Introdução ao Método de Galerkin Estocástico

Tamanho: px
Começar a partir da página:

Download "Introdução ao Método de Galerkin Estocástico"

Transcrição

1 Introdução ao Americo Barbosa da Cunha Junior Departamento de Engenharia Mecânica Pontifícia Universidade Católica do Rio de Janeiro 26 de julho de / 27

2 Sumário Introdução 1 Introdução 2 Decomposição de Karhunen-Lòeve Polinômio Caos Generalizado / 27

3 Motivação Os sistemas mecânicos reais estão sujeitos à incertezas nos parâmetros devido a vários fatores. Esta variabilidade no conjunto de parâmetros do sistema leva a um grande número de possíveis respostas do mesmo. Um modelo estocástico para tais sistemas pode ser tratado diretamente através de simulação de Monte Carlo (MC), porém essa abordagem demanda um elevado esforço computacional. 3 / 27

4 Objetivos Introdução Apresentar uma técnica alternativa à simulação de Monte Carlo para obtenção da resposta de um modelo estocástico; Ilustrar a aplicação dessa metodologia e caracterizar a mesma quanto à acurácia e performace. 4 / 27

5 Decomposição de Karhunen-Lòeve Polinômio Caos Generalizado Decomposição de Karhunen-Lòeve (KL) Seja u : D Ω R L 2 (Ω, A, P) um campo estocástico com média µ u e autocovariância K u (x 1, x 2 ) contínua. Então onde u(x, ω) = µ u + λi φ i (x)ξ i (ω), i=1 ξ i são variáveis aleatórias tais que E [ξ i ] = 0 E [ ξ i ξ j ] = hi δ ij, {λ i, φ i } são soluções da equação K u (x 1, x 2 )φ i (x 2 )dx 2 = λ i φ i (x 1 ). D 5 / 27

6 Decomposição de Karhunen-Lòeve Polinômio Caos Generalizado Decomposição de Karhunen-Lòeve (KL) Representação ótima no sentido que minimiza erro quadrático médio após o trucamento da série; Aplicável somente quando a função de autocovariância do campo aleatório for conhecida. 6 / 27

7 Polinômio Caos Generalizado (gpc) Decomposição de Karhunen-Lòeve Polinômio Caos Generalizado Seja u : D Ω R L 2 (Ω, A, P). Então onde u(x, ω) = u i (x)ψ i [ξ(ω)], i=1 u i são funções determinísticas; ξ é um vetor de variáveis aleatórias; ψ i são polinômios ortogonais tais que E [ψ 1 ] = 1, E [ψ i ] = 0, i > 1, E [ ] ψ i ψ j = hi δ ij. 7 / 27

8 Polinômio Caos Generalizado (gpc) Decomposição de Karhunen-Lòeve Polinômio Caos Generalizado Aplicável se a distribuição de probabilidade do campo aleatório for conhecida ou não; Os polinômios ψ i são escolhidos de acordo com a natureza das variáveis ξ: ξ Gaussiana Gama Beta Uniforme ψ i Hermite Laguerre Jacobi Legendre 8 / 27

9 SGM: O método de Galerkin estocástico (SGM) procura por um campo estocástico u(x, t, ω), definido no espaço probabilistico (Ω, A, P), que seja uma aproximação para a solução da seguinte equação diferencial estocástica L(x, t, ω; u) = f (x, t, ω), onde L é um operador diferencial que envolve diferenciação no tempo e/ou no espaço e f é um termo fonte. 9 / 27

10 SGM: Aproxima-se o campo u por um trucamento da expansão em gpc P u(x, t, ω) u i (x, t)ψ i [ξ(ω)], e em seguida substitui-se na equação que se deseja resolver P L x, t, ω; u i ψ i = f (x, t, ω). i=1 i=1 10 / 27

11 SGM: Projeta-se a última equação no espaço vetorial gerado pelas ψ j, P E L x, t, ω; u i ψ i ψ j = E [ ] f (x, t, ω)ψ j, j = 1,, P, i=1 de forma que o erro gerado pela aproximação seja minimizado. 11 / 27

12 Problema de Valor de Contorno Estocástico Dado um espaço probabilistico (Ω, A, P), considere o problema de valor de contorno estocástico em que se busca um campo u(x, y, ω) tal que α 2 u = 1 (x, y, ω) D Ω u = 0 (x, y, ω) D Ω, onde α é uma variável aletória uniformemente distribuida em [1, 3] e D = [ 1, 1] / 27

13 Parametrização e Expansão em gpc Neste problema a variável aleatória α é parametrizada por α = ξ + 2, onde ξ U[ 1, 1]. Já o campo u é aproximado por u(x, ω) P u i (x, y)ψ i (ξ), i=1 onde u i (x, y) são funções determinísticas, ψ i são polinômios de Legendre e P = (K +1)!/K!, sendo K o grau máximo dos polinômios de Legendre. 13 / 27

14 Projeção de Galerkin Seguindo o procedimento geral do SGM obtêm-se P ( ) [ ] [ ] (ui ) xx + (u i ) yy E ψi (ξ + 2)ψ j = E ψj i=1 u j = 0 (x, y) D (x, y) D, para j = 1,, P. Esse sistema foi resolvido utilizando o código Poisson_2D, que é baseado no método de diferenças finitas. 14 / 27

15 Média das Soluções (a) MC (b) gpc Figura: Média das soluções da eq. de Poisson obtidas por MC e gpc. 15 / 27

16 Desvio Padrão das Soluções (a) MC (b) gpc Figura: Desvio padrão das soluções da equação de Poisson obtidas por MC e gpc. 16 / 27

17 Erro da Aproximação Tabela: Norma do máximo (em função de K) das estatísticas da diferença entre as soluções da eq. de Poisson obtidas por MC e gpc. K média desvio padrão / 27

18 Tempo de Processamento Tabela: Ganho de tempo (em função de K) da simulação da eq. de Poisson utilizando gpc em relação a simulação que utiliza MC. K tempo gasto (s) speed-up MC / 27

19 Problema de Valor Inicial-Contorno Estocástico Dado um espaço probabilistico (Ω, A, P), considere o problema que consiste em encontrar um campo u(x, t, ω) tal que u t = (αu x ) x + 1 x [ 1, 1], t [0, T ], ω Ω, com condições de contorno u( 1, t, ω) = u(1, t, ω) = 0 e condição inicial u(x, 0, ω) = 0. Neste problema α : [ 1, 1] Ω R é um campo aleatório de média µ α = 10 e autocovariância K α (x 1, x 2 ) = exp ( x 1 x 2 ), x 1, x 2 [ 1, 1]. 19 / 27

20 Parametrização Introdução O campo α é aproximado pelo truncamento da decomposição KL N α(x, ω) = µ α + λi φ i (x)ξ i (ω), i=1 onde ξ i U[ 1, 1] e {λ i, φ i } são soluções da equação 1 1 exp ( x 1 x 2 ) φ i (x 2 )dx 2 = λ i φ i (x 1 ). 20 / 27

21 Expansão em gpc Introdução O campo u é aproximado por uma expansão em gpc da forma u(x, t, ω) P u i (x, t)ψ i (ξ), i=1 onde u i (x, t) são funções determinísticas, ψ i são polinômios de Legendre e P = (K + N)!/(K!N!), sendo K o grau máximo dos polinômios de Legendre. 21 / 27

22 Projeção de Galerkin Seguindo o procedimento geral do SGM obtêm-se [ ] E ψj 2 (u k ) t = P [ ] (u i ) xx µ α E ψk 2 + i=1 i=1 N E [ ] ψ k ξ j ψ i λj φ j + j=1 P N (u i ) x E [ ] ψ k ξ j ψ i λj (φ j ) x + E [ψ k ], j=1 para k = 1,, P. Esse sistema foi resolvido utilizando o código Heat_1D, que utiliza um esquema númerico tipo Crank-Nicolson. 22 / 27

23 Estatísticas das Soluções Figura: Estatísticas das soluções da eq. do calor obtidas por MC e gpc. 23 / 27

24 Erro da Aproximação Tabela: Norma do máximo (em função de K) das estatísticas da diferença entre as soluções da eq. do calor obtidas por MC e gpc. K média desvio padrão / 27

25 Tempo de Processamento Tabela: Ganho de tempo (em função de K) da simulação da eq. do calor utilizando gpc em relação a simulação que utiliza MC. K tempo gasto (s) speed-up MC / 27

26 O método de Galerkin estocástico (SGM) é uma boa alternativa à simulação de Monte Carlo, pois tem boa acurácia e demanda baixo esforço computacional; Essa técnica foi ilustrada na solução de dois exemplos simples e os resultados permitiram caracterizar a boa performace e acurácia do método SGM. 26 / 27

27 Constantine, P. A Primer on Stochastic Galerkin Methods. Lecture Notes, Ghanem, R.; Spanos, P., Stochastic Finite Elements: A Spectral Approach. New York: Dover Publications, Shonkwiler, R. W.; and Mendivil, F., Explorations in Monte Carlo Methods. New York: Springer, Xiu. D.; Karniadakis, G., The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations. SIAM Journal on Scientific Computing, Vol. 24, pp , / 27

Introdução ao Método de Galerkin Estocástico

Introdução ao Método de Galerkin Estocástico Introdução ao Método de Galerkin Estocástico Americo Barbosa da Cunha Junior Departamento de Engenharia Mecânica Pontifícia Universidade Católica do Rio de Janeiro 1 Introdução A dinâmica de um sistema

Leia mais

UNIVERSIDADE FEDERAL DE GOIÁS ESCOLA DE ENGENHARIA CIVIL PROGRAMA DE PÓS-GRADUAÇÃO EM GEOTECNIA, ESTRUTURAS E CONSTRUÇÃO CIVIL

UNIVERSIDADE FEDERAL DE GOIÁS ESCOLA DE ENGENHARIA CIVIL PROGRAMA DE PÓS-GRADUAÇÃO EM GEOTECNIA, ESTRUTURAS E CONSTRUÇÃO CIVIL UNIVERSIDADE FEDERAL DE GOIÁS ESCOLA DE ENGENHARIA CIVIL PROGRAMA DE PÓS-GRADUAÇÃO EM GEOTECNIA, ESTRUTURAS E CONSTRUÇÃO CIVIL APLICAÇÃO DO POLINÔMIO DE HERMITE- CAOS PARA A DETERMINAÇÃO DA CARGA DE INSTABILIDADE

Leia mais

Mestranda: Márcia Maria Horn. Orientador: Prof. Dr. Sandro Sawicki

Mestranda: Márcia Maria Horn. Orientador: Prof. Dr. Sandro Sawicki Universidade Regional do Noroeste do Estado do Rio Grande do Sul Departamento de Ciências Exatas e Engenharias Programa de Mestrado em Modelagem Matemática Grupo de Pesquisa em Computação Aplicada Temática:

Leia mais

Capítulo 4 - Equações Diferenciais às Derivadas Parciais

Capítulo 4 - Equações Diferenciais às Derivadas Parciais Capítulo 4 - Equações Diferenciais às Derivadas Parciais Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática Aplicada - Mestrados Eng. Química

Leia mais

Simulação Estocástica

Simulação Estocástica Simulação Estocástica O que é Simulação Estocástica? Simulação: ato ou efeito de simular Disfarce, fingimento,... Experiência ou ensaio realizado com o auxílio de modelos. Aleatório: dependente de circunstâncias

Leia mais

M. Eisencraft 6.5 Processos aleatórios gaussianos 86. t1 +T. x(t)y(t+τ)dt. (6.35) t 1 T. x(t)y(t+τ)dt R xy (τ) = R XY (τ). (6.36)

M. Eisencraft 6.5 Processos aleatórios gaussianos 86. t1 +T. x(t)y(t+τ)dt. (6.35) t 1 T. x(t)y(t+τ)dt R xy (τ) = R XY (τ). (6.36) M. Eisencraft 6.5 Processos aleatórios gaussianos 86 R 0 (t 1 +2T) = 1 2T t1 +T t 1 Assim, tomando t 1 = 0 e assumindo que T é grande, temos x(t)y(t+τ)dt. (6.35) R 0 (2T) = 1 2T x(t)y(t+τ)dt R xy (τ) =

Leia mais

Simulação Transiente

Simulação Transiente Tópicos Avançados em Avaliação de Desempenho de Sistemas Professores: Paulo Maciel Ricardo Massa Alunos: Jackson Nunes Marco Eugênio Araújo Dezembro de 2014 1 Sumário O que é Simulação? Áreas de Aplicação

Leia mais

SUMÁRIO LISTA DE FIGURAS... 15 LISTA DE TABELAS...17 LISTA DE SÍMBOLOS... 19. 1.1 - Introdução...21 1.2 - Revisão Bibliográfica...

SUMÁRIO LISTA DE FIGURAS... 15 LISTA DE TABELAS...17 LISTA DE SÍMBOLOS... 19. 1.1 - Introdução...21 1.2 - Revisão Bibliográfica... SUMÁRIO Pág. LISTA DE FIGURAS... 15 LISTA DE TABELAS...17 LISTA DE SÍMBOLOS... 19 CAPÍTULO 1 - INTRODUÇÃO... 21 1.1 - Introdução...21 1.2 - Revisão Bibliográfica...25 CAPÍTULO 2 - MODELAGEM ESTOCÁSTICA

Leia mais

Modelagem e Simulação Material 02 Projeto de Simulação

Modelagem e Simulação Material 02 Projeto de Simulação Modelagem e Simulação Material 02 Projeto de Simulação Prof. Simão Sirineo Toscani Projeto de Simulação Revisão de conceitos básicos Processo de simulação Etapas de projeto Cuidados nos projetos de simulação

Leia mais

Análise de Sensibilidade

Análise de Sensibilidade Análise de Risco de Projetos Análise de Risco Prof. Luiz Brandão Métodos de Avaliação de Risco Análise de Cenário Esta metodologia amplia os horizontes do FCD obrigando o analista a pensar em diversos

Leia mais

Regressão Linear Multivariada

Regressão Linear Multivariada Regressão Linear Multivariada Prof. Dr. Leandro Balby Marinho Inteligência Artificial Prof. Leandro Balby Marinho / 37 UFCG DSC Roteiro. Introdução 2. Modelo de Regressão Multivariada 3. Equações Normais

Leia mais

Uma distribuição de probabilidade é um modelo matemático que relaciona um certo valor da variável em estudo com a sua probabilidade de ocorrência.

Uma distribuição de probabilidade é um modelo matemático que relaciona um certo valor da variável em estudo com a sua probabilidade de ocorrência. Professor: Leandro Zvirtes UDESC/CCT Uma distribuição de probabilidade é um modelo matemático que relaciona um certo valor da variável em estudo com a sua probabilidade de ocorrência. Há dois tipos de

Leia mais

Distribuição de Erlang

Distribuição de Erlang Distribuição de Erlang Uma variável aleatória exponencial descreve a distância até que a primeira contagem é obtida em um processo de Poisson. Generalização da distribuição exponencial : O comprimento

Leia mais

Aula 04 Método de Monte Carlo aplicado a análise de incertezas. Aula 04 Prof. Valner Brusamarello

Aula 04 Método de Monte Carlo aplicado a análise de incertezas. Aula 04 Prof. Valner Brusamarello Aula 04 Método de Monte Carlo aplicado a análise de incertezas Aula 04 Prof. Valner Brusamarello Incerteza - GUM O Guia para a Expressão da Incerteza de Medição (GUM) estabelece regras gerais para avaliar

Leia mais

Métodos de Monte Carlo

Métodos de Monte Carlo Departamento de Estatística - UFJF Outubro e Novembro de 2014 são métodos de simulação São utilizados quando não temos uma forma fechada para resolver o problema Muito populares em Estatística, Matemática,

Leia mais

PE-MEEC 1S 09/10 118. Capítulo 4 - Variáveis aleatórias e. 4.1 Variáveis. densidade de probabilidade 4.2 Valor esperado,

PE-MEEC 1S 09/10 118. Capítulo 4 - Variáveis aleatórias e. 4.1 Variáveis. densidade de probabilidade 4.2 Valor esperado, Capítulo 4 - Variáveis aleatórias e distribuições contínuas 4.1 Variáveis aleatórias contínuas. Função densidade de probabilidade 4.2 Valor esperado, variância e algumas das suas propriedades. Moda e quantis

Leia mais

Pesquisa Operacional

Pesquisa Operacional GOVERNO DO ESTADO DO PARÁ UNIVERSIDADE DO ESTADO DO PARÁ CENTRO DE CIÊNCIAS NATURAIS E TECNOLOGIA DEPARTAMENTO DE ENGENHARIA Pesquisa Operacional Tópico 4 Simulação Rosana Cavalcante de Oliveira, Msc rosanacavalcante@gmail.com

Leia mais

6 Construção de Cenários

6 Construção de Cenários 6 Construção de Cenários Neste capítulo será mostrada a metodologia utilizada para mensuração dos parâmetros estocásticos (ou incertos) e construção dos cenários com respectivas probabilidades de ocorrência.

Leia mais

Método Monte-Carlo. Alexandre Rosas. 23 de Março de 2009. Departamento de Física Universidade Federal da Paraíba

Método Monte-Carlo. Alexandre Rosas. 23 de Março de 2009. Departamento de Física Universidade Federal da Paraíba Departamento de Física Universidade Federal da Paraíba 23 de Março de 2009 O que são os métodos de Monte-Carlo? Métodos numéricos que utilizam amostragem estatística (em contraposição a métodos determinísticos)

Leia mais

Algoritmos Randomizados: Introdução

Algoritmos Randomizados: Introdução Algoritmos Randomizados: Introdução Celina Figueiredo Guilherme Fonseca Manoel Lemos Vinícius Sá 26º Colóquio Brasileiro de Matemática IMPA Rio de Janeiro Brasil 2007 Resumo Definições Monte Carlo Variáveis

Leia mais

Método de Monte Carlo e ISO

Método de Monte Carlo e ISO Método de Monte Carlo e ISO GUM para cálculo l de incerteza Prof. Dr. Antonio Piratelli Filho Universidade de Brasilia (UnB) Faculdade de Tecnologia Depto. Engenharia Mecânica 1 Introdução: Erro x incerteza

Leia mais

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA. Plano de Ensino

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA. Plano de Ensino DISCIPLINA: Métodos Numéricos CÓDIGO: PEE-007 Validade: A partir do 1º semestre de 2009. Carga Horária: 45 horas-aula Créditos: 03 Área de Concentração / Módulo: Sistemas Elétricos / Módulo de Disciplinas

Leia mais

1. Conceitos Básicos de Avaliação de Projetos 2. Classificação dos Projetos de Investimento 3. Estudos prévios

1. Conceitos Básicos de Avaliação de Projetos 2. Classificação dos Projetos de Investimento 3. Estudos prévios 1. Conceitos Básicos de Avaliação de Projetos... 1.1. Valor Atual... 1.2. Capital Investido... 1.3. Cash Flow... 1.4. Valor residual do investimento... 1.5. Vida económica do equipamento... 2. Classificação

Leia mais

Método Variacional com Monte Carlo aplicado ao oscilador harmônico quântico

Método Variacional com Monte Carlo aplicado ao oscilador harmônico quântico Revista Brasileira de Ensino de Física, v. 28, n. 1, p. 45-50, (2006) www.sbfisica.org.br Método Variacional com Monte Carlo aplicado ao oscilador harmônico quântico (he Monte Carlo variational method

Leia mais

Uma Ferramenta para otimização em Engenharia Mecânica e aplicações na Fundição Eletromagnética de Metais

Uma Ferramenta para otimização em Engenharia Mecânica e aplicações na Fundição Eletromagnética de Metais Uma Ferramenta para otimização em Engenharia Mecânica e aplicações na Fundição Eletromagnética de Metais Departamento de Engenharia Mecânica COPPE UFRJ STIC-AMSUD, Novembro de 2009 Conteúdo Preliminares

Leia mais

Um modelo evolutivo para a dengue considerando incertezas de fatores ambientais

Um modelo evolutivo para a dengue considerando incertezas de fatores ambientais Um modelo evolutivo para a dengue considerando incertezas de fatores ambientais Luciana T. Gomes, Laécio C. de Barros, Depto de Matemática Aplicada, IMECC, UNICAMP 133-59, Campinas, SP E-mail: ra@ime.unicamp.br,

Leia mais

IND 2072 - Análise de Investimentos com Opções Reais

IND 2072 - Análise de Investimentos com Opções Reais IND 2072 - Análise de Investimentos com Opções Reais PROVA P2 1 o Semestre de 2007-03/07/2007 OBS: 1) A prova é SEM CONSULTA. Nota da prova = mínimo{10; pontuação da P2 + crédito da P1} 2) Verdadeiro ou

Leia mais

Método dos Elementos Finitos Generalizados Validação de Estimadores de Erro a-posteriori

Método dos Elementos Finitos Generalizados Validação de Estimadores de Erro a-posteriori Universidade Federal de São João Del-Rei MG 26 a 28 de maio de 2010 Associação Brasileira de Métodos Computacionais em Engenharia Método dos Elementos Finitos Generalizados Validação de Estimadores de

Leia mais

Desenvolvimento de um gerador de malhas para o estudo do escoamento transônico em um aerofólio

Desenvolvimento de um gerador de malhas para o estudo do escoamento transônico em um aerofólio Desenvolvimento de um gerador de malhas para o estudo do escoamento transônico em um aerofólio Leo Moreira Lima. ITA Instituto tecnológico de Aeronáutica, São José dos Campos, SP, 12228-900, Brasil. Bolsista

Leia mais

DISTRIBUIÇÕES DE PROBABILIDADE

DISTRIBUIÇÕES DE PROBABILIDADE DISTRIBUIÇÕES DE PROBABILIDADE i1 Introdução Uma distribuição de probabilidade é um modelo matemático que relaciona um certo valor da variável em estudo com a sua probabilidade de ocorrência. Há dois tipos

Leia mais

Estabilidade Linear e Exponencial de Semigrupos C 0 e

Estabilidade Linear e Exponencial de Semigrupos C 0 e ERMAC 2: I ENCONTRO REGIONAL DE MATEMÁTICA APLICADA E COMPUTACIONAL - 3 de Novembro de 2, São João del-rei, MG; pg 232-236 232 Estabilidade Linear e Exponencial de Semigrupos C e Aplicações Francis F.

Leia mais

MODIFICAÇÃO DO TESTE DE NORMALIDADE DE SHAPIRO-WILK MULTIVARIADO DO SOFTWARE ESTATÍSTICO R

MODIFICAÇÃO DO TESTE DE NORMALIDADE DE SHAPIRO-WILK MULTIVARIADO DO SOFTWARE ESTATÍSTICO R MODIFICAÇÃO DO TESTE DE NORMALIDADE DE SHAPIRO-WILK MULTIVARIADO DO SOFTWARE ESTATÍSTICO R Roberta Bessa Veloso 1, Daniel Furtado Ferreira 2, Eric Batista Ferreira 3 INTRODUÇÃO A inferência estatística

Leia mais

Reduzindo Custos na Logística

Reduzindo Custos na Logística Reduzindo Custos na Logística 1 Sempre que observo o processo tenho a sensação de estar perdendo muito dinheiro, mas não sei o quanto. Tenho ideia de onde estou perdendo dinheiro mas é impossível ter checar

Leia mais

Prefácio 11. Lista de Figuras 17. Lista de Tabelas 25

Prefácio 11. Lista de Figuras 17. Lista de Tabelas 25 Sumário Prefácio 11 Lista de Figuras 17 Lista de Tabelas 25 I INTRODUÇÃO 27 1 Vetores e Grandezas Vetoriais 29 1.1 Introdução aos Vetores......................... 29 1.2 Sistemas de Coordenadas Retangulares................

Leia mais

Desempenho de Métodos Direto e Iterativo para Extração da Solução do Sistema de Equações do Método dos Elementos Finitos Generalizados

Desempenho de Métodos Direto e Iterativo para Extração da Solução do Sistema de Equações do Método dos Elementos Finitos Generalizados Universidade Federal de São João Del-Rei MG 26 a 28 de maio de 2010 Associação Brasileira de Métodos Computacionais em Engenharia Desempenho de Métodos Direto e Iterativo para Extração da Solução do Sistema

Leia mais

'LVWULEXLomR(VWDWtVWLFDGRV9DORUHV([WUHPRVGH5DGLDomR6RODU *OREDOGR(VWDGRGR56

'LVWULEXLomR(VWDWtVWLFDGRV9DORUHV([WUHPRVGH5DGLDomR6RODU *OREDOGR(VWDGRGR56 LVWULEXLomR(VWDWtVWLFDGRV9DORUHV([WUHPRVGH5DGLDomR6RODU OREDOGR(VWDGRGR56 6X]DQH5DQ]DQ 6LPRQH0&HUH]HU&ODRGRPLU$0DUWLQD]]R Universidade Regional Integrada do Alto Uruguai e das Missões, Departamento de

Leia mais

Geração de Números Aleatórios e Simulação

Geração de Números Aleatórios e Simulação Departamento de Informática Geração de Números Aleatórios e imulação Métodos Quantitativos LEI 26/27 usana Nascimento (snt@di.fct.unl.pt) Advertência Autores João Moura Pires (jmp@di.fct.unl.pt) usana

Leia mais

Dimensionamento de Kanban Estatístico por Simulação de Monte Carlo Utilizando o Software Crystal Ball

Dimensionamento de Kanban Estatístico por Simulação de Monte Carlo Utilizando o Software Crystal Ball 1 Dimensionamento de Kanban Estatístico por Simulação de Monte Carlo Utilizando o Software Crystal Ball Alexandre Leme Sanches Fernando Augusto Silva Marins José Arnaldo Barra Montevechi Douglas de Almeida

Leia mais

3 Método de Monte Carlo

3 Método de Monte Carlo 25 3 Método de Monte Carlo 3.1 Definição Em 1946 o matemático Stanislaw Ulam durante um jogo de paciência tentou calcular as probabilidades de sucesso de uma determinada jogada utilizando a tradicional

Leia mais

O QUE É E COMO FUNCIONA O CREDIT SCORING PARTE I

O QUE É E COMO FUNCIONA O CREDIT SCORING PARTE I O QUE É E COMO FUNCIONA O CREDIT SCORING PARTE I! A utilização de escores na avaliação de crédito! Como montar um plano de amostragem para o credit scoring?! Como escolher as variáveis no modelo de credit

Leia mais

Uma formulação de Petrov-Galerkin aplicada à simulação de secagem de grãos

Uma formulação de Petrov-Galerkin aplicada à simulação de secagem de grãos ERMAC 2010: I ENCONTRO REGIONAL DE MATEMÁTICA APLICADA E COMPUTACIONAL 11-13 de Novembro de 2010, São João del-rei, MG; pg 218-224 218 Uma formulação de Petrov-Galerkin aplicada à simulação de secagem

Leia mais

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte IV 2012/02 Distribuição Exponencial Vamos relembrar a definição de uma variável com Distribuição Poisson. Número de falhas ao longo

Leia mais

MODELO DE AVALIAÇÃO EM PROJETOS DE INVESTIMENTO DE CAPITAL

MODELO DE AVALIAÇÃO EM PROJETOS DE INVESTIMENTO DE CAPITAL MODELO DE AVALIAÇÃO EM PROJETOS DE INVESTIMENTO DE CAPITAL Marcelo Maciel Monteiro Universidade Federal Fluminense, Engenharia de Produção Rua Martins Torres 296, Santa Rosa, Niterói, RJ, Cep 24240-700

Leia mais

PÓS GRADUAÇÃO EM CIÊNCIAS DE FLORESTAS TROPICAIS-PG-CFT INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA-INPA. 09/abril de 2014

PÓS GRADUAÇÃO EM CIÊNCIAS DE FLORESTAS TROPICAIS-PG-CFT INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA-INPA. 09/abril de 2014 PÓS GRADUAÇÃO EM CIÊNCIAS DE FLORESTAS TROPICAIS-PG-CFT INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA-INPA 09/abril de 2014 Considerações Estatísticas para Planejamento e Publicação 1 Circularidade do Método

Leia mais

MODELAGEM E SIMULAÇÃO

MODELAGEM E SIMULAÇÃO MODELAGEM E SIMULAÇÃO Professor: Dr. Edwin B. Mitacc Meza edwin@engenharia-puro.com.br www.engenharia-puro.com.br/edwin Como Funciona a Simulação Introdução Assim como qualquer programa de computador,

Leia mais

UM PROBLEMA DE CONTROLE DE ESTOQUE COM IMPERFEITA INFORMAÇÃO E RESTRIÇÕES DE CHANCES

UM PROBLEMA DE CONTROLE DE ESTOQUE COM IMPERFEITA INFORMAÇÃO E RESTRIÇÕES DE CHANCES 7 a 3/9/5, Gramado, RS UM PROBLEMA DE CONTROLE DE ESTOQUE COM MPERFETA NFORMAÇÃO E RESTRÇÕES DE CHANCES O. S. Silva Filho and Wagner Cezarino Centro de Pesquisas Renato Archer Rod. D. Pedro, Km 43,6 38

Leia mais

Avaliação de Desempenho

Avaliação de Desempenho Avaliação de Desempenho Aulas passadas Modelagem de sistemas via cadeias de Markov Aula de hoje Introdução à simulação Gerando números pseudo-aleatórios 1 O Ciclo de Modelagem Sistema real Criação do Modelo

Leia mais

4 Avaliação Econômica

4 Avaliação Econômica 4 Avaliação Econômica Este capítulo tem o objetivo de descrever a segunda etapa da metodologia, correspondente a avaliação econômica das entidades de reservas. A avaliação econômica é realizada a partir

Leia mais

1 Introdução 1.1. Motivação e conceitos básicos

1 Introdução 1.1. Motivação e conceitos básicos 1 Introdução 1.1. Motivação e conceitos básicos Uma seguradora ou companhia de seguros, segundo o Dicionário de Seguros, define-se como uma instituição que tem como objetivo indenizar prejuízos involuntários.

Leia mais

Modelagem e Simulação

Modelagem e Simulação AULA 11 EPR-201 Modelagem e Simulação Modelagem Processo de construção de um modelo; Capacitar o pesquisador para prever o efeito de mudanças no sistema; Deve ser próximo da realidade; Não deve ser complexo.

Leia mais

2 Modelo para o Sistema de Controle de Estoque (Q, R)

2 Modelo para o Sistema de Controle de Estoque (Q, R) Modelo para o Sistema de Controle de Estoque (, ) Neste capítulo é apresentado um modelo para o sistema de controle de estoque (,). Considera-se que a revisão dos estoques é continua e uma encomenda de

Leia mais

6 O Formalismo Matemático da Mecânica Quântica I

6 O Formalismo Matemático da Mecânica Quântica I 6-1 6 O Formalismo Matemático da Mecânica Quântica I 6.1 Espaços Vetoriais Nesta seção expomos as noções básicas dos espaços vetoriais, pois o formalismo da mecânica quântica se baseia nestes conceitos.

Leia mais

2 Modelo Clássico de Cramér-Lundberg

2 Modelo Clássico de Cramér-Lundberg 2 Modelo Clássico de Cramér-Lundberg 2.1 Conceitos fundamentais Nesta sessão introduziremos alguns conceitos fundamentais que serão utilizados na descrição do modelo de ruína. A lei de probabilidade que

Leia mais

DINÂMICA DOS FLUIDOS COMPUTACIONAL. CFD = Computational Fluid Dynamics

DINÂMICA DOS FLUIDOS COMPUTACIONAL. CFD = Computational Fluid Dynamics DINÂMICA DOS FLUIDOS COMPUTACIONAL CFD = Computational Fluid Dynamics 1 Problemas de engenharia Métodos analíticos Métodos experimentais Métodos numéricos 2 Problemas de engenharia FENÔMENO REAL (Observado

Leia mais

Capítulo 2 - Problemas de Valores Fronteira para Equações Diferenciais Ordinárias

Capítulo 2 - Problemas de Valores Fronteira para Equações Diferenciais Ordinárias Capítulo 2 - Problemas de Valores Fronteira para Equações Diferenciais Ordinárias Departamento de Matemática balsa@ipb.pt Mestrados em Engenharia da Construção Métodos de Aproximação em Engenharia 1 o

Leia mais

5º CONGRESSO BRASILEIRO DE PESQUISA E DESENVOLVIMENTO EM PETRÓLEO E GÁS

5º CONGRESSO BRASILEIRO DE PESQUISA E DESENVOLVIMENTO EM PETRÓLEO E GÁS 5º CONGRESSO BRASILEIRO DE PESQUISA E DESENVOLVIMENTO EM PETRÓLEO E GÁS TÍTULO DO TRABALHO: Propagação de Incertezas em Reservatórios de Petróleo usando o Método de Colocação Proailística AUTORES: Júlio

Leia mais

CURVA DE GAUSS. Bruno Vaz Hennemann (03) Gabriel Gustavo Ferrarini (10) Murillo Henrique de Mello Peteffi (25) Paulo Renan Schmitt Pereira (26)

CURVA DE GAUSS. Bruno Vaz Hennemann (03) Gabriel Gustavo Ferrarini (10) Murillo Henrique de Mello Peteffi (25) Paulo Renan Schmitt Pereira (26) FUNDAÇÃO ESCOLA TÉCNICA LIBERATO SALZANO VIEIRA DA CUNHA CURSO TÉCNICO EM MECÂNICA PRIMEIRA SÉRIE DO ENSINO MÉDIO Turma 3111 Grupo E Projeto Reconstrução de uma Experiência do MCT-PUC CURVA DE GAUSS Bruno

Leia mais

- Computação Evolutiva -

- Computação Evolutiva - - Computação Evolutiva - Prof. Dr. Cícero Garrozi DEINFO - UFRPE PPGIA@UFRPE cicerog@gmail.com Site da disciplina: http://cicerog.blogspot.com Sumário Situando a Computação Evolucionária Metáfora principal

Leia mais

2. Método de Monte Carlo

2. Método de Monte Carlo 2. Método de Monte Carlo O método de Monte Carlo é uma denominação genérica tendo em comum o uso de variáveis aleatórias para resolver, via simulação numérica, uma variada gama de problemas matemáticos.

Leia mais

3 ALGORITMOS GENÉTICOS : CONCEITOS BÁSICOS E EXTENSÕES VINCULADAS AO PROBLEMA DE MINIMIZAÇÃO DE PERDAS

3 ALGORITMOS GENÉTICOS : CONCEITOS BÁSICOS E EXTENSÕES VINCULADAS AO PROBLEMA DE MINIMIZAÇÃO DE PERDAS 3 ALGORITMOS GENÉTICOS : CONCEITOS BÁSICOS E EXTENSÕES VINCULADAS AO PROBLEMA DE MINIMIZAÇÃO DE PERDAS 3.1 - Conceitos Básicos Entendemos como algoritmo um conjunto predeterminado e bem definido de regras

Leia mais

DISTRIBUIÇÃO NORMAL 1

DISTRIBUIÇÃO NORMAL 1 DISTRIBUIÇÃO NORMAL 1 D ensid ade Introdução Exemplo : Observamos o peso, em kg, de 1500 pessoas adultas selecionadas ao acaso em uma população. O histograma por densidade é o seguinte: 0.04 0.03 0.02

Leia mais

Seminário de Dinâmica Orbital I

Seminário de Dinâmica Orbital I Seminário de Dinâmica Orbital I Métodos de Monte Carlo Alunos Carlos H. G. Hassmann Álvaro de A Arraes Prof. - Mário C. Ricci Sumário -Introdução -Breve Histórico -Definição -Utilização -O método -Componentes

Leia mais

Engenharia da Produção Projeto de Produto, QFD, FMEA e DoE DoE Dr. Egon Walter Wildauer

Engenharia da Produção Projeto de Produto, QFD, FMEA e DoE DoE Dr. Egon Walter Wildauer Tema DoE Projeto Curso Disciplina Tema Professor Pós-graduação Engenharia da Produção Projeto de Produto, QFD, FMEA e DoE DoE Dr. Egon Walter Wildauer Introdução O DoE Design of Experiments é uma ferramenta

Leia mais

TAXA DE DESCONTO, ANÁLISE DE RISCO, MODELOS DE PREDIÇÃO

TAXA DE DESCONTO, ANÁLISE DE RISCO, MODELOS DE PREDIÇÃO TAXA DE DESCONTO, ANÁLISE DE RISCO, MODELOS DE PREDIÇÃO AGNALDO CALVI BENVENHO, IBAPE, MRICS Eng. Mecânico, Especialista em Engenharia de Avaliações e Perícias TAXA DE DESCONTO NBR 14.653-4: Taxa de desconto:

Leia mais

3. Metodologia. 3.1.Tipo de Pesquisa

3. Metodologia. 3.1.Tipo de Pesquisa 3. Metodologia 3.1.Tipo de Pesquisa Há várias taxonomias de tipos de pesquisa, conforme os critérios dos diferentes autores. O importante é que o tipo de pesquisa seja o mais adequado ao fenômeno objeto

Leia mais

Estimativas de Software Fundamentos, Técnicas e Modelos... e o principal, integrando isso tudo!

Estimativas de Software Fundamentos, Técnicas e Modelos... e o principal, integrando isso tudo! Estimativas de Software Fundamentos, Técnicas e Modelos... e o principal, integrando isso tudo! Como usar de forma consistente PF, COCOMOIl, Simulação de Monte Carlo e seu bom senso em estimativas de software

Leia mais

DECISÕES SOBRE POLÍTICA DE ESTOQUES. Mayara Condé Rocha Murça TRA-53 Logística e Transportes

DECISÕES SOBRE POLÍTICA DE ESTOQUES. Mayara Condé Rocha Murça TRA-53 Logística e Transportes DECISÕES SOBRE POLÍTICA DE ESTOQUES Mayara Condé Rocha Murça TRA-53 Logística e Transportes Setembro/2013 Introdução Estoques são acumulações de matérias-primas, de materiais em processo e de produtos

Leia mais

Probabilidade. Distribuição Exponencial

Probabilidade. Distribuição Exponencial Probabilidade Distribuição Exponencial Aplicação Aplicada nos casos onde queremos analisar o espaço ou intervalo de acontecimento de um evento; Na distribuição de Poisson estimativa da quantidade de eventos

Leia mais

APLICAÇÕES COMPUTACIONAIS NO ENSINO DE PROBABILIDADE E ESTATÍSTICA EM ENGENHARIA

APLICAÇÕES COMPUTACIONAIS NO ENSINO DE PROBABILIDADE E ESTATÍSTICA EM ENGENHARIA APLICAÇÕES COMPUTACIONAIS NO ENSINO DE PROBABILIDADE E ESTATÍSTICA EM ENGENHARIA Júlio Cézar Figueiredo j.cezar@aol.com Cibelly Araújo de Azevedo Lima cibellyazevedo@gmail.com Francisco Rafael Marques

Leia mais

Recordamos que Q M n n (R) diz-se ortogonal se Q T Q = I.

Recordamos que Q M n n (R) diz-se ortogonal se Q T Q = I. Diagonalização ortogonal de matrizes simétricas Detalhes sobre a Secção.3 dos Apontamentos das Aulas teóricas de Álgebra Linear Cursos: LMAC, MEBiom e MEFT (semestre, 0/0, Prof. Paulo Pinto) Recordamos

Leia mais

CAPÍTULO 4 Exercícios Resolvidos

CAPÍTULO 4 Exercícios Resolvidos CAPÍTULO 4 Exercícios Resolvidos R4.1) Condição para concretização de uma venda Um certo tipo de componente é vendido em lotes de 1000 itens. O preço de venda do lote é usualmente de 60 u.m. Um determinado

Leia mais

Modelamento e simulação de processos

Modelamento e simulação de processos Modelamento e simulação de processos 4. Método de Monte Carlo Prof. Dr. André Carlos Silva 1. INTRODUÇÃO O Método de Monte Carlo (MMC) é um método estatístico utilizado em simulações estocásticas com diversas

Leia mais

DISTRIBUIÇÃO DE WEIBULL CONCEITOS BÁSICOS APLICAÇÕES

DISTRIBUIÇÃO DE WEIBULL CONCEITOS BÁSICOS APLICAÇÕES LUIZ CLAUDIO BENCK KEVIN WONG TAMARA CANDIDO DISTRIBUIÇÃO DE WEIBULL CONCEITOS BÁSICOS APLICAÇÕES Trabalho apresentado para avaliação na disciplina de Estatística e Métodos Numéricos do Curso de Administração

Leia mais

AULAS 13, 14 E 15 Correlação e Regressão

AULAS 13, 14 E 15 Correlação e Regressão 1 AULAS 13, 14 E 15 Correlação e Regressão Ernesto F. L. Amaral 23, 28 e 30 de setembro de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de

Leia mais

Bioestatística Aula 3

Bioestatística Aula 3 Aula 3 Castro Soares de Oliveira Probabilidade Probabilidade é o ramo da matemática que estuda fenômenos aleatórios. Probabilidade é uma medida que quantifica a sua incerteza frente a um possível acontecimento

Leia mais

Método Monte Carlo e a ferramenta do Crystal Ball utilizados na indústria do petróleo: projeções de royalties

Método Monte Carlo e a ferramenta do Crystal Ball utilizados na indústria do petróleo: projeções de royalties Método Monte Carlo e a ferramenta do Crystal Ball utilizados na indústria do petróleo: projeções de royalties JOSÉ OTAVIO DA SILVA, HERNANI A. FERNANDES CHAVES, CLEVELAND M. JONES, FABIANA ADÃO DA SILVA

Leia mais

Fernando Henrique Ferraz Pereira da Rosa Matheus Moreira Costa Tiago Luiz Tortella Vagner Aparecido Junior

Fernando Henrique Ferraz Pereira da Rosa Matheus Moreira Costa Tiago Luiz Tortella Vagner Aparecido Junior Métodos de Monte Carlo e Aproximações de π Fernando Henrique Ferraz Pereira da Rosa Matheus Moreira Costa Tiago Luiz Tortella Vagner Aparecido Junior MAP-131 Laboratório de Matemática Aplicada Prof. Dr.

Leia mais

Introdução à análise de dados discretos

Introdução à análise de dados discretos Exemplo 1: comparação de métodos de detecção de cárie Suponha que um pesquisador lhe apresente a seguinte tabela de contingência, resumindo os dados coletados por ele, oriundos de um determinado experimento:

Leia mais

ANÁLISE DE MALHAS COMPUTACIONAIS EM TORNO DE PEÇAS DE INTERESSE EM ENGENHARIA AERONÁUTICA

ANÁLISE DE MALHAS COMPUTACIONAIS EM TORNO DE PEÇAS DE INTERESSE EM ENGENHARIA AERONÁUTICA ANÁLISE DE MALHAS COMPUTACIONAIS EM TORNO DE PEÇAS DE INTERESSE EM ENGENHARIA AERONÁUTICA Bruno Quadros Rodrigues IC saraiva06@bol.com.br Nide Geraldo docouto R. F. Jr PQ nide@ita.br Instituto Tecnológico

Leia mais

Modelagens e Gerenciamento de riscos (Simulação Monte Carlo)

Modelagens e Gerenciamento de riscos (Simulação Monte Carlo) Modelagens e Gerenciamento de riscos (Simulação Monte Carlo) Prof. Esp. João Carlos Hipólito e-mail: jchbn@hotmail.com Sobre o professor: Contador; Professor da Faculdade de Ciências Aplicadas e Sociais

Leia mais

Probabilidade. Distribuição Exponencial

Probabilidade. Distribuição Exponencial Probabilidade Distribuição Exponencial Aplicação Aplicada nos casos onde queremos analisar o espaço ou intervalo de acontecimento de um evento; Na distribuição de Poisson estimativa da quantidade de eventos

Leia mais

Previsão por Conjunto Josiane Ferreira Bustamante

Previsão por Conjunto Josiane Ferreira Bustamante III Workshop Latino-Americano em Modelagem de Tempo e Clima Utilizando o Modelo Regional Eta Aspectos Físicos e Numéricos Previsão por Conjunto Josiane Ferreira Bustamante 25-29 de outubro de 2010 Cachoeira

Leia mais

Gestão da Produção Variabilidade das operações Filas de espera

Gestão da Produção Variabilidade das operações Filas de espera Variabilidade das operações Filas de espera José Cruz Filipe IST / ISCTE / EGP JCFilipe Abril 26 Tópicos Variabilidade dos fluxos Teoria clássica das filas de espera Medidas de desempenho das filas de

Leia mais

CRM e Prospecção de Dados

CRM e Prospecção de Dados CRM e Prospecção de Dados Marília Antunes aula de 11 de Maio 09 6 Modelos de regressão 6.1 Introdução No capítulo anterior foram apresentados alguns modelos preditivos em que a variável resposta (a variável

Leia mais

Controle estatístico de processo: algumas ferramentas estatísticas. Linda Lee Ho Depto Eng de Produção EPUSP 2009

Controle estatístico de processo: algumas ferramentas estatísticas. Linda Lee Ho Depto Eng de Produção EPUSP 2009 Controle estatístico de processo: algumas ferramentas estatísticas Linda Lee Ho Depto Eng de Produção EPUSP 2009 Controle estatístico de Processo (CEP) Verificar estabilidade processo Coleção de ferramentas

Leia mais

CRM e Prospecção de Dados

CRM e Prospecção de Dados CRM e Prospecção de Dados Marília Antunes aula de 6 Abril 09 5 Modelos preditivos para classificação 5. Introdução Os modelos descritivos, tal como apresentados atrás, limitam-se à sumarização dos dados

Leia mais

Introdução ao Método dos Elementos Finitos Conceitos Iniciais Divisão do Domínio e Funções de Base Aplicação do Método dos Resíduos Ponderados ao

Introdução ao Método dos Elementos Finitos Conceitos Iniciais Divisão do Domínio e Funções de Base Aplicação do Método dos Resíduos Ponderados ao Universidade Federal do Ceará Centro de Tecnologia Departamento de Engenharia Elétrica Programa de Educação Tutorial Autor: Bruno Pinho Meneses Orientadores: Janailson Rodrigues Lima Prof. Dr. Ricardo

Leia mais

CÁLCULO DE INCERTEZA EM ENSAIO DE TRAÇÃO COM OS MÉTODOS DE GUM CLÁSSICO E DE MONTE CARLO

CÁLCULO DE INCERTEZA EM ENSAIO DE TRAÇÃO COM OS MÉTODOS DE GUM CLÁSSICO E DE MONTE CARLO ENQUALAB-28 Congresso da Qualidade em Metrologia Rede Metrológica do Estado de São Paulo - REMESP 9 a 2 de junho de 28, São Paulo, Brasil CÁLCULO DE INCERTEZA EM ENSAIO DE TRAÇÃO COM OS MÉTODOS DE GUM

Leia mais

LCAD. Método dos Elementos Finitos: Aspectos Computacionais e Aplicações Uma Introdução. LCAD - Laboratório de Computação de Alto Desempenho

LCAD. Método dos Elementos Finitos: Aspectos Computacionais e Aplicações Uma Introdução. LCAD - Laboratório de Computação de Alto Desempenho LCAD - Laboratório de Computação de Alto Desempenho LCAD Método dos Elementos Finitos: Aspectos Computacionais e Aplicações Uma Introdução. Lucia Catabriga PPGI e PPGEM - CT/UFES Processo de Solução Fenômeno

Leia mais

Trabalhando com Pequenas Amostras: Distribuição t de Student

Trabalhando com Pequenas Amostras: Distribuição t de Student Probabilidade e Estatística Trabalhando com Pequenas Amostras: Distribuição t de Student Pequenas amostras x Grandes amostras Nos exemplos tratados até agora: amostras grandes (n>30) qualquer tipo de distribuição

Leia mais

Capítulo 5 Filtragem de Imagens

Capítulo 5 Filtragem de Imagens Capítulo 5 Filtragem de Imagens Capítulo 5 5.1. Filtragem no Domínio da Frequência 5.2. Filtragem no Domínio Espacial 2 Objetivo Melhorar a qualidade das imagens através da: ampliação do seu contraste;

Leia mais

AVALIACÃO DE OPCÕES AMERICANAS VIA SIMULAÇÃO DE MONTE CARLO

AVALIACÃO DE OPCÕES AMERICANAS VIA SIMULAÇÃO DE MONTE CARLO Instituto Superior de Ciências do Trabalho e da Empresa Faculdade de Ciências da Universidade de Lisboa Departamento de Finanças do ISCTE Departamento de Matemática da FCUL AVALIACÃO DE OPCÕES AMERICANAS

Leia mais

A FUNÇÃO DE AUTOCORRELAÇÃO E A ESCOLHA DO PASSO DA RECONSTRUÇÃO

A FUNÇÃO DE AUTOCORRELAÇÃO E A ESCOLHA DO PASSO DA RECONSTRUÇÃO A FUNÇÃO DE AUTOCORRELAÇÃO E A ESCOLHA DO PASSO DA RECONSTRUÇÃO Antônio Carlos da Silva Filho (Uni-FACEF) Fabiano Guasti Lima (USP) 1 INTRODUÇÃO A função de autocorrelação mede o grau de correlação de

Leia mais

O CONTROLE DA RESISTÊNCIA DO CONCRETO E A TEORIA DA CONFIABILIDADE

O CONTROLE DA RESISTÊNCIA DO CONCRETO E A TEORIA DA CONFIABILIDADE O CONTROLE DA RESISTÊNCIA DO CONCRETO E A TEORIA DA CONFIABILIDADE Fernando Rebouças Stucchi São Paulo,Outubro/2010 Resumo 1. Segurança estrutural 2. Teoria da Confiabilidade e as variabilidades 3. Método

Leia mais

A distribuição Weibull-Poisson

A distribuição Weibull-Poisson A distribuição Weibull-Poisson Estela Maris P. Bereta - DEs/UFSCar Francisco Louzada-Neto - DEs/UFSCar Maria Aparecida de Paiva Franco - DEs/UFSCar Resumo Neste trabalho é proposta uma distribuição de

Leia mais

Cálculo Numérico Computacional Lista 09 integral aproximada

Cálculo Numérico Computacional Lista 09 integral aproximada ORIENTAÇÃO ORIENTAÇÃO 2 Cálculo Numérico Computacional Lista 09 integral aproximada tarcisio@member.ams.org T. Praciano-Pereira Dep. de Matemática alun@: Univ. Estadual Vale do Acaraú 3 de março de 2008

Leia mais

Métodos Quantitativos. aula 3

Métodos Quantitativos. aula 3 Métodos Quantitativos aula 3 Prof. Dr. Marco Antonio Insper Ibmec São Paulo Simulação Empresarial Auxílio na tomada de decisão. Criação de cenários otimistas e pessimistas. Poder de previsão baseada em

Leia mais

Propagação de distribuições pelo método de Monte Carlo

Propagação de distribuições pelo método de Monte Carlo Sumário Propagação de distribuições pelo método de Monte Carlo João Alves e Sousa Avaliação de incertezas pelo GUM Propagação de distribuições O método de Monte Carlo Aplicação a modelos de medição por

Leia mais

Inferência Estatística

Inferência Estatística Universidade Federal Fluminense Instituto de Matemática e Estatística Inferência Estatística Ana Maria Lima de Farias Departamento de Estatística Conteúdo 1 Inferência estatística Conceitos básicos 1 1.1

Leia mais