2. Método de Monte Carlo

Tamanho: px
Começar a partir da página:

Download "2. Método de Monte Carlo"

Transcrição

1 2. Método de Monte Carlo O método de Monte Carlo é uma denominação genérica tendo em comum o uso de variáveis aleatórias para resolver, via simulação numérica, uma variada gama de problemas matemáticos. Monte Carlo é uma localidade de Mônaco (figura 2.1), cidade estado encravada no sul da França conhecida pelos cassinos e os jogos de azar, que são exemplos típicos de sorteios cujos resultados são números ou eventos aleatórios. Figura 2.1: Mônaco, cidade estado famosa pelos cassinos. O método popularizou-se com os computadores modernos e os programas geradores de números aleatórios. Na realidade são denominados números pseudoaleatórios, uma vez que são gerados por algoritmos numéricos, sequencialmente, a partir de um número inicial, resultando numa distribuição uniforme de números entre 0 e 1, inclusive, e que devem satisfazer a critérios de aleatoriedade. Figura 2.2: Mapa da região onde se localiza o principado de Mônaco. Números aleatórios verdadeiros são difíceis de serem obtidos em grande quantidade, razão pela qual se recorre aos números pseudoaleatórios gerados por 3

2 computadores (os computadores são sistemas determinísticos e, portanto, incapazes de gerar números aleatórios verdadeiros.). Como cada número gerado depende do anterior através de um algoritmo específico, a distribuição resultante pode estar sujeito à periodicidades, resultando numa distribuição de má qualidade. No entanto, por melhor que seja o algoritmo, após todos os possíveis números, dentro de uma determinada precisão, terem sido sorteados, a sequência irá se repetir. Figura 2.3: Mapa da região onde se localiza principado de Mônaco, recortada.. Para exemplificar o tipo de aplicações do método de Monte Carlo, considere que se queira determinar a área ocupada pelo principado de Mônaco (figura 2.2). Uma técnica antiga consiste em recortar o mapa (figura 2.3) e determinar o peso relativo da área recortada (figura 2.4). Figura 2.4: Para ilustrar a aplicação do método de Monte Carlo, é feito o lançamento de 1000 pontos uniformemente distribuídos dos quais 110, marcados em vermelho, atingem a região do principado, resultando na estimativa de 11% da superfície ocupada pelo principado de Mônaco. A relação de pesos da região recortada e da região total do mapa deve ser a mesma da relação entre as áreas. 4

3 Pelo método de Monte Carlo, pontos são lançados, aleatoriamente, sobre toda a região retangular, com a contagem dos pontos que caem sobre o principado de Mônaco (figura 2.4). A relação entre o número de pontos sobre o principado e o número total de pontos fornece a estimativa da superfície ocupada pelo principado. No exemplo foram lançados um total de 1000 pontos dos quais 110, marcados em vermelho, caíram sobre o principado, resultando na relação de áreas correspondente a 0,11, isto é, a área do principado corresponde a 11% da área total considerada. Quanto maior o número total de pontos lançados melhor será o resultado. Em geral os cálculos baseados em Monte Carlo convergem lentamente com o aumento do número de pontos utilizados, sendo um método adequado para casos em que a precisão não seja um fator limitante. 2.1 Números e variáveis aleatórios Quando se joga um dado, qualquer número pertencente ao conjunto de números inteiros de 1 a 6 pode ser sorteado com probabilidades iguais, em princípio. O resultado é um número aleatório. De maneira similar, quaisquer números sorteados usando roletas ou outros instrumentos similares cujo objetivo é escolher ao acaso um número dentre um conjunto de números pré-definido são números aleatórios, ou variáveis aleatórias se utilizados como argumentos de funções. Como os processos mecânicos são lentos, nos computadores são usados geradores que, baseados em algoritmos matemáticos, simulam sorteios de números aleatórios, mais apropriadamente denominados números pseudoaleatórios. Os geradores de números aleatórios (a partir daqui não se fará mais distinção entre números pseudoaleatórios e aleatórios) baseados em computadores usualmente produzem números uniformemente distribuídos dentro do intervalo 0,1. Para obter uma distribuição de probabilidades mais geral () definida num intervalo, e com normalização pode-se usar a integral ()=1, (2.1) = () (2.2) para R uma variável aleatória uniformemente distribuída no intervalo 0,1 relacionada com a variável aleatória X com distribuição () no intervalo,. Uma aplicação simples é para uma distribuição uniforme no intervalo,, que resulta na transformação linear ()= 1 correspondente a uma simples mudança de escala. Outro caso simples é a distribuição exponencial definida na semi-reta 0<<. A integral (2.2) resulta, (2.3) ()=( )+ (2.4) ()= (2.5) 5

4 ()= (1 ), (2.6) as novas variáveis X(R) distribuídas exponencialmente na semi-reta 0<<. Assim, nos dois exemplos acima, a distribuição uniforme das variáveis aleatórias R no intervalo 0,1 podem ser convertidas nas distribuições desejadas. A figura (2.5) ilustra a distribuição exponencial na faixa abaixo da função exponencial. Figura 2.5: Gráfico da função de distribuição exponencial e, abaixo, a distribuição obtida com o lançamento de 3000 pontos. Em geral não é possível obter a expressão analítica da integral (2.2), e a conversão da variável aleatória uniformemente distribuída R para a variável X com distribuição () não é uma questão trivial, devendo-se recorrer a procedimentos numéricos. 2.2 Técnica de rejeição de Neumann A técnica de rejeição de Neumann permite obter variáveis aleatórias X com distribuição p(x) no intervalo, a partir das variáveis aleatórias R uniformemente distribuídas no intervalo 0,1. Baseia-se em testes repetitivos que podem ser resumidos a dois passos: 1 - Gere um primeiro número aleatório uniformemente distribuído no intervalo 0,1 e converta-o para outro número aleatório uniformemente distribuído no intervalo,. Se o sistema depender de mais de uma variável, o procedimento deve ser repetido para cada uma das variáveis. 2 - Gere um segundo número aleatório uniformemente distribuído no intervalo 0,1 e cheque a relação de desigualdade <( ), (2.7) onde é o máximo absoluto da distribuição (). Se a relação for verdadeira, será uma variável aleatória com a distribuição desejada. Se for falsa, rejeite o par (, ) e retorne ao passo inicial. O procedimento deve ser repetido até obter um número estatisticamente significativo de variáveis aleatórias. Na realidade, a condição (2.7) pode ser relaxada para <( ) (2.8) 6

5 para qualquer >, pois nem sempre é possível computar o valor exato do máximo absoluto da distribuição. A consequência é aumentar o número de pontos a serem testados e eliminados durante o processo de seleção, aumentando o tempo de computação. A figura 2.6 ilustra o procedimento de seleção de Neumann tomando como exemplo a distribuição radial ()= () (2.9) do nível ()=(30) do átomo de hidrogênio, cuja função radial é ()= /( ). (2.10) (a) (b) (c) Figura 2.6: No quadro (a), o gráfico da distribuição. Em (b) uma amostra inicial de 3000 pontos uniformemente distribuída na região retangular limitada acima pela reta horizontal azul. Em (c) aparecem os pontos selecionados, 930 neste caso. O objetivo da técnica de rejeição de Neumann é eliminar todos os pontos acima da distribuição () testando a condição (2.7) ou (2.8) para todos os pontos da distribuição inicial uniforme. O conjunto dos pontos aceitos, mostrados na figura (2.6), quadro (c), tem a distribuição desejada, como mostra a projeção dos pontos selecionados sobre a superfície retangular, na figura (2.7). Figura 2.7: Distribuição dos pontos selecionados coletados na área retangular. 7

O método de Monte Carlo: algumas aplicações na Escola Básica

O método de Monte Carlo: algumas aplicações na Escola Básica 1 Universidade de São Paulo/Faculdade de Educação Seminários de Ensino de Matemática (SEMA-FEUSP) Coordenador: Nílson José Machado novembro/2009 O método de Monte Carlo: algumas aplicações na Escola Básica

Leia mais

3 Método de Monte Carlo

3 Método de Monte Carlo 25 3 Método de Monte Carlo 3.1 Definição Em 1946 o matemático Stanislaw Ulam durante um jogo de paciência tentou calcular as probabilidades de sucesso de uma determinada jogada utilizando a tradicional

Leia mais

Simulação Estocástica

Simulação Estocástica Simulação Estocástica O que é Simulação Estocástica? Simulação: ato ou efeito de simular Disfarce, fingimento,... Experiência ou ensaio realizado com o auxílio de modelos. Aleatório: dependente de circunstâncias

Leia mais

4 Orbitais do Átomo de Hidrogênio

4 Orbitais do Átomo de Hidrogênio 4 Orbitais do Átomo de Hidrogênio A aplicação mais intuitiva e que foi a motivação inicial para desenvolver essa técnica é a representação dos orbitais do átomo de hidrogênio que, desde então, tem servido

Leia mais

Método Monte-Carlo. Alexandre Rosas. 23 de Março de 2009. Departamento de Física Universidade Federal da Paraíba

Método Monte-Carlo. Alexandre Rosas. 23 de Março de 2009. Departamento de Física Universidade Federal da Paraíba Departamento de Física Universidade Federal da Paraíba 23 de Março de 2009 O que são os métodos de Monte-Carlo? Métodos numéricos que utilizam amostragem estatística (em contraposição a métodos determinísticos)

Leia mais

Avaliação de Desempenho

Avaliação de Desempenho Avaliação de Desempenho Aulas passadas Modelagem de sistemas via cadeias de Markov Aula de hoje Introdução à simulação Gerando números pseudo-aleatórios 1 O Ciclo de Modelagem Sistema real Criação do Modelo

Leia mais

Pesquisa Operacional

Pesquisa Operacional GOVERNO DO ESTADO DO PARÁ UNIVERSIDADE DO ESTADO DO PARÁ CENTRO DE CIÊNCIAS NATURAIS E TECNOLOGIA DEPARTAMENTO DE ENGENHARIA Pesquisa Operacional Tópico 4 Simulação Rosana Cavalcante de Oliveira, Msc rosanacavalcante@gmail.com

Leia mais

Geração de Números Aleatórios e Simulação

Geração de Números Aleatórios e Simulação Departamento de Informática Geração de Números Aleatórios e imulação Métodos Quantitativos LEI 26/27 usana Nascimento (snt@di.fct.unl.pt) Advertência Autores João Moura Pires (jmp@di.fct.unl.pt) usana

Leia mais

UNIVERSIDADE DE SÃO PAULO. Faculdade de Arquitetura e Urbanismo

UNIVERSIDADE DE SÃO PAULO. Faculdade de Arquitetura e Urbanismo UNIVERSIDADE DE SÃO PAULO Faculdade de Arquitetura e Urbanismo DISTRIBUIÇÃO AMOSTRAL ESTIMAÇÃO AUT 516 Estatística Aplicada a Arquitetura e Urbanismo 2 DISTRIBUIÇÃO AMOSTRAL Na aula anterior analisamos

Leia mais

Seminário de Dinâmica Orbital I

Seminário de Dinâmica Orbital I Seminário de Dinâmica Orbital I Métodos de Monte Carlo Alunos Carlos H. G. Hassmann Álvaro de A Arraes Prof. - Mário C. Ricci Sumário -Introdução -Breve Histórico -Definição -Utilização -O método -Componentes

Leia mais

MODELO DE AVALIAÇÃO EM PROJETOS DE INVESTIMENTO DE CAPITAL

MODELO DE AVALIAÇÃO EM PROJETOS DE INVESTIMENTO DE CAPITAL MODELO DE AVALIAÇÃO EM PROJETOS DE INVESTIMENTO DE CAPITAL Marcelo Maciel Monteiro Universidade Federal Fluminense, Engenharia de Produção Rua Martins Torres 296, Santa Rosa, Niterói, RJ, Cep 24240-700

Leia mais

Empresa de Pesquisa Energética (EPE) 2014. Analista de Projetos da Geração de Energia

Empresa de Pesquisa Energética (EPE) 2014. Analista de Projetos da Geração de Energia Empresa de Pesquisa Energética (EPE) 2014 Analista de Projetos da Geração de Energia Oi, pessoal! Vou resolver as quatro questões de Estatística (53 a 56) da prova elaborada pela banca Cesgranrio para

Leia mais

Modelamento e simulação de processos

Modelamento e simulação de processos Modelamento e simulação de processos 4. Método de Monte Carlo Prof. Dr. André Carlos Silva 1. INTRODUÇÃO O Método de Monte Carlo (MMC) é um método estatístico utilizado em simulações estocásticas com diversas

Leia mais

Aula 04 Método de Monte Carlo aplicado a análise de incertezas. Aula 04 Prof. Valner Brusamarello

Aula 04 Método de Monte Carlo aplicado a análise de incertezas. Aula 04 Prof. Valner Brusamarello Aula 04 Método de Monte Carlo aplicado a análise de incertezas Aula 04 Prof. Valner Brusamarello Incerteza - GUM O Guia para a Expressão da Incerteza de Medição (GUM) estabelece regras gerais para avaliar

Leia mais

Métodos de Monte Carlo

Métodos de Monte Carlo Departamento de Estatística - UFJF Outubro e Novembro de 2014 são métodos de simulação São utilizados quando não temos uma forma fechada para resolver o problema Muito populares em Estatística, Matemática,

Leia mais

Introdução. Métodos de inferência são usados para tirar conclusões sobre a população usando informações obtidas a partir de uma amostra.

Introdução. Métodos de inferência são usados para tirar conclusões sobre a população usando informações obtidas a partir de uma amostra. Métodos Monte Carlo Introdução Métodos de inferência são usados para tirar conclusões sobre a população usando informações obtidas a partir de uma amostra. Estimativas pontuais e intervalares para os parâmetros;

Leia mais

COMO AVALIAR O RISCO DE UM PROJETO ATRAVÉS DA METODOLOGIA DE MONTE CARLO

COMO AVALIAR O RISCO DE UM PROJETO ATRAVÉS DA METODOLOGIA DE MONTE CARLO COMO AVALIAR O RISCO DE UM PROJETO ATRAVÉS DA O que é risco? Quais são os tipos de riscos? Quais são os tipos de análises? Qual a principal função do Excel para gerar simulações aleatórias? O que é distribuição

Leia mais

Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti. Distribuição Normal

Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti. Distribuição Normal Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti Distribuição Normal 1. Introdução O mundo é normal! Acredite se quiser! Muitos dos fenômenos aleatórios que encontramos na

Leia mais

Geração de variáveis aleatórias

Geração de variáveis aleatórias Geração de variáveis aleatórias Danilo Oliveira, Matheus Torquato Centro de Informática Universidade Federal de Pernambuco 5 de setembro de 2012 Danilo Oliveira, Matheus Torquato () 5 de setembro de 2012

Leia mais

O QUE É E COMO FUNCIONA O CREDIT SCORING PARTE I

O QUE É E COMO FUNCIONA O CREDIT SCORING PARTE I O QUE É E COMO FUNCIONA O CREDIT SCORING PARTE I! A utilização de escores na avaliação de crédito! Como montar um plano de amostragem para o credit scoring?! Como escolher as variáveis no modelo de credit

Leia mais

O trabalho pioneiro nesta área remonta a Ulam, que o teria inventado em 1946 ao estudar as possibilidades de ganhar no jogo de cartas Solitário.

O trabalho pioneiro nesta área remonta a Ulam, que o teria inventado em 1946 ao estudar as possibilidades de ganhar no jogo de cartas Solitário. Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.ufrgs.br/~viali/ Números aleatórios (NA) são elementos básicos necessários na simulação de quase todos os sistemas discretos. Eles podem ser utilizados

Leia mais

Primeira Lista de Exercícios de Estatística

Primeira Lista de Exercícios de Estatística Primeira Lista de Exercícios de Estatística Professor Marcelo Fernandes Monitor: Márcio Salvato 1. Suponha que o universo seja formado pelos naturais de 1 a 10. Sejam A = {2, 3, 4}, B = {3, 4, 5}, C =

Leia mais

Métodos Quantitativos. aula 3

Métodos Quantitativos. aula 3 Métodos Quantitativos aula 3 Prof. Dr. Marco Antonio Insper Ibmec São Paulo Simulação Empresarial Auxílio na tomada de decisão. Criação de cenários otimistas e pessimistas. Poder de previsão baseada em

Leia mais

Métodos Estatísticos II 1 o. Semestre de 2010 ExercíciosProgramados1e2 VersãoparaoTutor Profa. Ana Maria Farias (UFF)

Métodos Estatísticos II 1 o. Semestre de 2010 ExercíciosProgramados1e2 VersãoparaoTutor Profa. Ana Maria Farias (UFF) Métodos Estatísticos II 1 o. Semestre de 010 ExercíciosProgramados1e VersãoparaoTutor Profa. Ana Maria Farias (UFF) Esses exercícios abrangem a matéria das primeiras semanas de aula (Aula 1) Os alunos

Leia mais

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA (CAp/UERJ) MATEMÁTICA ENSINO MÉDIO - PROF. ILYDIO SÁ CÁLCULO DE PROBABILIDADES PARTE 1

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA (CAp/UERJ) MATEMÁTICA ENSINO MÉDIO - PROF. ILYDIO SÁ CÁLCULO DE PROBABILIDADES PARTE 1 1 INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA (CAp/UERJ) MATEMÁTICA ENSINO MÉDIO - PROF. ILYDIO SÁ CÁLCULO DE PROBABILIDADES PARTE 1 1. Origem histórica É possível quantificar o acaso? Para iniciar,

Leia mais

Estatística e Probabilidade. Aula 4 Cap 03. Probabilidade

Estatística e Probabilidade. Aula 4 Cap 03. Probabilidade Estatística e Probabilidade Aula 4 Cap 03 Probabilidade Estatística e Probabilidade Método Estatístico Estatística Descritiva Estatística Inferencial Nesta aula... aprenderemos como usar informações para

Leia mais

Noções de Pesquisa e Amostragem. André C. R. Martins

Noções de Pesquisa e Amostragem. André C. R. Martins Noções de Pesquisa e Amostragem André C. R. Martins 1 Bibliografia Silva, N. N., Amostragem probabilística, EDUSP. Freedman, D., Pisani, R. e Purves, R., Statistics, Norton. Tamhane, A. C., Dunlop, D.

Leia mais

Complemento IV Introdução aos Algoritmos Genéticos

Complemento IV Introdução aos Algoritmos Genéticos Complemento IV Introdução aos Algoritmos Genéticos Esse documento é parte integrante do material fornecido pela WEB para a 2ª edição do livro Data Mining: Conceitos, técnicas, algoritmos, orientações e

Leia mais

Fernando Henrique Ferraz Pereira da Rosa Matheus Moreira Costa Tiago Luiz Tortella Vagner Aparecido Junior

Fernando Henrique Ferraz Pereira da Rosa Matheus Moreira Costa Tiago Luiz Tortella Vagner Aparecido Junior Métodos de Monte Carlo e Aproximações de π Fernando Henrique Ferraz Pereira da Rosa Matheus Moreira Costa Tiago Luiz Tortella Vagner Aparecido Junior MAP-131 Laboratório de Matemática Aplicada Prof. Dr.

Leia mais

Modelagens e Gerenciamento de riscos (Simulação Monte Carlo)

Modelagens e Gerenciamento de riscos (Simulação Monte Carlo) Modelagens e Gerenciamento de riscos (Simulação Monte Carlo) Prof. Esp. João Carlos Hipólito e-mail: jchbn@hotmail.com Sobre o professor: Contador; Professor da Faculdade de Ciências Aplicadas e Sociais

Leia mais

Introdução à Simulação

Introdução à Simulação Introdução à Simulação O que é simulação? Wikipedia: Simulação é a imitação de alguma coisa real ou processo. O ato de simular algo geralmente consiste em representar certas características e/ou comportamentos

Leia mais

Probabilidade. Distribuição Normal

Probabilidade. Distribuição Normal Probabilidade Distribuição Normal Distribuição Normal Uma variável aleatória contínua tem uma distribuição normal se sua distribuição é: simétrica apresenta (num gráfico) forma de um sino Função Densidade

Leia mais

ALGUNS TóPICOS DE CONTAGEM E PROBABILIDADE

ALGUNS TóPICOS DE CONTAGEM E PROBABILIDADE ALGUNS TóPICOS DE CONTAGEM E PROBABILIDADE MAT30 200/ O objetivo destas notas é ilustrar como a ideia de fazer aproximações permite uma compreensão melhor de diversos problemas de combinatória e probabilidade..

Leia mais

INF 1771 Inteligência Artificial

INF 1771 Inteligência Artificial Edirlei Soares de Lima INF 1771 Inteligência Artificial Aula 04 Algoritmos Genéticos Introdução Algoritmos genéticos são bons para abordar espaços de buscas muito grandes e navegálos

Leia mais

Simulação Transiente

Simulação Transiente Tópicos Avançados em Avaliação de Desempenho de Sistemas Professores: Paulo Maciel Ricardo Massa Alunos: Jackson Nunes Marco Eugênio Araújo Dezembro de 2014 1 Sumário O que é Simulação? Áreas de Aplicação

Leia mais

USANDO O MÉTODO DE MONTE CARLO PARA ENCONTRAR RAÍZES DE EQUAÇÕES

USANDO O MÉTODO DE MONTE CARLO PARA ENCONTRAR RAÍZES DE EQUAÇÕES USANDO O MÉTODO DE MONTE CARLO PARA ENCONTRAR RAÍZES DE EQUAÇÕES Antônio Carlos da Silva Filho (Uni-FACEF) Faiano Guasti Lima (USP) 1 INTRODUÇÃO Um dos principais prolemas no cálculo numérico refere-se

Leia mais

Modelo de distribuição de probabilidade para o número de bolas chamadas até que alguém bata em um bingo Convencional

Modelo de distribuição de probabilidade para o número de bolas chamadas até que alguém bata em um bingo Convencional Modelo de distribuição de probabilidade para o número de bolas chamadas até que alguém bata em um bingo Convencional Pedro Ferreira de Lima 1 Cícero Carlos Felix de Oliveira 2 Dr. Cláudio Tadeu Cristiano

Leia mais

Algoritmos Randomizados: Introdução

Algoritmos Randomizados: Introdução Algoritmos Randomizados: Introdução Celina Figueiredo Guilherme Fonseca Manoel Lemos Vinícius Sá 26º Colóquio Brasileiro de Matemática IMPA Rio de Janeiro Brasil 2007 Resumo Definições Monte Carlo Variáveis

Leia mais

6 Construção de Cenários

6 Construção de Cenários 6 Construção de Cenários Neste capítulo será mostrada a metodologia utilizada para mensuração dos parâmetros estocásticos (ou incertos) e construção dos cenários com respectivas probabilidades de ocorrência.

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Introdução a Probabilidade Existem dois tipos

Leia mais

TEORIA DO RISCO. LUIZ SANTOS / MAICKEL BATISTA economia.prof.luiz@hotmail.com maickel_ewerson@hotmail.com

TEORIA DO RISCO. LUIZ SANTOS / MAICKEL BATISTA economia.prof.luiz@hotmail.com maickel_ewerson@hotmail.com TEORIA DO RISCO LUIZ SANTOS / MAICKEL BATISTA economia.prof.luiz@hotmail.com maickel_ewerson@hotmail.com 1 TARIFAÇÃO (FERREIRA, 2002) Diversos conceitos e metodologias envolvidos no cálculo do preço pago

Leia mais

4 Avaliação Econômica

4 Avaliação Econômica 4 Avaliação Econômica Este capítulo tem o objetivo de descrever a segunda etapa da metodologia, correspondente a avaliação econômica das entidades de reservas. A avaliação econômica é realizada a partir

Leia mais

Uma distribuição de probabilidade é um modelo matemático que relaciona um certo valor da variável em estudo com a sua probabilidade de ocorrência.

Uma distribuição de probabilidade é um modelo matemático que relaciona um certo valor da variável em estudo com a sua probabilidade de ocorrência. Professor: Leandro Zvirtes UDESC/CCT Uma distribuição de probabilidade é um modelo matemático que relaciona um certo valor da variável em estudo com a sua probabilidade de ocorrência. Há dois tipos de

Leia mais

As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem:

As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem: 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia. Introdução O Cálculo Numérico

Leia mais

Guia do professor. Ministério da Ciência e Tecnologia. Ministério da Educação. Secretaria de Educação a Distância.

Guia do professor. Ministério da Ciência e Tecnologia. Ministério da Educação. Secretaria de Educação a Distância. números e funções Guia do professor Objetivos da unidade 1. Analisar representação gráfica de dados estatísticos; 2. Familiarizar o aluno com gráfico de Box Plot e análise estatística bivariada; 3. Utilizar

Leia mais

A probabilidade representa o resultado obtido através do cálculo da intensidade de ocorrência de um determinado evento.

A probabilidade representa o resultado obtido através do cálculo da intensidade de ocorrência de um determinado evento. Probabilidade A probabilidade estuda o risco e a ocorrência de eventos futuros determinando se existe condição de acontecimento ou não. O olhar da probabilidade iniciou-se em jogos de azar (dados, moedas,

Leia mais

MODELAGEM E SIMULAÇÃO

MODELAGEM E SIMULAÇÃO MODELAGEM E SIMULAÇÃO Professor: Dr. Edwin B. Mitacc Meza edwin@engenharia-puro.com.br www.engenharia-puro.com.br/edwin Como Funciona a Simulação Introdução Assim como qualquer programa de computador,

Leia mais

Figura 5.1.Modelo não linear de um neurônio j da camada k+1. Fonte: HAYKIN, 2001

Figura 5.1.Modelo não linear de um neurônio j da camada k+1. Fonte: HAYKIN, 2001 47 5 Redes Neurais O trabalho em redes neurais artificiais, usualmente denominadas redes neurais ou RNA, tem sido motivado desde o começo pelo reconhecimento de que o cérebro humano processa informações

Leia mais

CAP4: Distribuições Contínuas Parte 1 Distribuição Normal

CAP4: Distribuições Contínuas Parte 1 Distribuição Normal CAP4: Distribuições Contínuas Parte 1 Distribuição Normal Quando a variável sendo medida é expressa em uma escala contínua, sua distribuição de probabilidade é chamada distribuição contínua. Exemplo 4.1

Leia mais

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - EPPGG

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - EPPGG Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-010 - EPPGG 11. Em uma caixa há 1 bolas de mesmo tamanho: 3 brancas, 4 vermelhas e 5 pretas. Uma pessoa, no escuro, deve retirar n bolas

Leia mais

AULAS 13, 14 E 15 Correlação e Regressão

AULAS 13, 14 E 15 Correlação e Regressão 1 AULAS 13, 14 E 15 Correlação e Regressão Ernesto F. L. Amaral 23, 28 e 30 de setembro de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de

Leia mais

Cláudio Tadeu Cristino 1. Julho, 2014

Cláudio Tadeu Cristino 1. Julho, 2014 Inferência Estatística Estimação Cláudio Tadeu Cristino 1 1 Universidade Federal de Pernambuco, Recife, Brasil Mestrado em Nutrição, Atividade Física e Plasticidade Fenotípica Julho, 2014 C.T.Cristino

Leia mais

Distribuição Binomial

Distribuição Binomial Distribuição Binomial Exemplo Na manufatura de certo artigo, é sabido que um entre dez artigos é defeituoso. Qual a probabilidade de que uma amostra casual de tamanho quatro contenha: (a) Nenhum defeituoso?

Leia mais

Aula 5 Metodologias de avaliação de impacto

Aula 5 Metodologias de avaliação de impacto Aula 5 Metodologias de avaliação de impacto Metodologias de Avaliação de Impacto Objetiva quantificar as mudanças que o projeto causou na vida dos beneficiários. Plano de Aula Método experimental: regressão

Leia mais

LISTA DE EXEMPLOS - PROBABILIDADE

LISTA DE EXEMPLOS - PROBABILIDADE LISTA DE EXEMPLOS - PROBABILIDADE EXEMPLO 1 CONVERTENDO UM ARREMESSO LIVRE Ache a probabilidade de que o jogador de basquete da NBA, Reggie Miller, converta um arremesso livre depois de sofrer uma falta.

Leia mais

DISTRIBUIÇÕES DE PROBABILIDADE

DISTRIBUIÇÕES DE PROBABILIDADE DISTRIBUIÇÕES DE PROBABILIDADE i1 Introdução Uma distribuição de probabilidade é um modelo matemático que relaciona um certo valor da variável em estudo com a sua probabilidade de ocorrência. Há dois tipos

Leia mais

Variáveis Aleatórias Discretas e Distribuições de Probabilidade

Variáveis Aleatórias Discretas e Distribuições de Probabilidade Variáveis Aleatórias Discretas e Distribuições de Probabilidade Objetivos do aprendizado a.determinar probabilidades a partir de funções de probabilidade b.determinar probabilidades a partir de funções

Leia mais

Probabilidade. Distribuição Exponencial

Probabilidade. Distribuição Exponencial Probabilidade Distribuição Exponencial Aplicação Aplicada nos casos onde queremos analisar o espaço ou intervalo de acontecimento de um evento; Na distribuição de Poisson estimativa da quantidade de eventos

Leia mais

4. σ 2 Var X p x q e σ Dp X Podemos escrever o modelo do seguinte modo:

4. σ 2 Var X p x q e σ Dp X Podemos escrever o modelo do seguinte modo: Distribuições de Probabilidades Quando aplicamos a Estatística na resolução de problemas administrativos, verificamos que muitos problemas apresentam as mesmas características o que nos permite estabelecer

Leia mais

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Teoria de Erros

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Teoria de Erros Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Lic. Eng. Biomédica e Bioengenharia-2009/2010 O que é a Análise Numérica? Ramo da Matemática dedicado ao estudo e desenvolvimento de métodos (métodos

Leia mais

Lista de Exercícios - Séries Matemáticas

Lista de Exercícios - Séries Matemáticas Lista de Exercícios - Séries Matemáticas Agosto de 203 Introdução à Programação Orientada a Objetos Usando Java 2 a Edição Exercícios Introdução Cientistas da computação e programadores frequentemente

Leia mais

Avaliação de Desempenho de Sistemas Discretos

Avaliação de Desempenho de Sistemas Discretos Avaliação de Desempenho de Sistemas Discretos Parte IV: Simulação Professor: Reinaldo Gomes reinaldo@dsc.ufcg.edu.br Parte 4 Simulação P A R T E Etapas básicas em um estudo de simulação Geração de números

Leia mais

Aula 1 Representação e Operações Aritméticas em Ponto Flutuante.

Aula 1 Representação e Operações Aritméticas em Ponto Flutuante. Aula 1 Representação e Operações Aritméticas em Ponto Flutuante. MS211 - Cálculo Numérico Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica

Leia mais

Plano Curricular de Matemática 9º ano - 2014 /2015-3º Ciclo

Plano Curricular de Matemática 9º ano - 2014 /2015-3º Ciclo Plano Curricular de Matemática 9º ano - 2014 /2015-3º Ciclo Tema/Subtema Conteúdos Metas Nº de Aulas Previstas Org.Trat.Dados / Planeamento Estatístico Especificação do problema Recolha de dados População

Leia mais

PROBABILIDADE. Aula 5

PROBABILIDADE. Aula 5 Curso: Psicologia Disciplina: Métodos Quantitativos Profa. Valdinéia Data: 28/10/15 PROBABILIDADE Aula 5 Geralmente a cada experimento aparecem vários resultados possíveis. Por exemplo ao jogar uma moeda,

Leia mais

Probabilidade. Renata Souza. Introdução. Tabelas Estatísticas. População, Amostra e Variáveis. Gráficos e Distribuição de Freqüências

Probabilidade. Renata Souza. Introdução. Tabelas Estatísticas. População, Amostra e Variáveis. Gráficos e Distribuição de Freqüências Probabilidade Introdução Tabelas Estatísticas População, Amostra e Variáveis Gráficos e Distribuição de Freqüências Renata Souza Conceitos Antigos de Estatística stica a) Simples contagem aritmética Ex.:

Leia mais

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Revisão de Probabilidade e Estatística

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Revisão de Probabilidade e Estatística Universidade Federal do Paraná Departamento de Informática Reconhecimento de Padrões Revisão de Probabilidade e Estatística Luiz Eduardo S. Oliveira, Ph.D. http://lesoliveira.net Conceitos Básicos Estamos

Leia mais

Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística

Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Introdução às Técnicas de Simulação em Estatística Luiz H.Duczmal, Lupércio F. Bessegato, Marcos A. C. Santos

Leia mais

GERAÇÃO DE NÚMEROS ALEATÓRIOS A PARTIR DE MAPAS CAÓTICOS DETERMINISTAS

GERAÇÃO DE NÚMEROS ALEATÓRIOS A PARTIR DE MAPAS CAÓTICOS DETERMINISTAS 66 GERAÇÃO DE NÚMEROS ALEATÓRIOS A PARTIR DE MAPAS CAÓTICOS DETERMINISTAS Antônio Carlos da Silva Filho (UNI-Facef) Irfley Andrade de Oliveira (UNI-Facef) Marco Dimas Gubitoso (IME-USP) INTRODUÇÃO As origens

Leia mais

Banco de Dados Profa. Dra. Cristina Dutra de Aguiar Ciferri. Banco de Dados Processamento e Otimização de Consultas

Banco de Dados Profa. Dra. Cristina Dutra de Aguiar Ciferri. Banco de Dados Processamento e Otimização de Consultas Processamento e Otimização de Consultas Banco de Dados Motivação Consulta pode ter sua resposta computada por uma variedade de métodos (geralmente) Usuário (programador) sugere uma estratégia para achar

Leia mais

PROBABILIDADE, VARIÁVEIS ALEATÓRIAS, DISTRIBUIÇÃO DE PROBABILIDADES E GERAÇÃO ALEATÓRIA

PROBABILIDADE, VARIÁVEIS ALEATÓRIAS, DISTRIBUIÇÃO DE PROBABILIDADES E GERAÇÃO ALEATÓRIA PROBABILIDADE, VARIÁVEIS ALEATÓRIAS, DISTRIBUIÇÃO DE PROBABILIDADES E GERAÇÃO ALEATÓRIA Conceitos sob a ótica de Avaliação de Desempenho de Sistemas Marcos Portnoi Edição 26.6.2010 Universidade Salvador

Leia mais

1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3.

1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3. 1 1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3. Modelo de Resultados Potenciais e Aleatorização (Cap. 2 e 3

Leia mais

LISTA DE EXERCÍCIOS VARIÁVEIS ALEATÓRIAS

LISTA DE EXERCÍCIOS VARIÁVEIS ALEATÓRIAS LISTA DE EXERCÍCIOS VARIÁVEIS ALEATÓRIAS 1. Construir um quadro e o gráfico de uma distribuição de probabilidade para a variável aleatória X: número de coroas obtidas no lançamento de duas moedas. 2. Fazer

Leia mais

Distribuição Uniforme Discreta. Modelos de distribuições discretas. Distribuição de Bernoulli. Distribuição Uniforme Discreta

Distribuição Uniforme Discreta. Modelos de distribuições discretas. Distribuição de Bernoulli. Distribuição Uniforme Discreta Distribuição Uniforme Discreta Modelos de distribuições discretas Notas de Aula da Profa. Verónica González-López e do Prof. Jesús Enrique García, digitadas por Beatriz Cuyabano. Acréscimos e modicações:

Leia mais

Análise de Regressão. Tópicos Avançados em Avaliação de Desempenho. Cleber Moura Edson Samuel Jr

Análise de Regressão. Tópicos Avançados em Avaliação de Desempenho. Cleber Moura Edson Samuel Jr Análise de Regressão Tópicos Avançados em Avaliação de Desempenho Cleber Moura Edson Samuel Jr Agenda Introdução Passos para Realização da Análise Modelos para Análise de Regressão Regressão Linear Simples

Leia mais

Otimização de Funções Não Lineares por Meio do Algoritmo Árvore da Montanha

Otimização de Funções Não Lineares por Meio do Algoritmo Árvore da Montanha Otimização de Funções Não Lineares por Meio do Algoritmo Árvore da Montanha Amarildo de Vicente Colegiado do Curso de Matemática Centro de Ciências Exatas e Tecnológicas da Universidade Estadual do Oeste

Leia mais

Universidade Federal Fluminense

Universidade Federal Fluminense Universidade Federal Fluminense INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA ESTATÍSTICA V Lista 9: Intervalo de Confiança. 1. Um pesquisador está estudando a resistência de um determinado

Leia mais

Lista IV - Curva Normal. Professor Salvatore Estatística I

Lista IV - Curva Normal. Professor Salvatore Estatística I Lista IV - Curva Normal Professor Salvatore Estatística I 19/12/2011 Consulta à tabela Normal: 1. Estabeleça a área entre 0 (zero) e Zi igual a a. + 1,35 b. + 1,58 c. +2,05 d. +2,76 e. -1,26 f. -2,49 g.

Leia mais

PLANIFICAÇÃO ANUAL. MACS Matemática Aplicada às Ciências Sociais. Curso de Línguas e Humanidades 2º ANO (11º ANO)

PLANIFICAÇÃO ANUAL. MACS Matemática Aplicada às Ciências Sociais. Curso de Línguas e Humanidades 2º ANO (11º ANO) PLANIFICAÇÃO ANUAL MACS Matemática Aplicada às Ciências Sociais Curso de Línguas e Humanidades º ANO (º ANO) Ano Lectivo 0/05 Planificação º Ano - MACS º Período Número de Aulas Previstas 0 Apresentação

Leia mais

3ª Lista de Exercícios Representação de dados com agregados: Arrays e Matrizes

3ª Lista de Exercícios Representação de dados com agregados: Arrays e Matrizes 1 Universidade Federal Fluminense Instituto de Computação Departamento de Ciência da Computação Programação de Computadores II Professores: Leandro A. F. Fernandes, Marcos Lage, Pedro Velloso 3ª Lista

Leia mais

Pesquisa experimental

Pesquisa experimental 1 Aula 7 Interação Humano-Computador (com foco em métodos de pesquisa) Prof. Dr. Osvaldo Luiz de Oliveira 2 Pesquisa experimental Wilhelm Wundt (1832-1920), Pai da Psicologia Experimental. Leituras obrigatórias:

Leia mais

Probabilidade. Distribuição Exponencial

Probabilidade. Distribuição Exponencial Probabilidade Distribuição Exponencial Aplicação Aplicada nos casos onde queremos analisar o espaço ou intervalo de acontecimento de um evento; Na distribuição de Poisson estimativa da quantidade de eventos

Leia mais

Pesquisador em Informações Geográficas e Estatísticas A I GESTÃO DA QUALIDADE LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO.

Pesquisador em Informações Geográficas e Estatísticas A I GESTÃO DA QUALIDADE LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO. 7 EDITAL N o 04/2013 LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO. 01 - O candidato recebeu do fiscal o seguinte material: a) este CADERNO DE QUESTÕES, com os enunciados das 8 (oito) questões discursivas, sem

Leia mais

2 Modelo Clássico de Cramér-Lundberg

2 Modelo Clássico de Cramér-Lundberg 2 Modelo Clássico de Cramér-Lundberg 2.1 Conceitos fundamentais Nesta sessão introduziremos alguns conceitos fundamentais que serão utilizados na descrição do modelo de ruína. A lei de probabilidade que

Leia mais

computador-cálculo numérico perfeita. As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem:

computador-cálculo numérico perfeita. As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem: 1 UNIVERSIDADE FEDERAL DE VIÇOSA Departamento de Matemática - CCE Cálculo Numérico - MAT 271 Prof.: Valéria Mattos da Rosa As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia

Leia mais

Universidade Federal do ABC. Sinais Aleatórios. Prof. Marcio Eisencraft

Universidade Federal do ABC. Sinais Aleatórios. Prof. Marcio Eisencraft Universidade Federal do ABC Sinais Aleatórios Prof. Marcio Eisencraft São Paulo 2011 Capítulo 1 Probabilidades Neste curso, trata-se dos fenômenos que não podem ser representados de forma determinística

Leia mais

ESTATÍSTICA. Professor: Ricardo Vojta

ESTATÍSTICA. Professor: Ricardo Vojta ESTATÍSTICA Ciências Contábeis Professor: Ricardo Vojta RAMOS DA ESTATÍSTICA A estatística dedutiva (também conhecida como Estatística Descritiva) se encarrega de descrever o conjunto de dado desde a elaboração

Leia mais

Distribuições de Probabilidade Distribuição Normal

Distribuições de Probabilidade Distribuição Normal PROBABILIDADES Distribuições de Probabilidade Distribuição Normal BERTOLO PRELIMINARES Quando aplicamos a Estatística na resolução de situações-problema, verificamos que muitas delas apresentam as mesmas

Leia mais

4) Quais dos seguintes pares de eventos são mutuamente exclusivos:

4) Quais dos seguintes pares de eventos são mutuamente exclusivos: INE 7002 LISTA DE EXERCÍCIOS PROBABILIDADE Lista de Exercícios - Probabilidade 1 1) Lâmpadas que se apresentam em perfeitas condições são ensaiadas quanto ao tempo de vida. Um instrumento é acionado no

Leia mais

Método paramétrico de Monte Carlo para avaliação de correlação em dados autocorrelacionados

Método paramétrico de Monte Carlo para avaliação de correlação em dados autocorrelacionados Método paramétrico de Monte Carlo para avaliação de correlação em dados autocorrelacionados Karina Rebuli Universidade Federal do Paraná karina.rebuli@gmail.com 19 de setembro de 2014 Karina Rebuli (LEG

Leia mais

MAT 461 Tópicos de Matemática II Aula 3: Resumo de Probabilidade

MAT 461 Tópicos de Matemática II Aula 3: Resumo de Probabilidade MAT 461 Tópicos de Matemática II Aula 3: Resumo de Probabilidade Edson de Faria Departamento de Matemática IME-USP 19 de Agosto, 2013 Probabilidade: uma Introdução / Aula 3 1 Probabilidade Discreta: Exemplos

Leia mais

Universidade Federal do Pará Processo Seletivo Seriado Conteúdo de Matemática - (1ª série)

Universidade Federal do Pará Processo Seletivo Seriado Conteúdo de Matemática - (1ª série) Relacionar e resolver problemas que envolvem conjuntos; Reconhecer, operar e resolver problemas com conjuntos numéricos; Compreender os conceitos e propriedades aritméticas; Resolver problemas de porcentagem,

Leia mais

PLANEJAMENTO EXPERIMENTAL

PLANEJAMENTO EXPERIMENTAL PLANEJAMENTO EXPERIMENTAL Técnicas de Pesquisas Experimentais LUIS HENRIQUE STOCCO MARCIO TENÓRIO SANDRA MARCHI Introdução O Planejamento de Experimentos (Design of Experiments, DoE), técnica utilizada

Leia mais

4 Gráficos de controle

4 Gráficos de controle 4 Gráficos de controle O gráfico de controle é uma ferramenta poderosa do Controle Estatístico de Processo (CEP) para examinar a variabilidade em dados orientados no tempo. O CEP é composto por um conjunto

Leia mais

Modelagem e Simulação Material 02 Projeto de Simulação

Modelagem e Simulação Material 02 Projeto de Simulação Modelagem e Simulação Material 02 Projeto de Simulação Prof. Simão Sirineo Toscani Projeto de Simulação Revisão de conceitos básicos Processo de simulação Etapas de projeto Cuidados nos projetos de simulação

Leia mais

PROBABILIDADE PROFESSOR: ANDRÉ LUIS

PROBABILIDADE PROFESSOR: ANDRÉ LUIS PROBABILIDADE PROFESSOR: ANDRÉ LUIS 1. Experimentos Experimento determinístico: são aqueles em que o resultados são os mesmos, qualquer que seja o número de ocorrência dos mesmos. Exemplo: Um determinado

Leia mais

3 ALGORITMOS GENÉTICOS : CONCEITOS BÁSICOS E EXTENSÕES VINCULADAS AO PROBLEMA DE MINIMIZAÇÃO DE PERDAS

3 ALGORITMOS GENÉTICOS : CONCEITOS BÁSICOS E EXTENSÕES VINCULADAS AO PROBLEMA DE MINIMIZAÇÃO DE PERDAS 3 ALGORITMOS GENÉTICOS : CONCEITOS BÁSICOS E EXTENSÕES VINCULADAS AO PROBLEMA DE MINIMIZAÇÃO DE PERDAS 3.1 - Conceitos Básicos Entendemos como algoritmo um conjunto predeterminado e bem definido de regras

Leia mais

Raciocínio Lógico Exercícios. Prof. Pacher A B P(A B) P(A/B) = P(B) n(a) P(A) = n(s) PROBABILIDADE DECORRÊNCIA DA DEFINIÇÃO

Raciocínio Lógico Exercícios. Prof. Pacher A B P(A B) P(A/B) = P(B) n(a) P(A) = n(s) PROBABILIDADE DECORRÊNCIA DA DEFINIÇÃO PROBBILIDDE Introdução teoria da probabilidade é o ramo da matemática que cria, desenvolve e em geral pesquisa modelos que podem ser utilizados para estudar experimentos aleatórios ou não determinísticos.

Leia mais

Aula 03 Limite assintótico para a ordenação, Ordenação em tempo linear

Aula 03 Limite assintótico para a ordenação, Ordenação em tempo linear MC3305 Algoritmos e Estruturas de Dados II Aula 03 Limite assintótico para a ordenação, Ordenação em tempo linear Prof. Jesús P. Mena-Chalco jesus.mena@ufabc.edu.br 2Q-2015 1 2 Ordenação Ordenar corresponde

Leia mais

Programas Interativos: Valores Aleatórios

Programas Interativos: Valores Aleatórios Programação Funcional UFOP DECOM 2013 2 Aula prática Programas Interativos: Valores Aleatórios José Romildo Malaquias Resumo O objetivo desta aula é aprender a usar números aleatórios em Haskell. Para

Leia mais