível gerar malhas manipuláveis em torno de corpos de interesse em aerodinâmica, que no presente contexto foram o aerofólio NACA-001 e o bocal convergente-divergente. Vale ressaltar ainda que as as malhas obtidas neste trabalho podem ser aproveitadas para casos em que os corpos de interesse apresentam geometrias semelhantes, como flaps ou aerofólios com multielementos. No caso do bocal, este pode ser aproveitado para os casos de malhas internas a vasos sanguíneos com bifurcações, por exemplo. REFERÊNCIAS BIBLIOGRÁFICAS 1. Anderson, Tanehill, Pletcher; Computational Fluid Dynamics; McGrawHill Ed.; Anderson Jr., John D; Fundamentals of Aerodynamics; McGrawHill Ed.; 3 th ed.; Hofmann, K.; Chiang, S.; Computational Fluid Dynamics For Engineers, Vol. I, 001.

Desenvolvimento de um gerador de malhas para o estudo do escoamento transônico em um aerofólio

Desenvolvimento de um gerador de malhas para o estudo do escoamento transônico em um aerofólio Desenvolvimento de um gerador de malhas para o estudo do escoamento transônico em um aerofólio Leo Moreira Lima. ITA Instituto tecnológico de Aeronáutica, São José dos Campos, SP, 12228-900, Brasil. Bolsista

Leia mais

ANÁLISE DO ESCOAMENTO SOBRE AEROFÓLIOS USANDO A TÉCNICA DOS VOLUMES FINITOS

ANÁLISE DO ESCOAMENTO SOBRE AEROFÓLIOS USANDO A TÉCNICA DOS VOLUMES FINITOS ANÁLISE DO ESCOAMENTO SOBRE AEROFÓLIOS USANDO A TÉCNICA DOS VOLUMES FINITOS Stéfano Bruno Ferreira IC Aluno de graduação do curso de Engenharia Aeronáutica do Instituto Tecnológico de Aeronáutica Bolsista

Leia mais

Capítulo 4 - Equações Diferenciais às Derivadas Parciais

Capítulo 4 - Equações Diferenciais às Derivadas Parciais Capítulo 4 - Equações Diferenciais às Derivadas Parciais Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática Aplicada - Mestrados Eng. Química

Leia mais

DINÂMICA DOS FLUIDOS COMPUTACIONAL. CFD = Computational Fluid Dynamics

DINÂMICA DOS FLUIDOS COMPUTACIONAL. CFD = Computational Fluid Dynamics DINÂMICA DOS FLUIDOS COMPUTACIONAL CFD = Computational Fluid Dynamics 1 Problemas de engenharia Métodos analíticos Métodos experimentais Métodos numéricos 2 Problemas de engenharia FENÔMENO REAL (Observado

Leia mais

LCAD. Introdução ao Curso de Métodos Numéricos I. LCAD - Laboratório de Computação de Alto Desempenho

LCAD. Introdução ao Curso de Métodos Numéricos I. LCAD - Laboratório de Computação de Alto Desempenho LCAD - Laboratório de Computação de Alto Desempenho LCAD Introdução ao Curso de Métodos Numéricos I Lucia Catabriga Departamento de Informática CT/UFES Processo de Solução Fenômeno Natural Modelo Matemático

Leia mais

Introdução ao Método dos Elementos Finitos Conceitos Iniciais Divisão do Domínio e Funções de Base Aplicação do Método dos Resíduos Ponderados ao

Introdução ao Método dos Elementos Finitos Conceitos Iniciais Divisão do Domínio e Funções de Base Aplicação do Método dos Resíduos Ponderados ao Universidade Federal do Ceará Centro de Tecnologia Departamento de Engenharia Elétrica Programa de Educação Tutorial Autor: Bruno Pinho Meneses Orientadores: Janailson Rodrigues Lima Prof. Dr. Ricardo

Leia mais

SISTEMAS COM AMORTECIMENTO NÃO-PROPORCIONAL NO DOMÍNIO DA FREQÜÊNCIA

SISTEMAS COM AMORTECIMENTO NÃO-PROPORCIONAL NO DOMÍNIO DA FREQÜÊNCIA SISTEMAS COM AMORTECIMENTO NÃO-PROPORCIONAL NO DOMÍNIO DA FREQÜÊNCIA Zacarias Martin Chamberlain Pravia Professor - Faculdade de Engenharia e Arquitetura - Universidade de Passo Fundo/UFP zacarias@upf.br

Leia mais

computador-cálculo numérico perfeita. As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem:

computador-cálculo numérico perfeita. As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem: 1 UNIVERSIDADE FEDERAL DE VIÇOSA Departamento de Matemática - CCE Cálculo Numérico - MAT 271 Prof.: Valéria Mattos da Rosa As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia

Leia mais

MÉTODO DOS ELEMENTOS FINITOS COMO FERRAMENTA DIDÁTICA PARA O ENSINO DE ELETROSTÁTICA E MAGNETOSTÁTICA

MÉTODO DOS ELEMENTOS FINITOS COMO FERRAMENTA DIDÁTICA PARA O ENSINO DE ELETROSTÁTICA E MAGNETOSTÁTICA MÉTODO DOS ELEMENTOS FINITOS COMO FERRAMENTA DIDÁTICA PARA O ENSINO DE ELETROSTÁTICA E MAGNETOSTÁTICA Danilo Nobre Oliveira danilonobre@danilonobre.eng.br Ginúbio Braga Ferreira ginubio@gmail.com Universidade

Leia mais

SIMULAÇÃO NUMÉRICA DO RESFRIAMENTO DE COMPONENTES ELETRÔNICOS EM AERONAVES

SIMULAÇÃO NUMÉRICA DO RESFRIAMENTO DE COMPONENTES ELETRÔNICOS EM AERONAVES SIMULAÇÃO NUMÉRICA DO RESFRIAMENTO DE COMPONENTES ELETRÔNICOS EM AERONAVES Rafael Bernardo Cardoso de Mello IC rafael@redecasd.ita.br Divisão de Engenharia Aeronáutica Cláudia Regina de Andrade PQ - claudia@mec.ita.br

Leia mais

As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem:

As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem: 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia. Introdução O Cálculo Numérico

Leia mais

Figura 1-1. Entrada de ar tipo NACA. 1

Figura 1-1. Entrada de ar tipo NACA. 1 1 Introdução Diversos sistemas de uma aeronave, tais como motor, ar-condicionado, ventilação e turbinas auxiliares, necessitam captar ar externo para operar. Esta captura é feita através da instalação

Leia mais

MECÂNICA DOS FLUIDOS 2 ME262

MECÂNICA DOS FLUIDOS 2 ME262 UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE TECNOLOGIA E GEOCIÊNCIAS (CTG) DEPARTAMENTO DE ENGENHARIA MECÂNICA (DEMEC) MECÂNICA DOS FLUIDOS ME6 Prof. ALEX MAURÍCIO ARAÚJO (Capítulo 5) Recife - PE Capítulo

Leia mais

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%)

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Distribuição das 1.048 Questões do I T A 94 (8,97%) 104 (9,92%) 69 (6,58%) Equações Irracionais 09 (0,86%) Equações Exponenciais 23 (2, 101 (9,64%) Geo. Espacial Geo. Analítica Funções Conjuntos 31 (2,96%)

Leia mais

Diferenciais Parciais

Diferenciais Parciais Capítulo Solução Numérica de Equações Diferenciais Parciais. Introdução Uma equações diferencial parcial (EDP) pode ser escrita na forma geral a φ x + b φ x y + φ c y + d φ x + e φ + fφ+ g = 0 (.) y onde

Leia mais

Aplicativo visual para problemas de transferência de calor 1

Aplicativo visual para problemas de transferência de calor 1 Artigos Aplicativo visual para problemas de transferência de calor 1 Lin Chau Jen, Gerson Rissetti, André Guilherme Ferreira, Adilson Hideki Yamagushi, Luciano Falconi Coelho Uninove. São Paulo SP [Brasil]

Leia mais

UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS CCT CURSO DE TECNOLOGIA EM SISTEMAS DE INFORMAÇÃO

UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS CCT CURSO DE TECNOLOGIA EM SISTEMAS DE INFORMAÇÃO UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS CCT CURSO DE TECNOLOGIA EM SISTEMAS DE INFORMAÇÃO COMPUTER AIDED ENGINEERING - CAE FABIANO RAMOS DOS SANTOS SERGIO DA COSTA FERREIRA

Leia mais

Figura 7.20 - Vista frontal dos vórtices da Figura 7.18. Vedovoto et al. (2006).

Figura 7.20 - Vista frontal dos vórtices da Figura 7.18. Vedovoto et al. (2006). 87 Figura 7.20 - Vista frontal dos vórtices da Figura 7.18. Vedovoto et al. (2006). Figura 7.21 - Resultado qualitativo de vórtices de ponta de asa obtidos por Craft et al. (2006). 88 A visualização do

Leia mais

PROVA DE MATEMÁTICA DA UFPE. VESTIBULAR 2013 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFPE. VESTIBULAR 2013 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFPE VESTIBULAR 0 a Fase Profa. Maria Antônia Gouveia. 0. A ilustração a seguir é de um cubo com aresta medindo 6cm. A, B, C e D são os vértices indicados do cubo, E é o centro da

Leia mais

1. Extremos de uma função

1. Extremos de uma função Máximo e Mínimo de Funções de Várias Variáveis 1. Extremos de uma função Def: Máximo Absoluto, mínimo absoluto Seja f : D R R função (i) Dizemos que f assume um máximo absoluto (ou simplesmente um máximo)

Leia mais

Soluções com softwares geométricos de problemas apresentados por Gabriel Lamé no início do século 19

Soluções com softwares geométricos de problemas apresentados por Gabriel Lamé no início do século 19 Soluções com softwares geométricos de problemas apresentados por Gabriel Lamé no início do século 19 Eduardo Sebastiani Ferreira- esebastiani@uol.com.br Maria Zoraide M C Soares- mzsoares@uol.com.br Miriam

Leia mais

(x, y) = (a, b) + t*(c-a, d-b) ou: x = a + t*(c-a) y = b + t*(d-b)

(x, y) = (a, b) + t*(c-a, d-b) ou: x = a + t*(c-a) y = b + t*(d-b) Equação Vetorial da Reta Dois pontos P e Q, definem um único vetor v = PQ, que representa uma direção. Todo ponto R cuja direção PR seja a mesma de PQ está contido na mesma reta definida pelos pontos P

Leia mais

Universidade Estadual de Londrina (Reconhecida pelo Decreto Federal n. 69.324 de 07/10/71)

Universidade Estadual de Londrina (Reconhecida pelo Decreto Federal n. 69.324 de 07/10/71) DELIBERAÇÃO - Câmara de Pós-Graduação Nº 27/2012 Reestrutura o Programa de Pós-Graduação em Matemática Aplicada e Computacional, Mestrado. CONSIDERANDO a solicitação da Comissão Coordenadora do Programa

Leia mais

a 1 x 1 +... + a n x n = b,

a 1 x 1 +... + a n x n = b, Sistemas Lineares Equações Lineares Vários problemas nas áreas científica, tecnológica e econômica são modelados por sistemas de equações lineares e requerem a solução destes no menor tempo possível Definição

Leia mais

Capítulo 1 - Estática

Capítulo 1 - Estática Capítulo 1 - Estática 1.1. Generalidades sobre forças 1.1.1. A Grandeza Vetorial A finalidade da Estática, parte da Mecânica Geral, é o estudo das condições nas quais um sólido ou um sistema de sólidos,

Leia mais

Palavras chave: plasma, escoamento supersônico, reentrada atmosférica, bocal CD cônico, CFD.

Palavras chave: plasma, escoamento supersônico, reentrada atmosférica, bocal CD cônico, CFD. Anais do 15 O Encontro de Iniciação Científica e Pós-Graduação do ITA XV ENCITA / 9 Instituto Tecnológico de Aeronáutica São José dos Campos SP Brasil Outubro 19 a 9. APLICAÇÃO DA SIMULAÇÃO COMPUTACIONAL

Leia mais

Comportamento Dinâmico do Sistema Térmico de uma Caldeira Genérica

Comportamento Dinâmico do Sistema Térmico de uma Caldeira Genérica Comportamento Dinâmico do Sistema Térmico de uma Caldeira Genérica Luiz Felipe da S. Nunes Fábio P. de Araújo Paulo Renato G. de Souza Resumo O presente trabalho consiste em análise computacional do sistema

Leia mais

Forças internas. Objetivos da aula: Mostrar como usar o método de seções para determinar as cargas internas em um membro.

Forças internas. Objetivos da aula: Mostrar como usar o método de seções para determinar as cargas internas em um membro. Forças internas Objetivos da aula: Mostrar como usar o método de seções para determinar as cargas internas em um membro. Generalizar esse procedimento formulando equações que podem ser representadas de

Leia mais

INTRODUÇÃO AO ESTUDO DE EQUAÇÕES DIFERENCIAIS

INTRODUÇÃO AO ESTUDO DE EQUAÇÕES DIFERENCIAIS INTRODUÇÃO AO ESTUDO DE EQUAÇÕES DIFERENCIAIS Terminologia e Definições Básicas No curso de cálculo você aprendeu que, dada uma função y f ( ), a derivada f '( ) d é também, ela mesma, uma função de e

Leia mais

MÉTODO DOS ELEMENTOS FINITOS

MÉTODO DOS ELEMENTOS FINITOS INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS ENGENHARIA E TECNOLOGIA ESPACIAIS MECÂNICA ESPACIAL E CONTROLE MESTRADO MÉTODO DOS ELEMENTOS FINITOS Seminário de Dinâmica Orbital I CMC-203-0 Prof. Dr. Mário

Leia mais

PROFº. LUIS HENRIQUE MATEMÁTICA

PROFº. LUIS HENRIQUE MATEMÁTICA Geometria Analítica A Geometria Analítica, famosa G.A., ou conhecida como Geometria Cartesiana, é o estudo dos elementos geométricos no plano cartesiano. PLANO CARTESIANO O sistema cartesiano de coordenada,

Leia mais

PROBLEMA DE TRANSPORTE: MODELO E MÉTODO DE SOLUÇÃO

PROBLEMA DE TRANSPORTE: MODELO E MÉTODO DE SOLUÇÃO PROBLEMA DE TRANSPORTE: MODELO E MÉTODO DE SOLUÇÃO Luciano Pereira Magalhães - 8º - noite lpmag@hotmail.com Orientador: Prof Gustavo Campos Menezes Banca Examinadora: Prof Reinaldo Sá Fortes, Prof Eduardo

Leia mais

Uma Ferramenta para otimização em Engenharia Mecânica e aplicações na Fundição Eletromagnética de Metais

Uma Ferramenta para otimização em Engenharia Mecânica e aplicações na Fundição Eletromagnética de Metais Uma Ferramenta para otimização em Engenharia Mecânica e aplicações na Fundição Eletromagnética de Metais Departamento de Engenharia Mecânica COPPE UFRJ STIC-AMSUD, Novembro de 2009 Conteúdo Preliminares

Leia mais

Uma lei que associa mais de um valor y a um valor x é uma relação, mas não uma função. O contrário é verdadeiro (isto é, toda função é uma relação).

Uma lei que associa mais de um valor y a um valor x é uma relação, mas não uma função. O contrário é verdadeiro (isto é, toda função é uma relação). 5. FUNÇÕES DE UMA VARIÁVEL 5.1. INTRODUÇÃO Devemos compreender função como uma lei que associa um valor x pertencente a um conjunto A a um único valor y pertencente a um conjunto B, ao que denotamos por

Leia mais

Qual é Mesmo a Definição de Polígono Convexo?

Qual é Mesmo a Definição de Polígono Convexo? Qual é Mesmo a Definição de Polígono Convexo? Elon Lages Lima IMPA, Rio de Janeiro Quando pensamos num polígono convexo, imaginamos seus vértices todos apontando para fora, ou seja, que ele não possui

Leia mais

Avaliação de modelos numéricos de CFD para o estudo do escoamento de água da piscina do RMB

Avaliação de modelos numéricos de CFD para o estudo do escoamento de água da piscina do RMB 2013 International Nuclear Atlantic Conference - INAC 2013 Recife, PE, Brazil, November 24-29, 2013 ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN ISBN: 978-85-99141-05-2 Avaliação de modelos numéricos

Leia mais

Modelagem de Campos Vetoriais Utilizando Autômatos Celulares e Elementos Finitos

Modelagem de Campos Vetoriais Utilizando Autômatos Celulares e Elementos Finitos Modelagem de Campos Vetoriais Utilizando Autômatos Celulares e Elementos Finitos Renata Vieira Palazzo 1,2, Antônio Carlos da Rocha Costa 1, Graçaliz Pereira Dimuro 1 1 Escola de Informática Universidade

Leia mais

c)observe que os vetores normais dos planos, obtidos pelas equações do sistema, são paralelos e

c)observe que os vetores normais dos planos, obtidos pelas equações do sistema, são paralelos e UNIVERSIDADE ESTADUAL DE SANTA CRUZ - UESC DEPARTAMENTO DE CIÊNCIAS EXATAS E TECNOLÓGICAS - DCET ÁLGEBRA LINEAR ASSUNTO: SISTEMAS DE EQUAÇÕES LINEARES Prof a CLÁUDIA SANTANA 1. Para cada um dos sistemas

Leia mais

2) Se z = (2 + i).(1 + i).i, então a) 3 i b) 1 3i c) 3 i d) 3 + i e) 3 + i. ,será dado por: quando x = i é:

2) Se z = (2 + i).(1 + i).i, então a) 3 i b) 1 3i c) 3 i d) 3 + i e) 3 + i. ,será dado por: quando x = i é: Aluno(a) Nº. Ano: º do Ensino Médio Exercícios para a Recuperação de MATEMÁTICA - Professores: Escossi e Luciano NÚMEROS COMPLEXOS 1) Calculando-se corretamente as raízes da função f(x) = x + 4x + 5, encontram-se

Leia mais

ε, sendo ε a rugosidade absoluta das

ε, sendo ε a rugosidade absoluta das DETERMINAÇÃO DAS PERDAS DE CARGA No projeto de uma instalação de bombeamento e da rede de distribuição de água de um prédio, é imprescindível calcular-se a energia que o líquido irá despender para escoar

Leia mais

Eixo Temático ET-09-009 - Energia ESTUDO DA TERMOFLUIDODINÂMICA DE UM SECADOR SOLAR DE EXPOSIÇÃO DIRETA: MODELAGEM E SIMULAÇÃO

Eixo Temático ET-09-009 - Energia ESTUDO DA TERMOFLUIDODINÂMICA DE UM SECADOR SOLAR DE EXPOSIÇÃO DIRETA: MODELAGEM E SIMULAÇÃO 426 Eixo Temático ET-09-009 - Energia ESTUDO DA TERMOFLUIDODINÂMICA DE UM SECADOR SOLAR DE EXPOSIÇÃO DIRETA: MODELAGEM E SIMULAÇÃO Maria Teresa Cristina Coelho¹; Jailton Garcia Ramos; Joab Costa dos Santos;

Leia mais

Modelos Variáveis de Estado

Modelos Variáveis de Estado Modelos Variáveis de Estado Introdução; Variáveis de Estados de Sistemas Dinâmicos; Equação Diferencial de Estado; Função de Transferência a partir das Equações de Estados; Resposta no Domínio do Tempo

Leia mais

Introdução e Motivação

Introdução e Motivação Introdução e Motivação 1 Análise de sistemas enfoque: sistemas dinâmicos; escopo: sistemas lineares; objetivo: representar, por meio de modelos matemáticos, fenômenos observados e sistemas de interesse;

Leia mais

ficha 3 espaços lineares

ficha 3 espaços lineares Exercícios de Álgebra Linear ficha 3 espaços lineares Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2011/12 3 Notação Sendo

Leia mais

UNIVERSIDADE FEDERAL FLUMINENSE

UNIVERSIDADE FEDERAL FLUMINENSE UNIVERSIDADE FEDERAL FLUMINENSE Escola de Engenharia Industrial Metalúrgica de Volta Redonda PROVAS RESOLVIDAS DE CÁLCULO VETORIAL Professora Salete Souza de Oliveira Aluna Thais Silva de Araujo P1 Turma

Leia mais

MDF: Conceitos Básicos e algumas Aplicações na Engenharia Estrutural

MDF: Conceitos Básicos e algumas Aplicações na Engenharia Estrutural Universidade Federal de São João Del-Rei MG 6 a 8 de maio de 00 Associação Brasileira de Métodos Computacionais em Engenharia MDF: Conceitos Básicos e algumas Aplicações na Engenharia Estrutural L. R.

Leia mais

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010. Matemática Essencial Extremos de funções reais Departamento de Matemática - UEL - 2010 Conteúdo Ulysses Sodré http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Leia mais

curso de extensão Análise de Escoamentos através de Dinâmica dos Fluidos Computacional

curso de extensão Análise de Escoamentos através de Dinâmica dos Fluidos Computacional iesss - instituto de pesquisa, desenvolvimento e capacitação curso de extensão Análise de Escoamentos através de Dinâmica dos Fluidos Computacional curso de extensão instituto P&D Análise de Escoamentos

Leia mais

3º Trimestre TRABALHO DE MATEMÁTICA - 2012 Ensino Fundamental 9º ano classe: A-B-C Profs. Marcelo/Fernando Nome:, nº Data de entrega: 09/ 11/12

3º Trimestre TRABALHO DE MATEMÁTICA - 2012 Ensino Fundamental 9º ano classe: A-B-C Profs. Marcelo/Fernando Nome:, nº Data de entrega: 09/ 11/12 3º Trimestre TRABALHO DE MATEMÁTICA - 2012 Ensino Fundamental 9º ano classe: A-B-C Profs. Marcelo/Fernando Nome:, nº Data de entrega: 09/ 11/12 NOTA:. Nota: Toda resolução deve ser feita no seu devido

Leia mais

MATEMÁTICA I AULA 07: TESTES PARA EXTREMOS LOCAIS, CONVEXIDADE, CONCAVIDADE E GRÁFICO TÓPICO 02: CONVEXIDADE, CONCAVIDADE E GRÁFICO Este tópico tem o objetivo de mostrar como a derivada pode ser usada

Leia mais

Representação de Modelos Dinâmicos em Espaço de Estados Graus de Liberdade para Controle

Representação de Modelos Dinâmicos em Espaço de Estados Graus de Liberdade para Controle Representação de Modelos Dinâmicos em Espaço de Estados Graus de Liberdade para Controle Espaço de Estados (CP1 www.professores.deq.ufscar.br/ronaldo/cp1 DEQ/UFSCar 1 / 69 Roteiro 1 Modelo Não-Linear Modelo

Leia mais

Soluções abreviadas de alguns exercícios

Soluções abreviadas de alguns exercícios Tópicos de cálculo para funções de várias variáveis Soluções abreviadas de alguns exercícios Instituto Superior de Agronomia - 2 - Capítulo Tópicos de cálculo diferencial. Domínio, curva de nível e gráfico.

Leia mais

MÉTODOS PARA RETOQUE DIGITAL DE IMAGENS UTILIZANDO EQUAÇÕES DIFERENCIAIS PARCIAIS

MÉTODOS PARA RETOQUE DIGITAL DE IMAGENS UTILIZANDO EQUAÇÕES DIFERENCIAIS PARCIAIS RESUMO MÉTODOS PARA RETOQUE DIGITAL DE IMAGENS UTILIZANDO EQUAÇÕES DIFERENCIAIS PARCIAIS Antônio Gonçalves Silva Júnior Graduando do curso de Licenciatura em Matemática da Universidade Católica de Brasília

Leia mais

Vestibular 2ª Fase Resolução das Questões Discursivas

Vestibular 2ª Fase Resolução das Questões Discursivas COMISSÃO PERMANENTE DE SELEÇÃO COPESE PRÓ-REITORIA DE GRADUAÇÃO PROGRAD CONCURSO VESTIBULAR 010 Prova de Matemática Vestibular ª Fase Resolução das Questões Discursivas São apresentadas abaixo possíveis

Leia mais

A TÉCNICA DOS MÚLTIPLOS DOMÍNIOS APLICADA À GERAÇÃO DE MALHAS NO SOFTWARE ANSYS CFX-MESH

A TÉCNICA DOS MÚLTIPLOS DOMÍNIOS APLICADA À GERAÇÃO DE MALHAS NO SOFTWARE ANSYS CFX-MESH VI CONGRESSO NACIONAL DE ENGENHARIA MECÂNICA VI NATIONAL CONGRESS OF MECHANICAL ENGINEERING 18 a 21 de agosto de 2010 Campina Grande Paraíba - Brasil August 18 21, 2010 Campina Grande Paraíba Brazil A

Leia mais

Universidade Federal de Minas Gerais Departamento de Engenharia Mecânica

Universidade Federal de Minas Gerais Departamento de Engenharia Mecânica Universidade Federal de Minas Gerais Departamento de Engenharia Mecânica Analise de Tensões em Perfil Soldado Comparação de Resultados em Elementos Finitos Aluno: Rafael Salgado Telles Vorcaro Registro:

Leia mais

Tópico 8 Funções de Duas ou Mais Variáveis Consulta Indicada: ANTON, H. Cálculo: Um novo horizonte. Volume 2. Páginas 311 a 323.

Tópico 8 Funções de Duas ou Mais Variáveis Consulta Indicada: ANTON, H. Cálculo: Um novo horizonte. Volume 2. Páginas 311 a 323. PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL Faculdade de Matemática - Departamento de Matemática Cálculo B (Informática) Turmas 18 e 138 Tópico 8 Funções de Duas ou Mais Variáveis Consulta Indicada:

Leia mais

Desenho Técnico. Desenho Projetivo e Perspectiva Isométrica

Desenho Técnico. Desenho Projetivo e Perspectiva Isométrica Desenho Técnico Assunto: Aula 3 - Desenho Projetivo e Perspectiva Isométrica Professor: Emerson Gonçalves Coelho Aluno(A): Data: / / Turma: Desenho Projetivo e Perspectiva Isométrica Quando olhamos para

Leia mais

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR Assuntos: Matrizes; Matrizes Especiais; Operações com Matrizes; Operações Elementares

Leia mais

MAPEAMENTO DAS LINHAS EQUIPOTENCIAIS E DE CAMPO E CÁLCULO DA CAPACITÂNCIA UTILIZANDO A TRANSFORMAÇÃO DE SCHWARZ- CHRISTOFFEL

MAPEAMENTO DAS LINHAS EQUIPOTENCIAIS E DE CAMPO E CÁLCULO DA CAPACITÂNCIA UTILIZANDO A TRANSFORMAÇÃO DE SCHWARZ- CHRISTOFFEL MAPEAMENTO DAS LINHAS EQUIPOTENCIAIS E DE CAMPO E CÁLCULO DA CAPACITÂNCIA UTILIZANDO A TRANSFORMAÇÃO DE SCHWARZ- CHRISTOFFEL CALIXTO, Wesley Pacheco 1 ; ALVARENGA, Bernardo 1 wpcalixto@gmail.com bernardo@eee.ufg.br

Leia mais

Projeto: Formas Diferenciais Aplicadas a Problemas Eletrostáticos e Magnetostáticos

Projeto: Formas Diferenciais Aplicadas a Problemas Eletrostáticos e Magnetostáticos Área: ENGENHARIAS E CIÊNCIA DA COMPUTAÇÃO Projeto: Formas Diferenciais Aplicadas a Problemas Eletrostáticos e Magnetostáticos Autores: NOME DO BOLSISTA: CAIO SALAZAR ALMEIDA NAZARETH - BIC/UFJF NOME DO

Leia mais

A noção de função é imprescindível no decorrer do estudo de Cálculo e para se estabelecer essa noção tornam-se necessários:

A noção de função é imprescindível no decorrer do estudo de Cálculo e para se estabelecer essa noção tornam-se necessários: 1 1.1 Função Real de Variável Real A noção de função é imprescindível no decorrer do estudo de Cálculo e para se estabelecer essa noção tornam-se necessários: 1. Um conjunto não vazio para ser o domínio;

Leia mais

PASSEIOS ALEATÓRIOS E CIRCUITOS ELÉTRICOS

PASSEIOS ALEATÓRIOS E CIRCUITOS ELÉTRICOS PASSEIOS ALEATÓRIOS E CIRCUITOS ELÉTRICOS Aluno: Ricardo Fernando Paes Tiecher Orientador: Lorenzo Justiniano Díaz Casado Introdução A teoria da probabilidade, assim como grande parte da matemática, está

Leia mais

Métodos Matemáticos para Engenharia de Informação

Métodos Matemáticos para Engenharia de Informação Métodos Matemáticos para Engenharia de Informação Gustavo Sousa Pavani Universidade Federal do ABC (UFABC) 3º Trimestre - 2009 Aulas 1 e 2 Sobre o curso Bibliografia: James Stewart, Cálculo, volume I,

Leia mais

Resposta Transitória de Circuitos com Elementos Armazenadores de Energia

Resposta Transitória de Circuitos com Elementos Armazenadores de Energia ENG 1403 Circuitos Elétricos e Eletrônicos Resposta Transitória de Circuitos com Elementos Armazenadores de Energia Guilherme P. Temporão 1. Introdução Nas últimas duas aulas, vimos como circuitos com

Leia mais

ELABORAÇÃO DE UM PROGRAMA DE AUTO-ESTUDO PARA O SOFTWARE CATIA. Jeferson Cadete Dias 1 IC Luís Gonzaga Trabasso 2 PQ

ELABORAÇÃO DE UM PROGRAMA DE AUTO-ESTUDO PARA O SOFTWARE CATIA. Jeferson Cadete Dias 1 IC Luís Gonzaga Trabasso 2 PQ ELABORAÇÃO DE UM PROGRAMA DE AUTO-ESTUDO PARA O SOFTWARE CATIA Jeferson Cadete Dias 1 IC Luís Gonzaga Trabasso 2 PQ 1 3º ano de Engenharia Mecânica-Aeronáutica, Instituto Tecnológico de Aeronáutica, CTA

Leia mais

a = 6 m + = a + 6 3 3a + m = 18 3 a m 3a 2m = 0 = 2 3 = 18 a = 6 m = 36 3a 2m = 0 a = 24 m = 36

a = 6 m + = a + 6 3 3a + m = 18 3 a m 3a 2m = 0 = 2 3 = 18 a = 6 m = 36 3a 2m = 0 a = 24 m = 36 MATEMÁTICA Se Amélia der R$ 3,00 a Lúcia, então ambas ficarão com a mesma quantia. Se Maria der um terço do que tem a Lúcia, então esta ficará com R$ 6,00 a mais do que Amélia. Se Amélia perder a metade

Leia mais

Matemática. Subtraindo a primeira equação da terceira obtemos x = 1. Substituindo x = 1 na primeira e na segunda equação obtém-se o sistema

Matemática. Subtraindo a primeira equação da terceira obtemos x = 1. Substituindo x = 1 na primeira e na segunda equação obtém-se o sistema Matemática 01. A ilustração a seguir é de um cubo com aresta medindo 6 cm. A, B, C e D são os vértices indicados do cubo, E é o centro da face contendo C e D, e F é o pé da perpendicular a BD traçada a

Leia mais

PE-MEEC 1S 09/10 118. Capítulo 4 - Variáveis aleatórias e. 4.1 Variáveis. densidade de probabilidade 4.2 Valor esperado,

PE-MEEC 1S 09/10 118. Capítulo 4 - Variáveis aleatórias e. 4.1 Variáveis. densidade de probabilidade 4.2 Valor esperado, Capítulo 4 - Variáveis aleatórias e distribuições contínuas 4.1 Variáveis aleatórias contínuas. Função densidade de probabilidade 4.2 Valor esperado, variância e algumas das suas propriedades. Moda e quantis

Leia mais

, de de 2014 FORMULÁRIO PARA INSCRIÇÃO DE PROJETO DE INICIAÇÃO CIENTÍFICA.

, de de 2014 FORMULÁRIO PARA INSCRIÇÃO DE PROJETO DE INICIAÇÃO CIENTÍFICA. FORMULÁRIO PARA INSCRIÇÃO DE PROJETO DE INICIAÇÃO CIENTÍFICA. Coordenação/Colegiado ao(s) qual(is) será vinculado: Engenharia Curso (s) : Engenharia Mecânica Nome do projeto: Introdução ao Software OpenFoam

Leia mais

CÁLCULO DE ZEROS DE FUNÇÕES REAIS

CÁLCULO DE ZEROS DE FUNÇÕES REAIS 15 CÁLCULO DE ZEROS DE FUNÇÕES REAIS Um dos problemas que ocorrem mais frequentemente em trabalhos científicos é calcular as raízes de equações da forma: f() = 0. A função f() pode ser um polinômio em

Leia mais

Efeitos dinâmicos do Vento em Edifícios Altos. Byl Farney Rodrigues da CUNHA JR¹; Frederico Martins Alves da SILVA²;

Efeitos dinâmicos do Vento em Edifícios Altos. Byl Farney Rodrigues da CUNHA JR¹; Frederico Martins Alves da SILVA²; Efeitos dinâmicos do Vento em Edifícios Altos Byl Farney Rodrigues da CUNHA JR¹; Frederico Martins Alves da SILVA²; 3 Zenón José Guzmán Nuñez DEL PRADO 1,2,3 Escola de Engenharia Civil UFG 1 farneyjr@hotmail.com,

Leia mais

Solução Numérica de Equações Diferenciais Parciais Parabólicas usando o Método Hopscotch com Refinamento Não-Uniforme

Solução Numérica de Equações Diferenciais Parciais Parabólicas usando o Método Hopscotch com Refinamento Não-Uniforme Solução Numérica de Equações Diferenciais Parciais Parabólicas usando o Método Hopscotch com Refinamento Não-Uniforme Mauricio J. M. Guedes a,b, Diogo T. Robaina a, Lúcia M. A. Drummond a, Mauricio Kischinhevsky

Leia mais

Introdução ao Método de Galerkin Estocástico

Introdução ao Método de Galerkin Estocástico Introdução ao Método de Galerkin Estocástico Americo Barbosa da Cunha Junior Departamento de Engenharia Mecânica Pontifícia Universidade Católica do Rio de Janeiro 1 Introdução A dinâmica de um sistema

Leia mais

Interpolação de Curvas de Nível por Difusão de Calor

Interpolação de Curvas de Nível por Difusão de Calor Interpolação de Curvas de Nível por Difusão de Calor ROBERTO DE BEAUCLAIR SEIXAS LUIZ HENRIQUE DE FIGUEIREDO CLAUDIO ANTONIO DA SILVA IMPA Instituto de Matemática Pura e Aplicada VISGRAF Laboratório de

Leia mais

Transformada z. ADL 25 Cap 13. A Transformada z Inversa

Transformada z. ADL 25 Cap 13. A Transformada z Inversa ADL 25 Cap 13 Transformada z A Transformada z Inversa Qualquer que seja o método utilizado a transformada z inversa produzirá somente os valores da função do tempo nos instantes de amostragem. Portanto,

Leia mais

1. Introdução 2. Representação de números 2.1. Conversão Numérica 2.2. Aritmética de ponto flutuante 3. Erros 3.1 Erros Absolutos e Relativos

1. Introdução 2. Representação de números 2.1. Conversão Numérica 2.2. Aritmética de ponto flutuante 3. Erros 3.1 Erros Absolutos e Relativos 1. Introdução 2. Representação de números 2.1. Conversão Numérica 2.2. Aritmética de ponto flutuante 3. Erros 3.1 Erros Absolutos e Relativos 1. Introdução O que é cálculo numérico? Corresponde a um conjunto

Leia mais

Capítulo 1. x > y ou x < y ou x = y

Capítulo 1. x > y ou x < y ou x = y Capítulo Funções, Plano Cartesiano e Gráfico de Função Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA 5 0 Encontro da RPM TRANSFORMAÇÕES NO PLANO

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA 5 0 Encontro da RPM TRANSFORMAÇÕES NO PLANO UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA 5 0 Encontro da RPM TRANSFORMAÇÕES NO PLANO Jorge Costa do Nascimento Introdução Na produção desse texto utilizamos como fonte de pesquisa material

Leia mais

Programa da disciplina, i metodologia de ensino, avaliações e bibliografia básica. Objetivos da Disciplina

Programa da disciplina, i metodologia de ensino, avaliações e bibliografia básica. Objetivos da Disciplina Circuitos Digitais Cap. 1 Prof. José Maria P. de Menezes Jr. Circuitos Digitais Tópicos Digitais I- Engenharia Elétrica -UFPI Programa da disciplina, i metodologia de ensino, avaliações e bibliografia

Leia mais

A abordagem do assunto será feita inicialmente explorando uma curva bastante conhecida: a circunferência. Escolheremos como y

A abordagem do assunto será feita inicialmente explorando uma curva bastante conhecida: a circunferência. Escolheremos como y 5 Taxa de Variação Neste capítulo faremos uso da derivada para resolver certos tipos de problemas relacionados com algumas aplicações físicas e geométricas. Nessas aplicações nem sempre as funções envolvidas

Leia mais

Consequências Interessantes da Continuidade

Consequências Interessantes da Continuidade Consequências Interessantes da Continuidade Frederico Reis Marques de Brito Resumo Trataremos aqui de um dos conceitos basilares da Matemática, o da continuidade no âmbito de funções f : R R, mostrando

Leia mais

Números Complexos. Capítulo 1. 1.1 Unidade Imaginária. 1.2 Números complexos. 1.3 O Plano Complexo

Números Complexos. Capítulo 1. 1.1 Unidade Imaginária. 1.2 Números complexos. 1.3 O Plano Complexo Capítulo 1 Números Complexos 11 Unidade Imaginária O fato da equação x 2 + 1 = 0 (11) não ser satisfeita por nenhum número real levou à denição dos números complexos Para solucionar (11) denimos a unidade

Leia mais

UFSM CT DELC. e Mecânicos. ELC 1021 Estudo de Casos em Engenharia Elétrica

UFSM CT DELC. e Mecânicos. ELC 1021 Estudo de Casos em Engenharia Elétrica UFSM CT DELC Analogia Sistemas entre Elétricos e Mecânicos ELC 1021 Estudo de Casos em Engenharia Elétrica Giovani Baratto 6/25/2007 Introdução As equações diferenciais que governam as tensões e correntes

Leia mais

Escoamentos exteriores 21

Escoamentos exteriores 21 Escoamentos exteriores 2 Figura 0.2- Variação do coeficiente de arrasto com o número de Reynolds para corpos tri-dimensionais [de White, 999]. 0.7. Força de Sustentação Os perfis alares, ou asas, têm como

Leia mais

Masters in Mechanical Engineering. Aerodynamics. Problems of ideal fluid. z = ζ e i π 4

Masters in Mechanical Engineering. Aerodynamics. Problems of ideal fluid. z = ζ e i π 4 Masters in Mechanical Engineering Aerodynamics Problems of ideal fluid 1. Consider the steady, bi-dimensional, potential and incompressible flow around a circular cylinder. The cylinder is at the origin

Leia mais

COMPARAÇÃO DE MÉTODOS NUMÉRICOS PARA CASOS SIMPLI ICADOS DE CIRCULAÇÃO EM CORPOS D ÁGUA RASOS

COMPARAÇÃO DE MÉTODOS NUMÉRICOS PARA CASOS SIMPLI ICADOS DE CIRCULAÇÃO EM CORPOS D ÁGUA RASOS COMPARAÇÃO DE MÉTODOS NUMÉRICOS PARA CASOS SIMPLI ICADOS DE CIRCULAÇÃO EM CORPOS D ÁGUA RASOS Jaqueline Gomes Moura, José Paulo Soares de Azevedo e lávio Cesar Borba Mascarenhas Programa de Engenharia

Leia mais

Aula 08. Modelos e Simulação

Aula 08. Modelos e Simulação Modelos e Simulação 8.1 Aula 08 Modelos e Simulação Walter Antônio Bazzo e Luiz Teixeira do Vale Pereira, Introdução a Engenharia Conceitos, Ferramentas e Comportamentos, Capítulo 7: Modelos e Simulação

Leia mais

Questão 1 Descritor: D4 Identificar a relação entre o número de vértices, faces e/ou arestas de poliedros expressa em um problema.

Questão 1 Descritor: D4 Identificar a relação entre o número de vértices, faces e/ou arestas de poliedros expressa em um problema. SIMULADO SAEB - 2015 Matemática 3ª série do Ensino Médio GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO QUESTÕES E COMENTÁRIOS Questão 1 D4 Identificar a relação entre o número de vértices, faces

Leia mais

PROJETO DE PÁS DE TURBINAS EÓLICAS DE ALTA PERFORMANCE AERODINÂMICA

PROJETO DE PÁS DE TURBINAS EÓLICAS DE ALTA PERFORMANCE AERODINÂMICA Anais do 15 O Encontro de Iniciação Científica e Pós-Graduação do ITA XV ENCITA / 2009 Instituto Tecnológico de Aeronáutica São José dos Campos SP Brasil Outubro 19 a 22 2009. PROJETO DE PÁS DE TURBINAS

Leia mais

Computação Gráfica 04

Computação Gráfica 04 Universidade Federal do Vale do São Francisco Curso de Engenharia de Computação Computação Gráfica 04 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav

Leia mais

Teoria : Estruturas de Dados. Estrutura Vetorial. Quais tipos de dados são representados por estruturas vetoriais? Mapa temático:

Teoria : Estruturas de Dados. Estrutura Vetorial. Quais tipos de dados são representados por estruturas vetoriais? Mapa temático: Universidade do Estado de Santa Catarina UDESC Centro de ciências Humanas e da Educação FAED Mestrado em Planejamento Territorial e Desenvolvimento Socio- Ambiental - MPPT Disciplina: Geoprocessamento

Leia mais

Matriz de Referência de Matemática da 8ª série do Ensino Fundamental. Comentários sobre os Temas e seus Descritores Exemplos de Itens

Matriz de Referência de Matemática da 8ª série do Ensino Fundamental. Comentários sobre os Temas e seus Descritores Exemplos de Itens Matriz de Referência de Matemática da 8ª série do Ensino Fundamental TEMA I ESPAÇO E FORMA Comentários sobre os Temas e seus Descritores Exemplos de Itens Os conceitos geométricos constituem parte importante

Leia mais

SIMULAÇÕES COMPUTACIONAIS DE VIGA UNIDIMENSIONAL VIA SOFTWARE CATIA COMPUTER SIMULATION OF ONE-DIMENSIONAL BEAM BY SOFTWARE CATIA

SIMULAÇÕES COMPUTACIONAIS DE VIGA UNIDIMENSIONAL VIA SOFTWARE CATIA COMPUTER SIMULATION OF ONE-DIMENSIONAL BEAM BY SOFTWARE CATIA SIMULAÇÕES COMPUTACIONAIS DE VIGA UNIDIMENSIONAL VIA SOFTWARE CATIA Edgar Della Giustina (1) (edgar.giustina@pr.senai.br), Luis Carlos Machado (2) (luis.machado@pr.senai.br) (1) Faculdade de Tecnologia

Leia mais

CI202 - Métodos Numéricos

CI202 - Métodos Numéricos CI202 - Métodos Numéricos Lista de Exercícios 2 Zeros de Funções Obs.: as funções sen(x) e cos(x) devem ser calculadas em radianos. 1. Em geral, os métodos numéricos para encontrar zeros de funções possuem

Leia mais

6. Geometria, Primitivas e Transformações 3D

6. Geometria, Primitivas e Transformações 3D 6. Geometria, Primitivas e Transformações 3D Até agora estudamos e implementamos um conjunto de ferramentas básicas que nos permitem modelar, ou representar objetos bi-dimensionais em um sistema também

Leia mais

A ELABORAÇÃO DE ALGORITMOS REFERENTE A SISTEMAS LINEARES ATRAVÉS DO SOFTWARE PASCALZIM

A ELABORAÇÃO DE ALGORITMOS REFERENTE A SISTEMAS LINEARES ATRAVÉS DO SOFTWARE PASCALZIM A ELABORAÇÃO DE ALGORITMOS REFERENTE A SISTEMAS LINEARES ATRAVÉS DO SOFTWARE PASCALZIM José Robyson Aggio Molinari Universidade Estadual do Centro-Oeste aggio13@hotmail.com Resumo: O presente trabalho

Leia mais

Figuras geométricas. Se olhar ao seu redor, você verá que os objetos. Nossa aula. Figuras geométricas elementares

Figuras geométricas. Se olhar ao seu redor, você verá que os objetos. Nossa aula. Figuras geométricas elementares A UU L AL A Figuras geométricas Se olhar ao seu redor, você verá que os objetos têm forma, tamanho e outras características próprias. As figuras geométricas foram criadas a partir da observação das formas

Leia mais

Jardim de Números. Série Matemática na Escola

Jardim de Números. Série Matemática na Escola Jardim de Números Série Matemática na Escola Objetivos 1. Introduzir plano cartesiano; 2. Marcar pontos e traçar objetos geométricos simples em um plano cartesiano. Jardim de Números Série Matemática na

Leia mais

UNIVERSIDADE FEDERAL DE GOIÁS ESCOLA DE AGRONOMIA E ENGENHARIA DE ALIMENTOS SETOR DE ENGENHARIA RURAL. Prof. Adão Wagner Pêgo Evangelista

UNIVERSIDADE FEDERAL DE GOIÁS ESCOLA DE AGRONOMIA E ENGENHARIA DE ALIMENTOS SETOR DE ENGENHARIA RURAL. Prof. Adão Wagner Pêgo Evangelista UNIVERSIDADE FEDERAL DE GOIÁS ESCOLA DE AGRONOMIA E ENGENHARIA DE ALIMENTOS SETOR DE ENGENHARIA RURAL Prof. Adão Wagner Pêgo Evangelista 3 CONDUÇÃO DE ÁGUA 3.1 CONDUTOS LIVRES OU CANAIS Denominam-se condutos

Leia mais