Introdução ao Método de Galerkin Estocástico

Tamanho: px
Começar a partir da página:

Download "Introdução ao Método de Galerkin Estocástico"

Transcrição

1 Introdução ao Americo Barbosa da Cunha Junior Departamento de Engenharia Mecânica Pontifícia Universidade Católica do Rio de Janeiro 26 de julho de / 27

2 Sumário Introdução 1 Introdução 2 Decomposição de Karhunen-Lòeve Polinômio Caos Generalizado / 27

3 Motivação Os sistemas mecânicos reais estão sujeitos à incertezas nos parâmetros devido a vários fatores. Esta variabilidade no conjunto de parâmetros do sistema leva a um grande número de possíveis respostas do mesmo. Um modelo estocástico para tais sistemas pode ser tratado diretamente através de simulação de Monte Carlo (MC), porém essa abordagem demanda um elevado esforço computacional. 3 / 27

4 Objetivos Introdução Apresentar uma técnica alternativa à simulação de Monte Carlo para obtenção da resposta de um modelo estocástico; Ilustrar a aplicação dessa metodologia e caracterizar a mesma quanto à acurácia e performace. 4 / 27

5 Decomposição de Karhunen-Lòeve Polinômio Caos Generalizado Decomposição de Karhunen-Lòeve (KL) Seja u : D Ω R L 2 (Ω, A, P) um campo estocástico com média µ u e autocovariância K u (x 1, x 2 ) contínua. Então onde u(x, ω) = µ u + λi φ i (x)ξ i (ω), i=1 ξ i são variáveis aleatórias tais que E [ξ i ] = 0 E [ ξ i ξ j ] = hi δ ij, {λ i, φ i } são soluções da equação K u (x 1, x 2 )φ i (x 2 )dx 2 = λ i φ i (x 1 ). D 5 / 27

6 Decomposição de Karhunen-Lòeve Polinômio Caos Generalizado Decomposição de Karhunen-Lòeve (KL) Representação ótima no sentido que minimiza erro quadrático médio após o trucamento da série; Aplicável somente quando a função de autocovariância do campo aleatório for conhecida. 6 / 27

7 Polinômio Caos Generalizado (gpc) Decomposição de Karhunen-Lòeve Polinômio Caos Generalizado Seja u : D Ω R L 2 (Ω, A, P). Então onde u(x, ω) = u i (x)ψ i [ξ(ω)], i=1 u i são funções determinísticas; ξ é um vetor de variáveis aleatórias; ψ i são polinômios ortogonais tais que E [ψ 1 ] = 1, E [ψ i ] = 0, i > 1, E [ ] ψ i ψ j = hi δ ij. 7 / 27

8 Polinômio Caos Generalizado (gpc) Decomposição de Karhunen-Lòeve Polinômio Caos Generalizado Aplicável se a distribuição de probabilidade do campo aleatório for conhecida ou não; Os polinômios ψ i são escolhidos de acordo com a natureza das variáveis ξ: ξ Gaussiana Gama Beta Uniforme ψ i Hermite Laguerre Jacobi Legendre 8 / 27

9 SGM: O método de Galerkin estocástico (SGM) procura por um campo estocástico u(x, t, ω), definido no espaço probabilistico (Ω, A, P), que seja uma aproximação para a solução da seguinte equação diferencial estocástica L(x, t, ω; u) = f (x, t, ω), onde L é um operador diferencial que envolve diferenciação no tempo e/ou no espaço e f é um termo fonte. 9 / 27

10 SGM: Aproxima-se o campo u por um trucamento da expansão em gpc P u(x, t, ω) u i (x, t)ψ i [ξ(ω)], e em seguida substitui-se na equação que se deseja resolver P L x, t, ω; u i ψ i = f (x, t, ω). i=1 i=1 10 / 27

11 SGM: Projeta-se a última equação no espaço vetorial gerado pelas ψ j, P E L x, t, ω; u i ψ i ψ j = E [ ] f (x, t, ω)ψ j, j = 1,, P, i=1 de forma que o erro gerado pela aproximação seja minimizado. 11 / 27

12 Problema de Valor de Contorno Estocástico Dado um espaço probabilistico (Ω, A, P), considere o problema de valor de contorno estocástico em que se busca um campo u(x, y, ω) tal que α 2 u = 1 (x, y, ω) D Ω u = 0 (x, y, ω) D Ω, onde α é uma variável aletória uniformemente distribuida em [1, 3] e D = [ 1, 1] / 27

13 Parametrização e Expansão em gpc Neste problema a variável aleatória α é parametrizada por α = ξ + 2, onde ξ U[ 1, 1]. Já o campo u é aproximado por u(x, ω) P u i (x, y)ψ i (ξ), i=1 onde u i (x, y) são funções determinísticas, ψ i são polinômios de Legendre e P = (K +1)!/K!, sendo K o grau máximo dos polinômios de Legendre. 13 / 27

14 Projeção de Galerkin Seguindo o procedimento geral do SGM obtêm-se P ( ) [ ] [ ] (ui ) xx + (u i ) yy E ψi (ξ + 2)ψ j = E ψj i=1 u j = 0 (x, y) D (x, y) D, para j = 1,, P. Esse sistema foi resolvido utilizando o código Poisson_2D, que é baseado no método de diferenças finitas. 14 / 27

15 Média das Soluções (a) MC (b) gpc Figura: Média das soluções da eq. de Poisson obtidas por MC e gpc. 15 / 27

16 Desvio Padrão das Soluções (a) MC (b) gpc Figura: Desvio padrão das soluções da equação de Poisson obtidas por MC e gpc. 16 / 27

17 Erro da Aproximação Tabela: Norma do máximo (em função de K) das estatísticas da diferença entre as soluções da eq. de Poisson obtidas por MC e gpc. K média desvio padrão / 27

18 Tempo de Processamento Tabela: Ganho de tempo (em função de K) da simulação da eq. de Poisson utilizando gpc em relação a simulação que utiliza MC. K tempo gasto (s) speed-up MC / 27

19 Problema de Valor Inicial-Contorno Estocástico Dado um espaço probabilistico (Ω, A, P), considere o problema que consiste em encontrar um campo u(x, t, ω) tal que u t = (αu x ) x + 1 x [ 1, 1], t [0, T ], ω Ω, com condições de contorno u( 1, t, ω) = u(1, t, ω) = 0 e condição inicial u(x, 0, ω) = 0. Neste problema α : [ 1, 1] Ω R é um campo aleatório de média µ α = 10 e autocovariância K α (x 1, x 2 ) = exp ( x 1 x 2 ), x 1, x 2 [ 1, 1]. 19 / 27

20 Parametrização Introdução O campo α é aproximado pelo truncamento da decomposição KL N α(x, ω) = µ α + λi φ i (x)ξ i (ω), i=1 onde ξ i U[ 1, 1] e {λ i, φ i } são soluções da equação 1 1 exp ( x 1 x 2 ) φ i (x 2 )dx 2 = λ i φ i (x 1 ). 20 / 27

21 Expansão em gpc Introdução O campo u é aproximado por uma expansão em gpc da forma u(x, t, ω) P u i (x, t)ψ i (ξ), i=1 onde u i (x, t) são funções determinísticas, ψ i são polinômios de Legendre e P = (K + N)!/(K!N!), sendo K o grau máximo dos polinômios de Legendre. 21 / 27

22 Projeção de Galerkin Seguindo o procedimento geral do SGM obtêm-se [ ] E ψj 2 (u k ) t = P [ ] (u i ) xx µ α E ψk 2 + i=1 i=1 N E [ ] ψ k ξ j ψ i λj φ j + j=1 P N (u i ) x E [ ] ψ k ξ j ψ i λj (φ j ) x + E [ψ k ], j=1 para k = 1,, P. Esse sistema foi resolvido utilizando o código Heat_1D, que utiliza um esquema númerico tipo Crank-Nicolson. 22 / 27

23 Estatísticas das Soluções Figura: Estatísticas das soluções da eq. do calor obtidas por MC e gpc. 23 / 27

24 Erro da Aproximação Tabela: Norma do máximo (em função de K) das estatísticas da diferença entre as soluções da eq. do calor obtidas por MC e gpc. K média desvio padrão / 27

25 Tempo de Processamento Tabela: Ganho de tempo (em função de K) da simulação da eq. do calor utilizando gpc em relação a simulação que utiliza MC. K tempo gasto (s) speed-up MC / 27

26 O método de Galerkin estocástico (SGM) é uma boa alternativa à simulação de Monte Carlo, pois tem boa acurácia e demanda baixo esforço computacional; Essa técnica foi ilustrada na solução de dois exemplos simples e os resultados permitiram caracterizar a boa performace e acurácia do método SGM. 26 / 27

27 Constantine, P. A Primer on Stochastic Galerkin Methods. Lecture Notes, Ghanem, R.; Spanos, P., Stochastic Finite Elements: A Spectral Approach. New York: Dover Publications, Shonkwiler, R. W.; and Mendivil, F., Explorations in Monte Carlo Methods. New York: Springer, Xiu. D.; Karniadakis, G., The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations. SIAM Journal on Scientific Computing, Vol. 24, pp , / 27

Introdução ao Método de Galerkin Estocástico

Introdução ao Método de Galerkin Estocástico Introdução ao Método de Galerkin Estocástico Americo Barbosa da Cunha Junior Departamento de Engenharia Mecânica Pontifícia Universidade Católica do Rio de Janeiro 1 Introdução A dinâmica de um sistema

Leia mais

Mestranda: Márcia Maria Horn. Orientador: Prof. Dr. Sandro Sawicki

Mestranda: Márcia Maria Horn. Orientador: Prof. Dr. Sandro Sawicki Universidade Regional do Noroeste do Estado do Rio Grande do Sul Departamento de Ciências Exatas e Engenharias Programa de Mestrado em Modelagem Matemática Grupo de Pesquisa em Computação Aplicada Temática:

Leia mais

PE-MEEC 1S 09/10 118. Capítulo 4 - Variáveis aleatórias e. 4.1 Variáveis. densidade de probabilidade 4.2 Valor esperado,

PE-MEEC 1S 09/10 118. Capítulo 4 - Variáveis aleatórias e. 4.1 Variáveis. densidade de probabilidade 4.2 Valor esperado, Capítulo 4 - Variáveis aleatórias e distribuições contínuas 4.1 Variáveis aleatórias contínuas. Função densidade de probabilidade 4.2 Valor esperado, variância e algumas das suas propriedades. Moda e quantis

Leia mais

Capítulo 4 - Equações Diferenciais às Derivadas Parciais

Capítulo 4 - Equações Diferenciais às Derivadas Parciais Capítulo 4 - Equações Diferenciais às Derivadas Parciais Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática Aplicada - Mestrados Eng. Química

Leia mais

M. Eisencraft 6.5 Processos aleatórios gaussianos 86. t1 +T. x(t)y(t+τ)dt. (6.35) t 1 T. x(t)y(t+τ)dt R xy (τ) = R XY (τ). (6.36)

M. Eisencraft 6.5 Processos aleatórios gaussianos 86. t1 +T. x(t)y(t+τ)dt. (6.35) t 1 T. x(t)y(t+τ)dt R xy (τ) = R XY (τ). (6.36) M. Eisencraft 6.5 Processos aleatórios gaussianos 86 R 0 (t 1 +2T) = 1 2T t1 +T t 1 Assim, tomando t 1 = 0 e assumindo que T é grande, temos x(t)y(t+τ)dt. (6.35) R 0 (2T) = 1 2T x(t)y(t+τ)dt R xy (τ) =

Leia mais

2. Método de Monte Carlo

2. Método de Monte Carlo 2. Método de Monte Carlo O método de Monte Carlo é uma denominação genérica tendo em comum o uso de variáveis aleatórias para resolver, via simulação numérica, uma variada gama de problemas matemáticos.

Leia mais

UNIVERSIDADE FEDERAL DE GOIÁS ESCOLA DE ENGENHARIA CIVIL PROGRAMA DE PÓS-GRADUAÇÃO EM GEOTECNIA, ESTRUTURAS E CONSTRUÇÃO CIVIL

UNIVERSIDADE FEDERAL DE GOIÁS ESCOLA DE ENGENHARIA CIVIL PROGRAMA DE PÓS-GRADUAÇÃO EM GEOTECNIA, ESTRUTURAS E CONSTRUÇÃO CIVIL UNIVERSIDADE FEDERAL DE GOIÁS ESCOLA DE ENGENHARIA CIVIL PROGRAMA DE PÓS-GRADUAÇÃO EM GEOTECNIA, ESTRUTURAS E CONSTRUÇÃO CIVIL APLICAÇÃO DO POLINÔMIO DE HERMITE- CAOS PARA A DETERMINAÇÃO DA CARGA DE INSTABILIDADE

Leia mais

3 Método de Monte Carlo

3 Método de Monte Carlo 25 3 Método de Monte Carlo 3.1 Definição Em 1946 o matemático Stanislaw Ulam durante um jogo de paciência tentou calcular as probabilidades de sucesso de uma determinada jogada utilizando a tradicional

Leia mais

Capítulo 2 - Problemas de Valores Fronteira para Equações Diferenciais Ordinárias

Capítulo 2 - Problemas de Valores Fronteira para Equações Diferenciais Ordinárias Capítulo 2 - Problemas de Valores Fronteira para Equações Diferenciais Ordinárias Departamento de Matemática balsa@ipb.pt Mestrados em Engenharia da Construção Métodos de Aproximação em Engenharia 1 o

Leia mais

1. Conceitos Básicos de Avaliação de Projetos 2. Classificação dos Projetos de Investimento 3. Estudos prévios

1. Conceitos Básicos de Avaliação de Projetos 2. Classificação dos Projetos de Investimento 3. Estudos prévios 1. Conceitos Básicos de Avaliação de Projetos... 1.1. Valor Atual... 1.2. Capital Investido... 1.3. Cash Flow... 1.4. Valor residual do investimento... 1.5. Vida económica do equipamento... 2. Classificação

Leia mais

Simulação Estocástica

Simulação Estocástica Simulação Estocástica O que é Simulação Estocástica? Simulação: ato ou efeito de simular Disfarce, fingimento,... Experiência ou ensaio realizado com o auxílio de modelos. Aleatório: dependente de circunstâncias

Leia mais

Análise de Sensibilidade

Análise de Sensibilidade Análise de Risco de Projetos Análise de Risco Prof. Luiz Brandão Métodos de Avaliação de Risco Análise de Cenário Esta metodologia amplia os horizontes do FCD obrigando o analista a pensar em diversos

Leia mais

6 Construção de Cenários

6 Construção de Cenários 6 Construção de Cenários Neste capítulo será mostrada a metodologia utilizada para mensuração dos parâmetros estocásticos (ou incertos) e construção dos cenários com respectivas probabilidades de ocorrência.

Leia mais

Uma distribuição de probabilidade é um modelo matemático que relaciona um certo valor da variável em estudo com a sua probabilidade de ocorrência.

Uma distribuição de probabilidade é um modelo matemático que relaciona um certo valor da variável em estudo com a sua probabilidade de ocorrência. Professor: Leandro Zvirtes UDESC/CCT Uma distribuição de probabilidade é um modelo matemático que relaciona um certo valor da variável em estudo com a sua probabilidade de ocorrência. Há dois tipos de

Leia mais

Uma Ferramenta para otimização em Engenharia Mecânica e aplicações na Fundição Eletromagnética de Metais

Uma Ferramenta para otimização em Engenharia Mecânica e aplicações na Fundição Eletromagnética de Metais Uma Ferramenta para otimização em Engenharia Mecânica e aplicações na Fundição Eletromagnética de Metais Departamento de Engenharia Mecânica COPPE UFRJ STIC-AMSUD, Novembro de 2009 Conteúdo Preliminares

Leia mais

Modelagem e Simulação Material 02 Projeto de Simulação

Modelagem e Simulação Material 02 Projeto de Simulação Modelagem e Simulação Material 02 Projeto de Simulação Prof. Simão Sirineo Toscani Projeto de Simulação Revisão de conceitos básicos Processo de simulação Etapas de projeto Cuidados nos projetos de simulação

Leia mais

Uma formulação de Petrov-Galerkin aplicada à simulação de secagem de grãos

Uma formulação de Petrov-Galerkin aplicada à simulação de secagem de grãos ERMAC 2010: I ENCONTRO REGIONAL DE MATEMÁTICA APLICADA E COMPUTACIONAL 11-13 de Novembro de 2010, São João del-rei, MG; pg 218-224 218 Uma formulação de Petrov-Galerkin aplicada à simulação de secagem

Leia mais

Método de Monte Carlo e ISO

Método de Monte Carlo e ISO Método de Monte Carlo e ISO GUM para cálculo l de incerteza Prof. Dr. Antonio Piratelli Filho Universidade de Brasilia (UnB) Faculdade de Tecnologia Depto. Engenharia Mecânica 1 Introdução: Erro x incerteza

Leia mais

4 Avaliação Econômica

4 Avaliação Econômica 4 Avaliação Econômica Este capítulo tem o objetivo de descrever a segunda etapa da metodologia, correspondente a avaliação econômica das entidades de reservas. A avaliação econômica é realizada a partir

Leia mais

Métodos de Monte Carlo

Métodos de Monte Carlo Departamento de Estatística - UFJF Outubro e Novembro de 2014 são métodos de simulação São utilizados quando não temos uma forma fechada para resolver o problema Muito populares em Estatística, Matemática,

Leia mais

SUMÁRIO LISTA DE FIGURAS... 15 LISTA DE TABELAS...17 LISTA DE SÍMBOLOS... 19. 1.1 - Introdução...21 1.2 - Revisão Bibliográfica...

SUMÁRIO LISTA DE FIGURAS... 15 LISTA DE TABELAS...17 LISTA DE SÍMBOLOS... 19. 1.1 - Introdução...21 1.2 - Revisão Bibliográfica... SUMÁRIO Pág. LISTA DE FIGURAS... 15 LISTA DE TABELAS...17 LISTA DE SÍMBOLOS... 19 CAPÍTULO 1 - INTRODUÇÃO... 21 1.1 - Introdução...21 1.2 - Revisão Bibliográfica...25 CAPÍTULO 2 - MODELAGEM ESTOCÁSTICA

Leia mais

Pesquisa Operacional

Pesquisa Operacional GOVERNO DO ESTADO DO PARÁ UNIVERSIDADE DO ESTADO DO PARÁ CENTRO DE CIÊNCIAS NATURAIS E TECNOLOGIA DEPARTAMENTO DE ENGENHARIA Pesquisa Operacional Tópico 4 Simulação Rosana Cavalcante de Oliveira, Msc rosanacavalcante@gmail.com

Leia mais

Reduzindo Custos na Logística

Reduzindo Custos na Logística Reduzindo Custos na Logística 1 Sempre que observo o processo tenho a sensação de estar perdendo muito dinheiro, mas não sei o quanto. Tenho ideia de onde estou perdendo dinheiro mas é impossível ter checar

Leia mais

Regressão Linear Multivariada

Regressão Linear Multivariada Regressão Linear Multivariada Prof. Dr. Leandro Balby Marinho Inteligência Artificial Prof. Leandro Balby Marinho / 37 UFCG DSC Roteiro. Introdução 2. Modelo de Regressão Multivariada 3. Equações Normais

Leia mais

MODELO DE AVALIAÇÃO EM PROJETOS DE INVESTIMENTO DE CAPITAL

MODELO DE AVALIAÇÃO EM PROJETOS DE INVESTIMENTO DE CAPITAL MODELO DE AVALIAÇÃO EM PROJETOS DE INVESTIMENTO DE CAPITAL Marcelo Maciel Monteiro Universidade Federal Fluminense, Engenharia de Produção Rua Martins Torres 296, Santa Rosa, Niterói, RJ, Cep 24240-700

Leia mais

Introdução ao Método dos Elementos Finitos Conceitos Iniciais Divisão do Domínio e Funções de Base Aplicação do Método dos Resíduos Ponderados ao

Introdução ao Método dos Elementos Finitos Conceitos Iniciais Divisão do Domínio e Funções de Base Aplicação do Método dos Resíduos Ponderados ao Universidade Federal do Ceará Centro de Tecnologia Departamento de Engenharia Elétrica Programa de Educação Tutorial Autor: Bruno Pinho Meneses Orientadores: Janailson Rodrigues Lima Prof. Dr. Ricardo

Leia mais

'LVWULEXLomR(VWDWtVWLFDGRV9DORUHV([WUHPRVGH5DGLDomR6RODU *OREDOGR(VWDGRGR56

'LVWULEXLomR(VWDWtVWLFDGRV9DORUHV([WUHPRVGH5DGLDomR6RODU *OREDOGR(VWDGRGR56 LVWULEXLomR(VWDWtVWLFDGRV9DORUHV([WUHPRVGH5DGLDomR6RODU OREDOGR(VWDGRGR56 6X]DQH5DQ]DQ 6LPRQH0&HUH]HU&ODRGRPLU$0DUWLQD]]R Universidade Regional Integrada do Alto Uruguai e das Missões, Departamento de

Leia mais

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA. Plano de Ensino

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA. Plano de Ensino DISCIPLINA: Métodos Numéricos CÓDIGO: PEE-007 Validade: A partir do 1º semestre de 2009. Carga Horária: 45 horas-aula Créditos: 03 Área de Concentração / Módulo: Sistemas Elétricos / Módulo de Disciplinas

Leia mais

Distribuição de Erlang

Distribuição de Erlang Distribuição de Erlang Uma variável aleatória exponencial descreve a distância até que a primeira contagem é obtida em um processo de Poisson. Generalização da distribuição exponencial : O comprimento

Leia mais

Geração de Números Aleatórios e Simulação

Geração de Números Aleatórios e Simulação Departamento de Informática Geração de Números Aleatórios e imulação Métodos Quantitativos LEI 26/27 usana Nascimento (snt@di.fct.unl.pt) Advertência Autores João Moura Pires (jmp@di.fct.unl.pt) usana

Leia mais

daniel.desouza@hotmail.com

daniel.desouza@hotmail.com VIII Congreso Regional de ENDE Campana Agosto 2011 Aplicação do estimador maximum likelihood a um teste de vida sequencial truncado utilizando-se uma distribuição eibull Invertida de três parâmetros como

Leia mais

Modelamento e simulação de processos

Modelamento e simulação de processos Modelamento e simulação de processos 4. Método de Monte Carlo Prof. Dr. André Carlos Silva 1. INTRODUÇÃO O Método de Monte Carlo (MMC) é um método estatístico utilizado em simulações estocásticas com diversas

Leia mais

MODIFICAÇÃO DO TESTE DE NORMALIDADE DE SHAPIRO-WILK MULTIVARIADO DO SOFTWARE ESTATÍSTICO R

MODIFICAÇÃO DO TESTE DE NORMALIDADE DE SHAPIRO-WILK MULTIVARIADO DO SOFTWARE ESTATÍSTICO R MODIFICAÇÃO DO TESTE DE NORMALIDADE DE SHAPIRO-WILK MULTIVARIADO DO SOFTWARE ESTATÍSTICO R Roberta Bessa Veloso 1, Daniel Furtado Ferreira 2, Eric Batista Ferreira 3 INTRODUÇÃO A inferência estatística

Leia mais

Universidade Gama Filho Campus Piedade Departamento de Engenharia de Controle e Automação

Universidade Gama Filho Campus Piedade Departamento de Engenharia de Controle e Automação Universidade Gama Filho Campus Piedade Departamento de Engenharia de Controle e Automação Laboratório da Disciplina CTA-147 Controle I Análise da Resposta Transitória (Este laboratório foi uma adaptação

Leia mais

Estabilidade Linear e Exponencial de Semigrupos C 0 e

Estabilidade Linear e Exponencial de Semigrupos C 0 e ERMAC 2: I ENCONTRO REGIONAL DE MATEMÁTICA APLICADA E COMPUTACIONAL - 3 de Novembro de 2, São João del-rei, MG; pg 232-236 232 Estabilidade Linear e Exponencial de Semigrupos C e Aplicações Francis F.

Leia mais

Dimensionamento de Kanban Estatístico por Simulação de Monte Carlo Utilizando o Software Crystal Ball

Dimensionamento de Kanban Estatístico por Simulação de Monte Carlo Utilizando o Software Crystal Ball 1 Dimensionamento de Kanban Estatístico por Simulação de Monte Carlo Utilizando o Software Crystal Ball Alexandre Leme Sanches Fernando Augusto Silva Marins José Arnaldo Barra Montevechi Douglas de Almeida

Leia mais

Prefácio 11. Lista de Figuras 17. Lista de Tabelas 25

Prefácio 11. Lista de Figuras 17. Lista de Tabelas 25 Sumário Prefácio 11 Lista de Figuras 17 Lista de Tabelas 25 I INTRODUÇÃO 27 1 Vetores e Grandezas Vetoriais 29 1.1 Introdução aos Vetores......................... 29 1.2 Sistemas de Coordenadas Retangulares................

Leia mais

Desenvolvimento de um gerador de malhas para o estudo do escoamento transônico em um aerofólio

Desenvolvimento de um gerador de malhas para o estudo do escoamento transônico em um aerofólio Desenvolvimento de um gerador de malhas para o estudo do escoamento transônico em um aerofólio Leo Moreira Lima. ITA Instituto tecnológico de Aeronáutica, São José dos Campos, SP, 12228-900, Brasil. Bolsista

Leia mais

O que é a estatística?

O que é a estatística? Elementos de Estatística Prof. Dr. Clécio da Silva Ferreira Departamento de Estatística - UFJF O que é a estatística? Para muitos, a estatística não passa de conjuntos de tabelas de dados numéricos. Os

Leia mais

Método Monte-Carlo. Alexandre Rosas. 23 de Março de 2009. Departamento de Física Universidade Federal da Paraíba

Método Monte-Carlo. Alexandre Rosas. 23 de Março de 2009. Departamento de Física Universidade Federal da Paraíba Departamento de Física Universidade Federal da Paraíba 23 de Março de 2009 O que são os métodos de Monte-Carlo? Métodos numéricos que utilizam amostragem estatística (em contraposição a métodos determinísticos)

Leia mais

2 Modelo para o Sistema de Controle de Estoque (Q, R)

2 Modelo para o Sistema de Controle de Estoque (Q, R) Modelo para o Sistema de Controle de Estoque (, ) Neste capítulo é apresentado um modelo para o sistema de controle de estoque (,). Considera-se que a revisão dos estoques é continua e uma encomenda de

Leia mais

ANÁLISE DE MALHAS COMPUTACIONAIS EM TORNO DE PEÇAS DE INTERESSE EM ENGENHARIA AERONÁUTICA

ANÁLISE DE MALHAS COMPUTACIONAIS EM TORNO DE PEÇAS DE INTERESSE EM ENGENHARIA AERONÁUTICA ANÁLISE DE MALHAS COMPUTACIONAIS EM TORNO DE PEÇAS DE INTERESSE EM ENGENHARIA AERONÁUTICA Bruno Quadros Rodrigues IC saraiva06@bol.com.br Nide Geraldo docouto R. F. Jr PQ nide@ita.br Instituto Tecnológico

Leia mais

Empresa de Pesquisa Energética (EPE) 2014. Analista de Projetos da Geração de Energia

Empresa de Pesquisa Energética (EPE) 2014. Analista de Projetos da Geração de Energia Empresa de Pesquisa Energética (EPE) 2014 Analista de Projetos da Geração de Energia Oi, pessoal! Vou resolver as quatro questões de Estatística (53 a 56) da prova elaborada pela banca Cesgranrio para

Leia mais

IND 2072 - Análise de Investimentos com Opções Reais

IND 2072 - Análise de Investimentos com Opções Reais IND 2072 - Análise de Investimentos com Opções Reais PROVA P2 1 o Semestre de 2007-03/07/2007 OBS: 1) A prova é SEM CONSULTA. Nota da prova = mínimo{10; pontuação da P2 + crédito da P1} 2) Verdadeiro ou

Leia mais

Bioestatística Aula 3

Bioestatística Aula 3 Aula 3 Castro Soares de Oliveira Probabilidade Probabilidade é o ramo da matemática que estuda fenômenos aleatórios. Probabilidade é uma medida que quantifica a sua incerteza frente a um possível acontecimento

Leia mais

Simulação Transiente

Simulação Transiente Tópicos Avançados em Avaliação de Desempenho de Sistemas Professores: Paulo Maciel Ricardo Massa Alunos: Jackson Nunes Marco Eugênio Araújo Dezembro de 2014 1 Sumário O que é Simulação? Áreas de Aplicação

Leia mais

DISTRIBUIÇÃO DE WEIBULL CONCEITOS BÁSICOS APLICAÇÕES

DISTRIBUIÇÃO DE WEIBULL CONCEITOS BÁSICOS APLICAÇÕES LUIZ CLAUDIO BENCK KEVIN WONG TAMARA CANDIDO DISTRIBUIÇÃO DE WEIBULL CONCEITOS BÁSICOS APLICAÇÕES Trabalho apresentado para avaliação na disciplina de Estatística e Métodos Numéricos do Curso de Administração

Leia mais

Estimação bayesiana em modelos lineares generalizados mistos: MCMC versus INLA

Estimação bayesiana em modelos lineares generalizados mistos: MCMC versus INLA Estimação bayesiana em modelos lineares generalizados mistos: MCMC versus INLA Everton Batista da Rocha 1 2 3 Roseli Aparecida Leandro 2 Paulo Justiniano Ribeiro Jr 4 1 Introdução Na experimentação agronômica

Leia mais

Formulação de Petrov-Galerkin para solução de problema de secagem de grãos

Formulação de Petrov-Galerkin para solução de problema de secagem de grãos Anais do CNMAC v.2 ISSN 1984-820X Formulação de Petrov-Galerkin para solução de problema de secagem de grãos Tatiane Reis do Amaral, João Francisco A. Vitor Mestrado em Modelagem Matemática e Computacional,

Leia mais

APLICAÇÕES COMPUTACIONAIS NO ENSINO DE PROBABILIDADE E ESTATÍSTICA EM ENGENHARIA

APLICAÇÕES COMPUTACIONAIS NO ENSINO DE PROBABILIDADE E ESTATÍSTICA EM ENGENHARIA APLICAÇÕES COMPUTACIONAIS NO ENSINO DE PROBABILIDADE E ESTATÍSTICA EM ENGENHARIA Júlio Cézar Figueiredo j.cezar@aol.com Cibelly Araújo de Azevedo Lima cibellyazevedo@gmail.com Francisco Rafael Marques

Leia mais

CAPÍTULO 4 Exercícios Resolvidos

CAPÍTULO 4 Exercícios Resolvidos CAPÍTULO 4 Exercícios Resolvidos R4.1) Condição para concretização de uma venda Um certo tipo de componente é vendido em lotes de 1000 itens. O preço de venda do lote é usualmente de 60 u.m. Um determinado

Leia mais

Desempenho de Métodos Direto e Iterativo para Extração da Solução do Sistema de Equações do Método dos Elementos Finitos Generalizados

Desempenho de Métodos Direto e Iterativo para Extração da Solução do Sistema de Equações do Método dos Elementos Finitos Generalizados Universidade Federal de São João Del-Rei MG 26 a 28 de maio de 2010 Associação Brasileira de Métodos Computacionais em Engenharia Desempenho de Métodos Direto e Iterativo para Extração da Solução do Sistema

Leia mais

Fernando Henrique Ferraz Pereira da Rosa Matheus Moreira Costa Tiago Luiz Tortella Vagner Aparecido Junior

Fernando Henrique Ferraz Pereira da Rosa Matheus Moreira Costa Tiago Luiz Tortella Vagner Aparecido Junior Métodos de Monte Carlo e Aproximações de π Fernando Henrique Ferraz Pereira da Rosa Matheus Moreira Costa Tiago Luiz Tortella Vagner Aparecido Junior MAP-131 Laboratório de Matemática Aplicada Prof. Dr.

Leia mais

Método dos Elementos Finitos Generalizados Validação de Estimadores de Erro a-posteriori

Método dos Elementos Finitos Generalizados Validação de Estimadores de Erro a-posteriori Universidade Federal de São João Del-Rei MG 26 a 28 de maio de 2010 Associação Brasileira de Métodos Computacionais em Engenharia Método dos Elementos Finitos Generalizados Validação de Estimadores de

Leia mais

TAXA DE DESCONTO, ANÁLISE DE RISCO, MODELOS DE PREDIÇÃO

TAXA DE DESCONTO, ANÁLISE DE RISCO, MODELOS DE PREDIÇÃO TAXA DE DESCONTO, ANÁLISE DE RISCO, MODELOS DE PREDIÇÃO AGNALDO CALVI BENVENHO, IBAPE, MRICS Eng. Mecânico, Especialista em Engenharia de Avaliações e Perícias TAXA DE DESCONTO NBR 14.653-4: Taxa de desconto:

Leia mais

Propagação de distribuições pelo método de Monte Carlo

Propagação de distribuições pelo método de Monte Carlo Sumário Propagação de distribuições pelo método de Monte Carlo João Alves e Sousa Avaliação de incertezas pelo GUM Propagação de distribuições O método de Monte Carlo Aplicação a modelos de medição por

Leia mais

Aula 04 Método de Monte Carlo aplicado a análise de incertezas. Aula 04 Prof. Valner Brusamarello

Aula 04 Método de Monte Carlo aplicado a análise de incertezas. Aula 04 Prof. Valner Brusamarello Aula 04 Método de Monte Carlo aplicado a análise de incertezas Aula 04 Prof. Valner Brusamarello Incerteza - GUM O Guia para a Expressão da Incerteza de Medição (GUM) estabelece regras gerais para avaliar

Leia mais

3 ALGORITMOS GENÉTICOS : CONCEITOS BÁSICOS E EXTENSÕES VINCULADAS AO PROBLEMA DE MINIMIZAÇÃO DE PERDAS

3 ALGORITMOS GENÉTICOS : CONCEITOS BÁSICOS E EXTENSÕES VINCULADAS AO PROBLEMA DE MINIMIZAÇÃO DE PERDAS 3 ALGORITMOS GENÉTICOS : CONCEITOS BÁSICOS E EXTENSÕES VINCULADAS AO PROBLEMA DE MINIMIZAÇÃO DE PERDAS 3.1 - Conceitos Básicos Entendemos como algoritmo um conjunto predeterminado e bem definido de regras

Leia mais

DINÂMICA DOS FLUIDOS COMPUTACIONAL. CFD = Computational Fluid Dynamics

DINÂMICA DOS FLUIDOS COMPUTACIONAL. CFD = Computational Fluid Dynamics DINÂMICA DOS FLUIDOS COMPUTACIONAL CFD = Computational Fluid Dynamics 1 Problemas de engenharia Métodos analíticos Métodos experimentais Métodos numéricos 2 Problemas de engenharia FENÔMENO REAL (Observado

Leia mais

Plano Curricular de Matemática 9º ano - 2014 /2015-3º Ciclo

Plano Curricular de Matemática 9º ano - 2014 /2015-3º Ciclo Plano Curricular de Matemática 9º ano - 2014 /2015-3º Ciclo Tema/Subtema Conteúdos Metas Nº de Aulas Previstas Org.Trat.Dados / Planeamento Estatístico Especificação do problema Recolha de dados População

Leia mais

6 O Formalismo Matemático da Mecânica Quântica I

6 O Formalismo Matemático da Mecânica Quântica I 6-1 6 O Formalismo Matemático da Mecânica Quântica I 6.1 Espaços Vetoriais Nesta seção expomos as noções básicas dos espaços vetoriais, pois o formalismo da mecânica quântica se baseia nestes conceitos.

Leia mais

Algoritmos Randomizados: Introdução

Algoritmos Randomizados: Introdução Algoritmos Randomizados: Introdução Celina Figueiredo Guilherme Fonseca Manoel Lemos Vinícius Sá 26º Colóquio Brasileiro de Matemática IMPA Rio de Janeiro Brasil 2007 Resumo Definições Monte Carlo Variáveis

Leia mais

A Otimização Colônia de Formigas

A Otimização Colônia de Formigas A Otimização Colônia de Formigas Estéfane G. M. de Lacerda Departamento de Engenharia da Computação e Automação UFRN 22/04/2008 Índice A Inspiração Biológica O Ant System Aplicado ao PCV O Ant System Aplicado

Leia mais

MODELAGEM E SIMULAÇÃO

MODELAGEM E SIMULAÇÃO MODELAGEM E SIMULAÇÃO Professor: Dr. Edwin B. Mitacc Meza edwin@engenharia-puro.com.br www.engenharia-puro.com.br/edwin Como Funciona a Simulação Introdução Assim como qualquer programa de computador,

Leia mais

1 Introdução 1.1. Motivação e conceitos básicos

1 Introdução 1.1. Motivação e conceitos básicos 1 Introdução 1.1. Motivação e conceitos básicos Uma seguradora ou companhia de seguros, segundo o Dicionário de Seguros, define-se como uma instituição que tem como objetivo indenizar prejuízos involuntários.

Leia mais

Recordamos que Q M n n (R) diz-se ortogonal se Q T Q = I.

Recordamos que Q M n n (R) diz-se ortogonal se Q T Q = I. Diagonalização ortogonal de matrizes simétricas Detalhes sobre a Secção.3 dos Apontamentos das Aulas teóricas de Álgebra Linear Cursos: LMAC, MEBiom e MEFT (semestre, 0/0, Prof. Paulo Pinto) Recordamos

Leia mais

Método Variacional com Monte Carlo aplicado ao oscilador harmônico quântico

Método Variacional com Monte Carlo aplicado ao oscilador harmônico quântico Revista Brasileira de Ensino de Física, v. 28, n. 1, p. 45-50, (2006) www.sbfisica.org.br Método Variacional com Monte Carlo aplicado ao oscilador harmônico quântico (he Monte Carlo variational method

Leia mais

Um modelo evolutivo para a dengue considerando incertezas de fatores ambientais

Um modelo evolutivo para a dengue considerando incertezas de fatores ambientais Um modelo evolutivo para a dengue considerando incertezas de fatores ambientais Luciana T. Gomes, Laécio C. de Barros, Depto de Matemática Aplicada, IMECC, UNICAMP 133-59, Campinas, SP E-mail: ra@ime.unicamp.br,

Leia mais

MDF: Conceitos Básicos e algumas Aplicações na Engenharia Estrutural

MDF: Conceitos Básicos e algumas Aplicações na Engenharia Estrutural Universidade Federal de São João Del-Rei MG 6 a 8 de maio de 00 Associação Brasileira de Métodos Computacionais em Engenharia MDF: Conceitos Básicos e algumas Aplicações na Engenharia Estrutural L. R.

Leia mais

PÓS GRADUAÇÃO EM CIÊNCIAS DE FLORESTAS TROPICAIS-PG-CFT INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA-INPA. 09/abril de 2014

PÓS GRADUAÇÃO EM CIÊNCIAS DE FLORESTAS TROPICAIS-PG-CFT INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA-INPA. 09/abril de 2014 PÓS GRADUAÇÃO EM CIÊNCIAS DE FLORESTAS TROPICAIS-PG-CFT INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA-INPA 09/abril de 2014 Considerações Estatísticas para Planejamento e Publicação 1 Circularidade do Método

Leia mais

2 Atualidade de uma base de dados

2 Atualidade de uma base de dados 2 Atualidade de uma base de dados Manter a atualidade de uma base de dados é um problema que pode ser abordado de diferentes maneiras. Cho e Garcia-Molina [CHO] definem esse problema da seguinte forma:

Leia mais

UM PROBLEMA DE CONTROLE DE ESTOQUE COM IMPERFEITA INFORMAÇÃO E RESTRIÇÕES DE CHANCES

UM PROBLEMA DE CONTROLE DE ESTOQUE COM IMPERFEITA INFORMAÇÃO E RESTRIÇÕES DE CHANCES 7 a 3/9/5, Gramado, RS UM PROBLEMA DE CONTROLE DE ESTOQUE COM MPERFETA NFORMAÇÃO E RESTRÇÕES DE CHANCES O. S. Silva Filho and Wagner Cezarino Centro de Pesquisas Renato Archer Rod. D. Pedro, Km 43,6 38

Leia mais

PLANO DE ENSINO. Mestrado em Matemática - Área de Concentração em Estatística

PLANO DE ENSINO. Mestrado em Matemática - Área de Concentração em Estatística 1. IDENTIFICAÇÃO PLANO DE ENSINO Disciplina: Estatística Multivariada Código: PGMAT568 Pré-Requisito: No. de Créditos: 4 Número de Aulas Teóricas: 60 Práticas: Semestre: 1º Ano: 2015 Turma(s): 01 Professor(a):

Leia mais

Resistência dos concretos produzidos no Brasil

Resistência dos concretos produzidos no Brasil Quantificação de incertezas em engenharia de estruturas Prof. Dr. André T. Beck Universidade de São Paulo / Departamento de Engenharia de Estruturas / atbeck@sc.usp.br Resumo A segurança de estruturas

Leia mais

Método Monte Carlo e a ferramenta do Crystal Ball utilizados na indústria do petróleo: projeções de royalties

Método Monte Carlo e a ferramenta do Crystal Ball utilizados na indústria do petróleo: projeções de royalties Método Monte Carlo e a ferramenta do Crystal Ball utilizados na indústria do petróleo: projeções de royalties JOSÉ OTAVIO DA SILVA, HERNANI A. FERNANDES CHAVES, CLEVELAND M. JONES, FABIANA ADÃO DA SILVA

Leia mais

A distribuição Weibull-Poisson

A distribuição Weibull-Poisson A distribuição Weibull-Poisson Estela Maris P. Bereta - DEs/UFSCar Francisco Louzada-Neto - DEs/UFSCar Maria Aparecida de Paiva Franco - DEs/UFSCar Resumo Neste trabalho é proposta uma distribuição de

Leia mais

1 Descrição do Trabalho

1 Descrição do Trabalho Departamento de Informática - UFES 1 o Trabalho Computacional de Algoritmos Numéricos - 13/2 Métodos de Runge-Kutta e Diferenças Finitas Prof. Andréa Maria Pedrosa Valli Data de entrega: Dia 23 de janeiro

Leia mais

Mesh Editing with Poisson Based Gradient Field Manipulation

Mesh Editing with Poisson Based Gradient Field Manipulation Mesh Editing with Poisson Based Gradient Field Manipulation Yizhou Yu¹ Kun Zhou² Dong Xu²³ Xiaohan Shi²³ Hujun Bao³ Baining Guo² Heung Yeung Shum² ¹ University of Illinois ² Microsoft Research Asia ³ Zhejiang

Leia mais

O QUE É E COMO FUNCIONA O CREDIT SCORING PARTE I

O QUE É E COMO FUNCIONA O CREDIT SCORING PARTE I O QUE É E COMO FUNCIONA O CREDIT SCORING PARTE I! A utilização de escores na avaliação de crédito! Como montar um plano de amostragem para o credit scoring?! Como escolher as variáveis no modelo de credit

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Relatório Perfil Curricular

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Relatório Perfil Curricular PERÍODO: 1º MA026- CALCULO DIFERENCIAL E INTEGRAL 1 OBRIG 60 0 60 4.0 LIMITES E CONTINUIDADE DE FUNÇÕES. DERIVADAS. APLICAÇÕES DA DERIVADA. TEOREMA DE ROLLE, TEOREMA DO VALOR MÉDIO E TEOREMA DO VALOR MÉDIO

Leia mais

CURVA DE GAUSS. Bruno Vaz Hennemann (03) Gabriel Gustavo Ferrarini (10) Murillo Henrique de Mello Peteffi (25) Paulo Renan Schmitt Pereira (26)

CURVA DE GAUSS. Bruno Vaz Hennemann (03) Gabriel Gustavo Ferrarini (10) Murillo Henrique de Mello Peteffi (25) Paulo Renan Schmitt Pereira (26) FUNDAÇÃO ESCOLA TÉCNICA LIBERATO SALZANO VIEIRA DA CUNHA CURSO TÉCNICO EM MECÂNICA PRIMEIRA SÉRIE DO ENSINO MÉDIO Turma 3111 Grupo E Projeto Reconstrução de uma Experiência do MCT-PUC CURVA DE GAUSS Bruno

Leia mais

LCAD. Método dos Elementos Finitos: Aspectos Computacionais e Aplicações Uma Introdução. LCAD - Laboratório de Computação de Alto Desempenho

LCAD. Método dos Elementos Finitos: Aspectos Computacionais e Aplicações Uma Introdução. LCAD - Laboratório de Computação de Alto Desempenho LCAD - Laboratório de Computação de Alto Desempenho LCAD Método dos Elementos Finitos: Aspectos Computacionais e Aplicações Uma Introdução. Lucia Catabriga PPGI e PPGEM - CT/UFES Processo de Solução Fenômeno

Leia mais

Quantificação de Incertezas em Engenharia de Estruturas

Quantificação de Incertezas em Engenharia de Estruturas André T. Beck 1 Resumo A segurança de estruturas e de sistemas estruturais depende iminentemente da quantificação de incertezas nas ações, nas resistências dos materiais e nos modelos de cálculo. Na prática

Leia mais

Geração de variáveis aleatórias

Geração de variáveis aleatórias Geração de variáveis aleatórias Danilo Oliveira, Matheus Torquato Centro de Informática Universidade Federal de Pernambuco 5 de setembro de 2012 Danilo Oliveira, Matheus Torquato () 5 de setembro de 2012

Leia mais

A UTILIZAÇÃO DE FERRAMENTAS COMPUTACIONAIS NO ENSINO DA DISCIPLINA DE ENGENHARIA ECONÔMICA

A UTILIZAÇÃO DE FERRAMENTAS COMPUTACIONAIS NO ENSINO DA DISCIPLINA DE ENGENHARIA ECONÔMICA A UTILIZAÇÃO DE FERRAMENTAS COMPUTACIONAIS NO ENSINO DA DISCIPLINA DE ENGENHARIA ECONÔMICA Álvaro Gehlen de Leão Pontifícia Universidade Católica do Rio Grande do Sul Faculdade de Engenharia Departamento

Leia mais

Utilizando-se as relações entre as funções básicas é possível obter as demais funções de sobrevivência.

Utilizando-se as relações entre as funções básicas é possível obter as demais funções de sobrevivência. MÉTODOS PARAMÉTRICOS PARA A ANÁLISE DE DADOS DE SOBREVIVÊNCIA Nesta abordagem paramétrica, para estimar as funções básicas da análise de sobrevida, assume-se que o tempo de falha T segue uma distribuição

Leia mais

TÍTULO: PROPOSTA DE METODOLOGIA BASEADA EM REDES NEURAIS ARTIFICIAIS MLP PARA A PROTEÇÃO DIFERENCIAL DE TRANSFORMADORES DE POTÊNCIA

TÍTULO: PROPOSTA DE METODOLOGIA BASEADA EM REDES NEURAIS ARTIFICIAIS MLP PARA A PROTEÇÃO DIFERENCIAL DE TRANSFORMADORES DE POTÊNCIA TÍTULO: PROPOSTA DE METODOLOGIA BASEADA EM REDES NEURAIS ARTIFICIAIS MLP PARA A PROTEÇÃO DIFERENCIAL DE TRANSFORMADORES DE POTÊNCIA CATEGORIA: CONCLUÍDO ÁREA: ENGENHARIAS E ARQUITETURA SUBÁREA: ENGENHARIAS

Leia mais

ESTIMATIVA DE VENDAS EM EMPREENDIMENTOS IMOBILIÁRIOS UTILIZANDO SIMULAÇÃO

ESTIMATIVA DE VENDAS EM EMPREENDIMENTOS IMOBILIÁRIOS UTILIZANDO SIMULAÇÃO ESTIMATIVA DE VENDAS EM EMPREENDIMENTOS IMOBILIÁRIOS UTILIZANDO SIMULAÇÃO Pedro Beck Di Bernardi Mestre do Programa de Pós Graduação PPGEC/UFSC. Campus Universitário.Cx Postal 479 Florianópolis - SC CEP

Leia mais

Estimativas de Software Fundamentos, Técnicas e Modelos... e o principal, integrando isso tudo!

Estimativas de Software Fundamentos, Técnicas e Modelos... e o principal, integrando isso tudo! Estimativas de Software Fundamentos, Técnicas e Modelos... e o principal, integrando isso tudo! Como usar de forma consistente PF, COCOMOIl, Simulação de Monte Carlo e seu bom senso em estimativas de software

Leia mais

DISTRIBUIÇÃO NORMAL 1

DISTRIBUIÇÃO NORMAL 1 DISTRIBUIÇÃO NORMAL 1 D ensid ade Introdução Exemplo : Observamos o peso, em kg, de 1500 pessoas adultas selecionadas ao acaso em uma população. O histograma por densidade é o seguinte: 0.04 0.03 0.02

Leia mais

Computabilidade em sistemas dinâmicos

Computabilidade em sistemas dinâmicos 1 Computabilidade em sistemas dinâmicos Daniel da Silva Graça 1,2 1 DM/FCT, Universidade do Algarve, Portugal 2 SQIG, Instituto de Telecomunicações, Portugal 30 de Julho de 2009 2 Introdução Informalmente

Leia mais

Somatórias e produtórias

Somatórias e produtórias Capítulo 8 Somatórias e produtórias 8. Introdução Muitas quantidades importantes em matemática são definidas como a soma de uma quantidade variável de parcelas também variáveis, por exemplo a soma + +

Leia mais

COMO AVALIAR O RISCO DE UM PROJETO ATRAVÉS DA METODOLOGIA DE MONTE CARLO

COMO AVALIAR O RISCO DE UM PROJETO ATRAVÉS DA METODOLOGIA DE MONTE CARLO COMO AVALIAR O RISCO DE UM PROJETO ATRAVÉS DA O que é risco? Quais são os tipos de riscos? Quais são os tipos de análises? Qual a principal função do Excel para gerar simulações aleatórias? O que é distribuição

Leia mais

ICDS12 International Conference DURABLE STRUCTURES: from construction to rehabilitation LNEC Lisbon Portugal 31 May - 1 June 2012 DURABLE STRUCTURES

ICDS12 International Conference DURABLE STRUCTURES: from construction to rehabilitation LNEC Lisbon Portugal 31 May - 1 June 2012 DURABLE STRUCTURES International Conference : from construction to rehabilitation CONCRETE STRUCTURES DURABILITY DESIGN PROBABILISTIC APPROACH Pedro Tourais Pereira; António Costa International Conference : from construction

Leia mais

A ANÁLISE DE RISCO NA AVALIAÇÃO ECONÔMICA DE PROJETOS DE BARRAGENS NO ESTADO DO CEARÁ

A ANÁLISE DE RISCO NA AVALIAÇÃO ECONÔMICA DE PROJETOS DE BARRAGENS NO ESTADO DO CEARÁ A ANÁLISE DE RISCO NA AVALIAÇÃO ECONÔMICA DE PROJETOS DE BARRAGENS NO ESTADO DO CEARÁ Vicente de Paulo Pereira Barbosa Vieira, PhD Ticiana Marinho de Carvalho Studart, MSc AVALIAÇÃO ECONÔMICA E FINANCEIRA

Leia mais

Previsão por Conjunto Josiane Ferreira Bustamante

Previsão por Conjunto Josiane Ferreira Bustamante III Workshop Latino-Americano em Modelagem de Tempo e Clima Utilizando o Modelo Regional Eta Aspectos Físicos e Numéricos Previsão por Conjunto Josiane Ferreira Bustamante 25-29 de outubro de 2010 Cachoeira

Leia mais

Conceitos Iniciais Parte 1

Conceitos Iniciais Parte 1 Módulo SIMULAÇÃO Conceitos Iniciais Parte O que pode ser simulado? Sistema de manufatura com máquinas, pessoas, rede de transporte, correias transportadoras e espaço para armazenamento; Agências bancárias

Leia mais

QUANTIFICAÇÃO DE INCERTEZAS NÃO PARAMÉTRICAS EM MODELOS ESTRUTURAIS DINÂMICOS

QUANTIFICAÇÃO DE INCERTEZAS NÃO PARAMÉTRICAS EM MODELOS ESTRUTURAIS DINÂMICOS UNIVERSIDADE FEDERAL DE ITAJUBÁ INSTITUTO DE ENGENHARIA MECÂNICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA DISSERTAÇÃO DE MESTRADO QUANTIFICAÇÃO DE INCERTEZAS NÃO PARAMÉTRICAS EM MODELOS ESTRUTURAIS

Leia mais

MOQ-13 Probabilidade e Estatística

MOQ-13 Probabilidade e Estatística Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica MOQ-13 Probabilidade e Estatística Profa. Denise Beatriz Ferrari www.mec.ita.br/ denise denise@ita.br Motivação Idéias Básicas

Leia mais

Gestão da Produção Variabilidade das operações Filas de espera

Gestão da Produção Variabilidade das operações Filas de espera Variabilidade das operações Filas de espera José Cruz Filipe IST / ISCTE / EGP JCFilipe Abril 26 Tópicos Variabilidade dos fluxos Teoria clássica das filas de espera Medidas de desempenho das filas de

Leia mais