A Otimização Colônia de Formigas

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "A Otimização Colônia de Formigas"

Transcrição

1 A Otimização Colônia de Formigas Estéfane G. M. de Lacerda Departamento de Engenharia da Computação e Automação UFRN 22/04/2008

2 Índice A Inspiração Biológica O Ant System Aplicado ao PCV O Ant System Aplicado ao PQA Melhoramentos e Variantes

3 O que é Otimização por Colônia de Formigas Otimização colônia de formigas é uma metaheurística baseada em população e inspirada no comportamento forrageiro das formigas.

4 A Inspiração Biológica Muitas espécies de formigas são quase cegas. A comunicação entre as formigas é realizada através de uma substância química denominada de feromônio. Em algumas espécies, o feromônio é usado para criar caminhos (trilhas de formigas).

5 A Inspiração Biológica

6 A Inspiração Biológica

7 A Inspiração Biológica

8 A Inspiração Biológica Ao caminhar, as formigas depositam no chão o feromônio, formando, deste modo, uma trilha de feromônios. As formigas sentem o cheiro do feromônio, e quando elas têm que escolher um caminho, escolhem, com maior probabilidade, o caminho com maior quantidade de feromônio (cheiro mais forte). A trilha ajuda a formiga a achar o caminho de volta e as outras formigas a encontrar a fonte de alimentos.

9 O Experimento da Ponte Binária Experimento realizado por Deneubourg et al., 1990, para estudar o comportamento forrageiro das formigas.

10 O Experimento da Ponte Binária No inicio: As formigas são deixadas livres para escolher o caminho. Não há feromônio ainda.

11 O Experimento da Ponte Binária As formigas convergem para um dos caminhos com igual probabilidade. Devido a flutuações aleatórias, uma das pontes terá mais feromônio e atrairá as formigas com maior probabilidade. No Fim: ou

12 O Experimento da Ponte Binária Usando pontes de tamanhos diferentes, as formigas convergem para a ponte mais curta. Uma formiga percorre ida e volta a ponte curta no mesmo tempo que outra formiga realiza apenas o percurso de ida na ponte longa. Logo, será depositado mais feromônio na ponte curta do que na longa. Isto atrairá formigas para ponte curta.

13 Formigas Artificiais Formigas artificiais são heurísticas construtivas. Elas constroem soluções de forma probabilística utilizando duas informações: 1. A trilha de feromônio (artificial) que muda dinamicamente durante a execução do programa de modo a refletir a experiência já adquirida durante a busca. 2. A informação heurística especifica do problema a ser resolvido.

14 O Ant System Aplicado ao PCV O Ant System é o primeiro algoritmo que surgiu inspirado em Colônia de formigas. Matriz Distância do PCV ,0 1,0 2,2 2,0 4,1 2 1,0 0,0 1,4 2,2 4,0 3 2,2 1,4 0,0 2,2 3,2 4 2,0 2,2 2,2 0,0 2,2 5 4,1 4,0 3,2 2,2 0,0 cidades do PCV

15 Exemplo com o PCV Cada formiga irá construir uma solução movendo-se de uma cidade para outra. No ínicio, cada formiga é colocada em uma cidade diferente (ou colocada aleatoriamente).

16 A Construção da Solução pela Formiga Começando de uma cidade i, a formiga move-se escolhendo probabilisticamente a cidade vizinha j (entre os vizinhos factíveis).

17 Probabilidade de Transição A probabilidade da formiga k que está na cidade i de escolher a cidade j é dada pela regra: p k ij = (τ ij ) α (η ij ) β l N k i (τ il ) α (η il ) β, se j N k i, onde: τ ij é feromônio associado a aresta (i, j); α e β são parâmetros para determinar a influência do feromônio e da informação heurística; Ni k é a vizinhança factível da formiga k (i.e., o conjunto das cidades ainda não visitadas pela formiga k).

18 A Informação Heurística do PCV Associada a aresta (i, j) existe um valor heurístico η ij dado por η ij = 1 d ij que representa a atratividade da formiga visitar a cidade i depois de visitar a cidade j. O valor η ij é inversamente proporcional a distância d ij entre as cidades i e j.

19 Passo 1 Candidatos / prob. solução formiga de transição parcial 1 2(45%), 3(21%), 4(23%), 5(11%) (41%), 3(30%), 4(19%), 5(10%) (23%), 2(37%), 4(23%), 5(16%) (27%), 2(24%), 3(24%), 5(24%) (19%), 2(20%), 3(25%), 4(36%) 5-2 A escolha do candidato é de acordo com a probabilidade de transição. É feita de forma similar ao algoritmo da roleta dos algoritmos genéticos.

20 Passo 2 Candidatos / prob. solução formiga de transição parcial 1 3(50%), 4(32%), 5(18%) (38%), 4(42%), 5(20%) (35%), 2(32%), 5(32%) (30%), 2(31%), 3(39%) (46%), 3(33%), 4(21%) 5-2-1

21 Passo 3 Candidatos / prob. solução formiga de transição parcial 1 4(59%), 5(41%) (50%), 5(50%) (49%), 2(51%) (58%), 3(42%) (48%), 4(52%)

22 Passo 4 Candidatos / prob. solução formiga de transição parcial 1 4(100%) (100%) (100%) (100%) (100%)

23 Término da Primeira Iteração formiga solução comprimento (k) completa da viajem (L k ) , , , , ,4

24 O Pseudo-Código do Ant System Coloque cada formiga em uma cidade aleatória para t = 1 até número de iterações para k = 1 até m enquanto a formiga k não construir a viagem S k Selecione a próxima cidade pela regra p k ij fim enquanto Calcule a distância L k da viagem S k se L k < L então S = S k, L = L k fim se fim para Atualize os feromônios fim para retornar S

25 Atualização do Feromônio No feromônio τ ij associado a aresta (i, j) ocorre dois eventos: 1. A evaporação; Evita que o feromônio acumulado cresça indefinidamente; Permite esquecer pobres decisões do passado da busca. 2. O depósito de feromônio de todas as formigas que passaram sobre (i, j).

26 Atualização do Feromônio Depois que todas as formigas construíram suas viagens, o feromônio é atualizado. τ (k) ij é a quantidade de feromônio que a formiga k deposita sobre a aresta (i, j). É dado por: { τ (k) Q/Lk, se a aresta (i, j) pertence a viagem S ij = k. 0, caso contrário. onde Q é uma constante.

27 Atualização do Feromônio O feromônio τ ij associado a aresta (i, j) é atualizado pelo fórmula: m τ ij = (1 ρ)τ ij + τ (k) ij } {{ } k=1 evaporação } {{ } depósito onde 0 < ρ 1 é a taxa de evaporação de feromônio.

28 Exemplo de atualização do feromônio Atualização do feromônio na aresta (3, 5) Apenas as formigas 1, 2 e 5 depositam feromônio nesta aresta. Suponha Q = 1, 0. A contribuição de cada formiga: τ (1) 3,5 = 1/L 1 = 0, 102 τ (2) 3,5 = 1/L 2 = 0, 102 τ (5) 3,5 = 1/L 5 = 0, 081 k viagem L k , , , , ,4 Suponha ρ = 0, 5. τ 3,5 = (1 ρ)τ 3,5 + τ (1) (2) (5) 3,5 + τ 3,5 + τ 3,5 = (1 0, 5)1, 0 + 0, , , 081 = 0, 785

29 Critérios de Parada Número máximo de iterações; Estagnação.

30 Estagnação Estagnação é a situação na qual todas as formigas seguem sempre o mesmo percurso. A Estagnação é causado pelo excessivo crescimento de feromônio nas arestas de uma viagem subótima.

31 Estagnação Apesar da natureza estocástica do algoritmo, a forte concentração de feromônio nas arestas força a formiga a fazer sempre o mesmo percurso. Distribuição de feromônio no inicio da busca. Distribuição de feromônio após 100 iterações.

32 Problema Quadrático de Alocação fluxo A-C é o mais alto fluxos A-B e B-C são iguais. Possíveis soluções:

33 Exemplo de PQA Onde alocar os departamentos no terreno da Universidade? Matriz Fluxo F F = f ij = fluxo de pessoas entre i e j D = Matriz distância D

34 Cálculo do custo da alocação. Exemplo de PQA C(Π) = 4 i=1 4 f ij d πi π j j=1 onde Π = (3, 1, 4, 2). Então, C(Π) =f 1,2 d 3,1 + f 1,3 d 3,4 + f 1,4 d 2,3 + f 2,1 d 1,3 + f 2,3 d 1,4 + f 2,4 d 1,2 + f 3,1 d 4,3 + f 3,2 d 4,1 + f 3,4 d 4,2 + f 4,1 d 3,2 + f 4,2 d 2,1 + f 4,3 d 2,4 =1640 Nota: o PQA consiste em encontrar uma permutação Π que minimiza o custo.

35 Informação Heurística Esta informação heurística foi proposta por Dorigo et al., (1996). Distância Potencial D (soma das colunas de D) D = D = Fluxo potencial F (soma das colunas de F ) F = F =

36 Algoritmo Construtivo Guloso Parece ser bom alocar facilidade com alto fluxo potencial a localizações de baixa distância potencial. Exemplo F = [120, 110, 130, 80] T D = [6, 10, 12, 14] T i) atribua facilidade 3 a localização 1; ii) atribua facilidade 1 a localização 2; iii) atribua facilidade 2 a localização 3; iv) atribua facilidade 4 a localização 4.

37 Algoritmo Construtivo da Formiga Passo 1 A formiga k escolhe a próxima facilidade i de forma gulosa (i.e., pelo menor valor disponível no vetor de fluxo potencial F) Passo 2 A formiga k atribui uma localização j para a facilidade i de acordo com a probabilidade: p k ij = (τ ij ) α (η j ) β l N k i (τ il ) α (η il ) β, se j N k i. onde η j = 1/D j Passo 3 Se já construiu uma solução pare, caso contrário volte ao Passo 1.

38 Elitist Ant System (EAS) É o primeiro melhoramento no AS. Introduzido por Dorigo (1992); IDÉIA : fornecer um forte reforço adicional nas arestas pertencendo ao melhor percurso achado desde do inicio do algoritmo; Este percurso será denotado por T bs (do inglês best-so-far tour); É uma idéia similar a estratégia elitismo dos algoritmos evolucionários.

39 Elitist Ant System (EAS) Atualização do Feromônio: τ ij = (1 ρ)τ ij + onde τ (bs) ij τ (bs) ij = m k=1 é definido como: τ ij + e τ (bs) ij Q/L bs, se a aresta (i, j) pertence ao percurso T bs. 0, caso contrário. e e é um parâmetro definido pelo usuário.

40 Rank-Based Ant System (AS rank ) Introduzido por Bullnheimer et al (1999); Cada formiga deposita uma quantidade de feromônio que diminui de acordo com seu rank; Como no Elistist Ant System, a formiga que realiza o percurso best-so-far T bs também deposita feromônio.

41 Rank-Based Ant System (AS rank ) Atualização do Feromônio: w 1 τ ij = (1 ρ)τ ij + (w r) τ (r) ij r=1 onde r é o rank da formiga; + w τ (bs) ij Apenas as (w 1) formigas com melhor rank depositam feromônio; De acordo com Bullnheimer et al (1999), AS rank é levemente melhor que EAS e significativamente melhor que AS.

42 Ant Colony System (ACS) Introduzido por Dorigo & Gambardella, 1997; Através de elitismo, faz uso de mais intensificação do que o AS; Apenas a formiga best-so-far deposita feromônio; As formigas removem feromônio para aumentar a diversificação.

43 Ant Colony System (ACS) Regra Proporcional Pseudoaleatória: Com probabilidade q 0 Escolha a cidade j com o maior τ il (η il ) β, isto é: j = argmax l N k i {τ il (η il ) β }, (intensificação) Com probabilidade (1 q 0 ) Use a regra tradicional do AS: p k ij = (τ ij ) α (η ij ) β l N k i (τ il ) α (η il ), se j N k β i (diversificação tendenciosa)

44 Ant Colony System (ACS) Regra de Atualização Global de Feromônio: Apenas a formiga best-so-far deposita feromônio depois de cada iteração: τ ij = (1 ρ)τ ij + ρ τ (bs) ij, (i, j) T bs A evaporação e depósito de feromônio somente ocorre nas arestas do percurso best-so-far T bs. O feromônio depositado é uma média ponderada entre o antigo valor de feromônio e o novo valor a ser depositado.

45 Ant Colony System (ACS) Regra de Atualização Local de Feromônio: É aplicado imediatamente após a formiga atravessar a aresta: τ ij = (1 ξ)τ ij + ξτ 0 ; τ 0 (nível mínimo de feromônio) e ξ (0 < ξ < 1) são parametros; A formiga remove o feromônio da aresta que acabou de atravessar; Aumenta a diversificação ao reduzir a atratividade das arestas frequentemente visitadas.

Ant Colony Optimization

Ant Colony Optimization Ant Colony Optimization por Fabricio Breve Fabricio Breve fabricio@rc.unesp.br 02/06/2016 Fabricio Breve 1 Ant Colony Optimization Origem na tese de doutorado de Marco Dorigo, em 1992 Ant Systems Algoritmo

Leia mais

Otimização em Colônias de Formigas. Prof. Eduardo R. Hruschka (Slides adaptados dos originais elaborados pelo Prof. André C. P. L. F.

Otimização em Colônias de Formigas. Prof. Eduardo R. Hruschka (Slides adaptados dos originais elaborados pelo Prof. André C. P. L. F. Otimização em Colônias de Formigas Prof. Eduardo R. Hruschka (Slides adaptados dos originais elaborados pelo Prof. André C. P. L. F. de Carvalho) Principais tópicos Introdução Colônias de Formigas Formação

Leia mais

Matrizes e sistemas de equações algébricas lineares

Matrizes e sistemas de equações algébricas lineares Capítulo 1 Matrizes e sistemas de equações algébricas lineares ALGA 2007/2008 Mest Int Eng Biomédica Matrizes e sistemas de equações algébricas lineares 1 / 37 Definições Equação linear Uma equação (algébrica)

Leia mais

Econometria. Operações básicas de vetores. Operações básicas de vetores. Operações básicas de vetores. Independência de vetores

Econometria. Operações básicas de vetores. Operações básicas de vetores. Operações básicas de vetores. Independência de vetores Operações básicas de vetores Econometria Adição Suponha dois vetores x e y com n componentes cada: 1. Alguns tópicos importantes de Álgebra Linear Danielle Carusi Machado - Econometria II Operações básicas

Leia mais

Representações de Grafos

Representações de Grafos Representações de Grafos Teoria dos Grafos 1 É possível diversas representações dos grafos. Vamos estudar as três utilizadas mais comumente: as matrizes de adjacência, as listas de adjacência e as multilistas

Leia mais

Produto Misto, Determinante e Volume

Produto Misto, Determinante e Volume 15 Produto Misto, Determinante e Volume Sumário 15.1 Produto Misto e Determinante............ 2 15.2 Regra de Cramer.................... 10 15.3 Operações com matrizes............... 12 15.4 Exercícios........................

Leia mais

2 Modelos Baseados no Comportamento de Formigas

2 Modelos Baseados no Comportamento de Formigas 2 Modelos Baseados no Comportamento de Formigas Formigas são seres vivos relativamente simples. Entretanto, é interessante reparar que suas colônias costumam apresentar um nível de sofisticação estrutural

Leia mais

Notações e revisão de álgebra linear

Notações e revisão de álgebra linear Notações e revisão de álgebra linear Marina Andretta ICMC-USP 17 de agosto de 2016 Baseado no livro Introduction to Linear Optimization, de D. Bertsimas e J. N. Tsitsiklis. Marina Andretta (ICMC-USP) sme0211

Leia mais

Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada.

Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada. Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada antunes@ibilce.unesp.br, socorro@ibilce.unesp.br Preparado a partir do texto: Rangel, Socorro. Teoria do Grafos,

Leia mais

Exercícios para Matlab

Exercícios para Matlab Exercícios para Matlab Orlando Ferreira Soares Índice Exercícios de Introdução ao MATLAB... Exercícios Básicos... Manipulação de Vectores e Matrizes... Operações sobre Escalares...5 Operações sobre Matrizes...7

Leia mais

4. MÉTODO DO FORMIGUEIRO (ANT COLONY OPTIMIZATION ACO)

4. MÉTODO DO FORMIGUEIRO (ANT COLONY OPTIMIZATION ACO) 4. MÉTODO DO FORMIGUEIRO (ANT COLONY OPTIMIZATION ACO) 4.. Analogia Comportamental: a busca de alimentos em um migueiro 4.2. A Tradução Matemática: o algoritmo básico ( versão discreta) 4.3. A Programação

Leia mais

Lista de Álgebra Linear Aplicada

Lista de Álgebra Linear Aplicada Lista de Álgebra Linear Aplicada Matrizes - Vetores - Retas e Planos 3 de setembro de 203 Professor: Aldo Bazán Universidade Federal Fluminense Matrizes. Seja A M 2 2 (R) definida como 0 0 0 3 0 0 0 2

Leia mais

O Problema do Fluxo de Custos Mínimos Terça-feira 2 de abril. O Problema do Caminho mais Curto. Fórmula. Outra Fórmula

O Problema do Fluxo de Custos Mínimos Terça-feira 2 de abril. O Problema do Caminho mais Curto. Fórmula. Outra Fórmula 15.053 Terça-feira 2 de abril O Problema do Caminho mais Curto Algoritmo de Dijkstra para solucionar o Problema do Caminho mais Curto Distribuir: Observações de Aula 1 O Problema do Fluxo de Custos Mínimos

Leia mais

Geometria Computacional: Triangulação

Geometria Computacional: Triangulação Geometria Computacional: INF2604 Geometria Computacional Prof. Hélio Lopes lopes@inf.puc-rio.br sala 408 RDC Considere S um conjunto de pontos no plano. O que é uma triangulação de S? Uma para um conjunto

Leia mais

Matrizes - Matemática II /05 1. Matrizes

Matrizes - Matemática II /05 1. Matrizes Matrizes - Matemática II - 00/0 1 Matrizes Introdução Se m e n são números naturais, chama-se matriz real de tipo m n a uma função A de nida no conjunto f(i; j) i f1; ; ; mg e j f1; ; ; ngg e com valores

Leia mais

Teoria dos Grafos Aula 23

Teoria dos Grafos Aula 23 Teoria dos Grafos Aula 23 Aula passada Apresentação de trabalhos Discussão da prova Subset sum Problema da mochila Aula de hoje Caminho mais curto entre todos os pares Algortimo de Floyd Warshall Programação

Leia mais

1.3 Isomorfismo 12 CAP. 1 CONCEITOS BÁSICOS

1.3 Isomorfismo 12 CAP. 1 CONCEITOS BÁSICOS 12 CAP. 1 CONCEITOS BÁSICOS I i I j. Essa relação de adjacência define um grafo com conjunto de vértices {I 1,...,I k }. Esse é um grafo de intervalos. Faça uma figura do grafo definido pelos intervalos

Leia mais

G1 de Álgebra Linear I Gabarito

G1 de Álgebra Linear I Gabarito G1 de Álgebra Linear I 2013.1 6 de Abril de 2013. Gabarito 1) Considere o triângulo ABC de vértices A, B e C. Suponha que: (i) o vértice B do triângulo pertence às retas de equações paramétricas r : (

Leia mais

A resposta para este problema envolve a partição do conjunto de arestas de tal forma que arestas adjacentes não pertençam a um mesmo conjunto.

A resposta para este problema envolve a partição do conjunto de arestas de tal forma que arestas adjacentes não pertençam a um mesmo conjunto. 7 - Coloração de Arestas e Emparelhamentos Considere o seguinte problema: Problema - Ao final do ano acadêmico, cada estudante deve fazer um exame oral com seus professores. Suponha que existam 4 estudantes

Leia mais

Teoria da Computação. Clique de um Grafo. Alexandre Renato Rodrigues de Souza 1

Teoria da Computação. Clique de um Grafo. Alexandre Renato Rodrigues de Souza 1 Teoria da Computação Clique de um Grafo Alexandre Renato Rodrigues de Souza 1 O que é um grafo? Definição 1: grafo é uma estruturas utilizada para representar relações entre elementos de um dado conjunto.

Leia mais

Grafos Orientados (digrafos)

Grafos Orientados (digrafos) Grafos Orientados (digrafos) Grafo Orientado ou digrafo Consiste em um grafo G = (V,A) onde V = {v 1,, v n } é um conjunto de vértices e A = {a 1,, a k } é um conjunto de arcos tais que a k, k=1,,m é representado

Leia mais

Uma forma de classificação

Uma forma de classificação Uma forma de classificação L. Não-RE ou f. nãocomputáveis LRE ou MT ou f. comput. L. Indecidíveis ou Procedimentos L. Recursivas ou Decidíveis ou Algoritmos Outra forma de classificação Problemas Indecidíveis

Leia mais

Teoria dos Grafos Aula 24

Teoria dos Grafos Aula 24 Teoria dos Grafos Aula 24 Aula passada Caminho mais curto entre todos os pares Algortimo de Floyd Warshall Programação dinâmica Aula de hoje Caminho mais curto em grafos Algoritmo de Bellman Ford Algoritmo

Leia mais

Em cada caso, estamos interessados em achar a menor distância possível, por exemplo, de um dado ponto a cada ponto de um plano fixo.

Em cada caso, estamos interessados em achar a menor distância possível, por exemplo, de um dado ponto a cada ponto de um plano fixo. Capítulo 4 distâncias em 3d Vamos aprender a calcular distâncias 1 de ponto a plano; 2 de ponto a reta; 3 de plano a plano; 4 de reta a plano e 5 de reta a reta Em cada caso, estamos interessados em achar

Leia mais

Grafos: árvores geradoras mínimas. Graça Nunes

Grafos: árvores geradoras mínimas. Graça Nunes Grafos: árvores geradoras mínimas Graça Nunes 1 Motivação Suponha que queremos construir estradas para interligar n cidades Cada estrada direta entre as cidades i e j tem um custo associado Nem todas as

Leia mais

Python - Dicionários. Introdução à Programação SI1

Python - Dicionários. Introdução à Programação SI1 Python - Dicionários Introdução à Programação SI1 Conteúdo Dicionários Conceitos Operações Métodos Exercícios 2 Dicionários São estruturas de dados que implementam mapeamentos Um mapeamento é uma coleção

Leia mais

Matrizes - ALGA /05 1. Matrizes

Matrizes - ALGA /05 1. Matrizes Matrizes - ALGA - 004/0 1 Matrizes Introdução Se m e n são números naturais, chama-se matriz real de tipo m n a uma função A de nida no conjunto f(i; j) : i f1; ; :::; mg e j f1; ; :::; ngg e com valores

Leia mais

Introdução aos Métodos Numéricos. Instituto de Computação UFF

Introdução aos Métodos Numéricos. Instituto de Computação UFF Introdução aos Métodos Numéricos Instituto de Computação UFF Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares. Métodos diretos Interpolação Ajuste de Curvas Zeros de Função Sistemas

Leia mais

ic Mestrado Integrado em Bioengenharia

ic Mestrado Integrado em Bioengenharia ic Mestrado Integrado em Bioengenharia MATEMÁTICA I 01-11- 1º Teste de Avaliação Álgebra Linear e Geometria Analítica Justifique convenientemente todos os cálculos que efetuar. O teste tem a duração de

Leia mais

Teoria dos Grafos. Caminho mínimo - Algoritmo de Dijskstra

Teoria dos Grafos. Caminho mínimo - Algoritmo de Dijskstra Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Silvio A. de Araujo Departamento de Matemática Aplicada antunes@ibilce.unesp.br, socorro@ibilce.unesp.br, saraujo@ibilce.unesp.br Caminho mínimo

Leia mais

Matemática- 2008/ Se possível, dê exemplos de: (no caso de não ser possível explique porquê)

Matemática- 2008/ Se possível, dê exemplos de: (no caso de não ser possível explique porquê) Matemática- 00/09. Se possível, dê exemplos de (no caso de não ser possível explique porquê) (a) Uma matriz do tipo ; cujos elementos principais sejam 0. (b) Uma matriz do tipo ; cujo elemento na posição

Leia mais

Máquina de Turing. Controle finito

Máquina de Turing. Controle finito Máquinas de Turing Máquinas de Turing podem fazer tudo o que um computador real faz. Porém, mesmo uma Máquina de Turing não pode resolver certos problemas. Estes problemas estão além dos limites teóricos

Leia mais

Errata da lista 1: Na página 4 (respostas), a resposta da letra e da questão 13 é {2, 3, 5, 7, 11, 13, 17} (faltou o número 17)

Errata da lista 1: Na página 4 (respostas), a resposta da letra e da questão 13 é {2, 3, 5, 7, 11, 13, 17} (faltou o número 17) Errata da lista 1: Na página 4 (respostas), a resposta da letra e da questão 13 é {2, 3, 5, 7, 11, 13, 17} (faltou o número 17) Lista 1 - Bases Matemáticas Elementos de Lógica e Linguagem Matemática 1

Leia mais

Códigos Corretores de Erros e Cliques de Grafos

Códigos Corretores de Erros e Cliques de Grafos Códigos Corretores de Erros e Cliques de Grafos Natália Pedroza Jayme Szwarcfiter Paulo Eustáquio UFRJ/UERJ 2016 Natália Pedroza (UFRJ/UERJ) Códigos Corretores 2016 1 / 32 Apresentação Códigos corretores

Leia mais

O Teorema da Amizade

O Teorema da Amizade O Teorema da Amizade Seminário Diagonal David Mesquita Faculdade de Ciências da Universidade do Porto 13 de Maio de 2009 Teorema da Amizade,TA Formulação Original Suponha-se que numa sociedade, cada par

Leia mais

UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Exatas Departamento de Matemática

UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Exatas Departamento de Matemática UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Exatas Departamento de Matemática 1 a Lista - MAT 17 - Introdução à Álgebra Linear II/2005 1 Considere as matrizes A, B, C, D e E com respectivas ordens,

Leia mais

Sistemas lineares e matrizes, C = e C =

Sistemas lineares e matrizes, C = e C = 1. Considere as matrizes ( 2 1 A 4 0 1 MATEMÁTICA I (M 195 (BIOLOGIA, BIOQUÍMICA E ARQUITETURA PAISAGISTA 2014/2015, B Sistemas lineares e matrizes ( 4 1 2 5 1 Verifique se está definida e, caso esteja,

Leia mais

CAP Exame de Admissão 16/12/2013. Instruções Gerais (leia atentamente)

CAP Exame de Admissão 16/12/2013. Instruções Gerais (leia atentamente) CAP 2014 Exame de Admissão 16/12/2013 Nome do Candidato: Identidade: Instruções Gerais (leia atentamente) O tempo total de duração do exame será de 2 horas. Você receberá uma Folha de Respostas junto com

Leia mais

CEFET/RJ - Centro Federal de Educação Tecnológica Celso Suckow da Fonseca Rio de Janeiro, 23 de setembro de 2008.

CEFET/RJ - Centro Federal de Educação Tecnológica Celso Suckow da Fonseca Rio de Janeiro, 23 de setembro de 2008. CEFET/RJ - Centro Federal de Educação Tecnológica Celso Suckow da Fonseca Rio de Janeiro, 23 de setembro de 2008. 1 a LISTA DE EXERCÍCIOS DE ELETRÔNICA DIGITAL Prof. Alessandro Jacoud Peixoto 1. Implemente

Leia mais

Teoria dos Grafos. Edson Prestes

Teoria dos Grafos. Edson Prestes Edson Prestes Introdução Representação Mostre que todo passeio de u até v contém um caminho de u até v. Considere um passeio de comprimento l de u até v. Se l = 0 então temos um passeio sem nenhuma aresta.

Leia mais

23. Resolva as seguintes equações matriciais: a) X. b) X. 24. Determine a matriz X, tal que (X A) t B, sendo:

23. Resolva as seguintes equações matriciais: a) X. b) X. 24. Determine a matriz X, tal que (X A) t B, sendo: Matrizes 9 Calcule: 5 7 9 6 5 8 5 7 5 6 6 8 7 5 7 Sejam A 9 5, B 8 6 e C 7 Determine as matrizes: A B C A B C A (B C) Sejam as matrizes A (a ij ), em que a ij i j, e B (b ij ), em que b ij i j Seja C A

Leia mais

Aplicando o Algoritmo Ant-Q na Priorização de Requisitos de Software com Precedência

Aplicando o Algoritmo Ant-Q na Priorização de Requisitos de Software com Precedência Aplicando o Algoritmo Ant-Q na Priorização de Requisitos de Software com Precedência Matheus Henrique Esteves Paixão 1, Márcia Maria Albuquerque Brasil 1, Thiago Gomes Nepomuceno da Silva 1, Jerffeson

Leia mais

Sistemas de Equações lineares

Sistemas de Equações lineares LEIC FEUP /4 Sistemas- Sistemas de Equações lineares SEL- Dado o sistema coeficientes + + + +, resolva-o invertendo a matriz dos SEL- SEL- Considere o seguinte sistema de equações lineares: + + + a + a

Leia mais

Inteligência de enxame e o algoritmo das abelhas

Inteligência de enxame e o algoritmo das abelhas Inteligência de enxame e o algoritmo das abelhas (Swarm intelligence and bee s algorithm) Glaucus Augustus, 6219168 O que é: Cooperação: é o processo de agir junto, em união(ex: grupo de tcc) Colaboração:

Leia mais

ALGA - Eng.Civil e Eng. Topográ ca - ISE /

ALGA - Eng.Civil e Eng. Topográ ca - ISE / ALGA - Eng.Civil e Eng. Topográ ca - ISE - 0/0 0. (a) Calcule o sinal das seguintes permutações (i) (; ; ; ; ) (ii) (; ; ; ; ; ) (b) Use os resultados da alínea (a) para calcular, usando a de nição, os

Leia mais

Optimização em Redes e Não Linear

Optimização em Redes e Não Linear Departamento de Matemática da Universidade de Aveiro Optimização em Redes e Não Linear Ano Lectivo 005/006, o semestre Folha - Optimização em Redes - Árvores de Suporte. Suponha que uma dada companhia

Leia mais

algoritmo "exercício vetor" var vet:vetor [1..12] de inteiro i:inteiro inicio para i de 1 ate 12 faca escreva ("Entre com vetor[",i,"]: ") leia

algoritmo exercício vetor var vet:vetor [1..12] de inteiro i:inteiro inicio para i de 1 ate 12 faca escreva (Entre com vetor[,i,]: ) leia algoritmo "exercício vetor" var vet:vetor [1..12] de inteiro i:inteiro inicio para i de 1 ate 12 faca escreva ("Entre com vetor[",i,"]: ") leia (vet[i]) fimalgoritmo 209 algoritmo "exercício vetor" var

Leia mais

Otimização por Colônia de Formigas (Ant Colony Optimization - ACO)

Otimização por Colônia de Formigas (Ant Colony Optimization - ACO) Otimização por Colônia de Formigas (Ant Colony Optimization - ACO) Eros Moreira de Carvalho Gabriel Silva Ramos {emc06,gsr04}@c3sl.ufpr.br 11 de Junho de 2007 Resumo Neste artigo, apresentamos a metaheurística

Leia mais

Inteligência Artificial (SI 214) Aula 4 Resolução de Problemas por meio de Busca Heurística

Inteligência Artificial (SI 214) Aula 4 Resolução de Problemas por meio de Busca Heurística Inteligência Artificial (SI 214) Aula 4 Resolução de Problemas por meio de Busca Heurística Prof. Josenildo Silva jcsilva@ifma.edu.br 2015 2012-2015 Josenildo Silva (jcsilva@ifma.edu.br) Este material

Leia mais

XXV OLIMPÍADA BRASILEIRA DE MATEMÁTICA TERCEIRA FASE NÍVEL 1 (5 ª ou 6 ª Séries)

XXV OLIMPÍADA BRASILEIRA DE MATEMÁTICA TERCEIRA FASE NÍVEL 1 (5 ª ou 6 ª Séries) TERCEIRA FASE NÍVEL 1 (5 ª ou 6 ª Séries) Quantos inteiros positivos menores que 1000 têm a soma de seus algarismos igual a 7? PROBLEMA : Considere as seqüências de inteiros positivos tais que cada termo

Leia mais

1. Conhecendo-se somente os produtos AB e AC, calcule A = X 2 = 2X. 3. Mostre que se A e B são matrizes que comutam com a matriz M = 1 0

1. Conhecendo-se somente os produtos AB e AC, calcule A = X 2 = 2X. 3. Mostre que se A e B são matrizes que comutam com a matriz M = 1 0 Lista de exercícios. AL. 1 sem. 2015 Prof. Fabiano Borges da Silva 1 Matrizes Notações: 0 para matriz nula; I para matriz identidade; 1. Conhecendo-se somente os produtos AB e AC calcule A(B + C) B t A

Leia mais

INF1010 Lista de Exercícios 2

INF1010 Lista de Exercícios 2 INF00 Lista de Exercícios 2 Árvores. Construir algoritmo para dada uma árvore n-ária, transformá-la em uma árvore binária. 2. Qual a maior e menor quantidade de nós que podem existir em uma árvore binária

Leia mais

Aprendizado de Máquina

Aprendizado de Máquina Aprendizado de Máquina André C. P. L. F. de Carvalho Posdoutorando: Isvani Frias-Blanco ICMC-USP Agrupamento de dados Tópicos Agrupamento de dados Dificuldades em agrupamento Algoritmos de agrupamento

Leia mais

Questão 1. Espaço para rascunho. Solução

Questão 1. Espaço para rascunho. Solução Graduação FGV-Rio Vestibular 007 Questão No primeiro turno da eleição para governador em certo estado, suponha que todas as urnas tenham, aproximadamente, o mesmo número de votos. Tendo sido apuradas 75%

Leia mais

Plano de Recuperação Final EF2

Plano de Recuperação Final EF2 Professor: Cíntia e Pupo Ano: 9º Objetivos: Proporcionar ao aluno a oportunidade de resgatar os conteúdos trabalhados em Desenho Geométrico, nos quais apresentou defasagens e que lhe servirão como pré-requisitos

Leia mais

Trabalhos e Exercícios 1 de Álgebra Linear

Trabalhos e Exercícios 1 de Álgebra Linear Trabalhos e Exercícios de Álgebra Linear Fabio Iareke 30 de março de 0 Trabalhos. Mostre que se A tem uma linha nula, então AB tem uma linha nula.. Provar as propriedades abaixo:

Leia mais

Plano de Recuperação 1º Semestre EF2

Plano de Recuperação 1º Semestre EF2 Professores: Cíntia / Pupo Ano: 9º Objetivos: Proporcionar ao aluno a oportunidade de resgatar os conteúdos trabalhados em Desenho Geométrico, nos quais apresentou defasagens e que lhe servirão como pré-requisitos

Leia mais

MAE GABARITO DA LISTA 2-04/10/2016

MAE GABARITO DA LISTA 2-04/10/2016 MAE5709 - GABARITO DA LISTA - 04/0/06 Exercício.7.5. Primeira Parte Seja P uma matriz de transição sobre um espaço de estados finito S. Mostre que uma distribuição π é invariante para P se e somente se

Leia mais

I Lista de Álgebra Linear /02 Matrizes-Determinantes e Sistemas Prof. Iva Zuchi Siple

I Lista de Álgebra Linear /02 Matrizes-Determinantes e Sistemas Prof. Iva Zuchi Siple 1 I Lista de Álgebra Linear - 2012/02 Matrizes-Determinantes e Sistemas Prof. Iva Zuchi Siple 1. Determine os valores de x e y que tornam verdadeira a igualdade ( x 2 + 5x x 2 ( 6 3 2x y 2 5y y 2 = 5 0

Leia mais

Ex. 1) Considere que a árvore seguinte corresponde a uma parte do espaço de estados de um jogo de dois agentes: f=7 f=7 f=1 f=2

Ex. 1) Considere que a árvore seguinte corresponde a uma parte do espaço de estados de um jogo de dois agentes: f=7 f=7 f=1 f=2 LERCI/LEIC Tagus 2005/06 Inteligência Artificial Exercícios sobre Minimax: Ex. 1) Considere que a árvore seguinte corresponde a uma parte do espaço de estados de um jogo de dois agentes: Max Min f=4 f=7

Leia mais

Algoritmos Genéticos. Estéfane G. M. de Lacerda DCA/UFRN Outubro/2008

Algoritmos Genéticos. Estéfane G. M. de Lacerda DCA/UFRN Outubro/2008 Estéfane G. M. de Lacerda DCA/UFRN Outubro/2008 Introdução São técnicas de busca e otimização. É a metáfora da teoria da evolução das espécies iniciada pelo Fisiologista e Naturalista inglês Charles Darwin.

Leia mais

Matemática C Semiextensivo V. 3

Matemática C Semiextensivo V. 3 Semietensivo V Eercícios 0 0 0) 0) a) A 0 0 b) c) a 0 representa o número de derrotas do Botafogo no torneio d) a e) América 0 + ponto Botafogo + 7 pontos Nacional 0 + pontos Comercial + 5 pontos f) o

Leia mais

Otimização por Colônia de Formigas (Ant Colony Optimization)

Otimização por Colônia de Formigas (Ant Colony Optimization) Capítulo 7 Otimização por Colônia de Formigas (Ant Colony Optimization) José Carlos Becceneri Stephan Stephany Haroldo Fraga de Campos Velho AntônioJosédaSilvaNeto 7.1 Motivação e Histórico do Método Muitos

Leia mais

Teoria dos Grafos. Aula 5 - Estruturas de Dados para Grafos. Profª. Alessandra Martins Coelho. março/2013

Teoria dos Grafos. Aula 5 - Estruturas de Dados para Grafos. Profª. Alessandra Martins Coelho. março/2013 Teoria dos Grafos Aula 5 - Estruturas de Dados para Grafos Profª. Alessandra Martins Coelho março/2013 Estrutura é o que caracteriza o próprio grafo e independe da forma como ele é representado. A representação

Leia mais

DESENHO GEOMÉTRICO AULA 3T EXERCÍCIOS RESOLVIDOS

DESENHO GEOMÉTRICO AULA 3T EXERCÍCIOS RESOLVIDOS 1 DESENHO GEOMÉTRICO AULA 3T EXERCÍCIOS RESOLVIDOS 1. SÃO DADOS 3 SEGMENTOS, a = 3 cm, b = 2 cm e c = 2,5 cm. PEDE-SE ENCONTRAR A QUARTA PROPORCIONAL ENTRE a, b e c : PROCESSO I - Consideremos os 3 segmentos

Leia mais

4ª Lista de Exercícios de Programação I

4ª Lista de Exercícios de Programação I 4ª Lista de Exercícios de Programação I Instrução As questões devem ser implementadas em C. 1. Faça um algoritmo que leia 10 valores inteiros armazenando-os em um vetor e depois calcule a soma dos valores

Leia mais

Matrizes e Linearidade

Matrizes e Linearidade Matrizes e Linearidade 1. Revisitando Matrizes 1.1. Traço, Simetria, Determinante 1.. Inversa. Sistema de Equações Lineares. Equação Característica.1. Autovalor & Autovetor 4. Polinômios Coprimos 5. Função

Leia mais

e B =, determine a, b, c e d para que A = B. Tabela 1: vendas em Maio P M G camisas camisetas calças paletós

e B =, determine a, b, c e d para que A = B. Tabela 1: vendas em Maio P M G camisas camisetas calças paletós Lista 01: Matrizes, Determinantes e Sistemas Lineares Prof: Iva Zuchi Siple [ ] [ ] a + 2b 2a b 9 2 1. Dadas as matrizes A = e B =, determine a, b, c e d para que A = B. 2c + d c 2d 4 7 2. Uma fábrica

Leia mais

Sistemas de Equações Lineares e Matrizes

Sistemas de Equações Lineares e Matrizes Sistemas de Equações Lineares e Matrizes. Quais das seguintes equações são lineares em x, y, z: (a) 2x + 2y 5z = x + xy z = 2 (c) x + y 2 + z = 2 2. A parábola y = ax 2 + bx + c passa pelos pontos (x,

Leia mais

UDESC - Universidade do Estado de Santa Catarina CCT - Centro de Ciências Tecnológicas DMAT - Departamento de Matemática

UDESC - Universidade do Estado de Santa Catarina CCT - Centro de Ciências Tecnológicas DMAT - Departamento de Matemática UDESC - Universidade do Estado de Santa Catarina CCT - Centro de Ciências Tecnológicas DMAT - Departamento de Matemática Segunda Lista de Exercícios de ITN: Números Inteiros Prof. Marnei Luis Mandler Segundo

Leia mais

MA71B - Geometria Analítica e Álgebra Linear Prof a Dr a Diane Rizzotto Rossetto. LISTA 1 - Matrizes e Sistemas Lineares

MA71B - Geometria Analítica e Álgebra Linear Prof a Dr a Diane Rizzotto Rossetto. LISTA 1 - Matrizes e Sistemas Lineares Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Curitiba - DAMAT MA71B - Geometria Analítica e Álgebra Linear Prof a Dr a Diane Rizzotto Rossetto LISTA 1 - Matrizes e Sistemas

Leia mais

Função Exponencial, Inversa e Logarítmica

Função Exponencial, Inversa e Logarítmica CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.1 Função Exponencial, Inversa e Logarítmica Bruno Conde Passos Engenharia Civil Rodrigo Vanderlei - Engenharia Civil Função Exponencial Dúvida: Como

Leia mais

Teoria dos Grafos. Edson Prestes

Teoria dos Grafos. Edson Prestes Edson Prestes As arestas possuem a função de indicar o relacionamento(espacial, comportamental, temporal) entre os elementos de um grafo. Em diversas situações esta relação não é simétrica, ou seja, par

Leia mais

5COP096 TeoriadaComputação

5COP096 TeoriadaComputação Sylvio 1 Barbon Jr barbon@uel.br 5COP096 TeoriadaComputação Aula 13 Prof. Dr. Sylvio Barbon Junior Sumário - Problemas NP-Completo Algoritmos Não-deterministas; Classes NP-Completo e NP-Dificil; Teorema

Leia mais

EXERCÍCIOS RESOLVIDOS SEGMENTOS PROPORCIONAIS

EXERCÍCIOS RESOLVIDOS SEGMENTOS PROPORCIONAIS 1 EXERCÍCIOS RESOLVIDOS SEGMENTOS PROPORCIONAIS 1. SÃO DADOS TRÊS SEGMENTOS, a = 3 cm, b = 2 cm e c = 2,5 cm. PEDE-SE ENCONTRAR A QUARTA PROPORCIONAL ENTRE a, b e c : PROCESSO I - Consideremos os três

Leia mais

MATEMÁTICA MÓDULO 11 DETERMINANTES. Professor Matheus Secco

MATEMÁTICA MÓDULO 11 DETERMINANTES. Professor Matheus Secco MATEMÁTICA Professor Matheus Secco MÓDULO 11 DETERMINANTES INTRODUÇÃO Neste módulo, não daremos a definição padrão de determinantes via somatório envolvendo sinais de permutações, pois não há necessidade

Leia mais

r O GABARITO - QUALIFICAÇÃO - Março de 2013

r O GABARITO - QUALIFICAÇÃO - Março de 2013 GABARITO - QUALIFICAÇÃO - Março de 013 Questão 1. (pontuação: 1,5) É dado um retângulo ABCD tal que em seu interior estão duas circunferências tangentes exteriormente no ponto T, como mostra a figura abaixo.

Leia mais

4) Resolva os sistemas seguintes por substituição, eliminação gaussiana e por eliminação de Gauss-Jordan: a) b)

4) Resolva os sistemas seguintes por substituição, eliminação gaussiana e por eliminação de Gauss-Jordan: a) b) Matemática Aplicada à Economia I Lista 2 Álgebra Linear 1) A economia na ilha Baco produz somente uvas e vinho. A produção de 1 quilo de uvas requer ½ quilo de uvas, 1 trabalhador e nenhum vinho. A produção

Leia mais

Apostila de Matemática 11 Determinante

Apostila de Matemática 11 Determinante Apostila de Matemática 11 Determinante 1.0 Definições A determinante só existe se a matriz for quadrada. A tabela é fechada por 2 traços. Determinante de matriz de ordem 1 a 11. 1 2.0 Determinante Matriz

Leia mais

Matemática I. Capítulo 3 Matrizes e sistemas de equações lineares

Matemática I. Capítulo 3 Matrizes e sistemas de equações lineares Matemática I Capítulo 3 Matrizes e sistemas de equações lineares Objectivos Matrizes especiais e propriedades do produto de matrizes Matriz em escada de linhas Resolução de sistemas de equações lineares

Leia mais

Resolução de sistemas de equações lineares: Fatorações de matrizes

Resolução de sistemas de equações lineares: Fatorações de matrizes Resolução de sistemas de equações lineares: Fatorações de matrizes Marina Andretta/Franklina Toledo ICMC-USP 5 de fevereiro de 2014 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina

Leia mais

Definição de sequências de estudo com base no Ant System e em informações presentes em objetos de aprendizagem

Definição de sequências de estudo com base no Ant System e em informações presentes em objetos de aprendizagem Definição de sequências de estudo com base no Ant System e em informações presentes em objetos de aprendizagem Lucas Moreno de Araujo¹, Fabiano Fagundes¹ 1 Curso de Sistemas de Informação Centro Universitário

Leia mais

Componente Curricular: Professor(a): PAULO CEZAR Turno: Data: Matemática Matutino / /2015 Aluno(a): Nº do Aluno: Série: Turma: 9º Ano

Componente Curricular: Professor(a): PAULO CEZAR Turno: Data: Matemática Matutino / /2015 Aluno(a): Nº do Aluno: Série: Turma: 9º Ano Componente Curricular: Professor(a): PAULO CEZAR Turno: Data: Matemática Matutino / /015 Aluno(a): Nº do Aluno: Série: Turma: 9º Ano Esta lista de exercícios possui pontuação extra e portanto é facultativa

Leia mais

Escola Naval 2010 ( ) ( ) 8 ( ) 4 ( ) 4 (

Escola Naval 2010 ( ) ( ) 8 ( ) 4 ( ) 4 ( Escola Naval 0 1. (EN 0) Os gráficos das funções reais f e g de variável real, definidas por f(x) = x e g(x) = 5 x interceptam-se nos pontos A = (a,f(a)) e B = (b,f(b)), a b. Considere os polígonos CAPBD

Leia mais

SISTEMAS REALIMENTADOS

SISTEMAS REALIMENTADOS SISTEMAS REALIMENTADOS Prof.: Helder Roberto de O. Rocha Engenheiro Eletricista Doutorado em Computação Representação no Espaço de Estados É apropriada para sistemas que possuem várias entradas e várias

Leia mais

Matemática II /06 - Matrizes 1. Matrizes

Matemática II /06 - Matrizes 1. Matrizes Matemática II - 00/0 - Matrizes Matrizes Introdução Se m e n são números naturais, chama-se matriz real de tipo m n (m vezes n ou m por n) a uma função A : f; ; :::; mg f; ; :::; ng R: (i; j) A (i; j)

Leia mais

2 Teoria da Informação

2 Teoria da Informação 2 Teoria da Informação Neste capítulo apresentamos alguns conceitos básicos sobre Teoria da Informação que utilizaremos durante este trabalho. 2.1 Alfabeto, texto, letras e caracteres Um alfabeto Σ = (σ

Leia mais

Uma Abordagem Paralela Baseada em Colônia de Formigas para o Problema do Caixeiro Viajante

Uma Abordagem Paralela Baseada em Colônia de Formigas para o Problema do Caixeiro Viajante Uma Abordagem Paralela Baseada em Colônia de Formigas para o Problema do Caixeiro Viajante Euzébio de O. A. da Silva, Cristiana Bentes δ, Laura Bahiense γ e Maria Clicia Stelling de Castro Instituto de

Leia mais

, cosh (x) = ex + e x. , tanh (x) = ex e x 2

, cosh (x) = ex + e x. , tanh (x) = ex e x 2 Exercícios Adicionais 1. Podemos definir as funções seno, cosseno e tangente hiperbólicos como: sinh (x) = ex e x, cosh (x) = ex + e x, tanh (x) = ex e x e x + e x Escreva três funções no Scilab que implementem

Leia mais

3) O ponto P(a, 2) é equidistante dos pontos A(3, 1) e B(2, 4). Calcular a abscissa a do ponto P.

3) O ponto P(a, 2) é equidistante dos pontos A(3, 1) e B(2, 4). Calcular a abscissa a do ponto P. Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Lista 2: Plano cartesiano, sistema de coordenadas: pontos e retas. 1) Represente no plano cartesiano

Leia mais

UFSM-CTISM. Comunicação de Dados Aula-17

UFSM-CTISM. Comunicação de Dados Aula-17 UFSM-CTISM Comunicação de Dados Aula-17 Professor: Andrei Piccinini Legg Santa Maria, 2012 Definição: Um código de Hamming adiciona um bloco de paridade a um bloco de dados, de forma a que, caso ocorram

Leia mais

Observação: É possível realizar o experimento com apenas um multímetro, entretanto, recomenda-se um multímetro por grupo de alunos.

Observação: É possível realizar o experimento com apenas um multímetro, entretanto, recomenda-se um multímetro por grupo de alunos. Lista de Materiais 1 multímetro. 4 pilhas de 1,5V. 2 resistores com resistências da mesma ordem de grandeza. Exemplo: R1 = 270 Ω e R2 = 560 Ω. Lâmpada com soquete com bulbo esférico (6,0V-500 ma). Resistor

Leia mais

TEORIA DOS GRAFOS UMA APLICAÇÃO DE LOGÍSTICA PARA O ENSINO MÉDIO. Profº M. Sc. Marcelo Mazetto Moala

TEORIA DOS GRAFOS UMA APLICAÇÃO DE LOGÍSTICA PARA O ENSINO MÉDIO. Profº M. Sc. Marcelo Mazetto Moala TEORIA DOS GRAFOS UMA APLICAÇÃO DE LOGÍSTICA PARA O ENSINO MÉDIO mmmoala@fafica.br Breve Histórico Leonhard Euler (Matemático Suíço) - Pai da Teoria dos Grafos Nascimento de abril de 77 / 8 de setembro

Leia mais

Lista de Exercícios 6 Funções

Lista de Exercícios 6 Funções UFMG/ICEx/DCC DCC Matemática Discreta Lista de Exercícios 6 Funções Ciências Exatas & Engenharias o Semestre de 06 Conceitos. Determine e justifique se a seguinte afirmação é verdadeira ou não para todas

Leia mais

Vetores no plano Cartesiano

Vetores no plano Cartesiano Vetores no plano Cartesiano 1) Definição de vetor Um vetor (geométrico) no plano R² é uma classe de objetos matemáticos (segmentos) com a mesma direção, mesmo sentido e mesmo módulo (intensidade). 1. A

Leia mais

Busca Binária. Aula 05. Busca em um vetor ordenado. Análise do Busca Binária. Equações com Recorrência

Busca Binária. Aula 05. Busca em um vetor ordenado. Análise do Busca Binária. Equações com Recorrência Busca Binária Aula 05 Equações com Recorrência Prof. Marco Aurélio Stefanes marco em dct.ufms.br www.dct.ufms.br/ marco Idéia: Divisão e Conquista Busca_Binária(A[l...r],k) 1:if r < lthen 2: index = 1

Leia mais

Gauss-Seidel para Solução de Sistemas com Matrizes Banda Usando Armazenamento Especial

Gauss-Seidel para Solução de Sistemas com Matrizes Banda Usando Armazenamento Especial Universidade Federal do Espírito Santo Departamento de Informática Algoritmos Numéricos 2016/2 Profa. Claudine Badue Trabalho 1 Objetivos Gauss-Seidel para Solução de Sistemas com Matrizes Banda Usando

Leia mais

CURSO DE CAPACITAÇÃO O USO DE FERRAMENTAS TECNOLÓGICAS E AS POSSIBILIDADES PEDAGÓGICAS NA FORMAÇÃO DOS DOCENTES NA REDE MUNICIPAL DE GURUPI TO

CURSO DE CAPACITAÇÃO O USO DE FERRAMENTAS TECNOLÓGICAS E AS POSSIBILIDADES PEDAGÓGICAS NA FORMAÇÃO DOS DOCENTES NA REDE MUNICIPAL DE GURUPI TO CURSO DE CAPACITAÇÃO O USO DE FERRAMENTAS TECNOLÓGICAS E AS POSSIBILIDADES PEDAGÓGICAS NA FORMAÇÃO DOS DOCENTES NA REDE MUNICIPAL DE GURUPI TO A UTILIZAÇÃO DO SOFTWARE GEOGEBRA COMO FERRAMENTA DE ENSINO

Leia mais

Revisão: Matrizes e Sistemas lineares. Parte 01

Revisão: Matrizes e Sistemas lineares. Parte 01 Revisão: Matrizes e Sistemas lineares Parte 01 Definição de matrizes; Tipos de matrizes; Operações com matrizes; Propriedades; Exemplos e exercícios. 1 Matrizes Definição: 2 Matrizes 3 Tipos de matrizes

Leia mais

Quinta-feira, 11 de abril

Quinta-feira, 11 de abril 15.053 Quinta-feira, 11 de abril Mais alguns exemplos de programação inteira Técnicas de planos de corte para obter melhores limitações Entregar: Observações de Aula 1 Exemplo: Localização do corpo de

Leia mais