A Otimização Colônia de Formigas

Tamanho: px
Começar a partir da página:

Download "A Otimização Colônia de Formigas"

Transcrição

1 A Otimização Colônia de Formigas Estéfane G. M. de Lacerda Departamento de Engenharia da Computação e Automação UFRN 22/04/2008

2 Índice A Inspiração Biológica O Ant System Aplicado ao PCV O Ant System Aplicado ao PQA Melhoramentos e Variantes

3 O que é Otimização por Colônia de Formigas Otimização colônia de formigas é uma metaheurística baseada em população e inspirada no comportamento forrageiro das formigas.

4 A Inspiração Biológica Muitas espécies de formigas são quase cegas. A comunicação entre as formigas é realizada através de uma substância química denominada de feromônio. Em algumas espécies, o feromônio é usado para criar caminhos (trilhas de formigas).

5 A Inspiração Biológica

6 A Inspiração Biológica

7 A Inspiração Biológica

8 A Inspiração Biológica Ao caminhar, as formigas depositam no chão o feromônio, formando, deste modo, uma trilha de feromônios. As formigas sentem o cheiro do feromônio, e quando elas têm que escolher um caminho, escolhem, com maior probabilidade, o caminho com maior quantidade de feromônio (cheiro mais forte). A trilha ajuda a formiga a achar o caminho de volta e as outras formigas a encontrar a fonte de alimentos.

9 O Experimento da Ponte Binária Experimento realizado por Deneubourg et al., 1990, para estudar o comportamento forrageiro das formigas.

10 O Experimento da Ponte Binária No inicio: As formigas são deixadas livres para escolher o caminho. Não há feromônio ainda.

11 O Experimento da Ponte Binária As formigas convergem para um dos caminhos com igual probabilidade. Devido a flutuações aleatórias, uma das pontes terá mais feromônio e atrairá as formigas com maior probabilidade. No Fim: ou

12 O Experimento da Ponte Binária Usando pontes de tamanhos diferentes, as formigas convergem para a ponte mais curta. Uma formiga percorre ida e volta a ponte curta no mesmo tempo que outra formiga realiza apenas o percurso de ida na ponte longa. Logo, será depositado mais feromônio na ponte curta do que na longa. Isto atrairá formigas para ponte curta.

13 Formigas Artificiais Formigas artificiais são heurísticas construtivas. Elas constroem soluções de forma probabilística utilizando duas informações: 1. A trilha de feromônio (artificial) que muda dinamicamente durante a execução do programa de modo a refletir a experiência já adquirida durante a busca. 2. A informação heurística especifica do problema a ser resolvido.

14 O Ant System Aplicado ao PCV O Ant System é o primeiro algoritmo que surgiu inspirado em Colônia de formigas. Matriz Distância do PCV ,0 1,0 2,2 2,0 4,1 2 1,0 0,0 1,4 2,2 4,0 3 2,2 1,4 0,0 2,2 3,2 4 2,0 2,2 2,2 0,0 2,2 5 4,1 4,0 3,2 2,2 0,0 cidades do PCV

15 Exemplo com o PCV Cada formiga irá construir uma solução movendo-se de uma cidade para outra. No ínicio, cada formiga é colocada em uma cidade diferente (ou colocada aleatoriamente).

16 A Construção da Solução pela Formiga Começando de uma cidade i, a formiga move-se escolhendo probabilisticamente a cidade vizinha j (entre os vizinhos factíveis).

17 Probabilidade de Transição A probabilidade da formiga k que está na cidade i de escolher a cidade j é dada pela regra: p k ij = (τ ij ) α (η ij ) β l N k i (τ il ) α (η il ) β, se j N k i, onde: τ ij é feromônio associado a aresta (i, j); α e β são parâmetros para determinar a influência do feromônio e da informação heurística; Ni k é a vizinhança factível da formiga k (i.e., o conjunto das cidades ainda não visitadas pela formiga k).

18 A Informação Heurística do PCV Associada a aresta (i, j) existe um valor heurístico η ij dado por η ij = 1 d ij que representa a atratividade da formiga visitar a cidade i depois de visitar a cidade j. O valor η ij é inversamente proporcional a distância d ij entre as cidades i e j.

19 Passo 1 Candidatos / prob. solução formiga de transição parcial 1 2(45%), 3(21%), 4(23%), 5(11%) (41%), 3(30%), 4(19%), 5(10%) (23%), 2(37%), 4(23%), 5(16%) (27%), 2(24%), 3(24%), 5(24%) (19%), 2(20%), 3(25%), 4(36%) 5-2 A escolha do candidato é de acordo com a probabilidade de transição. É feita de forma similar ao algoritmo da roleta dos algoritmos genéticos.

20 Passo 2 Candidatos / prob. solução formiga de transição parcial 1 3(50%), 4(32%), 5(18%) (38%), 4(42%), 5(20%) (35%), 2(32%), 5(32%) (30%), 2(31%), 3(39%) (46%), 3(33%), 4(21%) 5-2-1

21 Passo 3 Candidatos / prob. solução formiga de transição parcial 1 4(59%), 5(41%) (50%), 5(50%) (49%), 2(51%) (58%), 3(42%) (48%), 4(52%)

22 Passo 4 Candidatos / prob. solução formiga de transição parcial 1 4(100%) (100%) (100%) (100%) (100%)

23 Término da Primeira Iteração formiga solução comprimento (k) completa da viajem (L k ) , , , , ,4

24 O Pseudo-Código do Ant System Coloque cada formiga em uma cidade aleatória para t = 1 até número de iterações para k = 1 até m enquanto a formiga k não construir a viagem S k Selecione a próxima cidade pela regra p k ij fim enquanto Calcule a distância L k da viagem S k se L k < L então S = S k, L = L k fim se fim para Atualize os feromônios fim para retornar S

25 Atualização do Feromônio No feromônio τ ij associado a aresta (i, j) ocorre dois eventos: 1. A evaporação; Evita que o feromônio acumulado cresça indefinidamente; Permite esquecer pobres decisões do passado da busca. 2. O depósito de feromônio de todas as formigas que passaram sobre (i, j).

26 Atualização do Feromônio Depois que todas as formigas construíram suas viagens, o feromônio é atualizado. τ (k) ij é a quantidade de feromônio que a formiga k deposita sobre a aresta (i, j). É dado por: { τ (k) Q/Lk, se a aresta (i, j) pertence a viagem S ij = k. 0, caso contrário. onde Q é uma constante.

27 Atualização do Feromônio O feromônio τ ij associado a aresta (i, j) é atualizado pelo fórmula: m τ ij = (1 ρ)τ ij + τ (k) ij } {{ } k=1 evaporação } {{ } depósito onde 0 < ρ 1 é a taxa de evaporação de feromônio.

28 Exemplo de atualização do feromônio Atualização do feromônio na aresta (3, 5) Apenas as formigas 1, 2 e 5 depositam feromônio nesta aresta. Suponha Q = 1, 0. A contribuição de cada formiga: τ (1) 3,5 = 1/L 1 = 0, 102 τ (2) 3,5 = 1/L 2 = 0, 102 τ (5) 3,5 = 1/L 5 = 0, 081 k viagem L k , , , , ,4 Suponha ρ = 0, 5. τ 3,5 = (1 ρ)τ 3,5 + τ (1) (2) (5) 3,5 + τ 3,5 + τ 3,5 = (1 0, 5)1, 0 + 0, , , 081 = 0, 785

29 Critérios de Parada Número máximo de iterações; Estagnação.

30 Estagnação Estagnação é a situação na qual todas as formigas seguem sempre o mesmo percurso. A Estagnação é causado pelo excessivo crescimento de feromônio nas arestas de uma viagem subótima.

31 Estagnação Apesar da natureza estocástica do algoritmo, a forte concentração de feromônio nas arestas força a formiga a fazer sempre o mesmo percurso. Distribuição de feromônio no inicio da busca. Distribuição de feromônio após 100 iterações.

32 Problema Quadrático de Alocação fluxo A-C é o mais alto fluxos A-B e B-C são iguais. Possíveis soluções:

33 Exemplo de PQA Onde alocar os departamentos no terreno da Universidade? Matriz Fluxo F F = f ij = fluxo de pessoas entre i e j D = Matriz distância D

34 Cálculo do custo da alocação. Exemplo de PQA C(Π) = 4 i=1 4 f ij d πi π j j=1 onde Π = (3, 1, 4, 2). Então, C(Π) =f 1,2 d 3,1 + f 1,3 d 3,4 + f 1,4 d 2,3 + f 2,1 d 1,3 + f 2,3 d 1,4 + f 2,4 d 1,2 + f 3,1 d 4,3 + f 3,2 d 4,1 + f 3,4 d 4,2 + f 4,1 d 3,2 + f 4,2 d 2,1 + f 4,3 d 2,4 =1640 Nota: o PQA consiste em encontrar uma permutação Π que minimiza o custo.

35 Informação Heurística Esta informação heurística foi proposta por Dorigo et al., (1996). Distância Potencial D (soma das colunas de D) D = D = Fluxo potencial F (soma das colunas de F ) F = F =

36 Algoritmo Construtivo Guloso Parece ser bom alocar facilidade com alto fluxo potencial a localizações de baixa distância potencial. Exemplo F = [120, 110, 130, 80] T D = [6, 10, 12, 14] T i) atribua facilidade 3 a localização 1; ii) atribua facilidade 1 a localização 2; iii) atribua facilidade 2 a localização 3; iv) atribua facilidade 4 a localização 4.

37 Algoritmo Construtivo da Formiga Passo 1 A formiga k escolhe a próxima facilidade i de forma gulosa (i.e., pelo menor valor disponível no vetor de fluxo potencial F) Passo 2 A formiga k atribui uma localização j para a facilidade i de acordo com a probabilidade: p k ij = (τ ij ) α (η j ) β l N k i (τ il ) α (η il ) β, se j N k i. onde η j = 1/D j Passo 3 Se já construiu uma solução pare, caso contrário volte ao Passo 1.

38 Elitist Ant System (EAS) É o primeiro melhoramento no AS. Introduzido por Dorigo (1992); IDÉIA : fornecer um forte reforço adicional nas arestas pertencendo ao melhor percurso achado desde do inicio do algoritmo; Este percurso será denotado por T bs (do inglês best-so-far tour); É uma idéia similar a estratégia elitismo dos algoritmos evolucionários.

39 Elitist Ant System (EAS) Atualização do Feromônio: τ ij = (1 ρ)τ ij + onde τ (bs) ij τ (bs) ij = m k=1 é definido como: τ ij + e τ (bs) ij Q/L bs, se a aresta (i, j) pertence ao percurso T bs. 0, caso contrário. e e é um parâmetro definido pelo usuário.

40 Rank-Based Ant System (AS rank ) Introduzido por Bullnheimer et al (1999); Cada formiga deposita uma quantidade de feromônio que diminui de acordo com seu rank; Como no Elistist Ant System, a formiga que realiza o percurso best-so-far T bs também deposita feromônio.

41 Rank-Based Ant System (AS rank ) Atualização do Feromônio: w 1 τ ij = (1 ρ)τ ij + (w r) τ (r) ij r=1 onde r é o rank da formiga; + w τ (bs) ij Apenas as (w 1) formigas com melhor rank depositam feromônio; De acordo com Bullnheimer et al (1999), AS rank é levemente melhor que EAS e significativamente melhor que AS.

42 Ant Colony System (ACS) Introduzido por Dorigo & Gambardella, 1997; Através de elitismo, faz uso de mais intensificação do que o AS; Apenas a formiga best-so-far deposita feromônio; As formigas removem feromônio para aumentar a diversificação.

43 Ant Colony System (ACS) Regra Proporcional Pseudoaleatória: Com probabilidade q 0 Escolha a cidade j com o maior τ il (η il ) β, isto é: j = argmax l N k i {τ il (η il ) β }, (intensificação) Com probabilidade (1 q 0 ) Use a regra tradicional do AS: p k ij = (τ ij ) α (η ij ) β l N k i (τ il ) α (η il ), se j N k β i (diversificação tendenciosa)

44 Ant Colony System (ACS) Regra de Atualização Global de Feromônio: Apenas a formiga best-so-far deposita feromônio depois de cada iteração: τ ij = (1 ρ)τ ij + ρ τ (bs) ij, (i, j) T bs A evaporação e depósito de feromônio somente ocorre nas arestas do percurso best-so-far T bs. O feromônio depositado é uma média ponderada entre o antigo valor de feromônio e o novo valor a ser depositado.

45 Ant Colony System (ACS) Regra de Atualização Local de Feromônio: É aplicado imediatamente após a formiga atravessar a aresta: τ ij = (1 ξ)τ ij + ξτ 0 ; τ 0 (nível mínimo de feromônio) e ξ (0 < ξ < 1) são parametros; A formiga remove o feromônio da aresta que acabou de atravessar; Aumenta a diversificação ao reduzir a atratividade das arestas frequentemente visitadas.

Inteligência de Enxame: ACO

Inteligência de Enxame: ACO Inteligência de Enxame: ACO! Otimização colônia de formigas é uma meta-heurística: «baseada em população «inspirada no comportamento forrageiro das formigas.! Muitas espécies de formigas são quase cegas.!

Leia mais

IA Colônia de Formigas. Prof. Ricardo Britto DIE-UFPI rbritto@ufpi.edu.br

IA Colônia de Formigas. Prof. Ricardo Britto DIE-UFPI rbritto@ufpi.edu.br IA Colônia de Formigas Prof. Ricardo Britto DIE-UFPI rbritto@ufpi.edu.br Sumário Introdução O Experimento da Ponte Binária. Ant System Aplicado ao PCV. Elitist Ant System. Introdução Otimização colônia

Leia mais

Inteligência Computacional Aplicada a Engenharia de Software

Inteligência Computacional Aplicada a Engenharia de Software Inteligência Computacional Aplicada a Engenharia de Software Estudo de caso III Prof. Ricardo de Sousa Britto rbritto@ufpi.edu.br Introdução Em alguns ambientes industriais, pode ser necessário priorizar

Leia mais

CAP 254 CAP 254. Otimização Combinatória. Professor: Dr. L.A.N. Lorena. Assunto: Metaheurísticas Antonio Augusto Chaves

CAP 254 CAP 254. Otimização Combinatória. Professor: Dr. L.A.N. Lorena. Assunto: Metaheurísticas Antonio Augusto Chaves CAP 254 CAP 254 Otimização Combinatória Professor: Dr. L.A.N. Lorena Assunto: Metaheurísticas Antonio Augusto Chaves Conteúdo C01 Simulated Annealing (20/11/07). C02 Busca Tabu (22/11/07). C03 Colônia

Leia mais

A Otimização Nuvem de Partículas (particle swarm)

A Otimização Nuvem de Partículas (particle swarm) A Otimização Nuvem de Partículas (particle swarm) Estéfane G. M. de Lacerda Departamento de Engenharia da Computação e Automação UFRN 20/06/2007 Índice Introdução Algoritmo Nuvem de Partículas Interpretação

Leia mais

APLICAÇÃO DA METAHEURÍSTICA COLÔNIA DE FORMIGAS AO PROBLEMA DE ROTEAMENTO DE VEÍCULOS

APLICAÇÃO DA METAHEURÍSTICA COLÔNIA DE FORMIGAS AO PROBLEMA DE ROTEAMENTO DE VEÍCULOS APLICAÇÃO DA METAHEURÍSTICA COLÔNIA DE FORMIGAS AO PROBLEMA DE ROTEAMENTO DE VEÍCULOS Mirlam Moro Lombardi e Jean Eduardo Glazar Departamento de Ciência da Computação Faculdade de Aracruz Uniaracruz {mirlam,

Leia mais

Computação BioInspirada

Computação BioInspirada Computação BioInspirada Os Engenheiros da Natureza Fabrício Olivetti de França The reasonable man adapts himself to the world; the unreasonable one persists in trying to adapt the world to himself. Therefore

Leia mais

Resolução do Problema de Roteamento de Veículos com Frota Heterogênea via GRASP e Busca Tabu.

Resolução do Problema de Roteamento de Veículos com Frota Heterogênea via GRASP e Busca Tabu. Resolução do Problema de Roteamento de Veículos com Frota Heterogênea via GRASP e Busca Tabu. Camila Leles de Rezende, Denis P. Pinheiro, Rodrigo G. Ribeiro camilalelesproj@yahoo.com.br, denisppinheiro@yahoo.com.br,

Leia mais

BUSCA LOCAL ITERADA (ILS ITERATED LOCAL SEARCH)

BUSCA LOCAL ITERADA (ILS ITERATED LOCAL SEARCH) BUSCA LOCAL ITERADA (ILS ITERATED LOCAL SEARCH) Francisco A. M. Gomes 1º sem/2009 MT852 Tópicos em pesquisa operacional Iterated local search (ILS) Método que gera uma sequência de soluções obtidas por

Leia mais

Seleção de Variáveis: Um Sistema Híbrido Baseado em Colônia de Formigas e Rede Neural MLP

Seleção de Variáveis: Um Sistema Híbrido Baseado em Colônia de Formigas e Rede Neural MLP Trabalho de Conclusão de Curso Engenharia de Computação Seleção de Variáveis: Um Sistema Híbrido Baseado em Colônia de Formigas e Rede Neural MLP Autor: Arthur Fernandes Minduca de Sousa Orientador: Mêuser

Leia mais

INF 1771 Inteligência Artificial

INF 1771 Inteligência Artificial Edirlei Soares de Lima INF 1771 Inteligência Artificial Aula 04 Algoritmos Genéticos Introdução Algoritmos genéticos são bons para abordar espaços de buscas muito grandes e navegálos

Leia mais

Organizaçãoe Recuperaçãode Informação GSI521. Prof. Dr. Rodrigo Sanches Miani FACOM/UFU

Organizaçãoe Recuperaçãode Informação GSI521. Prof. Dr. Rodrigo Sanches Miani FACOM/UFU Organizaçãoe Recuperaçãode Informação GSI521 Prof. Dr. Rodrigo Sanches Miani FACOM/UFU Análisede links Page Rank Prof. Dr. Rodrigo Sanches Miani FACOM/UFU Motivação Suponha que um modelo clássico, como

Leia mais

Minicurso SBSE 2012:

Minicurso SBSE 2012: Campus de Ilha Solteira Faculdade de Engenharia de Ilha Solteira Departamento de Energia Elétrica Minicurso SBSE 2012: Metaheurísticas em sistemas elétricos de potência: introdução ao estudo e aplicações

Leia mais

Relatório Trabalho Prático 2 : Colônia de Formigas para Otimização e Agrupamento

Relatório Trabalho Prático 2 : Colônia de Formigas para Otimização e Agrupamento Relatório Trabalho Prático 2 : Colônia de Formigas para Otimização e Agrupamento Ramon Pereira Lopes Rangel Silva Oliveira 31 de outubro de 2011 1 Introdução O presente documento refere-se ao relatório

Leia mais

CAP 254 CAP 254. Otimização Combinatória. Professor: Dr. L.A.N. Lorena. Assunto: Metaheurísticas Antonio Augusto Chaves

CAP 254 CAP 254. Otimização Combinatória. Professor: Dr. L.A.N. Lorena. Assunto: Metaheurísticas Antonio Augusto Chaves CAP 254 CAP 254 Otimização Combinatória Professor: Dr. L.A.N. Lorena Assunto: Metaheurísticas Antonio Augusto Chaves Conteúdo C01 Simulated Annealing (20/11/07). C02 Busca Tabu (22/11/07). C03 Colônia

Leia mais

O uso da colônia de formigas no problema de visitação na AMAN

O uso da colônia de formigas no problema de visitação na AMAN O uso da colônia de formigas no problema de visitação na AMAN Rogerio Carvalho Mendes Tavora rcmqco@ig.com.br AMAN Roberto Campos Leoni rcleoni@yahoo.com.br AEDB Resumo:A Academia Militar das Agulhas Negras

Leia mais

Sistemas Auto-organizáveis BC0005

Sistemas Auto-organizáveis BC0005 Aplicações Sistemas Auto-organizáveis BC0005 Bases Computacionais da Ciência Modelagem e simulação Solução de problemas reais por modelos computacionais (visto na aula anterior) Sistemas auto-organizáveis

Leia mais

METAHEURÍSTICA COLÔNIA DE FORMIGAS APLICADA AO PROBLEMA DO CAIXEIRO VIAJANTE

METAHEURÍSTICA COLÔNIA DE FORMIGAS APLICADA AO PROBLEMA DO CAIXEIRO VIAJANTE METAHEURÍSTICA COLÔNIA DE FORMIGAS APLICADA AO PROBLEMA DO CAIXEIRO VIAJANTE Fábio Ribeiro Cerqueira (orientador) e Gildásio Lecchi Cravo Departamento de Ciência da Computação e Informática Faculdade de

Leia mais

Projeto e Análise de Algoritmos Projeto de Algoritmos Introdução. Prof. Humberto Brandão humberto@dcc.ufmg.br

Projeto e Análise de Algoritmos Projeto de Algoritmos Introdução. Prof. Humberto Brandão humberto@dcc.ufmg.br Projeto e Análise de Algoritmos Projeto de Algoritmos Introdução Prof. Humberto Brandão humberto@dcc.ufmg.br aula disponível no site: http://www.bcc.unifal-mg.edu.br/~humberto/ Universidade Federal de

Leia mais

Algoritmos Genéticos

Algoritmos Genéticos UNIVERSIDADE PRESBITERIANA MACKENZIE Laboratório de Computação Natural LCoN I ESCOLA DE COMPUTAÇÃO NATURAL Algoritmos Genéticos Rafael Xavier e Willyan Abilhoa Outubro/2012 www.computacaonatural.com.br

Leia mais

Complexidade de Algoritmos. Edson Prestes

Complexidade de Algoritmos. Edson Prestes Edson Prestes Idéias básicas Um algoritmo guloso seleciona, a cada passo, o melhor elemento pertencente a entrada. Verifica se ele é viável - vindo a fazer parte da solução ou não. Após uma seqüência de

Leia mais

Complemento IV Introdução aos Algoritmos Genéticos

Complemento IV Introdução aos Algoritmos Genéticos Complemento IV Introdução aos Algoritmos Genéticos Esse documento é parte integrante do material fornecido pela WEB para a 2ª edição do livro Data Mining: Conceitos, técnicas, algoritmos, orientações e

Leia mais

Otimização de Funções Não Lineares por Meio do Algoritmo Árvore da Montanha

Otimização de Funções Não Lineares por Meio do Algoritmo Árvore da Montanha Otimização de Funções Não Lineares por Meio do Algoritmo Árvore da Montanha Amarildo de Vicente Colegiado do Curso de Matemática Centro de Ciências Exatas e Tecnológicas da Universidade Estadual do Oeste

Leia mais

Heurísticas para o Problema de Sequenciamento de Carros em Linhas de Montagem. Daniel Brasil, Thiago Ferreira de Noronha, Caroline Rocha

Heurísticas para o Problema de Sequenciamento de Carros em Linhas de Montagem. Daniel Brasil, Thiago Ferreira de Noronha, Caroline Rocha Capítulo 18 Heurísticas para o Problema de Sequenciamento de Carros em Linhas de Montagem Daniel Brasil, Thiago Ferreira de Noronha, Caroline Rocha Resumo: Este capítulo trata do Problema do Sequenciamento

Leia mais

Introdução às Redes Neurais Artificiais

Introdução às Redes Neurais Artificiais Introdução às Redes Neurais Artificiais Treinamento via Algoritmos Genéticos Prof. João Marcos Meirelles da Silva http://www.professores.uff.br/jmarcos Departamento de Engenharia de Telecomunicações Escola

Leia mais

Inteligência de Enxames

Inteligência de Enxames Inteligência de Enxames André Ricardo Gonçalves andreric [at] dca.fee.unicamp.br www.dca.fee.unicamp.br/~andreric Sumário 1 Inteligência de Enxames p. 3 1.1 Ant Colony Optimization...........................

Leia mais

Projeto e Análise de Algoritmos Projeto de Algoritmos Heurísticas e Algoritmos Aproximados

Projeto e Análise de Algoritmos Projeto de Algoritmos Heurísticas e Algoritmos Aproximados Projeto e Análise de Algoritmos Projeto de Algoritmos Heurísticas e Algoritmos Aproximados Prof. Humberto Brandão humberto@bcc.unifal-mg.edu.br Universidade Federal de Alfenas Departamento de Ciências

Leia mais

Teoria dos Grafos. Edson Prestes

Teoria dos Grafos. Edson Prestes Edson Prestes Grafos Cliques Maximais Para determinar os cliques maximais de um grafo G podemos usar o método de Maghout em Dado o grafo abaixo, calcule Determine os conjuntos independentes maximais em

Leia mais

BCC204 - Teoria dos Grafos

BCC204 - Teoria dos Grafos BCC204 - Teoria dos Grafos Marco Antonio M. Carvalho (baseado nas notas de aula do prof. Haroldo Gambini Santos) Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal

Leia mais

Figura 1.1: Exemplo de links patrocinados no Google

Figura 1.1: Exemplo de links patrocinados no Google 1 Links Patrocinados 1.1 Introdução Links patrocinados são aqueles que aparecem em destaque nos resultados de uma pesquisa na Internet; em geral, no alto ou à direita da página, como na Figura 1.1. Figura

Leia mais

JOSÉ DOMINGOS ALBUQUERQUE AGUIAR MCAC - MONTE CARLO ANT COLONY: UM NOVO ALGORITMO ESTOCÁSTICO DE AGRUPAMENTO DE DADOS

JOSÉ DOMINGOS ALBUQUERQUE AGUIAR MCAC - MONTE CARLO ANT COLONY: UM NOVO ALGORITMO ESTOCÁSTICO DE AGRUPAMENTO DE DADOS JOSÉ DOMINGOS ALBUQUERQUE AGUIAR MCAC - MONTE CARLO ANT COLONY: UM NOVO ALGORITMO ESTOCÁSTICO DE AGRUPAMENTO DE DADOS RECIFE-PE Fevereiro/2008 UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO PRÓ-REITORIA DE PESQUISA

Leia mais

Ant Colony Optimization

Ant Colony Optimization Ant Colony Optimization por Fabricio Breve Fabricio Breve fabricio@rc.unesp.br 02/06/2016 Fabricio Breve 1 Ant Colony Optimization Origem na tese de doutorado de Marco Dorigo, em 1992 Ant Systems Algoritmo

Leia mais

Pós-Graduação em Engenharia Elétrica Inteligência Artificial

Pós-Graduação em Engenharia Elétrica Inteligência Artificial Pós-Graduação em Engenharia Elétrica Inteligência Artificial João Marques Salomão Rodrigo Varejão Andreão Inteligência Artificial Definição (Fonte: AAAI ): "the scientific understanding of the mechanisms

Leia mais

Teoria da Complexidade

Teoria da Complexidade handout.pdf June 5, 0 Teoria da Complexidade Cid C. de Souza / IC UNICAMP Universidade Estadual de Campinas Instituto de Computação o semestre de 0 Revisado por Zanoni Dias Autor Prof. Cid Carvalho de

Leia mais

FACULDADE CAMPO LIMPO PAULISTA MESTRADO EM CIÊNCIA DA COMPUTAÇÃO. Projeto e Análise de Algoritmos II Lista de Exercícios 2

FACULDADE CAMPO LIMPO PAULISTA MESTRADO EM CIÊNCIA DA COMPUTAÇÃO. Projeto e Análise de Algoritmos II Lista de Exercícios 2 FACULDADE CAMPO LIMPO PAULISTA MESTRADO EM CIÊNCIA DA COMPUTAÇÃO Projeto e Análise de Algoritmos II Lista de Exercícios 2 Prof. Osvaldo. 1. Desenvolva algoritmos para as operações abaixo e calcule a complexidade

Leia mais

Complexidade de Algoritmos. Edson Prestes

Complexidade de Algoritmos. Edson Prestes Edson Prestes Caminhos de custo mínimo em grafo orientado Este problema consiste em determinar um caminho de custo mínimo a partir de um vértice fonte a cada vértice do grafo. Considere um grafo orientado

Leia mais

Cadeias de Markov. Geovany A. Borges gaborges@ene.unb.br

Cadeias de Markov. Geovany A. Borges gaborges@ene.unb.br 36341 - Introdução aos Processos Estocásticos Curso de Pós-Graduação em Engenharia Elétrica Departamento de Engenharia Elétrica Universidade de Brasília Cadeias de Markov Geovany A. Borges gaborges@ene.unb.br

Leia mais

Meta-heurísticas. Métodos Heurísticos José António Oliveira zan@dps.uminho.pt. meta-heurísticas

Meta-heurísticas. Métodos Heurísticos José António Oliveira zan@dps.uminho.pt. meta-heurísticas Meta-heurísticas 105 meta-heurísticas Propriedades e Características: são estratégias que guiam o processo de pesquisa; - o objectivo a atingir é a exploração eficiente do espaço de pesquisa de modo a

Leia mais

Agrupamento de dados

Agrupamento de dados Organização e Recuperação de Informação: Agrupamento de dados Marcelo K. A. Faculdade de Computação - UFU Agrupamento de dados / 7 Overview Agrupamento: introdução Agrupamento em ORI 3 K-médias 4 Avaliação

Leia mais

Anais do XX Congresso Brasileiro de Automática Belo Horizonte, MG, 20 a 24 de Setembro de 2014

Anais do XX Congresso Brasileiro de Automática Belo Horizonte, MG, 20 a 24 de Setembro de 2014 ESTRATÉGIAS PARA A ALOCAÇÃO OTIMIZADA DE INDICADORES DE FALTA EM REDES DE DISTRIBUIÇÃO DE ENERGIA RODRIGO F. G. SAU, MADSON C. DE ALMEIDA Faculdade de Engenharia Elétrica e de Computação, DSEE, Unicamp

Leia mais

- Computação Evolutiva -

- Computação Evolutiva - - Computação Evolutiva - Prof. Dr. Cícero Garrozi DEINFO - UFRPE PPGIA@UFRPE cicerog@gmail.com Site da disciplina: http://cicerog.blogspot.com Sumário Situando a Computação Evolucionária Metáfora principal

Leia mais

2 Atualidade de uma base de dados

2 Atualidade de uma base de dados 2 Atualidade de uma base de dados Manter a atualidade de uma base de dados é um problema que pode ser abordado de diferentes maneiras. Cho e Garcia-Molina [CHO] definem esse problema da seguinte forma:

Leia mais

Prof. Júlio Cesar Nievola Data Mining PPGIa PUCPR

Prof. Júlio Cesar Nievola Data Mining PPGIa PUCPR Encontrar grupos de objetos tal que objetos em um grupo são similares (ou relacionados) uns aos outros e diferentes de (ou não relacionados) a objetos em outros grupos Compreensão Agrupa documentos relacionados

Leia mais

01/05/2016. Danillo Tourinho Sancho da Silva, MSc ROTEIRIZAÇÃO TEORIA DOS GRAFOS MOTIVAÇÃO

01/05/2016. Danillo Tourinho Sancho da Silva, MSc ROTEIRIZAÇÃO TEORIA DOS GRAFOS MOTIVAÇÃO ROTEIRIZAÇÃO Danillo Tourinho Sancho da Silva, MSc TEORIA DOS GRAFOS MOTIVAÇÃO 1 MOTIVAÇÃO Por que estudar grafos? Importante ferramenta matemática com aplicação em diversas áreas do conhecimento Utilizados

Leia mais

O que é? Swarm Intelligence. Qual a origem? Cardume. Qualquer tentativa de projetar algoritmos ou técnicas de resolução distribuída de

O que é? Swarm Intelligence. Qual a origem? Cardume. Qualquer tentativa de projetar algoritmos ou técnicas de resolução distribuída de O que é? Swarm Intelligence (Inteligência oletiva) Prof. Luis Otavio lvares Qualquer tentativa de projetar algoritmos ou técnicas de resolução distribuída de problemas inspirada pelo comportamento coletivo

Leia mais

BCC204 - Teoria dos Grafos

BCC204 - Teoria dos Grafos BCC204 - Teoria dos Grafos Marco Antonio M. Carvalho (baseado nas notas de aula do prof. Haroldo Gambini Santos) Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal

Leia mais

Mestranda: Márcia Maria Horn. Orientador: Prof. Dr. Sandro Sawicki

Mestranda: Márcia Maria Horn. Orientador: Prof. Dr. Sandro Sawicki Universidade Regional do Noroeste do Estado do Rio Grande do Sul Departamento de Ciências Exatas e Engenharias Programa de Mestrado em Modelagem Matemática Grupo de Pesquisa em Computação Aplicada Temática:

Leia mais

UMA HEURÍSTICA GRASP PARA O PROBLEMA ESTENDIDO DE SEQUENCIAMENTO DE CARROS

UMA HEURÍSTICA GRASP PARA O PROBLEMA ESTENDIDO DE SEQUENCIAMENTO DE CARROS UMA HEURÍSTICA GRASP PARA O PROBLEMA ESTENDIDO DE SEQUENCIAMENTO DE CARROS Lucas Middeldorf Rizzo Universidade Federal de Minas Gerais Av. Antônio Carlos, 6627 - Pampulha - Belo Horizonte - MG CEP 31270-901

Leia mais

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu 1 Programação Linear (PL) Aula 5: O Método Simplex. 2 Algoritmo. O que é um algoritmo? Qualquer procedimento iterativo e finito de solução é um algoritmo. Um algoritmo é um processo que se repete (itera)

Leia mais

Organizaçãoe Recuperaçãode Informação GSI521. Prof. Dr. Rodrigo Sanches Miani FACOM/UFU

Organizaçãoe Recuperaçãode Informação GSI521. Prof. Dr. Rodrigo Sanches Miani FACOM/UFU Organizaçãoe Recuperaçãode Informação GSI521 Prof. Dr. Rodrigo Sanches Miani FACOM/UFU Aula anterior Organização e Recuperação de Informação(GSI521) Modelo vetorial- Definição Para o modelo vetorial, o

Leia mais

Renato Assunção UFMG

Renato Assunção UFMG Renato Assunção UFMG IR: O que existe de diferente na Web? (Kumar) Busca na Web: não e igual a busca numa base comum? Volume (> 40 bilhões = 4 * 10 10 ver http://www.worldwidewebsize.com) Mudança (23%

Leia mais

HEURÍSTICAS COMPUTACIONAIS APLICADAS À OTIMIZAÇÃO ESTRUTURAL DE TRELIÇAS BIDIMENSIONAIS

HEURÍSTICAS COMPUTACIONAIS APLICADAS À OTIMIZAÇÃO ESTRUTURAL DE TRELIÇAS BIDIMENSIONAIS JOÃO PAULO GONÇALVES PEREIRA HEURÍSTICAS COMPUTACIONAIS APLICADAS À OTIMIZAÇÃO ESTRUTURAL DE TRELIÇAS BIDIMENSIONAIS Dissertação de Mestrado 1 JOÃO PAULO GONÇALVES PEREIRA HEURÍSTICAS COMPUTACIONAIS APLICADAS

Leia mais

AVALIANDO ALGORITMOS DE OTIMIZAÇÃO BASEADOS EM COLÔNIA DE FORMIGAS UTILIZANDO MÉTRICAS DE REDES COMPLEXAS

AVALIANDO ALGORITMOS DE OTIMIZAÇÃO BASEADOS EM COLÔNIA DE FORMIGAS UTILIZANDO MÉTRICAS DE REDES COMPLEXAS AVALIANDO ALGORITMOS DE OTIMIZAÇÃO BASEADOS EM COLÔNIA DE FORMIGAS UTILIZANDO MÉTRICAS DE REDES COMPLEXAS Trabalho de Conclusão de Curso Engenharia da Computação Sergio Ferreira Ribeiro Orientador: Prof.

Leia mais

Banco de Dados Profa. Dra. Cristina Dutra de Aguiar Ciferri. Banco de Dados Processamento e Otimização de Consultas

Banco de Dados Profa. Dra. Cristina Dutra de Aguiar Ciferri. Banco de Dados Processamento e Otimização de Consultas Processamento e Otimização de Consultas Banco de Dados Motivação Consulta pode ter sua resposta computada por uma variedade de métodos (geralmente) Usuário (programador) sugere uma estratégia para achar

Leia mais

Pesquisa Operacional

Pesquisa Operacional Pesquisa Operacional Tópicos em Programação Linear e Inteira Prof. Dr.Ricardo Ribeiro dos Santos ricr.santos@gmail.com Universidade Católica Dom Bosco - UCDB Engenharia de Computação Roteiro Introdução

Leia mais

3 ALGORITMOS GENÉTICOS : CONCEITOS BÁSICOS E EXTENSÕES VINCULADAS AO PROBLEMA DE MINIMIZAÇÃO DE PERDAS

3 ALGORITMOS GENÉTICOS : CONCEITOS BÁSICOS E EXTENSÕES VINCULADAS AO PROBLEMA DE MINIMIZAÇÃO DE PERDAS 3 ALGORITMOS GENÉTICOS : CONCEITOS BÁSICOS E EXTENSÕES VINCULADAS AO PROBLEMA DE MINIMIZAÇÃO DE PERDAS 3.1 - Conceitos Básicos Entendemos como algoritmo um conjunto predeterminado e bem definido de regras

Leia mais

MODELAGEM E SIMULAÇÃO

MODELAGEM E SIMULAÇÃO MODELAGEM E SIMULAÇÃO Professor: Dr. Edwin B. Mitacc Meza edwin@engenharia-puro.com.br www.engenharia-puro.com.br/edwin Como Funciona a Simulação Introdução Assim como qualquer programa de computador,

Leia mais

SLAG - Resolvendo o Problema do Caixeiro Viajante Utilizando Algoritmos Genéticos

SLAG - Resolvendo o Problema do Caixeiro Viajante Utilizando Algoritmos Genéticos SLAG - Resolvendo o Problema do Caixeiro Viajante Utilizando Algoritmos Genéticos Fredson Vieira Costa 1, Fábio Silveira Vidal 1, Claudomiro Moura Gomes André 1 1 Curso de Bacharelado em Ciência da Computação

Leia mais

XX Seminário Nacional de Distribuição de Energia Elétrica SENDI 2012-22 a 26 de outubro Rio de Janeiro - RJ - Brasil

XX Seminário Nacional de Distribuição de Energia Elétrica SENDI 2012-22 a 26 de outubro Rio de Janeiro - RJ - Brasil XX Seminário Nacional de Distribuição de Energia Elétrica SENDI 2012-22 a 26 de outubro Rio de Janeiro - RJ - Brasil HERMANN CLAY DE ALMEIDA LEITE ENERGISA PARAIBA DISTRIBUIDORA DE ENERGIA S/A hermann@energisa.com.br

Leia mais

IMPLEMENTAÇÃO E AVALIAÇÃO DE ABORDAGENS HEURÍSTICAS PARA O PROBLEMA DO ROTEAMENTO DE CABOS EM PAINÉIS ELÉTRICOS

IMPLEMENTAÇÃO E AVALIAÇÃO DE ABORDAGENS HEURÍSTICAS PARA O PROBLEMA DO ROTEAMENTO DE CABOS EM PAINÉIS ELÉTRICOS UNIVERSIDADE DO ESTADO DE SANTA CATARINA UDESC CENTRO DE CIÊNCIAS TECNOLÓGICAS CCT DEPARTAMENTO DE ENGENHARIA ELÉTRICA DEE PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA PPGEEL ALEXANDRE ERWIN ITTNER

Leia mais

Algoritmos Genéticos (GA s)

Algoritmos Genéticos (GA s) Algoritmos Genéticos (GA s) 1 Algoritmos Genéticos (GA s) Dado um processo ou método de codificar soluções de um problema na forma de cromossomas e dada uma função de desempenho que nos dá um valor de

Leia mais

Revisão Inteligência Artificial ENADE. Prof a Fabiana Lorenzi Outubro/2011

Revisão Inteligência Artificial ENADE. Prof a Fabiana Lorenzi Outubro/2011 Revisão Inteligência Artificial ENADE Prof a Fabiana Lorenzi Outubro/2011 Representação conhecimento É uma forma sistemática de estruturar e codificar o que se sabe sobre uma determinada aplicação (Rezende,

Leia mais

36 a Olimpíada Brasileira de Matemática Nível Universitário Primeira Fase

36 a Olimpíada Brasileira de Matemática Nível Universitário Primeira Fase 36 a Olimpíada Brasileira de Matemática Nível Universitário Primeira Fase Problema 1 Turbo, o caracol, está participando de uma corrida Nos últimos 1000 mm, Turbo, que está a 1 mm por hora, se motiva e

Leia mais

MANUAL DO USUÁRIO. TOOLBOX SIA.

MANUAL DO USUÁRIO. TOOLBOX SIA. MANUAL DO USUÁRIO. TOOLBOX SIA. 1. Arquivos Disponibilizados. Os seguintes arquivos compõem o toolbox desenvolvido: - Pacote SIA: arquivos de comando tipo M (Malab) que resolvem o GAP utilizando o SIA.

Leia mais

Simulação Estocástica

Simulação Estocástica Simulação Estocástica O que é Simulação Estocástica? Simulação: ato ou efeito de simular Disfarce, fingimento,... Experiência ou ensaio realizado com o auxílio de modelos. Aleatório: dependente de circunstâncias

Leia mais

Programação Dinâmica. Programa do PA. Técnicas Avançadas de Projeto. Aulas Anteriores. Introdução. Plano de Aula. Técnicas de Projeto de Algoritmos

Programação Dinâmica. Programa do PA. Técnicas Avançadas de Projeto. Aulas Anteriores. Introdução. Plano de Aula. Técnicas de Projeto de Algoritmos Programação Dinâmica Técnicas de Projeto de Algoritmos Aula 13 Alessandro L. Koerich Pontifícia Universidade Católica do Paraná (PUCPR) Ciência da Computação 7 o Período Engenharia de Computação 5 o Período

Leia mais

Implementação de um Algoritmo Paralelo e Escalável do Ant Colony System aplicado ao Problema do Roteamento de Veículos

Implementação de um Algoritmo Paralelo e Escalável do Ant Colony System aplicado ao Problema do Roteamento de Veículos Francisco E. M. Pereira Implementação de um Algoritmo Paralelo e Escalável do Ant Colony System aplicado ao Problema do Roteamento de Veículos Pau dos Ferros 2015 Francisco E. M. Pereira Implementação

Leia mais

Inteligência de Enxame *

Inteligência de Enxame * Inteligência de Enxame * 1. Introdução... 2 2. Algumas Idéias sobre Insetos Sociais... 5 2.1. Curiosidades sobre as formigas... 9 3. Colônia de Formigas... 10 3.1. Coleta de Alimento pelas Formigas...

Leia mais

Lista 2 - Modelos determinísticos

Lista 2 - Modelos determinísticos EA044 - Planejamento e Análise de Sistemas de Produção Lista 2 - Modelos determinísticos Exercício 1 A Companhia Ferroviária do Brasil (CFB) está planejando a alocação de vagões a 5 regiões do país para

Leia mais

3 Market Basket Analysis - MBA

3 Market Basket Analysis - MBA 2 Mineração de Dados 3 Market Basket Analysis - MBA Market basket analysis (MBA) ou, em português, análise da cesta de compras, é uma técnica de data mining que faz uso de regras de associação para identificar

Leia mais

Analise filogenética baseada em alinhamento de domínios

Analise filogenética baseada em alinhamento de domínios Analise filogenética baseada em alinhamento de domínios Moléculas biológicas e evolução Como já foi comentado anteriormente sabemos que o DNA de qualquer espécie de ser vivo sofre mutações ao longo do

Leia mais

4 Estudo de caso: Problema de seqüenciamento de carros

4 Estudo de caso: Problema de seqüenciamento de carros 4 Estudo de caso: Problema de seqüenciamento de carros O problema de seqüenciamento de carros em linhas de produção das indústrias automobilísticas é um tipo particular de problema de escalonamento que

Leia mais

Matéria: Matemática Assunto: Razão e Proporção Prof. Dudan

Matéria: Matemática Assunto: Razão e Proporção Prof. Dudan Matéria: Matemática Assunto: Razão e Proporção Prof. Dudan Matemática Razão e Proporção Razão A palavra razão vem do latim ratio e significa a divisão ou o quociente entre dois números A e B, denotada

Leia mais

Modelamento e simulação de processos

Modelamento e simulação de processos Modelamento e simulação de processos 4. Método de Monte Carlo Prof. Dr. André Carlos Silva 1. INTRODUÇÃO O Método de Monte Carlo (MMC) é um método estatístico utilizado em simulações estocásticas com diversas

Leia mais

Algoritmos Genéticos: Aspectos Práticos. Estéfane G. M. de Lacerda DCA/UFRN Junho/2009

Algoritmos Genéticos: Aspectos Práticos. Estéfane G. M. de Lacerda DCA/UFRN Junho/2009 : Aspectos Práticos Estéfane G. M. de Lacerda DCA/UFRN Junho/2009 Principais Tópicos População Inicial Funções Objetivo de Alto Custo Critérios de Parada Convergência Prematura Diversidade Tipos de Substituição

Leia mais

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Revisão de Probabilidade e Estatística

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Revisão de Probabilidade e Estatística Universidade Federal do Paraná Departamento de Informática Reconhecimento de Padrões Revisão de Probabilidade e Estatística Luiz Eduardo S. Oliveira, Ph.D. http://lesoliveira.net Conceitos Básicos Estamos

Leia mais

Clusterização em Mineração de Dados

Clusterização em Mineração de Dados Clusterização em Mineração de Dados Luiz Satoru Ochi, Carlos Rodrigo Dias, Stênio S. Furtado Soares Programa de Pós Graduação em Computação Instituto de Computação Universidade Federal Fluminense (IC UFF)

Leia mais

1. Método Simplex. Faculdade de Engenharia Eng. Celso Daniel Engenharia de Produção. Pesquisa Operacional II Profa. Dra. Lílian Kátia de Oliveira

1. Método Simplex. Faculdade de Engenharia Eng. Celso Daniel Engenharia de Produção. Pesquisa Operacional II Profa. Dra. Lílian Kátia de Oliveira Faculdade de Engenharia Eng. Celso Daniel Engenharia de Produção. Método Simple.. Solução eata para os modelos de Programação Linear O modelo de Programação Linear (PL) reduz um sistema real a um conjunto

Leia mais

Otimização por Colônia de Formigas

Otimização por Colônia de Formigas 1/111 Otimização por Colônia de Formigas Priscila V. Z. Capriles Goliatt Jaqueline da Silva Angelo Helio J.C. Barbosa {capriles, jsangelo, hcbm}@lncc.br Laboratório Nacional de Computação Científica -

Leia mais

5COP096 TeoriadaComputação

5COP096 TeoriadaComputação Sylvio 1 Barbon Jr barbon@uel.br 5COP096 TeoriadaComputação Aula 14 Prof. Dr. Sylvio Barbon Junior Sumário - Problemas Exponenciais - Algoritmos Exponenciais usando Tentativa e Erro - Heurísticas para

Leia mais

O IMPACTO DA PARAMETRIZAÇÃO NO ALGORITMO HEURÍSTICO BASEADO EM COLÔNIA DE FORMIGAS ARTIFICIAIS COLORANT 3 -RT

O IMPACTO DA PARAMETRIZAÇÃO NO ALGORITMO HEURÍSTICO BASEADO EM COLÔNIA DE FORMIGAS ARTIFICIAIS COLORANT 3 -RT O IMPACTO DA PARAMETRIZAÇÃO NO ALGORITMO HEURÍSTICO BASEADO EM COLÔNIA DE FORMIGAS ARTIFICIAIS COLORANT 3 -RT Carla Négri Lintzmayer Instituto de Computação Universidade de Campinas (UNICAMP) carlanegri@gmail.com

Leia mais

ALGORITMOS GENÉTICOS: UMA VISÃO EXPLANATÓRIA

ALGORITMOS GENÉTICOS: UMA VISÃO EXPLANATÓRIA 136 ALGORITMOS GENÉTICOS: UMA VISÃO EXPLANATÓRIA FILITTO, Danilo 1 Resumo: Os algoritmos Genéticos inspiram-se no processo de evolução natural e são utilizados para resolver problemas de busca e otimização

Leia mais

Análise de Regressão. Tópicos Avançados em Avaliação de Desempenho. Cleber Moura Edson Samuel Jr

Análise de Regressão. Tópicos Avançados em Avaliação de Desempenho. Cleber Moura Edson Samuel Jr Análise de Regressão Tópicos Avançados em Avaliação de Desempenho Cleber Moura Edson Samuel Jr Agenda Introdução Passos para Realização da Análise Modelos para Análise de Regressão Regressão Linear Simples

Leia mais

Paralelização do Algoritmo de Agrupamento de Formiga

Paralelização do Algoritmo de Agrupamento de Formiga CENTRO ESTADUAL DE ENSINO TECNOLÓGICO PAULA SOUZA FACULDADE DE TECNOLOGIA DE INDAIATUBA GUILHERME CAVASSAN Paralelização do Algoritmo de Agrupamento de Formiga Indaiatuba Novembro/2012 CENTRO ESTADUAL

Leia mais

Resolução de Problemas Com Procura. Capítulo 3

Resolução de Problemas Com Procura. Capítulo 3 Resolução de Problemas Com Procura Capítulo 3 Sumário Agentes que resolvem problemas Tipos de problemas Formulação de problemas Exemplos de problemas Algoritmos de procura básicos Eliminação de estados

Leia mais

Sistemas Inteligentes Lista de Exercícios sobre Busca

Sistemas Inteligentes Lista de Exercícios sobre Busca Sistemas Inteligentes Lista de Exercícios sobre Busca 1) A* - Problema do metrô de Paris Suponha que queremos construir um sistema para auxiliar um usuário do metrô de Paris a saber o trajeto mais rápido

Leia mais

Uso de SAS/OR para diminuir o tempo de resposta com um melhor posicionamento de ambulâncias.

Uso de SAS/OR para diminuir o tempo de resposta com um melhor posicionamento de ambulâncias. Uso de SAS/OR para diminuir o tempo de resposta com um melhor posicionamento de ambulâncias. Fábio França 1, 1 Logical Optimization Rua Tanhaçu número 405, CEP 05679-040 São Paulo, Brasil fabio.franca@optimization.com.br

Leia mais

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 04. Prof. Dr. Marco Antonio Leonel Caetano

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 04. Prof. Dr. Marco Antonio Leonel Caetano MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação Aula 04 Prof. Dr. Marco Antonio Leonel Caetano Guia de Estudo para Aula 04 Aplicação de Produto Escalar - Interpretação do produto escalar

Leia mais

Projeto e Análise de Algoritmos. Profa. Juliana Kaizer Vizzotto. Projeto e Análise de Algoritmos - Aula 1

Projeto e Análise de Algoritmos. Profa. Juliana Kaizer Vizzotto. Projeto e Análise de Algoritmos - Aula 1 Projeto e Análise de Algoritmos Profa. Juliana Kaizer Vizzotto Projeto e Análise de Algoritmos - Aula 1 Roteiro Introdução Exemplo: ordenação Introdução Análise de Algoritmos Estudo teórico da performance

Leia mais

3 Revisão da literatura

3 Revisão da literatura 3 Revisão da literatura Pensar é mais interessante que saber e menos interessante que observar. JOHANN WOLFGANG GOETHE O objetivo deste capítulo é apresentar as referências mais importantes relacionadas

Leia mais

Otimização por Descida de Gradiente

Otimização por Descida de Gradiente Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCA UFES Departamento de Computação Otimização por Descida de Gradiente Redes Neurais Artificiais Site: http://jeiks.net E-mail: jacsonrcsilva@gmail.com

Leia mais

Conceitos Básicos de Algoritmos Genéticos: Teoria e Prática

Conceitos Básicos de Algoritmos Genéticos: Teoria e Prática Conceitos Básicos de Algoritmos Genéticos: Teoria e Prática Thatiane de Oliveira Rosa 1, Hellen Souza Luz 2 1 Curso de Sistemas de Informação Centro Universitário Luterano de Palmas (CEULP/ULBRA) Caixa

Leia mais

FUNDAÇÃO DE APOIO AO ENSINO TÉCNICO DO ESTADO DO RIO DE JANEIRO FAETERJ Petrópolis Área de Extensão PLANO DE CURSO

FUNDAÇÃO DE APOIO AO ENSINO TÉCNICO DO ESTADO DO RIO DE JANEIRO FAETERJ Petrópolis Área de Extensão PLANO DE CURSO FUNDAÇÃO DE APOIO AO ENINO TÉCNICO DO ETADO DO RIO DE JANEIRO PLANO DE CURO 1. Identificação Curso de Extensão: INTRODUÇÃO AO ITEMA INTELIGENTE Professor Regente: José Carlos Tavares da ilva Carga Horária:

Leia mais

Pesquisa Operacional Programação em Redes

Pesquisa Operacional Programação em Redes Pesquisa Operacional Programação em Redes Profa. Alessandra Martins Coelho outubro/2013 Modelagem em redes: Facilitar a visualização e a compreensão das características do sistema Problema de programação

Leia mais

Modelos e Métodos de Resolução para Problemas de Escalonamento de Projetos

Modelos e Métodos de Resolução para Problemas de Escalonamento de Projetos Universidade Federal de Ouro Preto Departamento de Computação Modelos e Métodos de Resolução para Problemas de Escalonamento de Projetos Haroldo Gambini Santos Túlio A. Machado Toffolo Marco A.M. de Carvalho

Leia mais

Interconexão de Redes Parte 3. Prof. Dr. S. Motoyama

Interconexão de Redes Parte 3. Prof. Dr. S. Motoyama Interconexão de Redes Parte 3 Prof. Dr. S. Motoyama Protocolo de configuração dinâmica de host - DHCP DHCP proporciona uma estrutura para passar informação de configuração aos hosts (de maneira dinâmica

Leia mais

Inteligência Computacional: resolvendo problemas difíceis da vida real

Inteligência Computacional: resolvendo problemas difíceis da vida real Instituto de Computação Semana Nacional da Ciência e Tecnologia Escola Agrotécnica Federal de Inconfidentes Inteligência Computacional: resolvendo problemas difíceis da vida real Carlos Eduardo de Andrade

Leia mais

MLP (Multi Layer Perceptron)

MLP (Multi Layer Perceptron) MLP (Multi Layer Perceptron) André Tavares da Silva andre.silva@udesc.br Roteiro Rede neural com mais de uma camada Codificação de entradas e saídas Decorar x generalizar Perceptron Multi-Camada (MLP -

Leia mais

Algoritmos Randomizados: Introdução

Algoritmos Randomizados: Introdução Algoritmos Randomizados: Introdução Celina Figueiredo Guilherme Fonseca Manoel Lemos Vinícius Sá 26º Colóquio Brasileiro de Matemática IMPA Rio de Janeiro Brasil 2007 Resumo Definições Monte Carlo Variáveis

Leia mais

Aula-17 Interconexão de Redes IP (Internet Protocol) Prof. Dr. S. Motoyama

Aula-17 Interconexão de Redes IP (Internet Protocol) Prof. Dr. S. Motoyama Aula-7 Interconexão de Redes IP (Internet Protocol) Prof. Dr. S. Motoyama Encaminhamento IP Exemplo de tabela de roteamento de R: Rede/Sub-rede Mácara de sub-rede Próximo salto 28.96.34.0 255.255.255.28

Leia mais