AULAS TEÓRICAS DE CÁLCULO DIFERENCIAL E INTEGRAL I 1 o SEMESTRE 2009/10 MEC & LEGM

Documentos relacionados
AULAS TEÓRICAS DE CÁLCULO DIFERENCIAL E INTEGRAL I 1 o SEMESTRE 2011/12 LMAC, MEFT, MEBIOM

AULAS TEÓRICAS DE CÁLCULO DIFERENCIAL E INTEGRAL I 1 o SEMESTRE 2017/18 MEAER

AULAS TEÓRICAS DE CÁLCULO DIFERENCIAL E INTEGRAL I 1 o SEMESTRE 2014/15 LMAC, MEBIOM, MEFT MIGUEL ABREU E RUI LOJA FERNANDES

AULAS TEÓRICAS DE CÁLCULO DIFERENCIAL E INTEGRAL I 1 o SEMESTRE 2007/08 LCEIC-TAGUS, LCERCI, LCEGI E LCEE

Elementos de Análise - Lista 6 - Solução

Capítulo IV. Funções Contínuas. 4.1 Noção de Continuidade

Aula 27 Integrais impróprias segunda parte Critérios de convergência

Bhaskara e sua turma Cícero Thiago B. Magalh~aes

Teorema Fundamental do Cálculo - Parte 2

2.4 Integração de funções complexas e espaço

Integral. (1) Queremos calcular o valor médio da temperatura ao longo do dia. O valor. a i

IFRN Campus Natal/Central. Prof. Tibério Alves, D. Sc. FIC Métodos matemáticos para físicos e engenheiros - Aula 02.

FÓRMULA DE TAYLOR USP MAT

1. Sejam R e S duas relações entre os conjuntos não vazios E e F. Então mostre que

Área entre curvas e a Integral definida

AULA 1. 1 NÚMEROS E OPERAÇÕES 1.1 Linguagem Matemática

Os números racionais. Capítulo 3

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, utilizaremos o Teorema Fundamental do Cálculo (TFC) para o cálculo da área entre duas curvas.

Cálculo de Limites. Sumário

(x, y) dy. (x, y) dy =

Notas das Aulas Teóricas de CDI-I

NOTA DE AULA. Tópicos em Matemática

x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5,

UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA

MAT Complementos de Matemática para Contabilidade - FEAUSP 1 o semestre de 2011 Professor Oswaldo Rio Branco de Oliveira INTEGRAL

Recordando produtos notáveis

Introdução ao estudo de equações diferenciais

Folhas. Cálculo Diferencial e Integral I MEEC, MEAmb 2 o semestre 2008/09

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A.

ESTUDO SOBRE A INTEGRAL DE DARBOUX. Introdução. Partição de um Intervalo. Alana Cavalcante Felippe 1, Júlio César do Espírito Santo 1.

6 Cálculo Integral. 1. (Exercício VI.1 de [1]) Considere a função f definida no intervalo [0, 2] por. 1 se x [0, 1[ 3 se x ]1, 2]

Comprimento de arco. Universidade de Brasília Departamento de Matemática

Teorema Fundamental do Cálculo - Parte 1

4. Teorema de Green. F d r = A. dydx. (1) Pelas razões acima referidas, a prova deste teorema para o caso geral está longe

1 Limite - Revisão. 1.1 Continuidade

Cálculo Diferencial e Integral I 2 o Teste - LEAN, MEAer, MEAmb, MEBiol, MEMec

Integrais Duplas em Regiões Limitadas

MTDI I /08 - Integral de nido 55. Integral de nido

1 Funções reais de variável real: generalidades e exemplos. 2 Funções reais de variável real: limites e continuidade. 3 Cálculo diferencial em R

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral

Cálculo Infinitesimal. Gabriela Chaves

1. Conceito de logaritmo

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que:

EQUAÇÕES E INEQUAÇÕES POLINOMIAIS

Prova 1 Soluções MA-602 Análise II 27/4/2009 Escolha 5 questões

Propriedades Matemáticas

1 Conjuntos Finitos e Infinitos

Notas das Aulas Teóricas de CDI-I

Introdução à Integral Definida. Aula 04 Matemática II Agronomia Prof. Danilene Donin Berticelli

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

SÉRIES DE FOURIER. 1. Uma série trigonométrica e sua sequência das somas parciais (S N ) N são dadas por

Diogo Pinheiro Fernandes Pedrosa

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c.

CONJUNTOS NUMÉRICOS NOTAÇÕES BÁSICAS. : Variáveis e parâmetros. : Conjuntos. : Pertence. : Não pertence. : Está contido. : Não está contido.

Trigonometria FÓRMULAS PARA AJUDÁ-LO EM TRIGONOMETRIA

Função Modular. x, se x < 0. x, se x 0

Usando qualquer um dos métodos de primitivação indicados anteriormente, determine uma primitiva de cada uma das seguintes funções. e x e 2x + 2e x + 1

Integral imprópria em R n (n = 1, 2, 3)

As fórmulas aditivas e as leis do seno e do cosseno

16.4. Cálculo Vetorial. Teorema de Green

x u 30 2 u 1 u 6 + u 10 2 = lim (u 1)(1 + u + u 2 + u 3 + u 4 )(2 + 2u 5 + u 10 )

ÁLGEBRA LINEAR Equações Lineares na Álgebra Linear EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS

TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 7 _ Função Modular, Exponencial e Logarítmica Professor Luciano Nóbrega

XXVIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO

O conceito de integral e suas propriedades básicas

CAPÍTULO 5 - ESTUDO DA VARIAÇÃO DAS FUNÇÕES

Noção intuitiva de limite

Teorema de Green no Plano

Prof. Dr. Maurício Zahn UFPel. Análise real II

Cálculo integral. 4.1 Preliminares

Objetivo. Integrais de funções vetoriais. Conhecer a integral de funções vetoriais; Aprender a calcular comprimentos de curvas parametrizadas;

Exercícios. setor Aula 25. f(2) = 3. f(3) = 0. f(11) = 12. g(3) = 14. Temos: 2x 1 = 5 x = 3 Logo, f(5) = 3 2 = 9

Prof. Ms. Aldo Vieira Aluno:

VE2 A lista 3 está com as respostas (19/10/2008). Lista 4 Funções: conceitos gerais (atualizada em 17/10/2008).

Objetivo A = 2. A razão desse sucesso consiste em usar somas de Riemann, que determinam

Progressões Aritméticas

Folhas. Cálculo Diferencial e Integral I LEGM/MEC 1 o semestre 2013/14

Equações diofantinas lineares a duas e três variáveis

1 A Integral de Riemann

Resposta: Basta fazer integração por partes. Seja j = 1 (para j 1, o argumento é o mesmo). Logo. i x 1. lim. lim. (R n ), temos.

Universidade Federal Fluminense - UFF-RJ

3. Cálculo integral em IR 3.1. Integral Indefinido Definição, Propriedades e Exemplos

Instituto Politécnico de Bragança Escola Superior de Tecnologia e Gestão. Análise Matemática I Frequência

Profª Cristiane Guedes LIMITE DE UMA FUNÇÃO. Cristianeguedes.pro.br/cefet

Revisão EXAMES FINAIS Data: 2015.

Prova 3 Matemática QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. QUESTÕES OBJETIVAS GABARITO 3

Prova 3 Matemática QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. QUESTÕES OBJETIVAS GABARITO 2

Prova 3 Matemática QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. QUESTÕES OBJETIVAS GABARITO 4

CÁLCULO I. 1 Funções denidas por uma integral

1 O Conjunto dos Números Reais

SERVIÇO PÚBLICO FEDERAL Ministério da Educação

Conjuntos Numéricos. Conjuntos Numéricos

Incertezas e Propagação de Incertezas. Biologia Marinha

Material envolvendo estudo de matrizes e determinantes

IME MATEMÁTICA. Questão 01. Calcule o número natural n que torna o determinante abaixo igual a 5. Resolução:

Universidade Federal de Mato Grosso do Sul - UFMS Introdução à Lógica - 3 a Prova - Lic. Matemática RESOLUÇÃO - Prof. E.T.Galante

Transcrição:

AULAS TEÓRICAS DE CÁLCULO DIFERENCIAL E INTEGRAL I o SEMESTRE 009/0 MEC & LEGM MIGUEL ABREU E RUI LOJA FERNANDES. Aul de Setembro de 009 Apresentção. Rui Loj Fernndes (responsável) <rfern@mth.ist.utl.pt> Págin d cdeir: https://fenix.ist.utl.pt/disciplins/cdi4/009-00/-semestre/pgin-inicil Contém tod informção relevnte. Deve ser consultd regulrmente. Progrm. Números reis (proprieddes lgébrics, relção de ordem e propriedde do supremo). Números nturis. Método de indução. Funções reis de vriável rel: limite e continuidde; diferencibilidde - teorems fundmentis; Regr de Cuchy e levntmento de indeterminções; Fórmul de Tylor. Primitivção. Cálculo integrl em R: integrl de Riemnn; integrbilidde de funções seccionlmente contínus; teorem fundmentl do cálculo; fórmuls de integrção por prtes e por substituição. Funções trnscendentes elementres: logritmo, exponencil e funções hiperbólics. Sucessões e séries numérics: convergênci; sucessões e séries geométrics; critérios de comprção; séries bsolutmente convergentes; séries de potêncis. Bibliogrfi. M. Spivk, Clculus, 3rd Edition, Cmbridge University Press, 009. T.M. Apostol, Cálculo, Volumes I e II, Reverté, 994. J. Cmpos Ferreir, Introdução à Análise Mtemátic, Gulbenkin, 995. Exercícios de Análise Mtemátic I e II - Deprtmento de Mtemátic, IST Press, 003. Fichs de Exercícios, págin d cdeir. Horário de Dúvids: Tods s sessões de esclrecimento de dúvids têm lugr n sl de dúvids do Deprtmento de Mtemátic (piso -). Os horários de dúvids serão fixdos n págin d cdeir. Método de Avlição A vlição será feit por testes ou exme finl. Avlição por testes Hverá dois testes, mbos com durção de h 30min. O o teste relizr-se-á no sábdo, di 7 de Novembro, pels 9h00. O o teste relizr-se-á no di de Jneiro, pels 9h00, em dt coincidente com do primeiro exme. Cd teste terá um clssificção de 0 0 vlores (em números inteiros). Pr obter provção por vi dos testes o luno deverá ter um clssificção mior ou igul 8 vlores em mbs s provs e médi ds dus nots deverá ser mior ou igul 0 vlores. Dte: 7 de Dezembro de 009.

MIGUEL ABREU E RUI LOJA FERNANDES O enuncido do o teste coincide com prte do enuncido do o exme. Durnte o decorrer do o teste, o luno poderá optr por desistir d vi de testes e entregrr o o exme. Avlição por Exmes Hverá dois exmes, mbos com durção de 3h. O o exme relizr-se-á no di de Jneiro, pels 9h00. O o exme relizr-se-á no di 5 de Jneiro, pels 9h00. Cd exme terá um clssificção de 0 0 vlores (em números inteiros). Pr obter provção por vi dos exmes o luno deverá ter um clssificção mior ou igul 0 vlores em pelo menos um dos exmes. Um luno que tenh obtido provção por vi dos testes pode relizr o o exme pr melhorr su clssificção. Not Finl A not finl será melhor ds clssificções que obteve entre os testes e/ou exmes efectudos. Um luno com not finl superior 7 vlores deverá presentr-se pr fzer um prov orl. Se não o fizer su not finl n cdeir será de 7. Observções Teste de ferição - No di 3 de Setembro, n prte d trde, reliz-se um prov de ferição obrigtóri, pr testr os conhecimentos dquiridos no Ensino Secundário. Este teste é clssificdo com um not de 0 0 vlores ms não cont pr vlição. No entnto, cso not do teste de ferição (NA) sej mior ou igul 0 vlores, hverá um bonificção d not do o teste de (NA 0) 0 vlores. Identificção Pessol - os lunos(s) só podem presentr-se provs de vlição munidos de Bilhete de Identidde ou crtão de luno() do IST. Importnte. Esqueçm máquins de clculr. Os xioms dos Números Reis. Um dos spectos fudmentis d Mtemátic é procurr fundmentr em bses sólids todos os conceitos. Um conceito fundmentl pr o Cálculo é o conceito de número rel. Vmos pois começr por introduzir os números reis num bse conceptul sólid, em termos de xioms. O nosso primeiro xiom é: Recordemos primeiro s chmds Proprieddes Algébrics do conjunto dos números reis R, i.e. quels que se referem às operções fundmentis de dição e multiplicção. Axiom. Existe um conjunto R, dito dos números reis. Existem dus operções lgébrics em R, som (ou dição) e o produto (ou multiplicção), designds por + e, ou sej, se x, y R então x + y R e x y R. As proprieddes fundmentis ds operções de dição e multiplicção são s seguintes, onde usmos s hbituis convenções sobre prênteses. Axiom. Pr quisquer, b, c R temos () Comuttividde: + b = b +, e b = b. () Associtividde: ( + b) + c = + (b + c) e ( b) c = (b c). (3) Distributividde: (b + c) = b + c. (4) Elementos Neutros: Existem elementos 0, R, onde 0, tis que +0 = =. (5) Simétricos: A equção + x = 0 tem solução x R. (6) Inversos: Se 0, equção y = tem solução y R. Exemplo.. O conjunto N = {,, 3,...} dos números nturis stisfz ()-(3). O conjunto N 0 = {0,,,...} tmbém stisfz (4). O conjunto Q dos números rcionis stisfz tods ests 5 proprieddes. Voltremos com mis detlhe estes conjuntos bem vossos conhecidos.

AULAS TEÓRICAS DE CÁLCULO DIFERENCIAL E INTEGRAL I 3 Not.. Quisquer outrs proprieddes lgébrics dos números reis podem de fcto ser deduzids prtir dests cinco, usndo s regrs básics d lógic mtemátic. Por outro ldo, ests proprieddes não podem ser deduzids prtir de outrs mis elementres. É por est rzão, que chmmos ests proprieddes básics de xioms lgébricos ou xioms do corpo dos números reis. As outrs proprieddes que se deduzem prtir dests podem ser designds de teorems ou proposições. Propriedde. (Lei do Corte pr Adição) Pr quisquer, b, c R, se + b = + c então b = c. (I.e., b, c R, + b = + c b = c.) Demonstrção. Usndo ()-(5), podemos mostrr Lei do Corte pr Adição d seguinte form: + b = + c ( ) + ( + b) = ( ) + ( + c) (( ) + ) + b = (( ) + ) + c 0 + b = 0 + c (hipótese inicil) (pois (5) determin ( )) (por () - ssocitividde) (por (5) simétrico) b = c (por 4 0 é neutro pr +) Propriedde. (Lei do Corte pr Multiplicção), b, c R, ( 0 e b = c) b = c. Propriedde 3. (Zero é Elemento Absorvente d Multiplicção) Pr qulquer R tem-se que Propriedde 4. (Subtrcção) 0 = 0 = 0., b R x R : + x = b. Este número x = b + ( ) é designdo por diferenç entre b e e represent-se por b. Propriedde 5. (Divisão), b R com 0, x R : x = b. Este número x = b é designdo por quociente de b por e represent-se por b/. Propriedde 6. Pr quisquer, b R, se b = 0 então = 0 ou b = 0, i.e. em R não existem divisores de zero. Propriedde 7. (Regrs de Sinis) Pr quisquer, b R tem-se que e, se b 0, ( ) =, ( + b) = b, ( b) = ( ) b, ( ) ( b) = b (/b) = ( )/b = /( b).. Aul 3 de Setembro de 009 Últim Aul. Axioms Algébricos do conjunto R dos números reis. Axioms de Ordem. Vmos gor estudr s chmds Proprieddes de Ordem do conjunto dos números reis R, i.e. quels que se referem o subconjunto R + R formdo pelos números positivos ou, de form equivlente, o subconjunto R R formdo pelos números negtivos: Mis precismente, introduzimos: R ( ) R +. Axiom 3. Existe um conjunto R + R, formdo pelos reis positivos, tl que: () Fecho de R + em relção à som e o produto: () Pr quisquer, b R +, temos + b R +, b R +.

4 MIGUEL ABREU E RUI LOJA FERNANDES () Tricotomi: Qulquer R verific um e um só ds seguintes três condições: () R + ou = 0 ou ( ) R +. Not.. A tricotomi pode tmbém ser escrit d seguinte form: onde o símbolo signific união disjunt. R = R {0} R +, Not.. Quisquer outrs proprieddes de ordem dos números reis podem de fcto ser deduzids prtir dests dus primeirs. Por ess rzão, chmmos s ests dus proprieddes de xioms de ordem dos números reis. Definição.3. (Relções de Ordem) Sejm, b R. Diremos que é menor que b ou que b é mior que, escrevendo < b ou b >, qundo (b ) R +. Diremos tmbém que é menor ou igul b ou que b é mior ou igul, escrevendo b ou b, qundo (b ) R + ou b =. Not.4. As seguintes equivlêncis são consequêncis simples d Definição.3: > 0 R + e < 0 R. O primeiro xiom de ordem pode ssim ser escrito n form ou n form equivlente, b > 0 + b > 0 e b > 0,, b < 0 ( ) + ( b) = ( + b) > 0 e ( ) ( b) = b > 0. Assim, um consequênci imedit d Definição.3 e d Propiedde é: > 0, 0, pelo que = > 0. Propriedde 8. (Propriedde Trnsitiv), b, c R, ( < b e b < c) < c. Dem. É válid seguinte sequênci de implicções: < b e b < c (hipótese inicil) (b ) R + e (c b) R + (Definição.3) ((b ) + (c b)) R + (fecho de R + ) (c ) R + (exercício!) < c (Definição.3) Propriedde 9. (Proprieddes Algébrics) Pr quisquer, b, c, d R, tem-se que: (i) se < b então + c < b + c; (ii) se < b e c > 0 então c < b c; (iii) se < b e c < 0 então b c < c; (iv) se < c e b < d então + b < c + d.

AULAS TEÓRICAS DE CÁLCULO DIFERENCIAL E INTEGRAL I 5 Módulo ou Vlor Absoluto. Definição.5. O módulo ou vlor bsoluto de um número rel x R é definido por { x, se x 0; x = x, se x < 0. Exercício.6. Mostre que, pr qulquer x R, x = x 0, x = 0 x = 0 e x x x. Teorem.7. Sejm, x R. Tem-se que x x x. Dem. ( ) Sbemos por hipótese que x. Usndo propriedde lgébric (iii) obtemos Temos então que x x. x x x, onde s dus desigulddes do meio são o resultdo do Exercício.6. A trnsitividde (ii) implic immeditmente que x. ( ) Supomos gor por hipótese que x. Temos então que: () x 0 x = x. (b) x < 0 x = x, onde últim desiguldde é obtid prtir d hipótese x usndo novmente propriedde lgébric (iii). Conclui-se em qulquer dos csos que x. Corolário.8. Sejm, x R. Tem-se que x > x > x <. Dem. Bst negr mbos os ldos d equivlênci do teorem nterior. Teorem.9. (Desiguldde Tringulr) x + y x + y, x, y R. Dem. Temos pelo Exercício.6 que x x x e y y y. Somndo ests dus desigulddes e usndo propriedde lgébric (iv) obtemos ( x + y ) x + y x + y. Usndo gor o Teorem.7, podemos conlcuir que x + y x + y. Exercício.0. Mostre que, pr quisquer x, y R, x y x + y, x y x y e ( x y ) x y. Exercício.. Pr quisquer x, y R, mostre que x x y = x y e y = x y, se y 0.

6 MIGUEL ABREU E RUI LOJA FERNANDES Intervlos. Definição.. (Intervlos), b R. Intervlo berto: ], b[ def = {x R : < x < b}. (Notem que ], [ = def = conjunto vzio. Porquê?) Intervlo fechdo: [, b] def = {x R : x b}. (Notem que [, ] = {} = conjunto com pens um elemento.) Intervlos ilimitdos: [, + [ def = {x R : x } ou ], [ def = {x R : x < }. (Notem que ]0, + [ = R +.) O Teorem.7 e Corolário.8 podem então ser escritos n form x x [, ] e x > x ], [ ], + [. 3. Aul 5 de Setembro de 009 Últim Aul. Axoms de Ordem dos números reis. Módulo ou vlor bsoluto. Números Nturis. Definição 3.. (Conjunto Indutivo) Um subconjunto A R diz-se um conjunto indutivo se stisfz s seguintes dus condições: (i) A e (ii) A ( + ) A. Exemplo 3.. R e R + são indutivos (porquê?). R não é indutivo (porquê?). Definição 3.3. (Números Nturis) O conjunto dos números nturis é o menor subconjunto indutivo de R e represent-se por N. Mis precismente, N def = {n R : n pertence qulquer subconjunto indutivo de R}. Not 3.4. (Informl) Temos então que: N; def = + N; 3 def = + N;.... Ou sej, N = {,, 3, 4,...}. Indução Mtemátic. O fcto de N ser, por definição, o menor dos subconjuntos indutivos de R implic que (3) se A R é indutivo então N A. Teorem 3.5. (Princípio de Indução Mtemátic) Se A N é indutivo, então A = N. Dem. Como A é indutivo temos por (3) que N A. imeditmente que A = N. Como por hipótese A N, conclui-se Método de Indução Mtemátic. O Princípio d Indução Mtemátic, enuncido no Teorem 3.5, está n bse de um método eficz de demonstrção de determinds proposições/proprieddes relcionds com os números nturis: o chmdo Método de Indução Mtemátic. Descrevemos de seguid este método, indicndo entre prentesis como se relcion com o Princípio de Indução Mtemátic. Designemos por P (n) um determind proposição ou propriedde que se pretende mostrr verddeir pr todo o n N. (Sej A = {n N : P (n) é verdde}. Segue d su definição que A N.) O Método de Indução Mtemátic consiste em provr seprdmente que (i) P () é verddeir. ( A.) (ii) se P (n) é verddeir pr um determindo n N, então P (n + ) tmbém é verddeir. (n A (n + ) A.) Conclui-se prtir de (i) e (ii) que P (n) é verddeir pr todo o n N. ((i) e (ii) implicm que A é indutivo, pelo que o Teorem 3.5 permite concluir que A = N.)

AULAS TEÓRICAS DE CÁLCULO DIFERENCIAL E INTEGRAL I 7 Exemplo 3.6. Consideremos seguinte proposição, que queremos mostrr verddeir pr qulquer n N: n(n + ) P (n) = é válid seguinte fórmul: + + + n =. Pelo Método de Indução Mtemátic, prov fz-se em dois pssos. (i) [P ()]. Mostrr que fórmul dd é válid qundo n =, i.e. que ( + ) =, o que é clrmente verdde. (ii) [P (n) P (n + )]. Assumindo como verddeir hipótese P (n), i.e. n(n + ) + + + n =, pr um determindo n N, há que mostrr vlidde d tese P (n + ), i.e. (n + )((n + ) + ) + + + (n + ) =, pr o mesmo determindo n N. Isto pode ser feito d seguinte form: + + + (n + ) = ( + + + n) + (n + ) n(n + ) = + (n + ) (pel hipótese P (n)) (n + )(n + ) = Símbolo de Somtório. O Princípio de Indução Mtemátic está tmbém n bse de um mneir de definir entiddes mtemátics relcionds com os números nturis: s chmds Definições por Recorrênci. Descrevemos de seguid um desss definições, do símbolo de somtório, que não é mis do que um notção muito útil pr lidr com soms de váris prcels. Definição 3.7. Pr qulquer n N e números reis,,..., n R, o símbolo de somtório n k= k= define-se por recorrênci d seguinte form: n n k = se n =, e k = Ou sej, k = k= 3 k = k= k= k ( n ) k + n se n >. k= k + = +, k= k + 3 = + + 3,.... k= Not 3.8. O índice k do somtório é um índice mudo, desempenhndo um ppel muito uxilir. Um mesm som pode precer n notção de somtório de forms diferentes. Por exemplo: n n n k = i = j. k= i= Exemplo 3.9. A fórmul que provámos por indução no Exemplo 3.6, pode ser escrit usndo o símbolo de somtório d seguinte form: n n(n + ) k = k= (i.e. neste cso k = k pr k =,..., n). j=

= n+ 0 8 MIGUEL ABREU E RUI LOJA FERNANDES Teorem 3.0. (Proprieddes do Somtório n n n () ( k + b k ) = k + (b) (c) k= k= k= b k (prop. ditiv) ( n n ) (c k ) = c k, c R (homogeneidde) k= k= n ( k k ) = n 0 (prop. telescópic) k= Dem. () e (b) ficm como exercício. Provmos (c) por indução. [P ()]. Mostrr que fórmul dd em (c) é válid qundo n =, i.e. que ( k k ) = 0, k= o que é imedito prtir d Definição 3.7 do símbolo de somtório qundo n =. [P (n) P (n + )]. Assumindo como verddeir hipótese P (n), i.e. n ( k k ) = n 0, pr um determindo n N, k= há que mostrr vlidde d tese P (n + ), i.e. n+ ( k k ) = n+ 0, pr o mesmo determindo n N. k= Isto pode ser feito d seguinte form: n+ n ( k k ) = ( k k ) + ( n+ n+ ) (por def. de somtório) k= k= = ( n 0 ) + ( n+ n ) (pel hipótese P (n)) 4. Aul 8 de Setembro de 009 Últim Aul. Método de Indução Mtemátic. Sej P (n) um proposição que se pretende mostrr verddeir pr todo o n N. Se (i) P () é verddeir e (ii) P (n) verddeir pr um determindo n N P (n + ) verddeir, então P (n) é de fcto verddeir pr todo o n N. Símbolo de Somtório, n k= k, definido por recorrênci: ( n n n ) k = se n =, e k = k + n se n >. k= k= Mis Indução e Somtórios. Nem o Método de Indução, nem o Símbolo de Somtório, têm necessrimente que começr em n =. Ambos dmitem generlizções simples, tendo como ponto de prtid um ddo m Z. O cso m = 0 é ilustrdo no exemplo seguinte. Exemplo 4.. Vmos neste exemplo mostrr que, pr qulquer r R com r e qulquer n N 0 = N {0}, n (4) r k = rn+. r k=0 k=

AULAS TEÓRICAS DE CÁLCULO DIFERENCIAL E INTEGRAL I 9 Usremos o Método de Indução começndo em n = 0. [P (0)]. Mostrr que fórmul (4) é válid qundo n = 0, i.e. que 0 k=0 r k = r r, o que é clrmente verdde (mbos os termos são iguis ). Not: por definição r 0 =. [P (n) P (n + )]. Assumindo como verddeir hipótese P (n), i.e. n k=0 r k = rn+ r há que mostrr vlidde d tese P (n + ), i.e. n+ r k = rn+ r k=0 Isto pode ser feito d seguinte form: n+ r k = k=0 n r k + r n+ k=0 = rn+ r, pr qulquer r R e um determindo n N 0,, pr qulquer r R e o mesmo determindo n N 0. (por def. de somtório) + r n+ (pel hipótese P (n)) = rn+ + r n+ r n+ r Números inteiros e rcionis. = rn+ r Definição 4.. O conjunto dos números inteiros, representdo por Z, é o conjunto: ou sej, pode ser formlmente definido por 3,,, 0,,, 3,... Z def = {x R : x N x = 0 ( x) N}. O conjunto dos números rcionis, representdo por Q, é o conjunto dos números reis que são quocientes de dois números inteiros: Q def = {x R : x = p q. com p, q Z e q 0}. Exercício 4.3. Recorrendo o Método d Indução Mtemátic, mostre que Z é fechdo pr dição e subtrcção, e que Q é fechdo pr dição, multiplicção, subtrcção e divisão. Números Irrcionis. É clro que N Z Q R. Será que Q R? Provvelmente, já vos foi dito que números como π e não são rcionis. A demonstrção d irrcionlidde de π é bstnte díficil, ms irrcionlidde de (lgo que os mtemáticos d gréci ntig já conhecim!) segue-se ds proprieddes que já vimos e, em prticulr, do seguinte fcto: Exercício 4.4. Verifique que se p N e p é um número pr então p tmbém é pr. Teorem 4.5. (Irrcionlidde de ) Se R e stisfz = então / Q.

0 MIGUEL ABREU E RUI LOJA FERNANDES Dem. Vmos supor, sem perc de generlidde, que > 0. (Exercício: demonstre o resultdo qundo 0.) Por bsurdo, supomos que existim números nturis p e q tis que = p/q, ou sej: ( ) p =. q Podemos ssumir que p e q não têm nenhum divisor comum (senão começvmos por simplificr, eliminndo esses divisores comuns). Assim, temos que p = q, donde p é um número pr. Concluímos do Exercício 4.4 que p é pr, ou sej p = k, pr lgum nturl k N. Dqui, segue-se que: p = 4k = q k = q (lei do corte). Logo q é pr, e portnto q tmbém é um número pr: q = s, pr lgum nturl s N. Assim, cbámos de mostrr que mbos p e q possuem como divisor comum, o que contrdiz noss hipótese de que p e q não tinhm divisores comuns. Portnto, um número rel tl que = não pode ser rcionl. Ms será que existem números reis cujo qudrdo é? N relidde, s proprieddes que vimos té gor não são suficientes pr responder est questão, pois quer R quer Q stisfzem tods s proprieddes cim: Exercício 4.6. Mostre que o conjunto Q, dos números rcionis, stisfz todos os Axioms de Corpo (Proprieddes -5) e de Ordem (Proprieddes e ). Assim, se pudessemos utilizr s proprieddes que vimos cim pr mostrr que equção = tem soluções reis, então seguiri-se que ess equção tmbém teri soluções rcionis, contrdizendo o Teorem 4.5. Estudremos mis dinte um propriedde fundmentl dos números reis que nos permitem distinguir Q de R, e mostrr que est equção tem solução, i.e., que existe o número rel. Funções Reis de Vriável Rel. Vmos gor estudr funções definids em subconjuntos de R com vlores em R, i.e. f : D R R D x f(x). O conjunto D R onde função f está definid é designdo por domínio de f. O contrdomínio de f é o conjunto f(d) = {y R : y = f(x) pr lgum x D}. Um função f diz-se mjord (respectivmente minord) se existir M R (respect., m R) tl que f(x) M (respect., f(x) m) pr todo o x D. Um função que é simultnemente mjord e minord diz-se limitd. O gráfico de um função f é o subconjunto do plno R definido por gráfico de f = { (x, y) R : x D e y = f(x) }. Como veremos bixo, é muits vezes útil esboçr este conjunto. No entnto, isto nem sempre é fácil ou mesmo possível. Um função f com domínio D R diz-se pr se f(x) = f( x), x D, ímpr se f(x) = f( x), x D, crescente se (x < x f(x ) f(x )), x, x D, e decrescente se (x < x f(x ) f(x )), x, x D. Um função f com domínio D R diz-se periódic com período T > 0 se f(x + T ) = f(x), x D.

AULAS TEÓRICAS DE CÁLCULO DIFERENCIAL E INTEGRAL I 5. Aul 30 de Setembro de 009 Últim Aul. Recordámos lgums definições reltivs funções definids em subconjuntos de R com vlores em R, i.e. f : D R R D x f(x). Exemplos. Recordemos lguns exemplos de funções elementres já vosss conhecids. Exemplo 5.. Funções polinomiis são funções com expressão nlític dd por um polinómio, i.e., funções d form n f(x) = c 0 + c x + c x + + c n x n = c k x k, com c 0,..., c n R. O domínio de qulquer um dests funções é D = R. k=0 4 3 - - - - Figur. Gráfico ds funções polinomiis f, g : R R definids por f(x) = x e g(x) = x. Veremos que qundo um função polinomil tem gru ímpr o seu contrdomínio é todo o R, enqunto que qundo um função polinomil tem gru pr o seu contrdomínio é um intervlo d form [m, + [ ou ], M], com m, M R. A Figur mostr o gráfico de dus funções polinomiis. Nos exercícios ds fichs presentm-se lgums proprieddes importntes ds funções polinomiis. Exemplo 5.. Funções rcionis são funções com expressão nlític dd pelo quociente de dois polinómios, i.e., funções d form f(x) = p(x) q(x) com p e q polinómios. Ests funções não estão definids nos pontos em que o denomindor se nul, pelo que o seu domínio é ddo por D = {x R : q(x) 0}. Um exemplo simples é função definid por f(x) = /x, cujo gráfico está representdo n Figur. Tnto o seu domínio como contrdomínio são R \ {0}. Est função é ímpr, decrescente em ], 0[ e em ]0, + [ (ms não em todo o seu domínio R \ {0}). Exemplo 5.3. Dus funções que estão intimmente relcionds, como será explicdo mis dinte, são função exponencil f(x) = e x, que possui domínio D = R, e função logrítmo g(x) = log(x), que possui D = R +. Os seus gráficos está representdo n Figur 3.

MIGUEL ABREU E RUI LOJA FERNANDES 3-3 - - 3 - - -3 Figur. Gráfico d função rcionl f : R \ {0} R definid por f(x) = /x. 3-3 - 3 - -3 Figur 3. Gráfico d função exponencil e d função logritmo. São mbs funções estritmente crescentes. O contrdomínio d função exponencil é f(r) = R +, enqunto que o contrdomínio d função logrítmo é g(r + ) = R. Portnto, função exponencil é um função minord ms não mjord, enqunto que função logrítmo não é nem mjord nem minord. Algums proprieddes fundmentis d função exponencil e d função logritmo que devem recordr são s seguintes: (i) e 0 = e log() = 0; (ii) e x e y = e x+y, x, y R e log( b) = log() + log(b),, b R + ; (iii) (e x ) y = e x y, x, y R e log( b ) = b log(), R +, b R. Exemplo 5.4. As funções trigonométrics seno e coseno são funções cujo o domínio é todo o R. Os seus gráficos estão representdos n Figur 4. - Figur 4. Gráfico ds funções trigonométrics seno e coseno.

AULAS TEÓRICAS DE CÁLCULO DIFERENCIAL E INTEGRAL I 3 Qulquer um dests funções tem por contrdomínio o intervlo [, ], sendo portnto funções limitds. A função seno é ímpr e periódic de período π, i.e. sen(x) = sen( x) e sen(x + π) = sen(x), x R. A função coseno é pr e tmbém periódic de período π, i.e. cos(x) = cos( x) e cos(x + π) = cos(x), x R. As funções seno e coseno stisfzem seguinte relção fundmentl: (5) sen (x) + cos (x) =, x R. Os exercícios ds fichs presentm outrs proprieddes importntes ds funções seno e coseno. Exemplo 5.5. As funções trigonométrics tngente e cotngente são definids prtir ds funções seno e coseno: (6) tn(x) = sen(x) cos(x) e cot(x) = tn(x) = cos(x) tn(x). O domínio d função tngente é o subconjunto de R definido por D tn = {x R : cos(x) 0} = {x R : x kπ + π com k Z}. O seu contrdomínio é R e o seu gráfico está representdo n Figur 5. A função tngente é ímpr e periódic de período π, i.e. tn(x) = tn( x) e tn(x + π) = tn(x), x D tn. Figur 5. Gráfico d função trigonométric tngente. O domínio d função cotngente é o subconjunto de R definido por D cot = {x R : sen(x) 0} = {x R : x kπ com k Z}. O seu contrdomínio é R e representção do seu gráfico fic como exercício. A função cotngente tmbém é ímpr e periódic de período π, i.e. cot(x) = cot( x) e cot(x + π) = cot(x), x D cot. Exemplo 5.6. As funções seno hiperbólico e coseno hiperbólico são definids prtir d função exponencil: (7) senh(x) = ex e x e cosh(x) = ex + e x. O domínio ds funções seno hiperbólico e coseno hiperbólico é todo o R. Os seus gráficos estão representdos n Figur 6. A função seno hiperbólico é ímpr e tem por contrdomínio R. A função coseno hiperbólico é pr e tem por contrdomínio o intervlo [, + [. Ests dus funções stisfzem seguinte relção fundmentl: (8) cosh (x) senh (x) =, x R.

4 MIGUEL ABREU E RUI LOJA FERNANDES 6 4 - - - Figur 6. Gráfico ds funções seno hiperbólico e coseno hiperbólico. Ns fichs de exercícios encontrrão outrs proprieddes importntes ds funções seno hiperbólico e coseno hiperbólico. Função compost. Um form de produzir novs funções prtir de funções conhecids é compondo funções. Definição 5.7. Sejm f : D f R R e g : D g R R dus funções reis de vriável rel. A função compost (f g) é definid por (f g) : D f g R onde D f g = {x R : x D g e g(x) D f }. Temos ssim que x (f g)(x) def = f(g(x)), D g D f g g g(d f g ) D f f f(d f ) (f g)(d f g ) x g(x) = y f(y) = f(g(x)) i.e., função compost f g corresponde plicr primeiro função g e de seguid função f. Exemplo 5.8. Consideremos s funções g : R \ {0} R e f : R R definids por g(x) = x e f(y) = sen(y). Temos então que (f g) : D f g = R \ {0} R é dd por O seu gráfico está representdo n Figur 7. (f g)(x) = f(g(x)) = f(/x) = sen(/x). Figur 7. Gráfico d função f : R \ {0} R definid por f(x) = sen(/x).

AULAS TEÓRICAS DE CÁLCULO DIFERENCIAL E INTEGRAL I 5 6. Aul de Outubro de 009 N últim ul recordámos noção de função. Antes de prosseguirmos, vle pen notr que um função não é necessrimente definid por um expressão lgébric. N relidde, um função f : D R é pens um regr que cd número rel x D tribui um número rel f(x) R. Os próximos dois exemplos são funções que não são definids por expressões lgébrics. Exemplo 6.. Consideremos chmd função de Heviside H : R R, definid por { 0, se x < 0; H(x) =, se x 0. O seu gráfico está representdo n Figur 8. - - Figur 8. Gráfico d função de Heviside. Est função é limitd, crescente, e o seu contrdomínio é {0, }. Exemplo 6.. Consideremos chmd função de Dirichlet D : R R, definid por { 0, se x Q; D(x) =, se x R \ Q. Est função é limitd e o seu contrdomínio é {0, }. Reprem que não é possível esboçr o gráfico dest função d form usul. Notem que o gráfico está sempre bem definido, e que isto não deve ser confundido com questão de esboçr o gráfico num folh de ppel. Limite de um função num ponto. Voçês já virm no Secundário definição intuitiv de limite de um função: Um função f tem limite b qundo x tende pr, se pudermos fzer f(x) tão próximo de b qunto quisermos, tomndo x suficientemente próximo (ms distinto) de. Com est definição informl é possível trtr exemplos simples de funções e clculr limites elementres. No entnto, el pode dr lugr lgum confusão qundo prentendemos trtr exemplos mis complicdos como, por exemplo, o limite de f(x) = sen(/x) qundo x tende pr 0, ou d função de Dirichlet qundo x tende pr lgum. O primeiro problem nest definição está em que não é clro o que se entende por estr próximo de. Repre-se que dizer que f(x) está próximo de b (respectivmente, x está próximo de ) deve significr que f(x) b (resp. x ) é pequeno. Assim, podemos refinr noss definição pr: Um função f tem limite b qundo x tende pr, se pudermos fzer f(x) b tão pequeno qunto quisermos, tomndo x suficientemente pequeno (ms diferente de zero). Ms gor vemos que temos um outro problem: o que é que queremos dizer com os termos tão pequeno qunto quisermos e suficientemente pequeno? Ao esclrecer o verddeiro significdo destes termos chegmos à definição precis de limite, que é seguinte: Definição 6.3. Dizemos que um função f tem limite b qundo x tende pr se pr todo o ε > 0 existir δ > 0 tl que, pr todo o x, se 0 < x < δ então f(x) b < ε. Em notção de quntificdores, podemos escrever est condição n form: (9) ε > 0 δ > 0 : 0 < x < δ f(x) b < ε.

6 MIGUEL ABREU E RUI LOJA FERNANDES Notem que tudo o que fizermos dqui em dinte dependerá dest definição! Por isso, memorizemn como se fosse tbud o mis rpidmente possível. É um bo idei começrem por resolver os seguintes exercícios: Exercício 6.4. Usndo definição precis de limite, mostre que: (i) se f : R R é um função constnte, i.e., pr qul existe c R com f(x) = c, x R, então lim f(x) = lim c = c, R. x x (ii) se f : R R é função identidde, i.e., f(x) = x, x R, então lim f(x) = lim x =, R. x x Not 6.5. Pr definir o limite lim x f(x) não é necessário que pertenç o domínio D de f. No entnto, deve ser clro que definição só fz sentido se pr todo o δ > 0 existir x D tl que 0 < x < δ. Neste cso, dizemos que x é um ponto de cumulção de D. Assumiremos sempre que est condição se verific. Exemplos. Apresentmos de seguid lguns exemplos de cálculo de limites prtir d definição. N próxim ul veremos lguns resultdos que permitem simplificr imenso o cálculo de limites e evitr recorrer est definição. No entnto, é muito importnte prestr tenção estes primeiros exemplos e procurr interiorizr o seu verddeiro significdo. Exemplo 6.6. Vejmos que pr qulquer número rel 0 e nturl p se verific: lim x xp = p. Por um exercício de um ds fichs, sbemos que é válid iguldde: p p b p = ( b) p k b k. k= Se x temos que x +, e concluímos que: p x p p x x p k k x k= p ( + ) p k k. k= Assim, definimos M = p k= ( + )p k k e ddo ε > 0, um número rel qulquer, vmos escolher δ = min(, ε M ). Então, pr todo o x tl que 0 < x δ, temos que Portnto, lim x x p = p como firmámos. x p p x M ε M M = ε. Exemplo 6.7. Consideremos função de Heviside H : R R. Vmos ver que: 0, se < 0; lim H(x) =, se > 0; x não existe, se = 0. Suponhmos primeiro que > 0. É clro que se tomrmos x < então x > 0, logo: 0 < x < H(x) = = 0. Portnto, ddo ε > 0 podemos tomr δ = que se verific: 0 < x < δ H(x) < ε, ou sej, lim x H(x) =. De form nálog, mostr-se que se < 0 então lim x H(x) = 0.

AULAS TEÓRICAS DE CÁLCULO DIFERENCIAL E INTEGRAL I 7 Vejmos gor que o lim x 0 H(x) não existe. Pr obter o significdo preciso do que signific não existir o limite, começmos por observr o que signific firmr que um função f não tem limite b qundo x tende pr. Pr isso, bst negrmos condição n definição de limite: existe lgum ε > 0 tl que pr todo o δ > 0 existe um x que stisfz x < δ e f(x) b > ε. Se preferirmos, em notção de quntificdores: ε > 0 δ > 0 x : 0 < x < δ f(x) b > ε. Vejmos então que pr qulquer número rel b função H não tem limite b qundo x tende pr 0. Observe que pr qulquer δ > 0, se x < δ então temos: se x < 0 H(x) = 0 H(x) b = b, se x > 0 H(x) = H(x) b = b. Portnto, bst tormrmos ε = mx( b, b ) pr que se verifique: δ > 0 x : 0 < x < δ H(x) b > ε, donde o limite não é b. Como b er um número rel qulquer, concluímos que o limite lim x 0 H(x) não existe. Exercício 6.8. Considere função de Dirichlet D : R R. Mostre que, pr qulquer R, lim x D(x) não existe. Exemplo 6.9. Consideremos função f : D = R \ {0} R definid por ( ) f(x) = sen, x e que estudámos brevemente n últim ul. O ponto 0 não pertence o domínio d função, ms ind fz sentido flr em lim x 0 sen(/x) (cf. Not 6.5). Começmos por observr que sen( π + kπ) = e que sen( π + kπ) =, pr qulquer inteiro k Z. Sej então x + k = π +kπ e x k = π +kπ. Se b é um número rel qulquer, temos que: f(x + k ) b = b, f(x k ) b = b = + b. Sej então ε = mx( b, + b ). Ddo δ > 0, podemos sempre escolher um inteiro k suficientemente grnde de form que 0 < x ± k δ, logo: δ > 0 x D : 0 < x < δ f(x) b > ε, donde o limite de f qundo x tende pr 0 não é b. concluímos que lim x 0 f(x) não existe. Exemplo 6.0. Consideremos função f : D = R \ {0} R definid por ( ) f(x) = x sen. x Como b er um número rel qulquer, O seu gráfico está representdo n Figur 9. Tendo em cont que sen(y), y R,, temos pr todo o x R \ {0} que ( ( 0 x) x sen = x x) sen x. Segue-se que ddo ε > 0 podemos tomr δ = ε obtendo: ε > 0 δ > 0 : 0 < x < δ f(x) < ε. Ou sej, concluímos que: ( ) (0) lim x sen = 0. x 0 x Podem encontrr muitos outros exemplos de cálculo de limites trvés d definição no Spivk, que vos podem judr interiorizr est noção. Leim-no!

8 MIGUEL ABREU E RUI LOJA FERNANDES - Figur 9. Gráfico d função f : R \ {0} R definid por f(x) = x sen(/x). Últim Aul. Definição de limite: 7. Aul 7 de Outubro de 009 lim f(x) = b ε > 0 δ > 0 : 0 < x < δ f(x) b < ε. x Vimos ind lguns exemplos de cálculo de limites recorrendo est definição. Nest ul vmos estudr vários resultdos que permitem clculr limites fcilmente. Proprieddes do Limite de Funções num Ponto. Vmos gor estudr lgums proprieddes elementres do limite de funções que nos judrão no seu cálculo, sem termos de recorrer à definição. Teorem 7.. (Unicidde do Limite) Sej f um função e suponh-se que lim x f(x) = b e que lim x f(x) = b. Então b = b. Dem. Começmos por escrever usndo definição de limite: lim f(x) = b ε > 0 δ > 0 : 0 < x < δ f(x) b < ε, x lim f(x) = x b ε > 0 δ > 0 : 0 < x < δ f(x) b < ε. Suponhmos, por bsurdo, que b b. Então vmos tomr ε = b b e, pr os δ e δ ddos por ests definições, escolhemos δ = min(δ, δ ). Concluímos que, pr todo o x tl que 0 < x < δ, temos: f(x) b < ε f(x) b < ε, Segue-se que: b b = b f(x) + f(x) b < b f(x) + f(x) b < ε + ε = ε = b b um contrdição. Assim, necessrimente, b = b. Note que se f e g são funções então podemos formr s seguintes novs funções: A função f + g, dit som de f e g e função diferenç f g, dit diferenç de f e g: (f + g)(x) = f(x) + g(x), (f g)(x) = f(x) g(x). A função f g, dit o produto de f e g: (f g)(x) = f(x)g(x).

AULAS TEÓRICAS DE CÁLCULO DIFERENCIAL E INTEGRAL I 9 A função f g, dit o quociente de f por g: f f(x) (x) = g g(x). Note que o domínio ds funções som, diferenç e produto, é intersecção D f D g dos domínios ds funções prcels. O domínio d função quociente f g é: D f g = {x D f D g : g(x) 0}. Finlmente, dd um função f e um número rel c R podemos considerr função cf definid por: (cf)(x) = c f(x), e cujo domínio é o mesmo que o domínio de f. Tmbém podemos pensr nest função como o produto d função constnte g(x) = c pel função f. Teorem 7.. (Limite e Operções Algébrics) Sejm f e g funções tis que Então: lim f(x) = b e lim g(x) = c. x x (i) lim x (f ± g)(x) = lim x f(x) ± lim x g(x) = b ± c. (ii) lim x (f g)(x) = lim x f(x) lim x g(x) = b c. (iii) se c 0, f lim x g (x) = lim x f(x) lim x g(x) = b c. Dem. Vmos demonstrr em detlhe propriedde (i). As demonstrções ds outrs proprieddes são nálogs e podem ser encontrds no Spivk. Começmos por recorrer à definição de limite pr escrever: lim f(x) = b ε > 0 δ > 0 : 0 < x < δ f(x) b < ε x, lim x g(x) = c ε > 0 δ > 0 : 0 < x < δ g(x) c < ε. Assim, se escolhermos δ = min(δ, δ ), obtemos: 0 < x < δ (f ± g)(x) (b ± c) = (f(x) b) ± (g(x) c) f(x) b + g(x) c < ε + ε = ε. o que mostr que: lim (f ± g)(x) = lim f(x) ± lim g(x) = b ± c. x x x Exemplo 7.3. Recorrendo este resultdo é muito fácil clculr certos limites sem ter de pssr pelo processo doloroso de encontrr os ε δ correctos. Por exemplo, x 4 3x + lim x x = lim x (x 4 3x + ) + lim x (x + ) = lim x x 4 lim x 3x + lim x lim x x + lim x = 4 3 + (pelo Exemplo 6.6) + (pelo Teorem 7. (iii)) (pelo Teorem 7. (i))

0 MIGUEL ABREU E RUI LOJA FERNANDES Princípio do Encixe ou d Função Enqudrd. Teorem 7.4. Sejm f, g e h funções tis que f(x) g(x) h(x), pr qulquer x D f D g D h. Temos então que lim f(x) = b = lim h(x) = lim g(x) = b. x x x Dem. Pel definição de limite podemos escrever: lim f(x) = b ε > 0 δ > 0 : 0 < x < δ ε < f(x) b < ε, x lim h(x) = b ε > 0 δ > 0 : 0 < x < δ ε < g(x) c < ε. x Assim, ddo ε > 0, tommos δ = min(δ, δ ). Usndo o fcto de que g está encixd entre f e h, obtemos: g(x) b h(x) b < ε 0 < x < δ g(x) b < ε. g(x) b f(x) b > ε Portnto, ε > 0 δ > 0 : 0 < x < δ g(x) b < ε lim g(x) = b. x Exemplo 7.5. Um nálise simples do círculo trigonométrico permite mostrr que, pr 0 < x < π/ é válid relção: 0 < cos x < sen x <. x Como: lim cos x = = lim, x 0 x 0 concluímos pelo príncípio do encixe que: lim x 0 sen x x Limite de Funções Composts. Supondo que g(x) b qundo x e f(y) c qundo y b, podemos ind concluir reltivmente à compost f g que, em determinds condições, (f g)(x) c qundo x. A principl dificuldde vencer qui é o fcto de podermos ter g(x) = b mesmo qundo x, e o vlor f(b) ser n verdde rbitrário. O próximo teorem indic dus lterntivs possíveis que permitem obter conclusão desejd sobre função compost. Teorem 7.6 (Limite d Função Compost). Sejm f e g dus funções reis de vriável rel, e R um ponto de cumulção do domínio de f g. Então =. lim g(x) = b e lim f(y) = c = lim (f g)(x) = c, x y b x sempre que um ds seguintes condições é stisfeit: () f(b) = c, ou (b) g(x) b qundo x. Dem. Verificmos este teorem pens no cso () cim. Sendo D f o domínio de f, ddo ɛ > 0, e como f(y) c qundo y b, observmos que existe γ > 0 tl que: y D f e 0 < y b < γ = f(y) c < ɛ. Temos por hipótese que f(b) = c e portnto restrição y b > 0 é desnecessári cim, i.e., () y D f e y b < γ = f(y) c < ɛ. Sbemos tmbém que g(x) b qundo x, e portnto existe δ > 0 tl que () x D e 0 < x < δ = g(x) b < γ.

AULAS TEÓRICAS DE CÁLCULO DIFERENCIAL E INTEGRAL I Result de () e () que x D e 0 < x < δ = g(x) b < γ f(g(x)) c < ɛ. Por outrs plvrs, lim x f(g(x)) = c. sen(x Exemplo 7.7. Suponhmos que pretendemos clculr lim ) x 0 x. Observmos que: onde g(x) = x e f(y) = sen y y sen x = f(g(x)), x. Como já sbemos que (ver Exemplo 7.5): lim x 0 x = 0 sen y e lim = y 0 y e como g(x) = x 0 se x 0, o Teorem 7.6 mostr que: sen(x ) lim x 0 x =. 8. Aul 9 de Outubro de 009 Últim Aul. Operções lgébrics e limites. Princípio do Encixe. Limite de Funções Composts. Nest ul vmos estudr lgums extensões úteis do conceito de limite. Limites Reltivos e Lteris. Definição 8.. Sejm f : D R R um função e A D um subconjunto do seu domínio. Diremos que f tem limite b no ponto reltivo o conjunto A, e escreveremos lim f(x) = b, x x A se restrição de f o conjunto A, f A : A R, tem limite b no ponto A, i.e., se lim x f A (x) = b, o que por definição de limite signific ε > 0 δ > 0 : (x A e 0 < x < δ) f(x) b < ε. Not 8.. Como já foi referido n Not 6.5 pr o limite usul, pr definir o limite reltivo lim x f A (x) não é necessário que pertenç o conjunto A D, bstndo que pr todo o δ > 0 exist x A tl que 0 < x < δ. Not 8.3. Há dois csos prticulrmente importntes dest definição de limite reltivo, dndo origem os chmdos limites lteris: (i) qundo A = D ], + [ temos o chmdo limite lterl à direit, ou simplesmente limite à direit, que será denotdo por lim x + f(x). Recorrendo quntificdores podemos escrever: ε > 0 δ > 0 : (x D e 0 < x < δ) f(x) b < ε. (ii) qundo A = D ], [ temos o chmdo limite lterl à esquerd, ou simplesmente limite à esquerd, que será denotdo por lim x f(x). Novmente, usndo quntificdores podemos escrever: ε > 0 δ > 0 : (x D e 0 < x < δ) f(x) b < ε. Exemplo 8.4. Vimos que função de Heviside H : R R definid por: { 0, se x < 0; H(x) =, se x 0. não tem lim x 0 H(x). No entnto, tem limites lteris no ponto zero ddos por lim H(x) = 0 e lim H(x) =. x 0 x 0 +

MIGUEL ABREU E RUI LOJA FERNANDES Exercício 8.5. Pr um função f, mostre que lim x f(x) existe e é igul b sse existem os limites lteris lim x + f(x) e lim x f(x), e são mbos iguis b. Rect Acbd, Indeterminções e limites. Definição 8.6. Design-se por rect cbd, e represent-se por R, o conjunto R def = R {, + }. Os elementos e + stisfzem relção de ordem < x < +, x R, bem como s regrs opercionis lgébrics que se descrevem de seguid. As regrs opercionis lgébrics com os elementos e + são determinds por form que os Axioms de Corpo (Proprieddes -5 dos números reis; cf. Not.) continuem ser válidos n rect cbd R. Qundo num determind operção não for possível determinr um regr nests condições, diremos que estmos pernte um indeterminção. Reltivmente à dição, temos que bem como Por outro ldo, + (+ ) = + e + ( ) =, R, (+ ) + (+ ) = + e ( ) + ( ) =. () (+ ) + ( ) é um indeterminção do tipo. Not 8.7. À primeir vist, tendo em cont propriedde do simétrico, poderi precer rzoável definir (+ ) +( ) = 0. Est definição iri no entnto contrrir propriedde ssocitiv pois, como foi referido por um luno durnte ul, terímos que ( + (+ )) + ( ) = (+ ) + ( ) = 0 ms + ((+ ) + ( )) = + 0 =, R. Problems semelhntes estão n origem ds restntes indeterminções. Verifiquem que de fcto ssim é! Reltivmente à multiplicção, temos que Temos tmbém que Por outro ldo, (± ) = { ±, se > 0;, se < 0. (+ ) (+ ) = + = ( ) ( ) e (+ ) ( ) =. () 0 (± ) é um indeterminção do tipo 0. Est indeterminção dá nturlmente origem indeterminções n divisão: s chmds indeterminções do tipo (3) = = 0 e 0 (4) 0 = 0 0 = 0. Reltivmente à potencição b, com 0, temos que { + 0, se 0 < ; = e = +, se > ; +, bem como (+ ) b = { 0, se b < 0; +, se b > 0.

AULAS TEÓRICAS DE CÁLCULO DIFERENCIAL E INTEGRAL I 3 Por outro ldo (5) + é um indeterminção do tipo, e (6) (+ ) 0 é um indeterminção do tipo 0. Est últim indeterminção está directmente relciond com (7) indeterminção do tipo 0 0 já existente em R. Queremos gor definir limites ns rect cbd, de form que fç sentido flr nos limites: lim f(x) e x + lim f(x). x e ind que o resultdo de um limite poss ser ±. Pr isso, define-se vizinhnç de rio ε > 0 de um ponto R como sendo o conjunto V ε () = ] ε, + ε[. A definição de limite de um função pode ser escrit n form (8) lim f(x) = b def ε > 0 δ > 0 : x V δ () \ {} f(x) V ε (b). x Se definirmos vizinhnç de rio ε > 0 de e + por V ε ( ) = ], /ε[ e V ε (+ ) = ]/ε, + [, definição (8) continu fzer sentido n rect cbd R = { } R {+ }, i.e., pr, b R. Pssremos ssim usá-l tmbém neste contexto. Exercício 8.8. Verifique que definição (8) pr o limite n rect cbd R tem os seguintes significdos: (i) lim x + f(x) = b R sse (ii) lim x f(x) = b R sse (iii) lim x f(x) = +, onde R, sse (iv) lim x f(x) =, onde R, sse ε > 0 L > 0 : x > L f(x) b < ε. ε > 0 L > 0 : x < L f(x) b < ε. L > 0 δ > 0 : x < δ f(x) > L. L > 0 δ > 0 : x < δ f(x) < L. Verifique, ind, o que signific lim x ± f(x) = ±, e lim x ± f(x) = ±. Exercício 8.9. Mostre que lim x ± x = 0 e lim x 0 ± x = ±. Exemplo 8.0. O conhecimento que temos ds funções exponencil e logritmo, permitem-nos firmr que lim x + ex = +, lim x ex = 0, lim log(x) = + e lim x + log(x) =. x 0 + Estes fctos, que só provremos rigorosmente mis trde no curso, serão usdos em exemplos e podem (e devem) ser usdos n resolução de exercícios.

4 MIGUEL ABREU E RUI LOJA FERNANDES Os resultdos que estudámos n últim ul sobre operções lgébrics e limites (Teorem 7.) e limite de funções composts (Teorem 7.6), continum ser válids pr rect cbd R, desde que não originem lgum ds indeterminções referids nteriormente. Ilustrmos isto mesmo no nosso próximo exemplo. Exemplo 8.. Vimos n ul nterior que: sen(x) lim =. x 0 x Usndo este fcto, pretende-se completr o gráfico d Figur 9 do Exemplo 6.0 clculndo o limite ( ) lim x sen. x + x Notem que propriedde lgébric (ii) do Teorem 7. dá neste cso origem um indeterminção do tipo 0, pelo que não pode ser usd pr clculr este limite. Consideremos s funções g, f : R \ {0} R definids por g(x) = x e f(y) = sen(y) y Temos então que (f g) : D f g = R \ {0} R é dd por Como (f g)(x) = f(g(x)) = f(/x) = sen(/x) /x lim x +. = x sen sen(y) f(y) = lim y 0 ( ). x lim g(x) = x + x = 0 e lim =, y 0 y e pr todo o ε > 0 temos que V ε (+ ) D fog, podemos concluir pelo Teorem 7.6 que ( ) lim (f g)(x) = lim x sen =. x + x + x N notção do Teorem 7.6, temos que neste exemplo = +, b = 0 e c =. A nálise nterior pode ser escrit brevidmente d seguintes form: considerndo mudnç de vriável y = x x =, em que x + y 0, y temos que ( ) lim x sen sen(y) = lim sen(y) = lim =. x + x y 0 y y 0 y A Figur 0 present um versão mis complet do gráfico d Figur 9, tendo já em cont o limite clculdo neste exemplo. - - Figur 0. Versão mis complet do gráfico d função f : R \ {0} R definid por f(x) = x sen(/x).

AULAS TEÓRICAS DE CÁLCULO DIFERENCIAL E INTEGRAL I 5 9. Aul de Outubro de 009 Continuidde de Funções Reis de Vriável Rel. Dd um função f : D R relção: lim f(x) = f(), x pode não se verificr. De fcto, est iguldde pode flhr por váris rzões: O ponto D é um ponto isoldo, i.e., não é um ponto de cumulção de D (cf. Not 6.5). O limite de f(x) qundo x não existe (por exemplo, função f(x) = sen ( x) em = 0; cf. Exemplo 6.9). O limite existe, ms o ponto não pertence o domínio D, e portnto não fz sentido sequer flr em f() (por exemplo, função f(x) = x sen( x ) em = 0; cf. Exemplo 6.0). O limite existe, pertence o domínio, ms o limite é diferente de f() (construm um exemplo!). Este tipo de comportmento pode ser considerdo norml, e por isso convencionou-se um nome pr qulificr s funções que se portm bem: Definição 9.. Um função f : D R R diz-se contínu num ponto D se ε > 0 δ > 0 : x < δ f(x) f() < ε, e diz-se contínu se for contínu em todos os pontos do seu domínio D. Notem que pr um ponto D há dus possibiliddes: () O ponto é um ponto de cumulção, i.e., pr todo o δ > 0 temos que V δ () D {} neste cso, f é contínu em sse lim f(x) = f(), x () O ponto é isoldo, i.e., existe δ > 0 tl que V δ () D = {}. Neste cso, f é sempre contínu em. Intuitivmente um função é contínu se o seu gráfico não present interrupções, sltos ou oscilções. Embor est idei intuitiv sej muits vezes suficiente pr decidir se um função é contínu olhndo pr o seu gráfico, há situções em que isso não é de todo clro, e por isso definição precis que demos cim é muito importnte. Nturlmente que s proprieddes do limite de um função num ponto dão origem proprieddes nálogs pr s funções contínus. O teorem seguinte ilustr este fcto. Teorem 9.. (i) Se f e g são funções contínus num ponto D f D g, então f ± g, f g e f/g (se g() 0) tmbém são contínus em. (ii) Sejm f e g dus funções. Se D f g, g é contínu em e f é contínu em g(), então (f g) é contínu em. Dem. Consequênci imedit d Definição 9. e dos Teorems 7. e 7.6. Continuidde Lterl. A noção de limites lteris introduzid n Not 8.3 dá nturlmente origem à seguinte definição de continuidde lterl. Definição 9.3. Sejm f : D R R um função e D um ponto do seu domínio. Diremos que: (i) f é contínu à direit em se lim x + f(x) = f(); (ii) f é contínu à esquerd em se lim x f(x) = f(). Teorem 9.4. Sejm f : D R R um função e D um ponto de cumulção. f é contínu em, i.e. lim f(x) = f(), x

6 MIGUEL ABREU E RUI LOJA FERNANDES sse f é contínu à direit e à esquerd em, i.e. Dem. Exercício simples. lim f(x) = f() = lim f(x). x + x Exemplo 9.5. A função de Heviside H : R R, definid por { 0, se x < 0, H(x) =, se x 0, é contínu à direit no ponto zero, ms não é contínu à esquerd nesse ponto. De fcto, lim x 0 x 0 H(x) = = H(0) ms lim H(x) = 0 H(0). + Exemplos de Funções contínus. O que já sbemos sobre limites permite-nos decidir se muits funções são contínus ou não. Exemplo 9.6. () um função polinomil p(x) é contínu em qulquer ponto R. (b) qulquer função rcionl f = p/q, com p, q polinómios, é contínu em qulquer ponto R onde q() 0; (c) função módulo f : R R, definid por f(x) = x, x R, é contínu em qulquer ponto R; (d) função de Heviside, presentd no Exemplo 6., é contínu em qulquer ponto 0 e descontínu no ponto zero. (e) função de Dirichlet, presentd no Exemplo 6., é descontínu em qulquer ponto R. Exemplo 9.7. As funções trigonométrics, exponencil e logritmo são contínus em todos os pontos do seu domínio. Estes fctos, que só serão provdos mis à frente neste curso, serão usdos desde já tnto em exemplos como nos exercícios. Exemplo 9.8. (Prolongmento por Continuidde) Consideremos função F : R R definid por x sen ( x), se x 0 F (x) = 0, se x = 0. Se 0, F é num vizinhnç de o produto/composição de funções contínus, pelo que é contínu. Por outro ldo, recorrendo o Exemplo 6.0, temos que ( ) lim F (x) = lim x sen = 0 = F (0). x 0 x 0 x Logo, F tmbém é contínu em = 0. Assim, F é contínu em todo o R. Est função F é um exemplo de prolongmento por continuidde. Mis precismente, é o prolongmente por continuidde d função f : R \ {0} R, dd por f(x) = x sen(/x), x 0, o ponto zero. Ns fichs de exercícios existem um série de exercícios reltivos este tipo de prolongmentos por continuidde. Algums Proprieddes Locis ds Funções Contínus. Teorem 9.9. Sejm f : D f R R e g : D g R R dus funções contínus num ponto D f D g. Se f() > g() então δ > 0 : x < δ f(x) > g(x). Dem. Como f e g são por hipótese contínus em D f D g, sbemos que e ε > 0 δ > 0 : x < δ f(x) f() < ε ε > 0 δ > 0 : x < δ g(x) g() < ε.

AULAS TEÓRICAS DE CÁLCULO DIFERENCIAL E INTEGRAL I 7 Escolhmos ε, δ > 0 tis que Temos então que: 0 < ε < f() g() e δ = min{δ (ε), δ (ε)}. x < δ f(x) f() < ε e g(x) g() < ε f(x) > f() ε e g(x) < g() + ε f(x) g(x) > (f() ε) (g() + ε) f(x) g(x) > f() g() ε > ε ε = 0, onde últim desiguldde é consequênci d escolh feit pr ε. Corolário 9.0. Se f : D R R é um função contínu num ponto D com f() > 0, então existe δ > 0 tl que f(x) > 0 pr qulquer x V δ () D. Dem. Bst usr o Teorem 9.9 com g = função identicmente zero. Teorem 9.. Se f : D R R é um função contínu num ponto D, então existe δ > 0 tl que f é limitd em V δ () D. Dem. Exercício. 0. Aul 4 de Outubro de 009 Proprieddes Globis ds Funções Contínus. N últim ul vimos que qundo um função é contínu num ponto podemos obter informção sobre o comportmento locl d função, i.e., num vizinhnç de. Vmos gor ver que qundo um função é continu num intervlo [, b] então podemos obter informção sobre o comportmento globl d função, i.e., em todo o intervlo [, b]. Vmos começr por enuncir três resultdos muito importntes, e depois deduzir lgums consequêncis. A demonstrção destes resultdos só será feit n próxim ul. Teorem 0.. (Teorem do Vlor Intermédio ou de Bolzno) Sej f um função contínu num intervlo limitdo e fechdo [, b], tl que f() f(b). Então, pr qulquer vlor α R entre f() e f(b), existe um ponto c [, b] tl que f(c) = α. Este resultdo firm que um função contínu f num intervlo [, b] ssume todos os vlores entre f() e f(b). Geometricmente, isto signific que o gráfico de f intersect rect horizontl y = α sempre que α estej entre f() e f(b), como se ilustr n seguinte figur. *** FALTA A FIGURA **** Teorem 0.. Se f é um função contínu num intervlo limitdo e fechdo [, b], então f é limitd nesse intervlo, i.e., o contrdomínio f ([, b]) é um conjunto limitdo ou, de form equivlente, existe M > 0 tl que f(x) < M pr qulquer x [, b]. Geometricmente, este resultdo diz que o gráfico de f está entre dus rects horizontis, como n seguinte figur. *** FALTA A FIGURA **** Pr enuncir o terceiro e último resultdo fundmentl, vmos introduzir seguinte notção: Definição 0.3. Sej f : D R R um função. Diremos que f tem máximo (resp. mínimo) no conjunto D se existir um ponto c D tl que f(x) f(c), x D (resp. f(x) f(c), x D). Neste cso, c diz-se ponto de máximo (resp. ponto de mínimo) de f em D, e f(c) diz-se o máximo (resp. mínimo) de f em D. Teorem 0.4. (Teorem de Weierstrss) Se f é um função contínu num intervlo limitdo e fechdo [, b], então f tem máximo e mínimo nesse intervlo.

8 MIGUEL ABREU E RUI LOJA FERNANDES A figur seguinte ilustr este resultdo: *** FALTA A FIGURA **** Notem que pr qulquer um destes resultdos ser válido, função f tem de ser contínu em todos os pontos do intervlo [, b]. Bst continuidde flhr nlgum ponto pr um destes resultdos deixr de ser válido, como se ilustr nos exemplos seguintes: Exemplo 0.5. Se restringirmos função de Heviside H : R R o intervlo [, ]: { 0, se x < 0, H(x) =, se 0 x, obtemos um função que é contínu excepto n origem. Temos que f( ) = 0 e f() =, ms função não ssume quisquer vlores α entre 0 e, flhndo portnto s conclusões do Teorem do Vlor Intermédio. Notem que est função é limitd e tem máximo e mínimo. Exemplo 0.6. Consideremos função f(x) = { x, se x 0, 0, se x = 0. Est função é contínu em todos os pontos do intervlo [0, ] excepto em x = 0. Por outro ldo, f não é limitd neste intervlo, flhndo s conclusões do Teorem 0. e do Teorem de Weierstrss. Este exemplo tmbém mostr que ns hipóstese do Teorem 0. e do Teorem de Weierstrss não podemos substituir o intervlo fechdo [, b] pelo intervlo berto ], b[. Exemplos de Aplicções dos Teorems Globis. Vejmos gor lgums consequêncis e plicções destes teorems globis. O Teorem de Bolzno tem o seguinte corolário imedito: Corolário 0.7. Sej f um função contínu num intervlo [, b] D, tl que f() f(b) < 0. Então existe um ponto c ], b[ tl que f(c) = 0. Exemplo 0.8. Vejmos como este corolário do Teorem de Bolzno pode ser usdo pr mostrr que qulquer polinómio do terceiro gru, p : R R ddo por p(x) = 3 x 3 + x + x + 0, x R, com 3 0, tem pelo menos um zero em R, i.e., existe pelo menos um ponto c R tl que p(c) = 0. De fcto, supondo sem perc de generlidde que 3 > 0, temos que ( lim p(x) = lim x x x3 3 + x + x + ) 0 x 3 = ( ) 3 3 =, enqunto que ( lim p(x) = lim x + x + x3 3 + x + x + ) 0 x 3 = (+ ) 3 3 = +. Logo, existem R e b R + tis que p() < 0 e p(b) > 0, pelo que o Corolário 0.7 do Teorem de Bolzno grnte existênci de um ponto c ], b[ tl que p(c) = 0. Not 0.9. O resultdo do Exemplo 0.8 generliz-se fcilmente pr qulquer polinómio de gru ímpr, ms não pr qulquer polinómio de gru pr. Por exemplo, o polinómio de segundo gru p : R R, definido por p(x) = x + não tem zeros em R. Recordem que necessidde de encontrr zeros pr este polinómio (i.e., soluções pr equção x + = 0) é um ds motivções pr introdução e construção do corpo dos números complexos C. Aind ssim, podemo-nos perguntr o que é que os teorems fundmentis cim nos permitem dizer sobre s soluções de equções polinómiis de gru pr. De fcto eles permitem-nos, por exemplo, resolver um questão que já discutimos nteriormente: Teorem 0.0. Pr todo o α > 0 equção: x = α, tem um solução positiv. Será nturlmente designd por α.