2. Método de Monte Carlo

Tamanho: px
Começar a partir da página:

Download "2. Método de Monte Carlo"

Transcrição

1 2. Método de Monte Carlo O método de Monte Carlo é uma denominação genérica tendo em comum o uso de variáveis aleatórias para resolver, via simulação numérica, uma variada gama de problemas matemáticos. Monte Carlo é uma localidade de Mônaco (figura 2.1), cidade estado encravada no sul da França conhecida pelos cassinos e os jogos de azar, que são exemplos típicos de sorteios cujos resultados são números ou eventos aleatórios. Figura 2.1: Mônaco, cidade estado famosa pelos cassinos. O método popularizou-se com os computadores modernos e os programas geradores de números aleatórios. Na realidade são denominados números pseudoaleatórios, uma vez que são gerados por algoritmos numéricos, sequencialmente, a partir de um número inicial, resultando numa distribuição uniforme de números entre 0 e 1, inclusive, e que devem satisfazer a critérios de aleatoriedade. Figura 2.2: Mapa da região onde se localiza o principado de Mônaco. Números aleatórios verdadeiros são difíceis de serem obtidos em grande quantidade, razão pela qual se recorre aos números pseudoaleatórios gerados por 3

2 computadores (os computadores são sistemas determinísticos e, portanto, incapazes de gerar números aleatórios verdadeiros.). Como cada número gerado depende do anterior através de um algoritmo específico, a distribuição resultante pode estar sujeito à periodicidades, resultando numa distribuição de má qualidade. No entanto, por melhor que seja o algoritmo, após todos os possíveis números, dentro de uma determinada precisão, terem sido sorteados, a sequência irá se repetir. Figura 2.3: Mapa da região onde se localiza principado de Mônaco, recortada.. Para exemplificar o tipo de aplicações do método de Monte Carlo, considere que se queira determinar a área ocupada pelo principado de Mônaco (figura 2.2). Uma técnica antiga consiste em recortar o mapa (figura 2.3) e determinar o peso relativo da área recortada (figura 2.4). Figura 2.4: Para ilustrar a aplicação do método de Monte Carlo, é feito o lançamento de 1000 pontos uniformemente distribuídos dos quais 110, marcados em vermelho, atingem a região do principado, resultando na estimativa de 11% da superfície ocupada pelo principado de Mônaco. A relação de pesos da região recortada e da região total do mapa deve ser a mesma da relação entre as áreas. 4

3 Pelo método de Monte Carlo, pontos são lançados, aleatoriamente, sobre toda a região retangular, com a contagem dos pontos que caem sobre o principado de Mônaco (figura 2.4). A relação entre o número de pontos sobre o principado e o número total de pontos fornece a estimativa da superfície ocupada pelo principado. No exemplo foram lançados um total de 1000 pontos dos quais 110, marcados em vermelho, caíram sobre o principado, resultando na relação de áreas correspondente a 0,11, isto é, a área do principado corresponde a 11% da área total considerada. Quanto maior o número total de pontos lançados melhor será o resultado. Em geral os cálculos baseados em Monte Carlo convergem lentamente com o aumento do número de pontos utilizados, sendo um método adequado para casos em que a precisão não seja um fator limitante. 2.1 Números e variáveis aleatórios Quando se joga um dado, qualquer número pertencente ao conjunto de números inteiros de 1 a 6 pode ser sorteado com probabilidades iguais, em princípio. O resultado é um número aleatório. De maneira similar, quaisquer números sorteados usando roletas ou outros instrumentos similares cujo objetivo é escolher ao acaso um número dentre um conjunto de números pré-definido são números aleatórios, ou variáveis aleatórias se utilizados como argumentos de funções. Como os processos mecânicos são lentos, nos computadores são usados geradores que, baseados em algoritmos matemáticos, simulam sorteios de números aleatórios, mais apropriadamente denominados números pseudoaleatórios. Os geradores de números aleatórios (a partir daqui não se fará mais distinção entre números pseudoaleatórios e aleatórios) baseados em computadores usualmente produzem números uniformemente distribuídos dentro do intervalo 0,1. Para obter uma distribuição de probabilidades mais geral () definida num intervalo, e com normalização pode-se usar a integral ()=1, (2.1) = () (2.2) para R uma variável aleatória uniformemente distribuída no intervalo 0,1 relacionada com a variável aleatória X com distribuição () no intervalo,. Uma aplicação simples é para uma distribuição uniforme no intervalo,, que resulta na transformação linear ()= 1 correspondente a uma simples mudança de escala. Outro caso simples é a distribuição exponencial definida na semi-reta 0<<. A integral (2.2) resulta, (2.3) ()=( )+ (2.4) ()= (2.5) 5

4 ()= (1 ), (2.6) as novas variáveis X(R) distribuídas exponencialmente na semi-reta 0<<. Assim, nos dois exemplos acima, a distribuição uniforme das variáveis aleatórias R no intervalo 0,1 podem ser convertidas nas distribuições desejadas. A figura (2.5) ilustra a distribuição exponencial na faixa abaixo da função exponencial. Figura 2.5: Gráfico da função de distribuição exponencial e, abaixo, a distribuição obtida com o lançamento de 3000 pontos. Em geral não é possível obter a expressão analítica da integral (2.2), e a conversão da variável aleatória uniformemente distribuída R para a variável X com distribuição () não é uma questão trivial, devendo-se recorrer a procedimentos numéricos. 2.2 Técnica de rejeição de Neumann A técnica de rejeição de Neumann permite obter variáveis aleatórias X com distribuição p(x) no intervalo, a partir das variáveis aleatórias R uniformemente distribuídas no intervalo 0,1. Baseia-se em testes repetitivos que podem ser resumidos a dois passos: 1 - Gere um primeiro número aleatório uniformemente distribuído no intervalo 0,1 e converta-o para outro número aleatório uniformemente distribuído no intervalo,. Se o sistema depender de mais de uma variável, o procedimento deve ser repetido para cada uma das variáveis. 2 - Gere um segundo número aleatório uniformemente distribuído no intervalo 0,1 e cheque a relação de desigualdade <( ), (2.7) onde é o máximo absoluto da distribuição (). Se a relação for verdadeira, será uma variável aleatória com a distribuição desejada. Se for falsa, rejeite o par (, ) e retorne ao passo inicial. O procedimento deve ser repetido até obter um número estatisticamente significativo de variáveis aleatórias. Na realidade, a condição (2.7) pode ser relaxada para <( ) (2.8) 6

5 para qualquer >, pois nem sempre é possível computar o valor exato do máximo absoluto da distribuição. A consequência é aumentar o número de pontos a serem testados e eliminados durante o processo de seleção, aumentando o tempo de computação. A figura 2.6 ilustra o procedimento de seleção de Neumann tomando como exemplo a distribuição radial ()= () (2.9) do nível ()=(30) do átomo de hidrogênio, cuja função radial é ()= /( ). (2.10) (a) (b) (c) Figura 2.6: No quadro (a), o gráfico da distribuição. Em (b) uma amostra inicial de 3000 pontos uniformemente distribuída na região retangular limitada acima pela reta horizontal azul. Em (c) aparecem os pontos selecionados, 930 neste caso. O objetivo da técnica de rejeição de Neumann é eliminar todos os pontos acima da distribuição () testando a condição (2.7) ou (2.8) para todos os pontos da distribuição inicial uniforme. O conjunto dos pontos aceitos, mostrados na figura (2.6), quadro (c), tem a distribuição desejada, como mostra a projeção dos pontos selecionados sobre a superfície retangular, na figura (2.7). Figura 2.7: Distribuição dos pontos selecionados coletados na área retangular. 7

O método de Monte Carlo: algumas aplicações na Escola Básica

O método de Monte Carlo: algumas aplicações na Escola Básica 1 Universidade de São Paulo/Faculdade de Educação Seminários de Ensino de Matemática (SEMA-FEUSP) Coordenador: Nílson José Machado novembro/2009 O método de Monte Carlo: algumas aplicações na Escola Básica

Leia mais

3 Método de Monte Carlo

3 Método de Monte Carlo 25 3 Método de Monte Carlo 3.1 Definição Em 1946 o matemático Stanislaw Ulam durante um jogo de paciência tentou calcular as probabilidades de sucesso de uma determinada jogada utilizando a tradicional

Leia mais

4 Orbitais do Átomo de Hidrogênio

4 Orbitais do Átomo de Hidrogênio 4 Orbitais do Átomo de Hidrogênio A aplicação mais intuitiva e que foi a motivação inicial para desenvolver essa técnica é a representação dos orbitais do átomo de hidrogênio que, desde então, tem servido

Leia mais

Simulação Estocástica

Simulação Estocástica Simulação Estocástica O que é Simulação Estocástica? Simulação: ato ou efeito de simular Disfarce, fingimento,... Experiência ou ensaio realizado com o auxílio de modelos. Aleatório: dependente de circunstâncias

Leia mais

Método Monte-Carlo. Alexandre Rosas. 23 de Março de 2009. Departamento de Física Universidade Federal da Paraíba

Método Monte-Carlo. Alexandre Rosas. 23 de Março de 2009. Departamento de Física Universidade Federal da Paraíba Departamento de Física Universidade Federal da Paraíba 23 de Março de 2009 O que são os métodos de Monte-Carlo? Métodos numéricos que utilizam amostragem estatística (em contraposição a métodos determinísticos)

Leia mais

Avaliação de Desempenho

Avaliação de Desempenho Avaliação de Desempenho Aulas passadas Modelagem de sistemas via cadeias de Markov Aula de hoje Introdução à simulação Gerando números pseudo-aleatórios 1 O Ciclo de Modelagem Sistema real Criação do Modelo

Leia mais

Pesquisa Operacional

Pesquisa Operacional GOVERNO DO ESTADO DO PARÁ UNIVERSIDADE DO ESTADO DO PARÁ CENTRO DE CIÊNCIAS NATURAIS E TECNOLOGIA DEPARTAMENTO DE ENGENHARIA Pesquisa Operacional Tópico 4 Simulação Rosana Cavalcante de Oliveira, Msc rosanacavalcante@gmail.com

Leia mais

UNIVERSIDADE DE SÃO PAULO. Faculdade de Arquitetura e Urbanismo

UNIVERSIDADE DE SÃO PAULO. Faculdade de Arquitetura e Urbanismo UNIVERSIDADE DE SÃO PAULO Faculdade de Arquitetura e Urbanismo DISTRIBUIÇÃO AMOSTRAL ESTIMAÇÃO AUT 516 Estatística Aplicada a Arquitetura e Urbanismo 2 DISTRIBUIÇÃO AMOSTRAL Na aula anterior analisamos

Leia mais

Seminário de Dinâmica Orbital I

Seminário de Dinâmica Orbital I Seminário de Dinâmica Orbital I Métodos de Monte Carlo Alunos Carlos H. G. Hassmann Álvaro de A Arraes Prof. - Mário C. Ricci Sumário -Introdução -Breve Histórico -Definição -Utilização -O método -Componentes

Leia mais

Geração de Números Aleatórios e Simulação

Geração de Números Aleatórios e Simulação Departamento de Informática Geração de Números Aleatórios e imulação Métodos Quantitativos LEI 26/27 usana Nascimento (snt@di.fct.unl.pt) Advertência Autores João Moura Pires (jmp@di.fct.unl.pt) usana

Leia mais

MODELO DE AVALIAÇÃO EM PROJETOS DE INVESTIMENTO DE CAPITAL

MODELO DE AVALIAÇÃO EM PROJETOS DE INVESTIMENTO DE CAPITAL MODELO DE AVALIAÇÃO EM PROJETOS DE INVESTIMENTO DE CAPITAL Marcelo Maciel Monteiro Universidade Federal Fluminense, Engenharia de Produção Rua Martins Torres 296, Santa Rosa, Niterói, RJ, Cep 24240-700

Leia mais

Modelamento e simulação de processos

Modelamento e simulação de processos Modelamento e simulação de processos 4. Método de Monte Carlo Prof. Dr. André Carlos Silva 1. INTRODUÇÃO O Método de Monte Carlo (MMC) é um método estatístico utilizado em simulações estocásticas com diversas

Leia mais

Introdução. Métodos de inferência são usados para tirar conclusões sobre a população usando informações obtidas a partir de uma amostra.

Introdução. Métodos de inferência são usados para tirar conclusões sobre a população usando informações obtidas a partir de uma amostra. Métodos Monte Carlo Introdução Métodos de inferência são usados para tirar conclusões sobre a população usando informações obtidas a partir de uma amostra. Estimativas pontuais e intervalares para os parâmetros;

Leia mais

Empresa de Pesquisa Energética (EPE) 2014. Analista de Projetos da Geração de Energia

Empresa de Pesquisa Energética (EPE) 2014. Analista de Projetos da Geração de Energia Empresa de Pesquisa Energética (EPE) 2014 Analista de Projetos da Geração de Energia Oi, pessoal! Vou resolver as quatro questões de Estatística (53 a 56) da prova elaborada pela banca Cesgranrio para

Leia mais

Aula 04 Método de Monte Carlo aplicado a análise de incertezas. Aula 04 Prof. Valner Brusamarello

Aula 04 Método de Monte Carlo aplicado a análise de incertezas. Aula 04 Prof. Valner Brusamarello Aula 04 Método de Monte Carlo aplicado a análise de incertezas Aula 04 Prof. Valner Brusamarello Incerteza - GUM O Guia para a Expressão da Incerteza de Medição (GUM) estabelece regras gerais para avaliar

Leia mais

O trabalho pioneiro nesta área remonta a Ulam, que o teria inventado em 1946 ao estudar as possibilidades de ganhar no jogo de cartas Solitário.

O trabalho pioneiro nesta área remonta a Ulam, que o teria inventado em 1946 ao estudar as possibilidades de ganhar no jogo de cartas Solitário. Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.ufrgs.br/~viali/ Números aleatórios (NA) são elementos básicos necessários na simulação de quase todos os sistemas discretos. Eles podem ser utilizados

Leia mais

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA (CAp/UERJ) MATEMÁTICA ENSINO MÉDIO - PROF. ILYDIO SÁ CÁLCULO DE PROBABILIDADES PARTE 1

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA (CAp/UERJ) MATEMÁTICA ENSINO MÉDIO - PROF. ILYDIO SÁ CÁLCULO DE PROBABILIDADES PARTE 1 1 INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA (CAp/UERJ) MATEMÁTICA ENSINO MÉDIO - PROF. ILYDIO SÁ CÁLCULO DE PROBABILIDADES PARTE 1 1. Origem histórica É possível quantificar o acaso? Para iniciar,

Leia mais

Métodos de Monte Carlo

Métodos de Monte Carlo Departamento de Estatística - UFJF Outubro e Novembro de 2014 são métodos de simulação São utilizados quando não temos uma forma fechada para resolver o problema Muito populares em Estatística, Matemática,

Leia mais

Primeira Lista de Exercícios de Estatística

Primeira Lista de Exercícios de Estatística Primeira Lista de Exercícios de Estatística Professor Marcelo Fernandes Monitor: Márcio Salvato 1. Suponha que o universo seja formado pelos naturais de 1 a 10. Sejam A = {2, 3, 4}, B = {3, 4, 5}, C =

Leia mais

Complemento IV Introdução aos Algoritmos Genéticos

Complemento IV Introdução aos Algoritmos Genéticos Complemento IV Introdução aos Algoritmos Genéticos Esse documento é parte integrante do material fornecido pela WEB para a 2ª edição do livro Data Mining: Conceitos, técnicas, algoritmos, orientações e

Leia mais

Modelo de distribuição de probabilidade para o número de bolas chamadas até que alguém bata em um bingo Convencional

Modelo de distribuição de probabilidade para o número de bolas chamadas até que alguém bata em um bingo Convencional Modelo de distribuição de probabilidade para o número de bolas chamadas até que alguém bata em um bingo Convencional Pedro Ferreira de Lima 1 Cícero Carlos Felix de Oliveira 2 Dr. Cláudio Tadeu Cristiano

Leia mais

Geração de variáveis aleatórias

Geração de variáveis aleatórias Geração de variáveis aleatórias Danilo Oliveira, Matheus Torquato Centro de Informática Universidade Federal de Pernambuco 5 de setembro de 2012 Danilo Oliveira, Matheus Torquato () 5 de setembro de 2012

Leia mais

Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti. Distribuição Normal

Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti. Distribuição Normal Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti Distribuição Normal 1. Introdução O mundo é normal! Acredite se quiser! Muitos dos fenômenos aleatórios que encontramos na

Leia mais

COMO AVALIAR O RISCO DE UM PROJETO ATRAVÉS DA METODOLOGIA DE MONTE CARLO

COMO AVALIAR O RISCO DE UM PROJETO ATRAVÉS DA METODOLOGIA DE MONTE CARLO COMO AVALIAR O RISCO DE UM PROJETO ATRAVÉS DA O que é risco? Quais são os tipos de riscos? Quais são os tipos de análises? Qual a principal função do Excel para gerar simulações aleatórias? O que é distribuição

Leia mais

Métodos Estatísticos II 1 o. Semestre de 2010 ExercíciosProgramados1e2 VersãoparaoTutor Profa. Ana Maria Farias (UFF)

Métodos Estatísticos II 1 o. Semestre de 2010 ExercíciosProgramados1e2 VersãoparaoTutor Profa. Ana Maria Farias (UFF) Métodos Estatísticos II 1 o. Semestre de 010 ExercíciosProgramados1e VersãoparaoTutor Profa. Ana Maria Farias (UFF) Esses exercícios abrangem a matéria das primeiras semanas de aula (Aula 1) Os alunos

Leia mais

PROBABILIDADE. Aula 5

PROBABILIDADE. Aula 5 Curso: Psicologia Disciplina: Métodos Quantitativos Profa. Valdinéia Data: 28/10/15 PROBABILIDADE Aula 5 Geralmente a cada experimento aparecem vários resultados possíveis. Por exemplo ao jogar uma moeda,

Leia mais

O QUE É E COMO FUNCIONA O CREDIT SCORING PARTE I

O QUE É E COMO FUNCIONA O CREDIT SCORING PARTE I O QUE É E COMO FUNCIONA O CREDIT SCORING PARTE I! A utilização de escores na avaliação de crédito! Como montar um plano de amostragem para o credit scoring?! Como escolher as variáveis no modelo de credit

Leia mais

USANDO O MÉTODO DE MONTE CARLO PARA ENCONTRAR RAÍZES DE EQUAÇÕES

USANDO O MÉTODO DE MONTE CARLO PARA ENCONTRAR RAÍZES DE EQUAÇÕES USANDO O MÉTODO DE MONTE CARLO PARA ENCONTRAR RAÍZES DE EQUAÇÕES Antônio Carlos da Silva Filho (Uni-FACEF) Faiano Guasti Lima (USP) 1 INTRODUÇÃO Um dos principais prolemas no cálculo numérico refere-se

Leia mais

Noções de Pesquisa e Amostragem. André C. R. Martins

Noções de Pesquisa e Amostragem. André C. R. Martins Noções de Pesquisa e Amostragem André C. R. Martins 1 Bibliografia Silva, N. N., Amostragem probabilística, EDUSP. Freedman, D., Pisani, R. e Purves, R., Statistics, Norton. Tamhane, A. C., Dunlop, D.

Leia mais

ALGUNS TóPICOS DE CONTAGEM E PROBABILIDADE

ALGUNS TóPICOS DE CONTAGEM E PROBABILIDADE ALGUNS TóPICOS DE CONTAGEM E PROBABILIDADE MAT30 200/ O objetivo destas notas é ilustrar como a ideia de fazer aproximações permite uma compreensão melhor de diversos problemas de combinatória e probabilidade..

Leia mais

Estatística e Probabilidade. Aula 4 Cap 03. Probabilidade

Estatística e Probabilidade. Aula 4 Cap 03. Probabilidade Estatística e Probabilidade Aula 4 Cap 03 Probabilidade Estatística e Probabilidade Método Estatístico Estatística Descritiva Estatística Inferencial Nesta aula... aprenderemos como usar informações para

Leia mais

Fernando Henrique Ferraz Pereira da Rosa Matheus Moreira Costa Tiago Luiz Tortella Vagner Aparecido Junior

Fernando Henrique Ferraz Pereira da Rosa Matheus Moreira Costa Tiago Luiz Tortella Vagner Aparecido Junior Métodos de Monte Carlo e Aproximações de π Fernando Henrique Ferraz Pereira da Rosa Matheus Moreira Costa Tiago Luiz Tortella Vagner Aparecido Junior MAP-131 Laboratório de Matemática Aplicada Prof. Dr.

Leia mais

6 Construção de Cenários

6 Construção de Cenários 6 Construção de Cenários Neste capítulo será mostrada a metodologia utilizada para mensuração dos parâmetros estocásticos (ou incertos) e construção dos cenários com respectivas probabilidades de ocorrência.

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Introdução a Probabilidade Existem dois tipos

Leia mais

Métodos Quantitativos. aula 3

Métodos Quantitativos. aula 3 Métodos Quantitativos aula 3 Prof. Dr. Marco Antonio Insper Ibmec São Paulo Simulação Empresarial Auxílio na tomada de decisão. Criação de cenários otimistas e pessimistas. Poder de previsão baseada em

Leia mais

Modelagens e Gerenciamento de riscos (Simulação Monte Carlo)

Modelagens e Gerenciamento de riscos (Simulação Monte Carlo) Modelagens e Gerenciamento de riscos (Simulação Monte Carlo) Prof. Esp. João Carlos Hipólito e-mail: jchbn@hotmail.com Sobre o professor: Contador; Professor da Faculdade de Ciências Aplicadas e Sociais

Leia mais

As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem:

As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem: 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia. Introdução O Cálculo Numérico

Leia mais

Aula 1 Representação e Operações Aritméticas em Ponto Flutuante.

Aula 1 Representação e Operações Aritméticas em Ponto Flutuante. Aula 1 Representação e Operações Aritméticas em Ponto Flutuante. MS211 - Cálculo Numérico Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica

Leia mais

Cláudio Tadeu Cristino 1. Julho, 2014

Cláudio Tadeu Cristino 1. Julho, 2014 Inferência Estatística Estimação Cláudio Tadeu Cristino 1 1 Universidade Federal de Pernambuco, Recife, Brasil Mestrado em Nutrição, Atividade Física e Plasticidade Fenotípica Julho, 2014 C.T.Cristino

Leia mais

Guia do professor. Ministério da Ciência e Tecnologia. Ministério da Educação. Secretaria de Educação a Distância.

Guia do professor. Ministério da Ciência e Tecnologia. Ministério da Educação. Secretaria de Educação a Distância. números e funções Guia do professor Objetivos da unidade 1. Analisar representação gráfica de dados estatísticos; 2. Familiarizar o aluno com gráfico de Box Plot e análise estatística bivariada; 3. Utilizar

Leia mais

Simulação Transiente

Simulação Transiente Tópicos Avançados em Avaliação de Desempenho de Sistemas Professores: Paulo Maciel Ricardo Massa Alunos: Jackson Nunes Marco Eugênio Araújo Dezembro de 2014 1 Sumário O que é Simulação? Áreas de Aplicação

Leia mais

Probabilidade. Distribuição Exponencial

Probabilidade. Distribuição Exponencial Probabilidade Distribuição Exponencial Aplicação Aplicada nos casos onde queremos analisar o espaço ou intervalo de acontecimento de um evento; Na distribuição de Poisson estimativa da quantidade de eventos

Leia mais

CI202 - Métodos Numéricos

CI202 - Métodos Numéricos CI202 - Métodos Numéricos Lista de Exercícios 2 Zeros de Funções Obs.: as funções sen(x) e cos(x) devem ser calculadas em radianos. 1. Em geral, os métodos numéricos para encontrar zeros de funções possuem

Leia mais

Otimização de Funções Não Lineares por Meio do Algoritmo Árvore da Montanha

Otimização de Funções Não Lineares por Meio do Algoritmo Árvore da Montanha Otimização de Funções Não Lineares por Meio do Algoritmo Árvore da Montanha Amarildo de Vicente Colegiado do Curso de Matemática Centro de Ciências Exatas e Tecnológicas da Universidade Estadual do Oeste

Leia mais

TEORIA DO RISCO. LUIZ SANTOS / MAICKEL BATISTA economia.prof.luiz@hotmail.com maickel_ewerson@hotmail.com

TEORIA DO RISCO. LUIZ SANTOS / MAICKEL BATISTA economia.prof.luiz@hotmail.com maickel_ewerson@hotmail.com TEORIA DO RISCO LUIZ SANTOS / MAICKEL BATISTA economia.prof.luiz@hotmail.com maickel_ewerson@hotmail.com 1 TARIFAÇÃO (FERREIRA, 2002) Diversos conceitos e metodologias envolvidos no cálculo do preço pago

Leia mais

Probabilidade. Distribuição Normal

Probabilidade. Distribuição Normal Probabilidade Distribuição Normal Distribuição Normal Uma variável aleatória contínua tem uma distribuição normal se sua distribuição é: simétrica apresenta (num gráfico) forma de um sino Função Densidade

Leia mais

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Teoria de Erros

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Teoria de Erros Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Lic. Eng. Biomédica e Bioengenharia-2009/2010 O que é a Análise Numérica? Ramo da Matemática dedicado ao estudo e desenvolvimento de métodos (métodos

Leia mais

Algoritmos Randomizados: Introdução

Algoritmos Randomizados: Introdução Algoritmos Randomizados: Introdução Celina Figueiredo Guilherme Fonseca Manoel Lemos Vinícius Sá 26º Colóquio Brasileiro de Matemática IMPA Rio de Janeiro Brasil 2007 Resumo Definições Monte Carlo Variáveis

Leia mais

CAP4: Distribuições Contínuas Parte 1 Distribuição Normal

CAP4: Distribuições Contínuas Parte 1 Distribuição Normal CAP4: Distribuições Contínuas Parte 1 Distribuição Normal Quando a variável sendo medida é expressa em uma escala contínua, sua distribuição de probabilidade é chamada distribuição contínua. Exemplo 4.1

Leia mais

MODELAGEM E SIMULAÇÃO

MODELAGEM E SIMULAÇÃO MODELAGEM E SIMULAÇÃO Professor: Dr. Edwin B. Mitacc Meza edwin@engenharia-puro.com.br www.engenharia-puro.com.br/edwin Como Funciona a Simulação Introdução Assim como qualquer programa de computador,

Leia mais

GERAÇÃO DE NÚMEROS ALEATÓRIOS A PARTIR DE MAPAS CAÓTICOS DETERMINISTAS

GERAÇÃO DE NÚMEROS ALEATÓRIOS A PARTIR DE MAPAS CAÓTICOS DETERMINISTAS 66 GERAÇÃO DE NÚMEROS ALEATÓRIOS A PARTIR DE MAPAS CAÓTICOS DETERMINISTAS Antônio Carlos da Silva Filho (UNI-Facef) Irfley Andrade de Oliveira (UNI-Facef) Marco Dimas Gubitoso (IME-USP) INTRODUÇÃO As origens

Leia mais

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - EPPGG

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - EPPGG Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-010 - EPPGG 11. Em uma caixa há 1 bolas de mesmo tamanho: 3 brancas, 4 vermelhas e 5 pretas. Uma pessoa, no escuro, deve retirar n bolas

Leia mais

Raciocínio Lógico Exercícios. Prof. Pacher A B P(A B) P(A/B) = P(B) n(a) P(A) = n(s) PROBABILIDADE DECORRÊNCIA DA DEFINIÇÃO

Raciocínio Lógico Exercícios. Prof. Pacher A B P(A B) P(A/B) = P(B) n(a) P(A) = n(s) PROBABILIDADE DECORRÊNCIA DA DEFINIÇÃO PROBBILIDDE Introdução teoria da probabilidade é o ramo da matemática que cria, desenvolve e em geral pesquisa modelos que podem ser utilizados para estudar experimentos aleatórios ou não determinísticos.

Leia mais

A probabilidade representa o resultado obtido através do cálculo da intensidade de ocorrência de um determinado evento.

A probabilidade representa o resultado obtido através do cálculo da intensidade de ocorrência de um determinado evento. Probabilidade A probabilidade estuda o risco e a ocorrência de eventos futuros determinando se existe condição de acontecimento ou não. O olhar da probabilidade iniciou-se em jogos de azar (dados, moedas,

Leia mais

Distribuição Binomial

Distribuição Binomial Distribuição Binomial Exemplo Na manufatura de certo artigo, é sabido que um entre dez artigos é defeituoso. Qual a probabilidade de que uma amostra casual de tamanho quatro contenha: (a) Nenhum defeituoso?

Leia mais

Introdução à Simulação

Introdução à Simulação Introdução à Simulação O que é simulação? Wikipedia: Simulação é a imitação de alguma coisa real ou processo. O ato de simular algo geralmente consiste em representar certas características e/ou comportamentos

Leia mais

3ª Lista de Exercícios Representação de dados com agregados: Arrays e Matrizes

3ª Lista de Exercícios Representação de dados com agregados: Arrays e Matrizes 1 Universidade Federal Fluminense Instituto de Computação Departamento de Ciência da Computação Programação de Computadores II Professores: Leandro A. F. Fernandes, Marcos Lage, Pedro Velloso 3ª Lista

Leia mais

INF 1771 Inteligência Artificial

INF 1771 Inteligência Artificial Edirlei Soares de Lima INF 1771 Inteligência Artificial Aula 04 Algoritmos Genéticos Introdução Algoritmos genéticos são bons para abordar espaços de buscas muito grandes e navegálos

Leia mais

DISTRIBUIÇÃO NORMAL 1

DISTRIBUIÇÃO NORMAL 1 DISTRIBUIÇÃO NORMAL 1 D ensid ade Introdução Exemplo : Observamos o peso, em kg, de 1500 pessoas adultas selecionadas ao acaso em uma população. O histograma por densidade é o seguinte: 0.04 0.03 0.02

Leia mais

Jardim de Números. Série Matemática na Escola

Jardim de Números. Série Matemática na Escola Jardim de Números Série Matemática na Escola Objetivos 1. Introduzir plano cartesiano; 2. Marcar pontos e traçar objetos geométricos simples em um plano cartesiano. Jardim de Números Série Matemática na

Leia mais

Figura 5.1.Modelo não linear de um neurônio j da camada k+1. Fonte: HAYKIN, 2001

Figura 5.1.Modelo não linear de um neurônio j da camada k+1. Fonte: HAYKIN, 2001 47 5 Redes Neurais O trabalho em redes neurais artificiais, usualmente denominadas redes neurais ou RNA, tem sido motivado desde o começo pelo reconhecimento de que o cérebro humano processa informações

Leia mais

Distribuições de Probabilidade Distribuição Normal

Distribuições de Probabilidade Distribuição Normal PROBABILIDADES Distribuições de Probabilidade Distribuição Normal BERTOLO PRELIMINARES Quando aplicamos a Estatística na resolução de situações-problema, verificamos que muitas delas apresentam as mesmas

Leia mais

BCC202 - Estrutura de Dados I

BCC202 - Estrutura de Dados I BCC202 - Estrutura de Dados I Aula 04: Análise de Algoritmos (Parte 1) Reinaldo Fortes Universidade Federal de Ouro Preto, UFOP Departamento de Ciência da Computação, DECOM Website: www.decom.ufop.br/reifortes

Leia mais

Cadeias de Markov. Geovany A. Borges gaborges@ene.unb.br

Cadeias de Markov. Geovany A. Borges gaborges@ene.unb.br 36341 - Introdução aos Processos Estocásticos Curso de Pós-Graduação em Engenharia Elétrica Departamento de Engenharia Elétrica Universidade de Brasília Cadeias de Markov Geovany A. Borges gaborges@ene.unb.br

Leia mais

LISTA DE EXEMPLOS - PROBABILIDADE

LISTA DE EXEMPLOS - PROBABILIDADE LISTA DE EXEMPLOS - PROBABILIDADE EXEMPLO 1 CONVERTENDO UM ARREMESSO LIVRE Ache a probabilidade de que o jogador de basquete da NBA, Reggie Miller, converta um arremesso livre depois de sofrer uma falta.

Leia mais

CÁLCULO DE ZEROS DE FUNÇÕES REAIS

CÁLCULO DE ZEROS DE FUNÇÕES REAIS 15 CÁLCULO DE ZEROS DE FUNÇÕES REAIS Um dos problemas que ocorrem mais frequentemente em trabalhos científicos é calcular as raízes de equações da forma: f() = 0. A função f() pode ser um polinômio em

Leia mais

DISTRIBUIÇÃO DE WEIBULL CONCEITOS BÁSICOS APLICAÇÕES

DISTRIBUIÇÃO DE WEIBULL CONCEITOS BÁSICOS APLICAÇÕES LUIZ CLAUDIO BENCK KEVIN WONG TAMARA CANDIDO DISTRIBUIÇÃO DE WEIBULL CONCEITOS BÁSICOS APLICAÇÕES Trabalho apresentado para avaliação na disciplina de Estatística e Métodos Numéricos do Curso de Administração

Leia mais

ESTATÍSTICA. Professor: Ricardo Vojta

ESTATÍSTICA. Professor: Ricardo Vojta ESTATÍSTICA Ciências Contábeis Professor: Ricardo Vojta RAMOS DA ESTATÍSTICA A estatística dedutiva (também conhecida como Estatística Descritiva) se encarrega de descrever o conjunto de dado desde a elaboração

Leia mais

MAT 461 Tópicos de Matemática II Aula 3: Resumo de Probabilidade

MAT 461 Tópicos de Matemática II Aula 3: Resumo de Probabilidade MAT 461 Tópicos de Matemática II Aula 3: Resumo de Probabilidade Edson de Faria Departamento de Matemática IME-USP 19 de Agosto, 2013 Probabilidade: uma Introdução / Aula 3 1 Probabilidade Discreta: Exemplos

Leia mais

Aula 03 Limite assintótico para a ordenação, Ordenação em tempo linear

Aula 03 Limite assintótico para a ordenação, Ordenação em tempo linear MC3305 Algoritmos e Estruturas de Dados II Aula 03 Limite assintótico para a ordenação, Ordenação em tempo linear Prof. Jesús P. Mena-Chalco jesus.mena@ufabc.edu.br 2Q-2015 1 2 Ordenação Ordenar corresponde

Leia mais

computador-cálculo numérico perfeita. As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem:

computador-cálculo numérico perfeita. As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem: 1 UNIVERSIDADE FEDERAL DE VIÇOSA Departamento de Matemática - CCE Cálculo Numérico - MAT 271 Prof.: Valéria Mattos da Rosa As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia

Leia mais

MÓDULO 6 INTRODUÇÃO À PROBABILIDADE

MÓDULO 6 INTRODUÇÃO À PROBABILIDADE MÓDULO 6 INTRODUÇÃO À PROBBILIDDE Quando estudamos algum fenômeno através do método estatístico, na maior parte das vezes é preciso estabelecer uma distinção entre o modelo matemático que construímos para

Leia mais

PROBABILIDADE PROFESSOR: ANDRÉ LUIS

PROBABILIDADE PROFESSOR: ANDRÉ LUIS PROBABILIDADE PROFESSOR: ANDRÉ LUIS 1. Experimentos Experimento determinístico: são aqueles em que o resultados são os mesmos, qualquer que seja o número de ocorrência dos mesmos. Exemplo: Um determinado

Leia mais

Uma distribuição de probabilidade é um modelo matemático que relaciona um certo valor da variável em estudo com a sua probabilidade de ocorrência.

Uma distribuição de probabilidade é um modelo matemático que relaciona um certo valor da variável em estudo com a sua probabilidade de ocorrência. Professor: Leandro Zvirtes UDESC/CCT Uma distribuição de probabilidade é um modelo matemático que relaciona um certo valor da variável em estudo com a sua probabilidade de ocorrência. Há dois tipos de

Leia mais

PLANIFICAÇÃO ANUAL. MACS Matemática Aplicada às Ciências Sociais. Curso de Línguas e Humanidades 2º ANO (11º ANO)

PLANIFICAÇÃO ANUAL. MACS Matemática Aplicada às Ciências Sociais. Curso de Línguas e Humanidades 2º ANO (11º ANO) PLANIFICAÇÃO ANUAL MACS Matemática Aplicada às Ciências Sociais Curso de Línguas e Humanidades º ANO (º ANO) Ano Lectivo 0/05 Planificação º Ano - MACS º Período Número de Aulas Previstas 0 Apresentação

Leia mais

DISTRIBUIÇÕES DE PROBABILIDADE

DISTRIBUIÇÕES DE PROBABILIDADE DISTRIBUIÇÕES DE PROBABILIDADE i1 Introdução Uma distribuição de probabilidade é um modelo matemático que relaciona um certo valor da variável em estudo com a sua probabilidade de ocorrência. Há dois tipos

Leia mais

Aula 1: Introdução à Probabilidade

Aula 1: Introdução à Probabilidade Aula 1: Introdução à Probabilidade Prof. Leandro Chaves Rêgo Programa de Pós-Graduação em Engenharia de Produção - UFPE Recife, 07 de Março de 2012 Experimento Aleatório Um experimento é qualquer processo

Leia mais

Professor Mauricio Lutz PROBABILIDADE

Professor Mauricio Lutz PROBABILIDADE PROBABILIDADE Todas as vezes que se estudam fenômenos de observação, cumpre-se distinguir o próprio fenômeno e o modelo matemático (determinístico ou probabilístico) que melhor o explique. Os fenômenos

Leia mais

Introdução. Introdução. Objetivos da Aula. Bases Computacionais da Ciência(BC-0005)

Introdução. Introdução. Objetivos da Aula. Bases Computacionais da Ciência(BC-0005) 1 Bases Computacionais da Ciência(BC-0005) Lógica de Programação: Estruturas Condicionais Maria das Graças Bruno Marietto graca.marietto@ufabc.edu.br Centro de Matemática, Computação e Cognição(CMCC) Universidade

Leia mais

PROBABILIDADE, VARIÁVEIS ALEATÓRIAS, DISTRIBUIÇÃO DE PROBABILIDADES E GERAÇÃO ALEATÓRIA

PROBABILIDADE, VARIÁVEIS ALEATÓRIAS, DISTRIBUIÇÃO DE PROBABILIDADES E GERAÇÃO ALEATÓRIA PROBABILIDADE, VARIÁVEIS ALEATÓRIAS, DISTRIBUIÇÃO DE PROBABILIDADES E GERAÇÃO ALEATÓRIA Conceitos sob a ótica de Avaliação de Desempenho de Sistemas Marcos Portnoi Edição 26.6.2010 Universidade Salvador

Leia mais

Atividade: matrizes e imagens digitais

Atividade: matrizes e imagens digitais Atividade: matrizes e imagens digitais Aluno(a): Turma: Professor(a): Parte 01 MÓDULO: MATRIZES E IMAGENS BINÁRIAS 1 2 3 4 5 6 7 8 Indique, na tabela abaixo, as respostas dos 8 desafios do Jogo dos Índices

Leia mais

Neste caderno você encontrará um conjunto de 06 (seis) páginas numeradas seqüencialmente, contendo 10 (dez) questões de Matemática.

Neste caderno você encontrará um conjunto de 06 (seis) páginas numeradas seqüencialmente, contendo 10 (dez) questões de Matemática. 2 a FASE - EXAME DISCURSIV ISCURSIVO 02 02/12 12/2001 Matemática temática (UENF - Grupo I) Neste caderno você encontrará um conjunto de 06 (seis) páginas numeradas seqüencialmente, contendo 10 (dez) questões

Leia mais

Exercícios resolvidos sobre Definição de Probabilidade

Exercícios resolvidos sobre Definição de Probabilidade Exercícios resolvidos sobre Definição de Probabilidade Nesta Unidade de estudo, até este ponto você aprendeu definições de probabilidade e viu como os conceitos se aplicam a várias situações. Observe agora

Leia mais

4. σ 2 Var X p x q e σ Dp X Podemos escrever o modelo do seguinte modo:

4. σ 2 Var X p x q e σ Dp X Podemos escrever o modelo do seguinte modo: Distribuições de Probabilidades Quando aplicamos a Estatística na resolução de problemas administrativos, verificamos que muitos problemas apresentam as mesmas características o que nos permite estabelecer

Leia mais

Figura 1 Busca Linear

Figura 1 Busca Linear ----- Evidentemente, possuir os dados não ajuda o programador ou o usuário se eles não souberem onde os dados estão. Imagine, por exemplo, uma festa de casamento com cem convidados na qual não se sabe

Leia mais

Plano Curricular de Matemática 9º ano - 2014 /2015-3º Ciclo

Plano Curricular de Matemática 9º ano - 2014 /2015-3º Ciclo Plano Curricular de Matemática 9º ano - 2014 /2015-3º Ciclo Tema/Subtema Conteúdos Metas Nº de Aulas Previstas Org.Trat.Dados / Planeamento Estatístico Especificação do problema Recolha de dados População

Leia mais

Cálculo numérico. ln 1 = 0. Representação numérica. Exemplo. Exemplos. Professor Walter Cunha. ln 1. I s

Cálculo numérico. ln 1 = 0. Representação numérica. Exemplo. Exemplos. Professor Walter Cunha. ln 1. I s Representação numérica Cálculo numérico Professor Walter Cunha Um conjunto de ferramentas ou métodos usados para se obter a solução de problemas matemáticos de forma aproximada. Esses métodos se aplicam

Leia mais

Algoritmos Genéticos: Aspectos Práticos. Estéfane G. M. de Lacerda DCA/UFRN Junho/2009

Algoritmos Genéticos: Aspectos Práticos. Estéfane G. M. de Lacerda DCA/UFRN Junho/2009 : Aspectos Práticos Estéfane G. M. de Lacerda DCA/UFRN Junho/2009 Principais Tópicos População Inicial Funções Objetivo de Alto Custo Critérios de Parada Convergência Prematura Diversidade Tipos de Substituição

Leia mais

Avaliação de Desempenho de Sistemas Discretos

Avaliação de Desempenho de Sistemas Discretos Avaliação de Desempenho de Sistemas Discretos Parte IV: Simulação Professor: Reinaldo Gomes reinaldo@dsc.ufcg.edu.br Parte 4 Simulação P A R T E Etapas básicas em um estudo de simulação Geração de números

Leia mais

Estatística stica para Metrologia

Estatística stica para Metrologia Aula 5 Estatística stica para Metrologia Aula 5 Variáveis Contínuas Uniforme Exponencial Normal Lognormal Mônica Barros, D.Sc. Maio de 008 1 Distribuição Uniforme A probabilidade de ocorrência em dois

Leia mais

INSTITUTO TECNOLÓGICO

INSTITUTO TECNOLÓGICO PAC - PROGRAMA DE APRIMORAMENTO DE CONTEÚDOS. ATIVIDADES DE NIVELAMENTO BÁSICO. DISCIPLINAS: MATEMÁTICA & ESTATÍSTICA. PROFº.: PROF. DR. AUSTER RUZANTE 1ª SEMANA DE ATIVIDADES DOS CURSOS DE TECNOLOGIA

Leia mais

Variáveis Aleatórias Discretas e Distribuições de Probabilidade

Variáveis Aleatórias Discretas e Distribuições de Probabilidade Variáveis Aleatórias Discretas e Distribuições de Probabilidade Objetivos do aprendizado a.determinar probabilidades a partir de funções de probabilidade b.determinar probabilidades a partir de funções

Leia mais

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 7

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 7 RACIOCÍNIO LÓGICO AULA 7 TEORIA DAS PROBABILIDADES Vamos considerar os seguintes experimentos: Um corpo de massa m, definida sendo arrastado horizontalmente por uma força qualquer, em um espaço definido.

Leia mais

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Revisão de Probabilidade e Estatística

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Revisão de Probabilidade e Estatística Universidade Federal do Paraná Departamento de Informática Reconhecimento de Padrões Revisão de Probabilidade e Estatística Luiz Eduardo S. Oliveira, Ph.D. http://lesoliveira.net Conceitos Básicos Estamos

Leia mais

2 Modelo Clássico de Cramér-Lundberg

2 Modelo Clássico de Cramér-Lundberg 2 Modelo Clássico de Cramér-Lundberg 2.1 Conceitos fundamentais Nesta sessão introduziremos alguns conceitos fundamentais que serão utilizados na descrição do modelo de ruína. A lei de probabilidade que

Leia mais

1 Revisão: Construção de fórmulas

1 Revisão: Construção de fórmulas 1 Revisão: Construção de fórmulas Vinicius A. de Souza va.vinicius@gmail.com São José dos Campos, 2011. 1 Sumário Tópicos em Microsoft Excel 2007 Introdução...3 Como efetuar uma operação...3 Construindo

Leia mais

RUÍDOS EM IMAGENS FILTRAGEM DE RUÍDOS. o Flutuações aleatórias ou imprecisões em dados de entrada, precisão numérica, arredondamentos etc...

RUÍDOS EM IMAGENS FILTRAGEM DE RUÍDOS. o Flutuações aleatórias ou imprecisões em dados de entrada, precisão numérica, arredondamentos etc... RUÍDOS EM IMAGENS FILTRAGEM DE RUÍDOS RUÍDOS EM IMAGENS Em Visão Computacional, ruído se refere a qualquer entidade em imagens, dados ou resultados intermediários, que não são interessantes para os propósitos

Leia mais

Probabilidade. Distribuição Exponencial

Probabilidade. Distribuição Exponencial Probabilidade Distribuição Exponencial Aplicação Aplicada nos casos onde queremos analisar o espaço ou intervalo de acontecimento de um evento; Na distribuição de Poisson estimativa da quantidade de eventos

Leia mais

7 AULA. Curvas Polares LIVRO. META Estudar as curvas planas em coordenadas polares (Curvas Polares).

7 AULA. Curvas Polares LIVRO. META Estudar as curvas planas em coordenadas polares (Curvas Polares). 1 LIVRO Curvas Polares 7 AULA META Estudar as curvas planas em coordenadas polares (Curvas Polares). OBJETIVOS Estudar movimentos de partículas no plano. Cálculos com curvas planas em coordenadas polares.

Leia mais

PLANEJAMENTO EXPERIMENTAL

PLANEJAMENTO EXPERIMENTAL PLANEJAMENTO EXPERIMENTAL Técnicas de Pesquisas Experimentais LUIS HENRIQUE STOCCO MARCIO TENÓRIO SANDRA MARCHI Introdução O Planejamento de Experimentos (Design of Experiments, DoE), técnica utilizada

Leia mais