Enfoque empírico: P(A) = Lim

Tamanho: px
Começar a partir da página:

Download "Enfoque empírico: P(A) = Lim"

Transcrição

1 PROBABILIDADE efoque clássico: ( ( Ω) Efoque empírico: Lim TTaabbeel laa ddee It I troodduuççããoo àà TTeeoor riaa ddaass PPr roobbaabbi iliddaaddeess PPr roof feessssoor raa Raaqquueel l Cyymr root t f: freqüêcia de ocorrêcia do eveto A o experimeto : º de tetativas do experimeto Axiomas 0 Ω ) 0 Teoremas Se A e B forem mutuamete excludetes, etão P ( A Se A i i,,..., são evetos mutuamete excludetes P A A... A ) A ) A ) +... A ) f ( Se A e B ão forem mutuamete excludetes, etão A A A B C) C) A A C) B C) A B C) Se A φ 0 A é eveto complemetar ) Se A B A PA A A A A Probabilidade codicioal: A A A probabilidade do eveto A dado que já ocorreu o eveto B A A A B ) + P ( A B ) A B A Evetos idepedetes Se A e B são evetos idepedetes etão P ( A Se A i i,,..., são evetos mutuamete idepedetes etre si P A A.... A ) A ) A )... A ) Se A e B são evetos idepedetes etão A e B ( Teorema de Bayes Se F, F,..., F k são evetos mutuamete excludetes e ) A/ ) exaustivos e A for qualquer eveto tal que > 0, etão / k vale a expressão ao lado. Fj ) A/ Fj ) FUNÇÃO DE PROBABILIDADE é v.a. discreta: 0 p(x) e x) Esperaça Matemática: E() é v.a. discreta: E() j + é v.a cotíua: f(x) 0 e f ( x) dx µ x p(x) é v.a cotíua: E() µ x f ( x) dx V() σ x E( - µ) E( ) [E()] é v.a. discreta: E( ) x p( x) é v.a cotíua: : E( ) x f ( x) dx ) é v.a. discreta: E(Y) x y p( x, y) é v.a cotíua: : E(Y) x y f ( x, y dx dy Covariâcia COV(,Y) E(Y) E()E(Y) E(Y) - E()E(Y) COV (, Y ) Coeficiete de correlação: ρ, Y - ρ, Y σ σ σ σ Y Propriedades E(k) k V(k) 0 E(k) k E() V(k) k V() E(+Y) E()+E(Y) V(+Y)V()+V(Y) se e Y são idepedetes E( Y) E() E(Y) V( - Y)V()+V(Y) se e Y são idepedetes Y

2 E(a+bY) a E() + b E(Y) V(+Y)V()+V(Y)+ COV(,Y) Se e Y são idepedetes, etão COV(,Y) 0 V(a+bY)a V()+b V(Y)+ a b COV(,Y) Distribuições Discretas x x x x Se ~ B(,p), etão:! x) p ( p) p ( p) x x!( x)! E() p V() p(-p) Se ~ hipergeométrica etão: Se ~ λ) etão: Distribuições Cotíuas Distribuição Uiforme: Notação: ~ U [a, b] k N k x x P ( x) N 0 x mi(k,) E ( ) p k ode p N V ( ) p( λ x e λ x) E() λ V() λ x! N p) N x a a + b x) µ σ ( b a) b a Distribuição Expoecial: x) e λx µ σ Notação: ~EP (λ) > x) e λx λ λ Distribuição Normal: Distribuição Normal Padrão: µ Notação: ~ N(µ;σ Z x) Z z) p ) Notação: Z ~ N(0;) σ P (z Z z ) Z z ) Z z ) Z > z) Z z) Seja Y a + b + b. Se ~ N (µ ;σ ) e ~ N (µ ;σ ) e e são v.a. idepedetes. Etão: Y ~ N( µ ; σ ) ode µ Y a + b µ + b µ e σ b σ b σ y y y + Seja i ~ N(µ ; σ ) e S com as v. a. i idepedetes Etão: S ~ N ( µ S ; σ S ) ode µ S µ + µ + µ µ µ e σ S σ + σ + σ σ σ Aplicações à Teoria da Cofiabilidade Cofiabilidade: R( F( Taxa de falhas: Z( f(/r( t Z ( s) ds E ( T ) ( Z( e R( dt f 0 Lei de falha expoecial Z( α αt f ( α e t > 0 N compoetes em série: R i (: cofiabilidade do i-ésimo compoete R( R ( x R ( x... x R ( 0 R( e αt N compoetes em paralelo: R i (: cofiabilidade do i-ésimo compoete R( [ R (] [ R (]... [ R (] Se R i ( r( etão R( [ r(] Taabbeel laa ddee It I troodduuççããoo àà TTeeoor riaa ddaass PPr roobbaabbi iliddaaddeess PPr roof feessssoor raa Raaqquueel l Cyymr root t

3 TABELA NORMAL PADRÃO: Z z ) p φ(z) iteiro e ª ª decimal de z decimal de z ,9 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000-3,8 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000-3,7 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000-3,6 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000-3,5 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000-3,4 0,0003 0,0003 0,0003 0,0003 0,0003 0,0003 0,0003 0,0003 0,0003 0,000-3,3 0,0005 0,0005 0,0005 0,0004 0,0004 0,0004 0,0004 0,0004 0,0004 0,0003-3, 0,0007 0,0007 0,0006 0,0006 0,0006 0,0006 0,0006 0,0005 0,0005 0,0005-3, 0,000 0,0009 0,0009 0,0009 0,0008 0,0008 0,0008 0,0008 0,0007 0,0007-3,0 0,003 0,003 0,003 0,00 0,00 0,00 0,00 0,00 0,000 0,000 -,9 0,009 0,008 0,008 0,007 0,006 0,006 0,005 0,005 0,004 0,004 -,8 0,006 0,005 0,004 0,003 0,003 0,00 0,00 0,00 0,000 0,009 -,7 0,0035 0,0034 0,0033 0,003 0,003 0,0030 0,009 0,008 0,007 0,006 -,6 0,0047 0,0045 0,0044 0,0043 0,004 0,0040 0,0039 0,0038 0,0037 0,0036 -,5 0,006 0,0060 0,0059 0,0057 0,0055 0,0054 0,005 0,005 0,0049 0,0048 -,4 0,008 0,0080 0,0078 0,0075 0,0073 0,007 0,0069 0,0068 0,0066 0,0064 -,3 0,007 0,004 0,00 0,0099 0,0096 0,0094 0,009 0,0089 0,0087 0,0084 -, 0,039 0,036 0,03 0,09 0,05 0,0 0,09 0,06 0,03 0,00 -, 0,079 0,074 0,070 0,066 0,06 0,058 0,054 0,050 0,046 0,043 -,0 0,08 0,0 0,07 0,0 0,007 0,00 0,097 0,09 0,088 0,083 -,9 0,087 0,08 0,074 0,068 0,06 0,056 0,050 0,044 0,039 0,033 -,8 0,0359 0,035 0,0344 0,0336 0,039 0,03 0,034 0,0307 0,030 0,094 -,7 0,0446 0,0436 0,047 0,048 0,0409 0,040 0,039 0,0384 0,0375 0,0367 -,6 0,0548 0,0537 0,056 0,056 0,0505 0,0495 0,0485 0,0475 0,0465 0,0455 -,5 0,0668 0,0655 0,0643 0,0630 0,068 0,0606 0,0594 0,058 0,057 0,0559 -,4 0,0808 0,0793 0,0778 0,0764 0,0749 0,0735 0,07 0,0708 0,0694 0,068 -,3 0,0968 0,095 0,0934 0,098 0,090 0,0885 0,0869 0,0853 0,0838 0,083 -, 0,5 0,3 0, 0,093 0,075 0,056 0,038 0,00 0,003 0,0985 -, 0,357 0,335 0,34 0,9 0,7 0,5 0,30 0,0 0,90 0,70 -,0 0,587 0,56 0,539 0,55 0,49 0,469 0,446 0,43 0,40 0,379-0,9 0,84 0,84 0,788 0,76 0,736 0,7 0,685 0,660 0,635 0,6-0,8 0,9 0,090 0,06 0,033 0,005 0,977 0,949 0,9 0,894 0,867-0,7 0,40 0,389 0,358 0,37 0,96 0,66 0,36 0,06 0,77 0,48-0,6 0,743 0,709 0,676 0,643 0,6 0,578 0,546 0,54 0,483 0,45-0,5 0,3085 0,3050 0,305 0,98 0,946 0,9 0,877 0,843 0,80 0,776-0,4 0,3446 0,3409 0,337 0,3336 0,3300 0,364 0,38 0,39 0,356 0,3-0,3 0,38 0,3783 0,3745 0,3707 0,3669 0,363 0,3594 0,3557 0,350 0,3483-0, 0,407 0,468 0,49 0,4090 0,405 0,403 0,3974 0,3936 0,3897 0,3859-0, 0,460 0,456 0,45 0,4483 0,4443 0,4404 0,4364 0,435 0,486 0,447-0,0 0,5000 0,4960 0,490 0,4880 0,4840 0,480 0,476 0,47 0,468 0,464 0,0 0,5000 0,5040 0,5080 0,50 0,560 0,599 0,539 0,579 0,539 0,5359 0, 0,5398 0,5438 0,5478 0,557 0,5557 0,5596 0,5636 0,5675 0,574 0,5753 0, 0,5793 0,583 0,587 0,590 0,5948 0,5987 0,606 0,6064 0,603 0,64 0,3 0,679 0,67 0,655 0,693 0,633 0,6368 0,6406 0,6443 0,6480 0,657 0,4 0,6554 0,659 0,668 0,6664 0,6700 0,6736 0,677 0,6808 0,6844 0,6879 0,5 0,695 0,6950 0,6985 0,709 0,7054 0,7088 0,73 0,757 0,790 0,74 0,6 0,757 0,79 0,734 0,7357 0,7389 0,74 0,7454 0,7486 0,757 0,7549 0,7 0,7580 0,76 0,764 0,7673 0,7704 0,7734 0,7764 0,7794 0,783 0,785 0,8 0,788 0,790 0,7939 0,7967 0,7995 0,803 0,805 0,8078 0,806 0,833 0,9 0,859 0,886 0,8 0,838 0,864 0,889 0,835 0,8340 0,8365 0,8389,0 0,843 0,8438 0,846 0,8485 0,8508 0,853 0,8554 0,8577 0,8599 0,86, 0,8643 0,8665 0,8686 0,8708 0,879 0,8749 0,8770 0,8790 0,880 0,8830, 0,8849 0,8869 0,8888 0,8907 0,895 0,8944 0,896 0,8980 0,8997 0,905,3 0,903 0,9049 0,9066 0,908 0,9099 0,95 0,93 0,947 0,96 0,977,4 0,99 0,907 0,9 0,936 0,95 0,965 0,979 0,99 0,9306 0,939,5 0,933 0,9345 0,9357 0,9370 0,938 0,9394 0,9406 0,948 0,949 0,944,6 0,945 0,9463 0,9474 0,9484 0,9495 0,9505 0,955 0,955 0,9535 0,9545,7 0,9554 0,9564 0,9573 0,958 0,959 0,9599 0,9608 0,966 0,965 0,9633,8 0,964 0,9649 0,9656 0,9664 0,967 0,9678 0,9686 0,9693 0,9699 0,9706,9 0,973 0,979 0,976 0,973 0,9738 0,9744 0,9750 0,9756 0,976 0,9767,0 0,977 0,9778 0,9783 0,9788 0,9793 0,9798 0,9803 0,9808 0,98 0,987, 0,98 0,986 0,9830 0,9834 0,9838 0,984 0,9846 0,9850 0,9854 0,9857, 0,986 0,9864 0,9868 0,987 0,9875 0,9878 0,988 0,9884 0,9887 0,9890,3 0,9893 0,9896 0,9898 0,990 0,9904 0,9906 0,9909 0,99 0,993 0,996,4 0,998 0,990 0,99 0,995 0,997 0,999 0,993 0,993 0,9934 0,9936,5 0,9938 0,9940 0,994 0,9943 0,9945 0,9946 0,9948 0,9949 0,995 0,995,6 0,9953 0,9955 0,9956 0,9957 0,9959 0,9960 0,996 0,996 0,9963 0,9964,7 0,9965 0,9966 0,9967 0,9968 0,9969 0,9970 0,997 0,997 0,9973 0,9974,8 0,9974 0,9975 0,9976 0,9977 0,9977 0,9978 0,9979 0,9979 0,9980 0,998,9 0,998 0,998 0,998 0,9983 0,9984 0,9984 0,9985 0,9985 0,9986 0,9986 3,0 0,9987 0,9987 0,9987 0,9988 0,9988 0,9989 0,9989 0,9989 0,9990 0,9990 3, 0,9990 0,999 0,999 0,999 0,999 0,999 0,999 0,999 0,9993 0,9993 3, 0,9993 0,9993 0,9994 0,9994 0,9994 0,9994 0,9994 0,9995 0,9995 0,9995 3,3 0,9995 0,9995 0,9995 0,9996 0,9996 0,9996 0,9996 0,9996 0,9996 0,9997 3,4 0,9997 0,9997 0,9997 0,9997 0,9997 0,9997 0,9997 0,9997 0,9997 0,9998 3,5 0,9998 0,9998 0,9998 0,9998 0,9998 0,9998 0,9998 0,9998 0,9998 0,9998 3,6 0,9998 0,9998 0,9999 0,9999 0,9999 0,9999 0,9999 0,9999 0,9999 0,9999 3,7 0,9999 0,9999 0,9999 0,9999 0,9999 0,9999 0,9999 0,9999 0,9999 0,9999 3,8 0,9999 0,9999 0,9999 0,9999 0,9999 0,9999 0,9999 0,9999 0,9999 0,9999 3,9,0000,0000,0000,0000,0000,0000,0000,0000,0000,0000 Taabbeel laa ddee It I troodduuççããoo àà TTeeoor riaa ddaass PPr roobbaabbi iliddaaddeess PPr roof feessssoor raa Raaqquueel l Cyymr root t 33

4 TABELA INVERSA DA NORMAL PADRÃO p φ(z) Z z) iteiro, ª e ª 3ª decimal de p decimais de p ,00-3,090 -,878 -,7478 -,65 -,5758 -,5 -,4573 -,4089 -,3656 0,0 -,363 -,904 -,57 -,6 -,973 -,70 -,444 -,0 -,0969 -,0748 0,0 -,0537 -,0335 -,04 -,9954 -,9774 -,9600 -,943 -,968 -,90 -,8957 0,03 -,8808 -,8663 -,85 -,8384 -,850 -,89 -,799 -,7866 -,7744 -,764 0,04 -,7507 -,739 -,779 -,769 -,7060 -,6954 -,6849 -,6747 -,6646 -,6546 0,05 -,6449 -,635 -,658 -,664 -,607 -,598 -,5893 -,5805 -,578 -,563 0,06 -,5548 -,5464 -,538 -,530 -,50 -,54 -,5063 -,4985 -,4909 -,4833 0,07 -,4758 -,4684 -,46 -,4538 -,4466 -,4395 -,435 -,455 -,487 -,48 0,08 -,405 -,3984 -,397 -,385 -,3787 -,37 -,3658 -,3595 -,353 -,3469 0,09 -,3408 -,3346 -,385 -,35 -,365 -,306 -,3047 -,988 -,930 -,873 0,0 -,86 -,759 -,70 -,646 -,59 -,536 -,48 -,46 -,37 -,39 0, -,65 -, -,60 -,07 -,055 -,004 -,95 -,90 -,850 -,800 0, -,750 -,700 -,650 -,60 -,55 -,503 -,455 -,407 -,359 -,3 0,3 -,64 -,7 -,70 -,3 -,077 -,03 -,0985 -,0939 -,0893 -,0848 0,4 -,0803 -,0758 -,074 -,0669 -,065 -,058 -,0537 -,0494 -,045 -,0407 0,5 -,0364 -,03 -,079 -,037 -,094 -,05 -,00 -,0069 -,007-0,9986 0,6-0,9945-0,9904-0,9863-0,98-0,978-0,974-0,970-0,966-0,96-0,958 0,7-0,954-0,950-0,9463-0,944-0,9385-0,9346-0,9307-0,969-0,930-0,99 0,8-0,954-0,96-0,9078-0,9040-0,900-0,8965-0,897-0,8890-0,8853-0,886 0,9-0,8779-0,874-0,8706-0,8669-0,863-0,8596-0,8560-0,854-0,8488-0,845 0,0-0,846-0,838-0,8345-0,830-0,874-0,839-0,804-0,869-0,834-0,8099 0, -0,8064-0,8030-0,7995-0,796-0,796-0,789-0,7858-0,784-0,7790-0,7756 0, -0,77-0,7688-0,7655-0,76-0,7588-0,7554-0,75-0,7488-0,7454-0,74 0,3-0,7388-0,7356-0,733-0,790-0,757-0,75-0,79-0,760-0,78-0,7095 0,4-0,7063-0,703-0,6999-0,6967-0,6935-0,6903-0,687-0,6840-0,6808-0,6776 0,5-0,6745-0,673-0,668-0,665-0,660-0,6588-0,6557-0,656-0,6495-0,6464 0,6-0,6433-0,6403-0,637-0,634-0,63-0,680-0,650-0,69-0,689-0,658 0,7-0,68-0,6098-0,6068-0,6038-0,6008-0,5978-0,5948-0,598-0,5888-0,5858 0,8-0,588-0,5799-0,5769-0,5740-0,570-0,568-0,565-0,56-0,559-0,5563 0,9-0,5534-0,5505-0,5476-0,5446-0,547-0,5388-0,5359-0,5330-0,530-0,573 0,30-0,544-0,55-0,587-0,558-0,59-0,50-0,507-0,5044-0,505-0,4987 0,3-0,4958-0,4930-0,490-0,4874-0,4845-0,487-0,4789-0,476-0,4733-0,4705 0,3-0,4677-0,4649-0,46-0,4593-0,4565-0,4538-0,450-0,448-0,4454-0,447 0,33-0,4399-0,437-0,4344-0,436-0,489-0,46-0,434-0,407-0,479-0,45 0,34-0,45-0,4097-0,4070-0,4043-0,406-0,3989-0,396-0,3934-0,3907-0,3880 0,35-0,3853-0,386-0,3799-0,377-0,3745-0,379-0,369-0,3665-0,3638-0,36 0,36-0,3585-0,3558-0,353-0,3505-0,3478-0,345-0,345-0,3398-0,337-0,3345 0,37-0,339-0,39-0,366-0,339-0,33-0,386-0,360-0,334-0,307-0,308 0,38-0,3055-0,309-0,300-0,976-0,950-0,94-0,898-0,87-0,845-0,89 0,39-0,793-0,767-0,74-0,75-0,689-0,663-0,637-0,6-0,585-0,559 0,40-0,533-0,508-0,48-0,456-0,430-0,404-0,378-0,353-0,37-0,30 0,4-0,75-0,50-0,4-0,98-0,73-0,47-0, -0,096-0,070-0,045 0,4-0,09-0,993-0,968-0,94-0,97-0,89-0,866-0,840-0,85-0,789 0,43-0,764-0,738-0,73-0,687-0,66-0,637-0,6-0,586-0,560-0,535 0,44-0,50-0,484-0,459-0,434-0,408-0,383-0,358-0,33-0,307-0,8 0,45-0,57-0,3-0,06-0,8-0,56-0,30-0,05-0,080-0,055-0,030 0,46-0,004-0,0979-0,0954-0,099-0,0904-0,0878-0,0853-0,088-0,0803-0,0778 0,47-0,0753-0,078-0,070-0,0677-0,065-0,067-0,060-0,0577-0,055-0,057 0,48-0,050-0,0476-0,045-0,046-0,040-0,0376-0,035-0,036-0,030-0,076 0,49-0,05-0,06-0,00-0,075-0,050-0,05-0,000-0,0075-0,0050-0,005 Taabbeel laa ddee It I troodduuççããoo àà TTeeoor riaa ddaass PPr roobbaabbi iliddaaddeess PPr roof feessssoor raa Raaqquueel l Cyymr root t 44

5 TABELA INVERSA DA NORMAL PADRÃO p φ(z) Z z) (cotiuação) iteiro, ª e ª 3ª decimal de p decimais de p ,50 0,0000 0,005 0,0050 0,0075 0,000 0,05 0,050 0,075 0,00 0,06 0,5 0,05 0,076 0,030 0,036 0,035 0,0376 0,040 0,046 0,045 0,0476 0,5 0,050 0,057 0,055 0,0577 0,060 0,067 0,065 0,0677 0,070 0,078 0,53 0,0753 0,0778 0,0803 0,088 0,0853 0,0878 0,0904 0,099 0,0954 0,0979 0,54 0,004 0,030 0,055 0,080 0,05 0,30 0,56 0,8 0,06 0,3 0,55 0,57 0,8 0,307 0,33 0,358 0,383 0,408 0,434 0,459 0,484 0,56 0,50 0,535 0,560 0,586 0,6 0,637 0,66 0,687 0,73 0,738 0,57 0,764 0,789 0,85 0,840 0,866 0,89 0,97 0,94 0,968 0,993 0,58 0,09 0,045 0,070 0,096 0, 0,47 0,73 0,98 0,4 0,50 0,59 0,75 0,30 0,37 0,353 0,378 0,404 0,430 0,456 0,48 0,508 0,60 0,533 0,559 0,585 0,6 0,637 0,663 0,689 0,75 0,74 0,767 0,6 0,793 0,89 0,845 0,87 0,898 0,94 0,950 0,976 0,300 0,309 0,6 0,3055 0,308 0,307 0,334 0,360 0,386 0,33 0,339 0,366 0,39 0,63 0,339 0,3345 0,337 0,3398 0,345 0,345 0,3478 0,3505 0,353 0,3558 0,64 0,3585 0,36 0,3638 0,3665 0,369 0,379 0,3745 0,377 0,3799 0,386 0,65 0,3853 0,3880 0,3907 0,3934 0,396 0,3989 0,406 0,4043 0,4070 0,4097 0,66 0,45 0,45 0,479 0,407 0,434 0,46 0,489 0,436 0,4344 0,437 0,67 0,4399 0,447 0,4454 0,448 0,450 0,4538 0,4565 0,4593 0,46 0,4649 0,68 0,4677 0,4705 0,4733 0,476 0,4789 0,487 0,4845 0,4874 0,490 0,4930 0,69 0,4958 0,4987 0,505 0,5044 0,507 0,50 0,59 0,558 0,587 0,55 0,70 0,544 0,573 0,530 0,5330 0,5359 0,5388 0,547 0,5446 0,5476 0,5505 0,7 0,5534 0,5563 0,559 0,56 0,565 0,568 0,570 0,5740 0,5769 0,5799 0,7 0,588 0,5858 0,5888 0,598 0,5948 0,5978 0,6008 0,6038 0,6068 0,6098 0,73 0,68 0,658 0,689 0,69 0,650 0,680 0,63 0,634 0,637 0,6403 0,74 0,6433 0,6464 0,6495 0,656 0,6557 0,6588 0,660 0,665 0,668 0,673 0,75 0,6745 0,6776 0,6808 0,6840 0,687 0,6903 0,6935 0,6967 0,6999 0,703 0,76 0,7063 0,7095 0,78 0,760 0,79 0,75 0,757 0,790 0,733 0,7356 0,77 0,7388 0,74 0,7454 0,7488 0,75 0,7554 0,7588 0,76 0,7655 0,7688 0,78 0,77 0,7756 0,7790 0,784 0,7858 0,789 0,796 0,796 0,7995 0,8030 0,79 0,8064 0,8099 0,834 0,869 0,804 0,839 0,874 0,830 0,8345 0,838 0,80 0,846 0,845 0,8488 0,854 0,8560 0,8596 0,863 0,8669 0,8706 0,874 0,8 0,8779 0,886 0,8853 0,8890 0,897 0,8965 0,900 0,9040 0,9078 0,96 0,8 0,954 0,99 0,930 0,969 0,9307 0,9346 0,9385 0,944 0,9463 0,950 0,83 0,954 0,958 0,96 0,966 0,970 0,974 0,978 0,98 0,9863 0,9904 0,84 0,9945 0,9986,007,0069,00,05,094,037,079,03 0,85,0364,0407,045,0494,0537,058,065,0669,074,0758 0,86,0803,0848,0893,0939,0985,03,077,3,70,7 0,87,64,3,359,407,455,503,55,60,650,700 0,88,750,800,850,90,95,004,055,07,60, 0,89,65,39,37,46,48,536,59,646,70,759 0,90,86,873,930,988,3047,306,365,35,385,3346 0,9,3408,3469,353,3595,3658,37,3787,385,397,3984 0,9,405,48,487,455,435,4395,4466,4538,46,4684 0,93,4758,4833,4909,4985,5063,54,50,530,538,5464 0,94,5548,563,578,5805,5893,598,607,664,658,635 0,95,6449,6546,6646,6747,6849,6954,7060,769,779,739 0,96,7507,764,7744,7866,799,89,850,8384,85,8663 0,97,8808,8957,90,968,943,9600,9774,9954,04,0335 0,98,0537,0748,0969,0,444,70,973,6,57,904 0,99,363,3656,4089,4573,5,5758,65,7478,878 3,090 Taabbeel laa ddee It I troodduuççããoo àà TTeeoor riaa ddaass PPr roobbaabbi iliddaaddeess PPr roof feessssoor raa Raaqquueel l Cyymr root t 55

Organização de dados -Dados não agrupados n. Mediana:

Organização de dados -Dados não agrupados n. Mediana: Orgazação de dado -Dado ão agruado Medaa: Poto de ocoameto: Méda: Moda: valor que ocorre com maor freqüêca Méda de Itervalo: + m max + Quartl: (ara j, ou ) j( +) Poto de ocoameto: 4 Méda da Juta: Q + Q

Leia mais

Organização de dados -Dados não agrupados n. Mediana:

Organização de dados -Dados não agrupados n. Mediana: Orgazação de dado -Dado ão agruado Medaa: Poto de ocoameto: Méda: Moda: valor que ocorre com maor freqüêca Méda de Itervalo: + m max + Quartl: (ara j, ou 3) j( +) Poto de ocoameto: 4 Méda da Juta: Q +

Leia mais

Propriedades: Notação: X ~ U(α, β). PRINCIPAIS MODELOS CONTÍNUOS

Propriedades: Notação: X ~ U(α, β). PRINCIPAIS MODELOS CONTÍNUOS 0 CONTÍNUOS PRINCIPAIS MODELOS Notação: ~ U(α β). Propriedades: Eemplo A dureza de uma peça de aço pode ser pesada como sedo uma variável aleatória uiforme o itervalo (5070) uidades. Qual a probabilidade

Leia mais

MQI 2003 ESTATÍSTICA PARA METROLOGIA - SEMESTRE Teste 2 07/07/2008 Nome: PROBLEMA 1 Sejam X e Y v.a. contínuas com densidade conjunta:

MQI 2003 ESTATÍSTICA PARA METROLOGIA - SEMESTRE Teste 2 07/07/2008 Nome: PROBLEMA 1 Sejam X e Y v.a. contínuas com densidade conjunta: MQI 003 ESTATÍSTICA PARA METROLOGIA - SEMESTRE 008.0 Teste 07/07/008 Nome: PROBLEMA Sejam X e Y v.a. cotíuas com desidade cojuta: f xy cy xy x y (, ) = + 3 ode 0 e 0 a) Ecotre a costate c que faz desta

Leia mais

Métodos Quantitativos para Ciência da Computação Experimental

Métodos Quantitativos para Ciência da Computação Experimental Métodos Quatitativos para Ciêcia da Computação Experimetal -Aula #b- Virgílio A. F. Almeida Março 008 Departameto de Ciêcia da Computação Uiversidade Federal de Mias Gerais Material de Estatistica http://www.itl.ist.gov/div898/hadbook/idex.htm

Leia mais

Estatística para Economia e Gestão REVISÕES SOBRE VARIÁVEIS ALEATÓRIAS DISCRETAS E CONTÍNUAS

Estatística para Economia e Gestão REVISÕES SOBRE VARIÁVEIS ALEATÓRIAS DISCRETAS E CONTÍNUAS Estatística para Ecoomia e Gestão REVISÕES SOBRE VARIÁVEIS ALEATÓRIAS DISCRETAS E CONTÍNUAS Primavera 008/009 Variável Aleatória: Defiição: uma variável aleatória é uma fução que atribui a cada elemeto

Leia mais

Virgílio A. F. Almeida DCC-UFMG 2005

Virgílio A. F. Almeida DCC-UFMG 2005 Virgílio A. F. Almeida DCC-UFMG 005 Se o eveto E cosiste de potos e S é o úmero de potos do espaço amostral, etão: umero de potos em E P E umero de potos em S E S 1. Se um úmero decimal de três digitos

Leia mais

MOQ 13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel

MOQ 13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel MOQ 13 PROBABILIDADE E ESTATÍSTICA Professor: Rodrigo A. Scarpel rodrigo@ita.br www.mec.ita.br/~rodrigo Programa do curso: Semaas 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 e 16 Itrodução à probabilidade evetos

Leia mais

Eventos coletivamente exaustivos: A união dos eventos é o espaço amostral.

Eventos coletivamente exaustivos: A união dos eventos é o espaço amostral. DEFINIÇÕES ADICIONAIS: PROBABILIDADE Espaço amostral (Ω) é o conjunto de todos os possíveis resultados de um experimento. Evento é qualquer subconjunto do espaço amostral. Evento combinado: Possui duas

Leia mais

b) Fabrico de peças cilíndricas Capítulo 5 - Distribuições conjuntas de probabilidades e complementos X - comprimento da peça Y - diâmetro da peça

b) Fabrico de peças cilíndricas Capítulo 5 - Distribuições conjuntas de probabilidades e complementos X - comprimento da peça Y - diâmetro da peça Capítulo 5 - Distribuições cojutas de probabilidades e complemetos 5.1 Duas variáveis aleatórias discretas. Distribuições cojutas, margiais e codicioais. Idepedêcia Em relação a uma mesma eperiêcia podem

Leia mais

Lista de Exercícios #4 Assunto: Variáveis Aleatórias Contínuas

Lista de Exercícios #4 Assunto: Variáveis Aleatórias Contínuas . ANPEC 8 - Questão Seja x uma variável aleatória com fução desidade de probabilidade dada por: f(x) = x, para x f(x) =, caso cotrário. Podemos afirmar que: () E[x]=; () A mediaa de x é ; () A variâcia

Leia mais

Lista de Exercícios #6 Assunto: Propriedade dos Estimadores e Métodos de Estimação

Lista de Exercícios #6 Assunto: Propriedade dos Estimadores e Métodos de Estimação Assuto: Propriedade dos Estimadores e Métodos de Estimação. ANPEC 08 - Questão 6 Por regulametação, a cocetração de um produto químico ão pode ultrapassar 0 ppm. Uma fábrica utiliza esse produto e sabe

Leia mais

Aula 5. Aula de hoje. Aula passada. Limitante da união Método do primeiro momento Lei dos grandes números (fraca e forte) Erro e confiança

Aula 5. Aula de hoje. Aula passada. Limitante da união Método do primeiro momento Lei dos grandes números (fraca e forte) Erro e confiança Aula 5 Aula passada Valor esperado codicioal Espaço amostral cotíuo, fução desidade Limitates para probabilidade Desigualdades de Markov, Chebyshev, Cheroff with high probability Aula de hoje Limitate

Leia mais

DISTRIBUIÇÕES DE PROBABILIDADE

DISTRIBUIÇÕES DE PROBABILIDADE DISTRIBUIÇÕES DE PROBABILIDADE DISTRIBUIÇÃO DE PROBABILIDADE Seja uma v.a. que assume os valores,,..., com probabilidade p, p,..., p associadas a cada elemeto de, sedo p p... p diz-se que está defiida

Leia mais

Distribuições de Probabilidade Contínuas 1/19

Distribuições de Probabilidade Contínuas 1/19 all Distribuições de Probabilidade Contínuas Professores Eduardo Zambon e Magnos Martinello UFES Universidade Federal do Espírito Santo DI Departamento de Informática CEUNES Centro Universitário Norte

Leia mais

Solução: A distribuição normal. Representação gráfica. Cálculo de probabilidades. A normal padrão. σ Será uma N(0; 1).

Solução: A distribuição normal. Representação gráfica. Cálculo de probabilidades. A normal padrão. σ Será uma N(0; 1). A distribuição normal Uma variável aleatória X tem uma distribuição normal se sua fdp for do tipo: f (x) =.e π. σ x µ. σ, x R Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ com

Leia mais

Processos Estocásticos

Processos Estocásticos IFBA Processos Estocásticos Versão 1 Alla de Sousa Soares Graduação: Liceciatura em Matemática - UESB Especilização: Matemática Pura - UESB Mestrado: Matemática Pura - UFMG Vitória da Coquista - BA 2014

Leia mais

Avaliação de Desempenho de Sistemas Discretos

Avaliação de Desempenho de Sistemas Discretos Distribuições Comus Avaliação de Desempeho de Sistemas Discretos Probabilidade e Estatística 2 Uiforme Normal Poisso Hipergeométrica Biomial Studet's Geométrica Logormal Expoecial Beta Gamma Qui-Quadrado

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ NOTAS DE AULA PROFa. SONIA MÜLLER

UNIVERSIDADE FEDERAL DO PARANÁ NOTAS DE AULA PROFa. SONIA MÜLLER PROBABILIDADE. DEFINIÇÕES BÁSICAS:.- INTRODUÇÃO: UNIVERSIDADE FEDERAL DO PARANÁ NOTAS DE AULA PROFa. SONIA MÜLLER PROBABILIDADE POPULAÇÃO AMOSTRA ESTATÍSTICA Uiverso : Ω ou U Vazio: Uião: A B Itersecção:

Leia mais

Eventos coletivamente exaustivos: A união dos eventos é o espaço amostral.

Eventos coletivamente exaustivos: A união dos eventos é o espaço amostral. DEFINIÇÕES ADICIONAIS: PROBABILIDADE Espaço amostral (Ω) é o conjunto de todos os possíveis resultados de um experimento. Evento é qualquer subconjunto do espaço amostral. Evento combinado: Possui duas

Leia mais

Variáveis Aleatórias Contínuas

Variáveis Aleatórias Contínuas Variáveis Aleatórias Contínuas Bacharelado em Administração - FEA - Noturno 2 o Semestre 2017 MAE0219 (IME-USP) Variáveis Aleatórias Contínuas 2 o Semestre 2017 1 / 35 Objetivos da Aula Sumário 1 Objetivos

Leia mais

{ } 3.3 Função Densidade de Probabilidade Condicional e Independência

{ } 3.3 Função Densidade de Probabilidade Condicional e Independência 33 Fução Desidade de Probabilidade Codicioal e Idepedêcia Fução de Desidade de Probabilidade Codicioal (dimesão ) Seja f ( x,,x ) uma desidade cojuta associada a uma variável aleatória de dimesão Sejam

Leia mais

Probabilidades e Estatística TODOS OS CURSOS

Probabilidades e Estatística TODOS OS CURSOS Duração: 9 miutos Grupo I Probabilidades e Estatística TODOS OS CURSOS Justifique coveietemete todas as respostas 1 o semestre 217/218 3/1/218 11:3 1 o Teste C 1 valores 1. A Marta e o João irão passar

Leia mais

1. Resolução da lista 1. Primeiro apresentaremos uma integral importante, obtida a partir da distribuição gama generalizada.

1. Resolução da lista 1. Primeiro apresentaremos uma integral importante, obtida a partir da distribuição gama generalizada. 1. Resolução da lista 1. Primeiro apresetaremos uma itegral importate, obtida a partir da distribuição gama geeralizada. 1) J x a 1 e bxc dx Γa/c), a, b, c >. cba/c Demostração: fazedo a substituição y

Leia mais

Noções de Simulação. Ciências Contábeis - FEA - Noturno. 2 o Semestre MAE0219 (IME-USP) Noções de Simulação 2 o Semestre / 23

Noções de Simulação. Ciências Contábeis - FEA - Noturno. 2 o Semestre MAE0219 (IME-USP) Noções de Simulação 2 o Semestre / 23 Noções de Simulação Ciências Contábeis - FEA - Noturno 2 o Semestre 2013 MAE0219 (IME-USP) Noções de Simulação 2 o Semestre 2013 1 / 23 Objetivos da Aula Sumário 1 Objetivos da Aula 2 Motivação 3 Geração

Leia mais

Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 2004

Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 2004 Estatística para Cursos de Egeharia e Iformática Pedro Alberto Barbetta / Marcelo Meezes Reis / Atoio Cezar Boria São Paulo: Atlas, 004 Cap. 7 - DistribuiçõesAmostrais e Estimaçãode deparâmetros APOIO:

Leia mais

5. PRINCIPAIS MODELOS CONTÍNUOS

5. PRINCIPAIS MODELOS CONTÍNUOS 5. RINCIAIS MODELOS CONTÍNUOS 04 5.. Modelo uniforme Uma v.a. contínua tem distribuição uniforme com parâmetros α e β α β se sua função densidade de probabilidade é dada por f, β α 0, Notação: ~ Uα, β.

Leia mais

Probabilidade 2 - ME310 - Lista 5

Probabilidade 2 - ME310 - Lista 5 Probabilidade - ME30 - Lista 5 November 3, 0 Lembrado:. Covergêcia de sequêcias em L p (também chamada de covergêcia em média): se lim E( X X 0 p ) 0 quado, etão a sequêcia deida por X é dita covergete

Leia mais

Probabilidades e Estatística LEIC-A, LEIC-T, LEGM, MA, MEMec

Probabilidades e Estatística LEIC-A, LEIC-T, LEGM, MA, MEMec Duração: 90 miutos Grupo I Probabilidades e Estatística LEIC-A, LEIC-T, LEGM, MA, MEMec Justifique coveietemete todas as respostas! 2 o semestre 2015/2016 30/04/2016 9:00 1 o Teste A 10 valores 1. Uma

Leia mais

binomial seria quase simétrica. Nestas condições será também melhor a aproximação pela distribuição normal.

binomial seria quase simétrica. Nestas condições será também melhor a aproximação pela distribuição normal. biomial seria quase simétrica. Nestas codições será também melhor a aproximação pela distribuição ormal. Na prática, quado e p > 7, a distribuição ormal com parâmetros: µ p 99 σ p ( p) costitui uma boa

Leia mais

Eventos coletivamente exaustivos: A união dos eventos é o espaço amostral.

Eventos coletivamente exaustivos: A união dos eventos é o espaço amostral. DEFINIÇÕES ADICIONAIS: PROBABILIDADE Espaço amostral (Ω) é o conjunto de todos os possíves resultados de um expermento. Evento é qualquer subconjunto do espaço amostral. Evento combnado: Possu duas ou

Leia mais

Sumário. 2 Índice Remissivo 11

Sumário. 2 Índice Remissivo 11 i Sumário 1 Esperaça de uma Variável Aleatória 1 1.1 Variáveis aleatórias idepedetes........................... 1 1.2 Esperaça matemática................................. 1 1.3 Esperaça de uma Fução de

Leia mais

Capítulo 2. Variáveis Aleatórias e Distribuições

Capítulo 2. Variáveis Aleatórias e Distribuições Capítulo 2 Variáveis Aleatórias e Distribuições Experimento Aleatório Não existe uma definição satisfatória de Experimento Aleatório. Os exemplos dados são de fenômenos para os quais modelos probabilísticos

Leia mais

Tiago Viana Flor de Santana

Tiago Viana Flor de Santana ESTATÍSTICA BÁSICA DISTRIBUIÇÃO NORMAL DE PROBABILIDADE (MODELO NORMAL) Tiago Viana Flor de Santana www.uel.br/pessoal/tiagodesantana/ tiagodesantana@uel.br sala 07 Curso: MATEMÁTICA Universidade Estadual

Leia mais

ENGENHARIA DA QUALIDADE A ENG AULA 6 CARTAS DE CONTROLE PARA ATRIBUTOS

ENGENHARIA DA QUALIDADE A ENG AULA 6 CARTAS DE CONTROLE PARA ATRIBUTOS ENGENHARIA DA QUALIDADE A ENG 09008 AULA 6 CARTAS DE CONTROLE PARA ATRIBUTOS PROFESSORES: CARLA SCHWENGBER TEN CATEN Tópicos desta aula Cartas de Cotrole para Variáveis Tipo 1: Tipo 2: Tipo 3: X X X ~

Leia mais

LEEC Probabilidades e Estatística 1 a Chamada 13/06/2005. Parte Prática C (C) M 1% 9% 10% (M) 4% 86% 90% 5% 95% 100%

LEEC Probabilidades e Estatística 1 a Chamada 13/06/2005. Parte Prática C (C) M 1% 9% 10% (M) 4% 86% 90% 5% 95% 100% . Definição dos acontecimentos: M T-shirt tem manchas C T-shirt tem costuras defeituosas D T-shirt é defeituosa A Preço da t-shirt é alterado a) PM) = % PC) = 5% PM C) = % LEEC Probabilidades e Estatística

Leia mais

Amostras Aleatórias e Distribuições Amostrais. Probabilidade e Estatística: afinal, qual é a diferença?

Amostras Aleatórias e Distribuições Amostrais. Probabilidade e Estatística: afinal, qual é a diferença? Amostras Aleatórias e Distribuições Amostrais Probabilidade e Estatística: afial, qual é a difereça? Até agora o que fizemos foi desevolver modelos probabilísticos que se adequavam a situações reais. Por

Leia mais

*+,, -! / ! /,6 5. Virgilio Almeida, UFMG 2006

*+,, -! / ! /,6 5. Virgilio Almeida, UFMG 2006 !"#"! $%%& ' (# ) *+,, - -. -! /01 34 /050 " -! /,6 5. 7 " Método Estatístico Estatística Descritiva Estatística Iferecial ' - 8 8! 8 0 -# 8' 9/ - 8 8:61 -# 8:., :4 Experimeto: um processo cujo resultado

Leia mais

MAB-515 Avaliação e Desempenho (DCC/UFRJ)

MAB-515 Avaliação e Desempenho (DCC/UFRJ) MAB-515 Avaliação e Desempenho (DCC/UFRJ) Aula 6: Desigualdades, Limites e 1 Normalização Desigualdade de Chebyshev Lei dos Grandes Números 2 3 Normalização Sumário Normalização Desigualdade de Chebyshev

Leia mais

Probabilidade II Aula 9

Probabilidade II Aula 9 Coteúdo Probabilidade II Aula 9 Maio de 9 Môica Barros, D.Sc. Estatísticas de Ordem Distribuição do Máximo e Míimo de uma amostra Uiforme(,) Distribuição do Máximo e Míimo caso geral Distribuição das Estatísticas

Leia mais

Distribuições de Probabilidade. Distribuição Normal

Distribuições de Probabilidade. Distribuição Normal Distribuições de Probabilidade Distribuição Normal 1 Distribuição Normal ou Gaussiana A distribuição Normal ou Gaussiana é muito utilizada em análises estatísticas. É uma distribuição simétrica em torno

Leia mais

Virgílio A. F. Almeida DCC-UFMG 2005

Virgílio A. F. Almeida DCC-UFMG 2005 Virgílio A. F. Almeida DCC-UFMG 005 YZ- i p pq q pq F i p F i Z P Z P i Z P Z P Z ad i Z P Z i Z P Z i Z P Z i Y P Z i i Z Z Z + + > + > > + > + > > + !" http://www.itl.ist.gov/div898/hadbook/ide.htm A

Leia mais

Métodos Quantitativos para Ciência da Computação Experimental

Métodos Quantitativos para Ciência da Computação Experimental Métodos Quatitativos para Ciêcia da Computação Experimetal -Aula #4c- Virgílio A. F. Almeida Março 2008 Departameto de Ciêcia da Computação Uiversidade Federal de Mias Gerais Exercício Usado a Regra de

Leia mais

DEPARTAMENTO DE ESTATÍSTICA - UFMG PROVA DE ESTATÍSTICA E PROBABILIDADE SELEÇÃO - MESTRADO/ UFMG /2016

DEPARTAMENTO DE ESTATÍSTICA - UFMG PROVA DE ESTATÍSTICA E PROBABILIDADE SELEÇÃO - MESTRADO/ UFMG /2016 DEPARTAMENTO DE ESTATÍSTICA - UFMG PROVA DE ESTATÍSTICA E PROBABILIDADE SELEÇÃO - MESTRADO/ UFMG - 205/206 Istruções:. Cada questão respodida corretamete vale (um poto. 2. Cada questão respodida icorretamete

Leia mais

Probabilidades e Estatística LEAN, LEGI, LEGM, LMAC, MEAer, MEAmbi, MEC

Probabilidades e Estatística LEAN, LEGI, LEGM, LMAC, MEAer, MEAmbi, MEC Duração: 90 miutos Grupo I Probabilidades e Estatística LEAN, LEGI, LEGM, LMAC, MEAer, MEAmbi, MEC Justifique coveietemete todas as respostas o semestre 207/208 8//207 :00 o Teste B 0 valores. Um teste

Leia mais

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos:

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos: 48 DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL LEI DOS GRANDES NÚMEROS Pretede-se estudar o seguite problema: À medida que o úmero de repetições de uma experiêcia cresce, a frequêcia relativa

Leia mais

5. PRINCIPAIS MODELOS CONTÍNUOS

5. PRINCIPAIS MODELOS CONTÍNUOS 5. PRINCIPAIS MODELOS CONTÍNUOS 04 5.. Modelo uniforme Uma v.a. contínua X tem distribuição uniforme com parâmetros α e β (α β) se sua função densidade de probabilidade é dada por f ( ) β α 0, Notação:

Leia mais

Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma:

Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: 46 VALOR ESPERADO CONDICIONADO Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: Variável contínua E + ( X Y

Leia mais

PRINCIPAIS MODELOS CONTÍNUOS

PRINCIPAIS MODELOS CONTÍNUOS RINCIAIS MODELOS CONTÍNUOS 0 5.. Modelo uniforme Uma v.a. contínua tem distribuição uniforme com parâmetros α e β α β se sua função densidade de probabilidade é dada por, f β α 0, Notação: ~ Uα, β. 0,

Leia mais

ALGUNS MODELOS DE VARIÁVEIS ALEATÓRIAS UNIDIMENSIONAIS. Prof.: Idemauro Antonio Rodrigues de Lara

ALGUNS MODELOS DE VARIÁVEIS ALEATÓRIAS UNIDIMENSIONAIS. Prof.: Idemauro Antonio Rodrigues de Lara 1 ALGUNS MODELOS DE VARIÁVEIS ALEATÓRIAS UNIDIMENSIONAIS Prof.: Idemauro Antonio Rodrigues de Lara 2 Modelos de variáveis aleatórias discretas 1. Distribuição Uniforme Discreta 2. Distribuição Binomial

Leia mais

Probabilidades e Estatística LEGM, LEIC-A, LEIC-T, MA, MEMec

Probabilidades e Estatística LEGM, LEIC-A, LEIC-T, MA, MEMec Duração: 90 miutos Grupo I Probabilidades e Estatística LEGM, LEIC-A, LEIC-T, MA, MEMec Justifique coveietemete todas as respostas 2 o semestre 208/209 04/05/209 9:00 o Teste A 0 valores. As amostras de

Leia mais

TE802 Processos Estocásticos em Engenharia. Valores Esperados de Somas de Variáveis Aleatórias. TE802 Somas de Variáveis Aleatórias

TE802 Processos Estocásticos em Engenharia. Valores Esperados de Somas de Variáveis Aleatórias. TE802 Somas de Variáveis Aleatórias TE802 Processos Estocásticos em Engenharia Somas de Variáveis Aleatórias 27 de setembro de 2017 Valores Esperados de Somas de Variáveis Aleatórias Seja W n = X 1 + + X n, E[W n ] = E[X 1 ] + E[X 2 ] +

Leia mais

Processos Estocásticos. Variáveis Aleatórias. Variáveis Aleatórias. Luiz Affonso Guedes. Como devemos descrever um experimento aleatório?

Processos Estocásticos. Variáveis Aleatórias. Variáveis Aleatórias. Luiz Affonso Guedes. Como devemos descrever um experimento aleatório? Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Funções de Uma Variável Aleatória Funções de Várias Momentos e Estatística Condicional Teorema do Limite Central Processos Estocásticos

Leia mais

MODELOS PROBABILÍSTICOS DISCRETOS (BINOMIAL e POISSON)

MODELOS PROBABILÍSTICOS DISCRETOS (BINOMIAL e POISSON) MODELOS PROBABILÍSTICOS DISCRETOS (BINOMIAL e POISSON) Modelos probabilísticos Algumas variáveis aleatórias (V.A.) aparecem com bastate frequêcia em situações práticas de eperimetos aleatórios (E.: peso,

Leia mais

) E X. ) = 0 2 ( 1 p ) p = p. ) E 2 ( X ) = p p 2 = p ( 1 p ) ( ) = i 1 n. ( ) 2 n E( X) = ( ) = 1 p ( ) = p V ( X ) = E ( X 2 E X

) E X. ) = 0 2 ( 1 p ) p = p. ) E 2 ( X ) = p p 2 = p ( 1 p ) ( ) = i 1 n. ( ) 2 n E( X) = ( ) = 1 p ( ) = p V ( X ) = E ( X 2 E X 3.5 A distribuição uiforme discreta Defiição: X tem distribuição uiforme discreta se cada um dos valores possíveis,,,, tiver fução de probabilidade P( X = i ) = e represeta-se por, i =,, 0, c.c. X ~ Uif

Leia mais

SME0801- Probabilidade II Distribuições conjuntas. Primeiras definições e propriedades

SME0801- Probabilidade II Distribuições conjuntas. Primeiras definições e propriedades SME0801- Probabilidade II Distribuições conjuntas. Primeiras definições e propriedades Pablo Martin Rodriguez SME ICMC USP Bacharelado em Estatística 20 Mar 2017 Vetores aleatórios Definição Sejam X 1,

Leia mais

Processos Estocásticos. Variáveis Aleatórias. Variáveis Aleatórias. Variáveis Aleatórias. Variáveis Aleatórias. Luiz Affonso Guedes

Processos Estocásticos. Variáveis Aleatórias. Variáveis Aleatórias. Variáveis Aleatórias. Variáveis Aleatórias. Luiz Affonso Guedes Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Funções de Uma Variável Aleatória Funções de Várias Momentos e Estatística Condicional Teorema do Limite Central Processos Estocásticos

Leia mais

5. PRINCIPAIS MODELOS CONTÍNUOS

5. PRINCIPAIS MODELOS CONTÍNUOS 5. PRINCIPAIS MODELOS CONTÍNUOS 00 5.. Modelo uniforme Uma v.a. contínua X tem distribuição uniforme com parâmetros α e β (α β) se sua função densidade de probabilidade é dada por f ( ) β α 0, Notação:

Leia mais

Distribuições de Probabilidade. Distribuição Uniforme Distribuição Exponencial Distribuição Normal

Distribuições de Probabilidade. Distribuição Uniforme Distribuição Exponencial Distribuição Normal Distribuições de Probabilidade Distribuição Uniforme Distribuição Exponencial Distribuição Normal 1 Distribuição Uniforme A distribuição Uniforme atribui uma densidade igual ao longo de um intervalo (a,b).

Leia mais

Lista 9 - Introdução à Probabilidade e Estatística

Lista 9 - Introdução à Probabilidade e Estatística Lista 9 - Itrodução à Probabilidade e Estatística Desigualdades e Teoremas Limites 2.=000. 1 Um ariro apota a um alvo de 20 cm de raio. Seus disparos atigem o alvo, em média, a 5 cm do cetro deste. Assuma

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ Uma variável aleatória X tem uma distribuição normal se sua fdp for do tipo: f(x) 1.e 1 2. x µ σ 2, x R 2π. σ com - < µ < e σ >

Leia mais

Probabilidades e Estatística MEEC, LEIC-A, LEGM

Probabilidades e Estatística MEEC, LEIC-A, LEGM Departamento de Matemática Probabilidades e Estatística MEEC, LEIC-A, LEGM Exame a Época / o Teste (Grupos III e IV) o semestre 009/00 Duração: 80 / 90 minutos /06/00 9:00 horas Grupo I Exercício 5 valores

Leia mais

Nome: N. o : 7. Total

Nome: N. o : 7. Total ESTATÍSTICA I. o Ano/Gestão. o Semestre Época Normal Duração: horas 1. a Parte Teórica N. o de Exame: 1431 5.6.14 Nome: N. o : TEÓRICA Espaço reservado a classicações PRÁTICA EM 1.a.a 3.a 4.a 6. 1.b.b

Leia mais

Mais sobre Modelos Continuos

Mais sobre Modelos Continuos Mais sobre Modelos Continuos Ricardo Ehlers ehlers@icmc.usp.br Departamento de Matemática Aplicada e Estatística Universidade de São Paulo 1 / 41 Transformação Linear da Uniforme Seja X uma variável aleatória

Leia mais

Estatística Aplicada II. } Revisão: Probabilidade } Propriedades da Média Amostral

Estatística Aplicada II. } Revisão: Probabilidade } Propriedades da Média Amostral Estatística Aplicada II } Revisão: Probabilidade } Propriedades da Média Amostral 1 Aula de hoje } Tópicos } Revisão: } Distribuição de probabilidade } Variáveis aleatórias } Distribuição normal } Propriedades

Leia mais

Variáveis Aleatórias e Distribuições de Probabilidade

Variáveis Aleatórias e Distribuições de Probabilidade PROBABILIDADES Variáveis Aleatórias e Distribuições de Probabilidade BERTOLO Fução de Probabilidades Vamos cosiderar um experimeto E que cosiste o laçameto de um dado hoesto. Seja a variável aleatória

Leia mais

Bioestatística. AULA 6 - Variáveis aleatórias. Isolde Previdelli

Bioestatística. AULA 6 - Variáveis aleatórias. Isolde Previdelli Universidade Estadual de Maringá Mestrado Acadêmico em Bioestatística Bioestatística Isolde Previdelli itsprevidelli@uem.br isoldeprevidelli@gmail.com AULA 6 - Variáveis aleatórias 30 de Março de 2017

Leia mais

PARTE TEÓRICA Perguntas de escolha múltipla

PARTE TEÓRICA Perguntas de escolha múltipla PROBABILIDADES E ESTATÍSTICA MIEEC/FEUP PARTE TEÓRICA Perguntas de escolha múltipla 1 Dada a experiência aleatória ε define-se espaço amostral associado a ε como sendo: A O espaço físico onde se realiza

Leia mais

Revisão de Probabilidade

Revisão de Probabilidade 05 Mat074 Estatística Computacional Revisão de Probabilidade Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.ufrgs.br/~viali/ Determinístico Sistema Real Causas Efeito Probabilístico X Causas Efeito

Leia mais

Licenciatura em Economia REVISÃO DE ALGUNS CONCEITOS EM ESTATÍSTICA. Luís Filipe Martins.

Licenciatura em Economia REVISÃO DE ALGUNS CONCEITOS EM ESTATÍSTICA. Luís Filipe Martins. 1 Ecoometria e Métodos de Modelização I Liceciatura em Ecoomia REVISÃO DE ALGUNS CONCEITOS EM ESTATÍSTICA Luís Filipe Martis luis.martis@iscte.pt http://home.iscte.pt/~lfsm Departameto de Métodos Quatitativos,

Leia mais

Variável Aleatória Contínua:

Variável Aleatória Contínua: Distribuição Contínua Normal Prof. Tarciana Liberal Departamento de Estatística UFPB x x Variável Aleatória Contínua: Assume valores num intervalo de números reais. Não é possível listar, individualmente,

Leia mais

Notas do Curso Inferência em Processos Estocásticos. 1 Estimação de máxima verossimilhança para cadeias de Markov de ordem k

Notas do Curso Inferência em Processos Estocásticos. 1 Estimação de máxima verossimilhança para cadeias de Markov de ordem k Notas do Curso Iferêcia em Processos Estocásticos Prof. Atoio Galves Trascrita por Karia Yuriko Yagiuma 1 Estimação de máxima verossimilhaça para cadeias de Markov de ordem k Seja (X ) =0,1,,... uma cadeia

Leia mais

Variáveis Aleatórias Bidimensionais &Teoremas de Limite 1/22

Variáveis Aleatórias Bidimensionais &Teoremas de Limite 1/22 all Variáveis Aleatórias Bidimensionais & Teoremas de Limite Professores Eduardo Zambon e Magnos Martinello UFES Universidade Federal do Espírito Santo DI Departamento de Informática CEUNES Centro Universitário

Leia mais

Capítulo 5 - Distribuições conjuntas de probabilidade e complementos 3

Capítulo 5 - Distribuições conjuntas de probabilidade e complementos 3 Capítulo 5 - Distribuições conjuntas de probabilidade e complementos Conceição Amado e Ana M. Pires Departamento de Matemática Instituto Superior Técnico Capítulo 5 - Distribuições conjuntas de probabilidade

Leia mais

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Lei dos Grandes Números e Teorema Central do Limite 02/14 1 / 9 Lei dos Grandes Números Lei

Leia mais

Variável Aleatória Contínua:

Variável Aleatória Contínua: Distribuição Contínua Normal Luiz Medeiros de Araujo Lima Filho Departamento de Estatística UFPB Variável Aleatória Contínua: Assume valores num intervalo de números reais. Não é possível listar, individualmente,

Leia mais

Sumário. 2 Índice Remissivo 11

Sumário. 2 Índice Remissivo 11 i Sumário 1 Principais Distribuições Contínuas 1 1.1 Distribuição Uniforme................................. 1 1.2 A Distribuição Normal................................. 2 1.2.1 Padronização e Tabulação

Leia mais

DISTRIBUIÇÃO NORMAL DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS ROTEIRO DISTRIBUIÇÃO NORMAL

DISTRIBUIÇÃO NORMAL DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS ROTEIRO DISTRIBUIÇÃO NORMAL ROTEIRO DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS 1. Distribuições conjuntas 2. Independência 3. Confiabilidade 4. Combinações lineares de variáveis aleatórias 5. Referências DISTRIBUIÇÃO NORMAL Definição:

Leia mais

VARIÁVEIS ALEATÓRIAS

VARIÁVEIS ALEATÓRIAS UNIVERSIDADE FEDERAL DE JUIZ DE FORA INSTITUTO DE CIÊNCIAS EXATAS DEPARTAMENTO DE ESTATÍSTICA VARIÁVEIS ALEATÓRIAS Joaquim H Vianna Neto Relatório Técnico RTE-03/013 Relatório Técnico Série Ensino Variáveis

Leia mais

Processos Estocásticos. Luiz Affonso Guedes

Processos Estocásticos. Luiz Affonso Guedes Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Variáveis Aleatórias Funções de Uma Variável Aleatória Funções de Várias Variáveis Aleatórias Momentos e Estatística Condicional Teorema

Leia mais

Teorema do Limite Central

Teorema do Limite Central Teorema do Limite Central Bacharelado em Economia - FEA - Noturno 1 o Semestre 2014 MAE0219 (IME-USP) Teorema do Limite Central 1 o Semestre 2014 1 / 47 Objetivos da Aula Sumário 1 Objetivos da Aula 2

Leia mais

Probabilidades e Estatística

Probabilidades e Estatística Departamento de Matemática Probabilidades e Estatística LEAN, LEE, LEGI, LEGM, LEIC-A, LEIC-T, LEMat, LERC, LMAC, MEAer, MEAmbi, MEBiol, MEBiom, MEEC, MEFT, MEMec, MEQ 2 o semestre 2/22 o TESTE (Época

Leia mais

Teoria das Filas aplicadas a Sistemas Computacionais. Aula 08

Teoria das Filas aplicadas a Sistemas Computacionais. Aula 08 Teoria das Filas aplicadas a Sistemas Computacionais Aula 08 Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM Teoria das Filas

Leia mais

4.1. ESPERANÇA x =, x=1

4.1. ESPERANÇA x =, x=1 4.1. ESPERANÇA 139 4.1 Esperança Certamente um dos conceitos mais conhecidos na teoria das probabilidade é a esperança de uma variável aleatória, mas não com esse nome e sim com os nomes de média ou valor

Leia mais

Pr = 6 = = = 0.8 =

Pr = 6 = = = 0.8 = IND 5 Inferência Estatística Semestre 004.0 Teste 05/0/004 GABARITO Problema (5 pontos) Uma gulosa professora de estatística é fissurada por trufas de chocolate. Em busca da trufa ideal, ela vai provando

Leia mais

) E 2 ( X) = p p 2 = p( 1 p) ) = 0 2 ( 1 p) p = p ( ) = ( ) = ( ) = p. F - cara (sucesso) C - coroa (insucesso)

) E 2 ( X) = p p 2 = p( 1 p) ) = 0 2 ( 1 p) p = p ( ) = ( ) = ( ) = p. F - cara (sucesso) C - coroa (insucesso) 3.6 A distribuição biomial Defiição: uma eperiêcia ou prova de Beroulli é uma eperiêcia aleatória só com dois resultados possíveis (um deles chamado "sucesso" e o outro "isucesso"). Seja P(sucesso) = p,

Leia mais

AULA 17 - Distribuição Uniforme e Normal

AULA 17 - Distribuição Uniforme e Normal AULA 17 - Distribuição Uniforme e Normal Susan Schommer Introdução à Estatística Econômica - IE/UFRJ Distribuições Contínuas Em muitos problemas se torna matematicamente mais simples considerar um espaço

Leia mais

Séries Temporais e Modelos Dinâmicos. Econometria. Marcelo C. Medeiros. Aula 4

Séries Temporais e Modelos Dinâmicos. Econometria. Marcelo C. Medeiros. Aula 4 em Econometria Departamento de Economia Pontifícia Universidade Católica do Rio de Janeiro Aula 4 O Processo Média-Móvel Muitas vezes, a estrutura auto-regressiva não é suficiente para descrever totalmente

Leia mais

TE802 Processos Estocásticos em Engenharia. Valores Esperados de Somas de Variáveis Aleatórias Notes. PDF da Soma de Duas Variáveis Aleatórias.

TE802 Processos Estocásticos em Engenharia. Valores Esperados de Somas de Variáveis Aleatórias Notes. PDF da Soma de Duas Variáveis Aleatórias. TE802 Processos Estocásticos em Engenharia Somas de Variáveis Aleatórias 25 de abril de 2016 Valores Esperados de Somas de Variáveis Aleatórias Seja W n = X 1 + + X n, E[W n ] = E[X 1 ] + E[X 2 ] + + E[X

Leia mais

Reviso de Teoria da Medida e Elementos Bsicos de Probabilidade

Reviso de Teoria da Medida e Elementos Bsicos de Probabilidade Reviso de Teoria da Medida e Elementos Bsicos de Probabilidade Roberto Imbuzeiro Oliveira 9 de Março de 2009 Resumo Esta lista cobre o básico do básico sobre espaços e distribuições de probabilidade. Pouco

Leia mais

5. PRINCIPAIS MODELOS CONTÍNUOS

5. PRINCIPAIS MODELOS CONTÍNUOS 5. PRINCIPAIS MODELOS CONTÍNUOS 2019 5.1. Modelo uniforme Uma v.a. contínua X tem distribuição uniforme com parâmetros e ( < ) se sua função densidade de probabilidade é dada por f ( x )={ 1 β α, α x β

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ Tipos de Modelos Determinístico Sistema Real Probabilístico Modelo determinístico Causas Efeito Exemplos Gravitação F GM 1 M /r

Leia mais

TE802 Processos Estocásticos em Engenharia. Processo Aleatório. TE802 Processos Aleatórios. Evelio M. G. Fernández. 18 de outubro de 2017

TE802 Processos Estocásticos em Engenharia. Processo Aleatório. TE802 Processos Aleatórios. Evelio M. G. Fernández. 18 de outubro de 2017 TE802 Processos Estocásticos em Engenharia Processos Aleatórios 18 de outubro de 2017 Processo Aleatório Processo Aleatório (ou Estocástico), X(t): Função aleatória do tempo para modelar formas de onda

Leia mais

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Variáveis Aleatórias Contínuas 14/10 1 / 25 VALE A PENA VER DE NOVO:Variáveis Aleatórias

Leia mais

PROBABILIDADE. prof. André Aparecido da Silva. 1

PROBABILIDADE. prof. André Aparecido da Silva. 1 NOÇÕES DE PROBABILIDADE prof. Adré Aparecido da Silva adrepr@yahoo.com.br 1 TEORIA DAS PROBABILIDADES A teoria das probabilidades busca estimar as chaces de ocorrer um determiado acotecimeto. É um ramo

Leia mais

Cadeias de Markov em Tempo Continuo

Cadeias de Markov em Tempo Continuo Cadeias de Markov em Tempo Continuo Ricardo Ehlers ehlers@icmc.usp.br Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Capitulos 6 Taylor & Karlin 1 / 44 Análogo ao processo

Leia mais

Distribuição de Bernoulli

Distribuição de Bernoulli Algumas Distribuições Discretas Cálculo das Probabilidades e Estatística I Prof. Luiz Medeiros Departameto de Estatística UFPB Distribuição de Beroulli Na prática muitos eperimetos admitem apeas dois resultados

Leia mais

1. Revisão Matemática

1. Revisão Matemática Se x é um elemeto do cojuto Notação S: x S Especificação de um cojuto : S = xx satisfaz propriedadep Uião de dois cojutos S e T : S T Itersecção de dois cojutos S e T : S T existe ; para todo f : A B sigifica

Leia mais

Probabilidades e Estatística / Introd. às Probabilidades e Estatística TODOS OS CURSOS

Probabilidades e Estatística / Introd. às Probabilidades e Estatística TODOS OS CURSOS Probabilidades e Estatística / Itrod. às Probabilidades e Estatística TODOS OS CURSOS Exame Época Especial 7/8 3/7/7 9: Duração: 3 horas Justifique coveietemete todas as respostas Grupo I 5 valores. Uma

Leia mais