SÉRIES DE FOURIER. 1. Uma série trigonométrica e sua sequência das somas parciais (S N ) N são dadas por

Save this PDF as:
Tamanho: px
Começar a partir da página:

Download "SÉRIES DE FOURIER. 1. Uma série trigonométrica e sua sequência das somas parciais (S N ) N são dadas por"

Transcrição

1 SÉRIES DE FOURIER 1. Um série trigonométric e su sequênci ds soms prciis (S N ) N são dds por (1) c n e inx, n Z, c n C, x R ; S N = n= c n e inx. Tl série converge em x R se (S N (x)) N converge e, o vlor d série em x é, c n e inx = lim S N(x) = N + lim n + n= A série trigonométric pode tmbém ser presentd n form, c n e inx. () ( n cos nx + b n sen nx). Escrevendo, pr n > 0, e inx = cos nx + isen nx, e inx = cos nx isen nx, temos, c n e inx + c n e inx = ( c n + c n )cos nx + (ic n ic n )sen nx = n cos nx + b n sen nx se n = c n + c n, b n = i(c n c n ). Inversmente, pr n > 0, c 0 = 0, c n = n ib n, c n = n + ib n notção em n s e b n s é preferid n expnsão de funções periódics vlores reis ou, funções pres, qundo série é de cossenos, ou ímpres, qundo série é de senos. Admitmos inicilmente f : [, π] C tl que série bixo convirj uniformemente, ( ) f(x) = c m e imx. Como s exponenciis são π-periódics (dorvnte escreveremos, pens, periódics) e contínus, f tmbém o é. Assim, é lícito multiplicr (*) por e inx e integrrmos termo termo, comutndo o símbolo de somtório com o de integrl, obtendo. ( ) f(x)e inx dx = m= c m e i(m n)x dx.

2 Como é fácil ver temos Logo, por (**), e inx dx = { π, n = 0 0, n 0. c n = 1 f(x)e inx dx. Chmmos c n de n-ésimo coeficiente de Fourier de f e indicmos c n = c n [f]. Observção: c n f(x) dx. Sendo os coeficientes bem definidos se f : [, π] C é periódic e integrável, série de Fourier de f é série trigonométric com coeficientes de Fourier de f ddos pel fmíli (c n ) n Z. Notmos, não supondo qulquer modo de convergênci, f c n e inx. Notção: R[, b] é o conjunto ds funções f : [, b] C Riemnn integráveis. Se f R[, π] é π-periódic e rel, série de Fourier de f é um série trigonométric como em (), com coeficientes de Fourier de f ddos pels sequêncis ( n ) n 0 e (b n ) N, 0 = f(x)dx, n = Notmos, sem supormos qulquer convergênci, f(x)cos nx dx, b n = f(x) ( n cos nx + b n sen nx), n, b n R. As questões mis importntes em séries de Fourier são: f(x)sen nx dx. () A série de Fourier converge em lgum modo? Simplesmente? Uniformemente? Em médi?, etc. (b) A série de Fourier, se convergir, converge f? (c) O que ocorre se f é contínu? (d) Dus funções com mesmos coeficientes de Fourier são iguis? Eis prte ds resposts. Se f é Riemnn integrável, su série de Fourier converge em médi qudrátic f. A série de Fourier de f, contínu, pode divergir em vários pontos [1]. Dus funções integráveis com iguis coeficientes de Fourier são iguis, exceto num conjunto de conteúdo nulo (medid nul). A melhor clsse de funções pr nlisr funções periódics e Riemnn integráveis é de funções de vrição limitd, BV [, π]. A teori proprid o estudo gerl ds séries de Fourier é d Integrção de Lebesgue. Nest introdução omitiremos prov d Fórmul de Prsevll. Qunto o teorem de Dirichlet-Jordn, veremos versões mis simples, proposições 1 e e teorem 4, de Dini.

3 . Teorem 1: A Melhor proximção em médi qudrátic de f R[, π], periódic, no espço vetoril gerdo pels funções e inx, n N, é N-ésim som prcil S N = n= d série de Fourier de f. Isto é, se g = f(x) dx n=n Prov Sej d n = c n + ɛ n. Então, c n e inx, N n= c n = c n [f], d n e inx, d n C, d n qulquer, temos c n = 1 f(x) S N (x) dx 1 f(x) g(x) dx. d(f, g) = 1 f(x) = 1 f(x) dx 1 N π Re d n = 1 f(x) dx Re = 1 d n e inx dx = f(x)e inx dx+ 1 d n c n + d n = f(x) dx ( c n + Re c n ɛ n ) + = 1 f(x) dx + ( c n + Re c n ɛ n + ɛ n ) = c n + d n d m e i(n m)x dx = ɛ n = d(f; S N ) + ɛ n 3. Desiguldde de Bessel Com mesms hipóteses, se f(x) + c n e inx então, c n 1 f(x) dx. Prov Pelo teorem, d(f; S N ) = f(x) dx N c n 0, N N. Logo, tomndo o limite pr N tendendo +, segue tese Observção Em termos dos coeficientes d série trigonométric de senos e cossenos desiguldde de Bessel pode ser reescrit como, 0 + ( n + b n ) f(x) dx. 3

4 4. Lem de Riemnn-Lebesgue Se f R[, π] então, lim c n = 0. n + Prov Consequênci imedit d desiguldde de Bessel Abixo relcionmos diferencibilidde com decrescimento dos coeficientes de Fourier e convergênci uniforme d série de Fourier, cujo limite será mostrdo no teorem de Dini. 5. Proposição 1 Sej f C k (R) e π-periódic. () Existe M > 0 tl que c n M n k, n 0. (b) Se k série de Fourier de f converge uniformemente. Prov Sej c n = c n [f], n 0. Efetundo integrção por prtes k vezes, descrtndo prcels nuls grçs periodicidde de f, f,.., f (k) e e inx temos, πc n = Logo, pr n 0, f(x)e inx dx = ( 1 in ) f (x)e inx dx =... = ( 1 in )k c n e inx = c n M n k, M = 1 f (k) (x) dx. f (k) (x)e inx dx. (b) Pelo teste M de Weierstrss e 1 n <, n= c n e inx converge uniformemente 6. Definição Dd f : [, b] R e Γ = {x 0 = < x 1 <... < x n 1 < x n = b} um prtição de [, b], vrição de f segundo prtição Γ é, V Γ = V Γ [f;, b] = A vrição de f sobre [, b] é, n f(x i ) f(x i 1 ). V [f] = sup V Γ, onde o supremo é computdo sobre tods s prtições de [, b]. 7. O conjunto ds funções de vrição limitd é BV[,b] = {f : [, b] R, V [f] < }. Sbe-se que V [f] < o gráfico de f têm comprimento finito. Logo, pr f(x) = sen 1 x, 0 < x 1, f(0) = 0, temos V [f] = +. Ms, existem f contínus com V [f] = + [3]. Aind, V [f] < f é diferenç de dus funções monótons limitds. Logo, hvendo descontinuiddes, els são removíveis ou de 1 espécie; isto é, existem os limites lteris. Assim, escolheremos um subclsse ds funções d vrição limitd pr est introdução. 8. Definição Ddo I, um intervlo, f : I R é monóton crescente, ou crescente, se x 1, x I, x x 1 f(x ) f(x 1 ) e, se x > x 1 f(x ) > f(x 1 ), f é estritmente crescente. Anlogmente, temos monóton decrescente e estritmente decrescente. Aind, f é monóton se é crescente ou decrescente. 4

5 9. Definição Dd f : [, b] R, f é monóton por prtes se existe prtição de [, b], Γ = {x 0 = < x 1 <... < x n = b}, tl que f (xi 1,x i ) é monóton, i = 1,,..., n. Se f (xi 1,x i ) é tmbém contínu, i = 1,,..., n, f é monóton contínu por prtes. Definimos nlogmente se I = [, b) ou I = (, b] ou I = (, b), é limitdo. 10. Obs Não é difícil ver que se f : [, b] R é monóton por prtes e limitd, f é de vrição limitd e existem os limites lteris, f(x i ) = lim x x i f(x) e f(x + i ) = lim x x + i f(x). 11. Definição Dd f : R R, T-periódic, f é monóton contínu por prtes se f [0,T ] o é. 1. Dd f : X C, X R, e x X notmos f(x ± ) = lim f(t), se existir o limite. t x ± 13. Teorem (Dirichlet-Jordn) Sej f : [, π] R monóton contínu por prtes. () Pr todo x R e S[f] série de Fourier de f temos, S[f](x) = ( n cos nx + b n sen nx) = 1 [ f(x+ ) + f(x ) ]. (b) S[f] converge uniformemente f em todo intervlo fechdo em que f é contínu. Prov Pr () vide Apostol, p Pr (b) vide Wheeden, p Lem 1 Pr f R[, b] temos, b f(x) dx ( (b ) b f(x) dx. Prov Se integrl do ldo direito d equção cim é nul o resultdo é óbvio. Senão, pel desiguldde AB 1 (A + B ) com A = f(x) b ( b f(t) dt 1 ( f(x) ( b dt f(t) f(x) b f(t) dt + 1 b e B = 1 b temos, ), que integrndo sobre [, b] conduz, b f(x) dx ( (b ) b f(t) dt 1 (1 + 1) = 1 O lem 1 é um cso prticulr d célebre desiguldde bixo, com demonstrção nálog. 15. Desiguldde de Cuchy-Schwrz Pr f, g R[, b] temos, b f(x)g(x) dx ( ( b b f(x) dx g(x) dx. Prov Trivil, se um ds integris à direit é nul. Senão, bst seguir os pssos d prov do lem, utilizndo AB 1 (A + B ), com A = 5 f(x) ( b f(t) dt e B = g(x) ( b g(t) dt

6 16. Teorem 3 Sej f R[, π], π periódic, f + c n e inx () S N (x) converge f em médi qudrátic: (b) Fórmul de Prsevll lim n + 1 π f(x) dx = f(x) S N (x) dx = 0. n= c n. e S N (x) = N c n e inx. (c) As integris de S N convergem uniformemente integrl de f, em [, x], x. Aind, 1 x [ 1 x ] 1 f(t) S N (t) dt f(t) S N (t) dt. Prov Pr () e (b) vide [] pp [ x (c) Pelo Lem 1 temos, f(t) S N(t) dt (x + π) x f(t) S N(t) dt que, dividindo por π, utilizndo (x + π) π e item (), result n tese Observção Em termos dos coeficientes ( n ) e (b n ) fórmul de Prsevll é: f(x) dx = 0 π + ( n + b n ). Melhoremos o resultdo, n proposição 1, pr convergênci uniforme d série de Fourier. 17. Proposição A série de Fourier de f C 1 (R), π-periódic, converge uniformemente. Prov Como n proposição 1, integrndo por prtes expressão pr c n = c n [f] temos, c n = 1 1 π in f (x)e inx dx = 1 in d n, d n = d n [f ], n 0. Pel desiguldde de Schwrz pr = ( i ), b = (b i ) C m temos, pr soms finits, m m m i b i ( i ( b i, que é estensível soms infinits. Assim, pel desiguldde de Bessel pr f e n Z {0}, cn = 1 n d n ( 1 ( dn n ) ( 1 ( 1 n f (x) dx. Finlmente, pelo teste M de Weierstrss, segue proposição 18. A função f : R C stisfz condição de Lipschitz em x se M > 0 e δ > 0 tis que, f(x + t) f(x) M t, t, t δ. ] Obs Existindo f (x), f stisfz condição de Lipschitz em x ms, se houver um slto em x (descontinuidde de 1 espécie), não. A função x não stisfz condição em x = 0. 6

7 0. Teorem 4 (Dini) Sej f R[, π], π-periódic, stisfzendo condição de Lipschitz em x [, π]. Então, série de Fourier de f, em x, converge f(x). Prov Fixndo x, sejm δ e M como n condição de Lipschitz e, g(t) = { f(x t) f(x), 0 < t π. sen t 0, t = 0. Temos: (1) (sen t ) 1 é contínu em δ t π e, g é í integrável; () se 0 < t δ, M t g(t) sen t = M Logo, g é integrável. t sen t e, pelo primeiro limite fundmentl, g é integrável em [ δ, δ]. Aind, é fácil ver que pr D N (t) = N e int, e S N (f; x) = N c n e inx (vide L5.16), D N (t)dt = 1, D N (t) = sen(n+ 1 )t sen t S N (f; x) = 1 π, t / πz, f(s)d N(x s)ds = 1 π f(x t) sen(n+ 1 )t dt sen t Assim, escrevendo f(x) = f(x).1 e trocndo 1 pel médi de D N em [, π] temos, S N (f; x) f(x) = 1 = 1 π = 1 π f(x t) sen(n + 1 )t sen t dt 1 π g(t)sen(n + 1 )t dt = [ g(t)cos t f(x) sen(n + 1 )t sen t dt = ]sen Nt dt + [ g(t)sen t ]cos Nt dt. Pelo Lem de Riemnn-Lebesgue os dois últimos termos tendem zero 7

2.4 Integração de funções complexas e espaço

2.4 Integração de funções complexas e espaço 2.4 Integrção de funções complexs e espço L 1 (µ) Sej µ um medid no espço mensurável (, F). A teori de integrção pr funções complexs é um generlizção imedit d teori de integrção de funções não negtivs.

Leia mais

Integral imprópria em R n (n = 1, 2, 3)

Integral imprópria em R n (n = 1, 2, 3) Universidde Federl do Rio de Jneiro Instituto de Mtemátic Deprtmento de Métodos Mtemáticos Integrl Imprópri Integrl imprópri em R n (n =,, 3) Autores: Angel Cássi Bizutti e Ivo Fernndez Lopez Introdução

Leia mais

MTDI I /08 - Integral de nido 55. Integral de nido

MTDI I /08 - Integral de nido 55. Integral de nido MTDI I - 7/8 - Integrl de nido 55 Integrl de nido Sej f um função rel de vriável rel de nid e contínu num intervlo rel I [; b] e tl que f (x) ; 8x [; b]: Se dividirmos [; b] em n intervlos iguis, mplitude

Leia mais

Diogo Pinheiro Fernandes Pedrosa

Diogo Pinheiro Fernandes Pedrosa Integrção Numéric Diogo Pinheiro Fernndes Pedros Universidde Federl do Rio Grnde do Norte Centro de Tecnologi Deprtmento de Engenhri de Computção e Automção http://www.dc.ufrn.br/ 1 Introdução O conceito

Leia mais

Interpretação Geométrica. Área de um figura plana

Interpretação Geométrica. Área de um figura plana Integrl Definid Interpretção Geométric Áre de um figur pln Interpretção Geométric Áre de um figur pln Sej f(x) contínu e não negtiv em um intervlo [,]. Vmos clculr áre d região S. Interpretção Geométric

Leia mais

equação paramêtrica/vetorial da curva: a lei γ(t) =... Dizemos que a curva é fechada se I = [a, b] e γ(a) = γ(b).

equação paramêtrica/vetorial da curva: a lei γ(t) =... Dizemos que a curva é fechada se I = [a, b] e γ(a) = γ(b). 1 Lembrete: curvs Definição Chmmos Curv em R n : um função contínu : I R n onde I R é intervlo. (link desenho curvs) Definimos: Trço d curv: imgem equção prmêtric/vetoril d curv: lei (t) =... Dizemos que

Leia mais

8 AULA. Funções com Valores Vetoriais LIVRO. META Estudar funções de uma variável real a valores em R 3

8 AULA. Funções com Valores Vetoriais LIVRO. META Estudar funções de uma variável real a valores em R 3 1 LIVRO Funções com Vlores Vetoriis 8 AULA META Estudr funções de um vriável rel vlores em R 3 OBJETIVOS Estudr movimentos de prtículs no espço. PRÉ-REQUISITOS Ter compreendido os conceitos de funções

Leia mais

Integrais Imprópias Aula 35

Integrais Imprópias Aula 35 Frções Prciis - Continução e Integris Imprópis Aul 35 Alexndre Nolsco de Crvlho Universidde de São Pulo São Crlos SP, Brzil 05 de Junho de 203 Primeiro Semestre de 203 Turm 20304 - Engenhri de Computção

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA

UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA PRIMEIRO SEMESTRE DE 2015 13 de Fevereiro de 2015 Prte I Álgebr Liner 1 Questão: Sejm

Leia mais

3. CÁLCULO INTEGRAL EM IR

3. CÁLCULO INTEGRAL EM IR 3 CÁLCULO INTEGRAL EM IR A importâni do álulo integrl em IR reside ns sus inúmers plições em vários domínios d engenhri, ms tmém em ísi, em teori ds proiliddes, em eonomi, em gestão 3 Prtição de um intervlo

Leia mais

3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos

3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos 3. Cálculo integrl em IR 3.. Integrl Indefinido 3... Definição, Proprieddes e Exemplos A noção de integrl indefinido prece ssocid à de derivd de um função como se pode verificr prtir d su definição: Definição

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? Cálculo II Prof. Adrin Cherri 1 INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região

Leia mais

Bhaskara e sua turma Cícero Thiago B. Magalh~aes

Bhaskara e sua turma Cícero Thiago B. Magalh~aes 1 Equções de Segundo Gru Bhskr e su turm Cícero Thigo B Mglh~es Um equção do segundo gru é um equção do tipo x + bx + c = 0, em que, b e c são números reis ddos, com 0 Dd um equção do segundo gru como

Leia mais

Capítulo IV. Funções Contínuas. 4.1 Noção de Continuidade

Capítulo IV. Funções Contínuas. 4.1 Noção de Continuidade Cpítulo IV Funções Contínus 4 Noção de Continuidde Um idei muito básic de função contínu é de que o seu gráfico pode ser trçdo sem levntr o lápis do ppel; se houver necessidde de interromper o trço do

Leia mais

Comprimento de arco. Universidade de Brasília Departamento de Matemática

Comprimento de arco. Universidade de Brasília Departamento de Matemática Universidde de Brsíli Deprtmento de Mtemátic Cálculo Comprimento de rco Considerefunçãof(x) = (2/3) x 3 definidnointervlo[,],cujográficoestáilustrdo bixo. Neste texto vmos desenvolver um técnic pr clculr

Leia mais

Integrais Impróprios

Integrais Impróprios Integris Impróprios Extendem noção de integrl intervlos não limitdos e/ou funções não limitds Os integris impróprios podem ser dos seguintes tipos: integris impróprios de 1 espéie v qundo os limites de

Leia mais

Área entre curvas e a Integral definida

Área entre curvas e a Integral definida Universidde de Brsíli Deprtmento de Mtemátic Cálculo Áre entre curvs e Integrl definid Sej S região do plno delimitd pels curvs y = f(x) e y = g(x) e s rets verticis x = e x = b, onde f e g são funções

Leia mais

MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON

MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON PROFJWPS@GMAIL.COM MATRIZES Definição e Notção... 11 21 m1 12... 22 m2............ 1n.. 2n. mn Chmmos de Mtriz todo conjunto de vlores, dispostos

Leia mais

16.4. Cálculo Vetorial. Teorema de Green

16.4. Cálculo Vetorial. Teorema de Green ÁLULO VETORIAL álculo Vetoril pítulo 6 6.4 Teorem de Green Nest seção, prenderemos sore: O Teorem de Green pr váris regiões e su plicção no cálculo de integris de linh. INTROUÇÃO O Teorem de Green fornece

Leia mais

FUNC ~ OES REAIS DE VARI AVEL REAL

FUNC ~ OES REAIS DE VARI AVEL REAL FUNC ~ OES REAIS DE VARI AVEL REAL Clculo Integrl AMI ESTSetubl-DMAT 15 de Dezembro de 2012 AMI (ESTSetubl-DMAT) LIC ~AO 18 15 de Dezembro de 2012 1 / 14 Integrl de Riemnn Denic~o: Sej [, b] um intervlo

Leia mais

INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana.

INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana. INTEGRAL DEFINIDO O oneito de integrl definido está reliondo om um prolem geométrio: o álulo d áre de um figur pln. Vmos omeçr por determinr áre de um figur delimitd por dus rets vertiis, o semi-eio positivo

Leia mais

Aula 29 Aplicações de integrais Áreas e comprimentos

Aula 29 Aplicações de integrais Áreas e comprimentos Aplicções de integris Áres e comprimentos MÓDULO - AULA 9 Aul 9 Aplicções de integris Áres e comprimentos Objetivo Conhecer s plicções de integris no cálculo d áre de um superfície de revolução e do comprimento

Leia mais

6.1 Derivação & Integração: regras básicas

6.1 Derivação & Integração: regras básicas 6. Derivção & Integrção: regrs básics REGRAS BÁSICAS DE DERIVAÇÃO. Regr d som:........................................ (u + k v) = u + k v ; k constnte. Regr do Produto:.....................................................

Leia mais

META: Introduzir o conceito de integração de funções de variáveis complexas.

META: Introduzir o conceito de integração de funções de variáveis complexas. Integrção omplex AULA 7 META: Introduzir o conceito de integrção de funções de vriáveis complexs. OBJETIVOS: Ao fim d ul os lunos deverão ser cpzes de: Definir integrl de um função complex. lculr integrl

Leia mais

Relembremos que o processo utilizado na definição das três integrais já vistas consistiu em:

Relembremos que o processo utilizado na definição das três integrais já vistas consistiu em: Universidde Slvdor UNIFAS ursos de Engenhri álculo IV Prof: Il Reouçs Freire álculo Vetoril Texto 4: Integris de Linh Até gor considermos três tipos de integris em coordends retngulres: s integris simples,

Leia mais

1 x 5 (d) f = 1 + x 2 2 (f) f = tg 2 x x p 1 + x 2 (g) f = p x + sec 2 x (h) f = x 3p x. (c) f = 2 sen x. sen x p 1 + cos x. p x.

1 x 5 (d) f = 1 + x 2 2 (f) f = tg 2 x x p 1 + x 2 (g) f = p x + sec 2 x (h) f = x 3p x. (c) f = 2 sen x. sen x p 1 + cos x. p x. 6. Primitivs cd. 6. Em cd cso determine primitiv F (x) d função f (x), stisfzendo condição especi- () f (x) = 4p x; F () = f (x) = x + =x ; F () = (c) f (x) = (x + ) ; F () = 6. Determine função f que

Leia mais

Definição Definimos o dominio da função vetorial dada em (1.1) como: dom(f i ) i=1

Definição Definimos o dominio da função vetorial dada em (1.1) como: dom(f i ) i=1 Cpítulo 1 Funções Vetoriis Neste cpítulo estudremos s funções f : R R n, funções que descrevem curvs ou movimentos de objetos no espço. 1.1 Definições e proprieddes Definição 1.1.1 Um função vetoril, é

Leia mais

UNIVERSIDADE ESTADUAL PAULISTA

UNIVERSIDADE ESTADUAL PAULISTA UNIVERSIDADE ESTADUAL PAULISTA DEPARTAMENTO DE MATEMÁTICA ANÁLISE MATEMÁTICA Edurdo Brietzke Neuz Kzuko Kkut Pulo Ricrdo d Silv SÃO JOSÉ DO RIO PRETO - 26 1 INTRODUÇÃO Este texto surgiu ds nots de uls

Leia mais

Teoremas de Green e Stokes

Teoremas de Green e Stokes Análise Mtemátic III Teorems de Green e Stokes Mnuel Guerr Conteúdo 1 Teorem de Green 2 2 Teorem de Stokes 8 ibliogrfi 12 Índice remissivo 13 1 Os Teorems de Green e Stokes relcionm o vlor de integris

Leia mais

Cálculo III-A Módulo 8

Cálculo III-A Módulo 8 Universidde Federl Fluminense Instituto de Mtemátic e Esttístic Deprtmento de Mtemátic Aplicd álculo III-A Módulo 8 Aul 15 Integrl de Linh de mpo Vetoril Objetivo Definir integris de linh. Estudr lgums

Leia mais

Matemática /09 - Integral de nido 68. Integral de nido

Matemática /09 - Integral de nido 68. Integral de nido Mtemátic - 8/9 - Integrl de nido 68 Introdução Integrl de nido Sej f um função rel de vriável rel de nid e contínu num intervlo rel I = [; b] e tl que f () ; 8 [; b]: Se dividirmos [; b] em n intervlos

Leia mais

Capítulo III INTEGRAIS DE LINHA

Capítulo III INTEGRAIS DE LINHA pítulo III INTEGRIS DE LINH pítulo III Integris de Linh pítulo III O conceito de integrl de linh é um generlizção simples e nturl do conceito de integrl definido: f ( x) dx Neste último, integr-se o longo

Leia mais

Material envolvendo estudo de matrizes e determinantes

Material envolvendo estudo de matrizes e determinantes E. E. E. M. ÁREA DE CONHECIMENTO DE MATEMÁTICA E SUAS TECNOLOGIAS PROFESSORA ALEXANDRA MARIA º TRIMESTRE/ SÉRIE º ANO NOME: Nº TURMA: Mteril envolvendo estudo de mtrizes e determinntes INSTRUÇÕES:. Este

Leia mais

Progressões Aritméticas

Progressões Aritméticas Segund Etp Progressões Aritmétics Definição São sequêncis numérics onde cd elemento, prtir do segundo, é obtido trvés d som de seu ntecessor com um constnte (rzão).,,,,,, 1 3 4 n 1 n 1 1º termo º termo

Leia mais

TÓPICO 4 TEORIA BÁSICA DAS SÉRIES DE FOURIER

TÓPICO 4 TEORIA BÁSICA DAS SÉRIES DE FOURIER TÓPICO 4 TEORIA BÁSICA DAS SÉRIES DE FOURIER EMANUEL CARNEIRO 1. Séries de Fourier: Teori básic L 1 -L 2 Estudremos neste tópico representção de funções periódics em R n como limite de polinômios trigonométricos

Leia mais

CÁLCULO I. Apresentar a técnica de integração por substituição; Utilizar técnicas apresentadas no cálculo integral.

CÁLCULO I. Apresentar a técnica de integração por substituição; Utilizar técnicas apresentadas no cálculo integral. CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeid Auls n o 8: Técnics de Integrção I - Método d Substituição Objetivos d Aul Apresentr técnic de integrção por substituição; Utilizr técnics presentds

Leia mais

CÁLCULO I. 1 Volume. Objetivos da Aula. Aula n o 25: Volume por Casca Cilíndrica e Volume por Discos

CÁLCULO I. 1 Volume. Objetivos da Aula. Aula n o 25: Volume por Casca Cilíndrica e Volume por Discos CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeid Aul n o 25: Volume por Csc Cilíndric e Volume por Discos Objetivos d Aul Clculr o volume de sólidos de revolução utilizndo técnic do volume por csc

Leia mais

Resumo com exercícios resolvidos do assunto: Aplicações da Integral

Resumo com exercícios resolvidos do assunto: Aplicações da Integral www.engenhrifcil.weely.com Resumo com exercícios resolvidos do ssunto: Aplicções d Integrl (I) (II) (III) Áre Volume de sólidos de Revolução Comprimento de Arco (I) Áre Dd um função positiv f(x), áre A

Leia mais

4. Teorema de Green. F d r = A. dydx. (1) Pelas razões acima referidas, a prova deste teorema para o caso geral está longe

4. Teorema de Green. F d r = A. dydx. (1) Pelas razões acima referidas, a prova deste teorema para o caso geral está longe 4 Teorem de Green Sej U um berto de R 2 e r : [, b] U um cminho seccionlmente, fechdo e simples, isto é, r não se uto-intersect, excepto ns extremiddes Sej região interior r([, b]) prte d dificuldde n

Leia mais

Desigualdades - Parte II. n (a1 b 1 +a 2 b a n b n ) 2.

Desigualdades - Parte II. n (a1 b 1 +a 2 b a n b n ) 2. Polos Olímpicos de Treinmento Curso de Álgebr - Nível Prof. Mrcelo Mendes Aul 9 Desigulddes - Prte II A Desiguldde de Cuchy-Schwrz Sejm,,..., n,b,b,...,b n números reis. Então: + +...+ ) n b +b +...+b

Leia mais

A integral definida. f (x)dx P(x) P(b) P(a)

A integral definida. f (x)dx P(x) P(b) P(a) A integrl definid Prof. Méricles Thdeu Moretti MTM/CFM/UFSC. - INTEGRAL DEFINIDA - CÁLCULO DE ÁREA Já vimos como clculr áre de um tipo em específico de região pr lgums funções no intervlo [, t]. O Segundo

Leia mais

1. Conceito de logaritmo

1. Conceito de logaritmo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Logritmos Prof.: Rogério

Leia mais

Sinais e Sistemas. Série de Fourier. Renato Dourado Maia. Faculdade de Ciência e Tecnologia de Montes Claros. Fundação Educacional Montes Claros

Sinais e Sistemas. Série de Fourier. Renato Dourado Maia. Faculdade de Ciência e Tecnologia de Montes Claros. Fundação Educacional Montes Claros Sinis e Sistems Série de Fourier Rento Dourdo Mi Fculdde de Ciênci e Tecnologi de Montes Clros Fundção Educcionl Montes Clros Introdução A Série e Integrl de Fourier englobm um dos desenvolvimentos mtemáticos

Leia mais

Os números racionais. Capítulo 3

Os números racionais. Capítulo 3 Cpítulo 3 Os números rcionis De modo informl, dizemos que o conjunto Q dos números rcionis é composto pels frções crids prtir de inteiros, desde que o denomindor não sej zero. Assim como fizemos nteriormente,

Leia mais

AULA 1. 1 NÚMEROS E OPERAÇÕES 1.1 Linguagem Matemática

AULA 1. 1 NÚMEROS E OPERAÇÕES 1.1 Linguagem Matemática 1 NÚMEROS E OPERAÇÕES 1.1 Lingugem Mtemátic AULA 1 1 1.2 Conjuntos Numéricos Chm-se conjunto o grupmento num todo de objetos, bem definidos e discerníveis, de noss percepção ou de nosso entendimento, chmdos

Leia mais

CÁLCULO INTEGRAL. e escreve-se

CÁLCULO INTEGRAL. e escreve-se Primitivs CÁLCULO INTEGRAL Prolem: Dd derivd de um função descorir função inicil. Definição: Chm-se primitiv de um função f, definid num intervlo ] [ à função F tl que F = f e escreve-se,, F = P f ou F

Leia mais

Apoio à Decisão. Aula 3. Aula 3. Mônica Barros, D.Sc.

Apoio à Decisão. Aula 3. Aula 3. Mônica Barros, D.Sc. Aul Métodos Esttísticos sticos de Apoio à Decisão Aul Mônic Brros, D.Sc. Vriáveis Aletóris Contínus e Discrets Função de Probbilidde Função Densidde Função de Distribuição Momentos de um vriável letóri

Leia mais

Matrizes. Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Márcia A.F. Dias de Moraes. Matrizes Conceitos Básicos

Matrizes. Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Márcia A.F. Dias de Moraes. Matrizes Conceitos Básicos Mtemátic pr Economists LES uls e Mtrizes Ching Cpítulos e Usos em economi Mtrizes ) Resolução sistems lineres ) Econometri ) Mtriz Insumo Produto Márci.F. Dis de Mores Álgebr Mtricil Conceitos Básicos

Leia mais

Notas de Aula. Equações Diferenciais Parciais Lineares

Notas de Aula. Equações Diferenciais Parciais Lineares Nots de Aul Equções Diferenciis Prciis ineres Rodney Josué Biezuner 1 Deprtmento de Mtemátic Instituto de Ciêncis Exts (ICEx Universidde Federl de Mins Geris (UFMG Nots de ul d disciplin Equções Diferenciis

Leia mais

Resumo. Sinais e Sistemas Transformada Z. Introdução. Transformada Z Bilateral

Resumo. Sinais e Sistemas Transformada Z. Introdução. Transformada Z Bilateral Resumo Sinis e Sistems Trnsformd Luís Clds de Oliveir lco@istutlpt Instituto Superior Técnico Definição Região de convergênci Trnsformd invers Proprieddes d trnsformd Avlição geométric d DTFT Crcterição

Leia mais

Cálculo Infinitesimal. Gabriela Chaves

Cálculo Infinitesimal. Gabriela Chaves Cálculo Infinitesiml Gbriel Chves versão de Agosto de ii Índice Índice iii Proprieddes básics dos números. Operções de dição e multiplicção...................................... Relção de ordem.................................................

Leia mais

Matemática B Superintensivo

Matemática B Superintensivo GRITO Mtemátic Superintensivo Eercícios 0) 4 m M, m 0 m N tg 0 = b = b = b = = cos 0 = 4 = = 4. =.,7 =,4 MN =, +,4 + MN =,9 m tg 60 = = =.. = h = + = 0 m 04) 0) D O vlor de n figur bio é: (Errt) 4 sen

Leia mais

Sinais e Sistemas. Série de Fourier. Renato Dourado Maia. Faculdade de Ciência e Tecnologia de Montes Claros. Fundação Educacional Montes Claros

Sinais e Sistemas. Série de Fourier. Renato Dourado Maia. Faculdade de Ciência e Tecnologia de Montes Claros. Fundação Educacional Montes Claros Sinis e Sistems Série de Fourier Rento Dourdo Mi Fculdde de Ciênci e Tecnologi de Montes Clros Fundção Educcionl Montes Clros Introdução A Série e Integrl de Fourier englobm um dos desenvolvimentos mtemáticos

Leia mais

Cálculo Diferencial e Integral - Notas de Aula. Márcia Federson e Gabriela Planas

Cálculo Diferencial e Integral - Notas de Aula. Márcia Federson e Gabriela Planas Cálculo Diferencil e Integrl - Nots de Aul Márci Federson e Gbriel Plns de mrço de 03 Sumário Os Números Reis. Os Números Rcionis................................ Os Números Reis.................................

Leia mais

1 Assinale a alternativa verdadeira: a) < <

1 Assinale a alternativa verdadeira: a) < < MATEMÁTICA Assinle lterntiv verddeir: ) 6 < 7 6 < 6 b) 7 6 < 6 < 6 c) 7 6 < 6 < 6 d) 6 < 6 < 7 6 e) 6 < 7 6 < 6 Pr * {} temos: ) *, * + e + * + ) + > + + > ) Ds equções (I) e (II) result 7 6 < ( 6 )

Leia mais

8.1 Áreas Planas. 8.2 Comprimento de Curvas

8.1 Áreas Planas. 8.2 Comprimento de Curvas 8.1 Áres Plns Suponh que um cert região D do plno xy sej delimitd pelo eixo x, pels rets x = e x = b e pelo grá co de um função contínu e não negtiv y = f (x) ; x b, como mostr gur 8.1. A áre d região

Leia mais

Teorema de Green no Plano

Teorema de Green no Plano Instituto Superior Técnico eprtmento de Mtemátic Secção de Álgebr e Análise Prof. Gbriel Pires Teorem de Green no Plno O teorem de Green permite relcionr o integrl de linh o longo de um curv fechd com

Leia mais

Quadratura por interpolação Fórmulas de Newton-Cotes Quadratura Gaussiana. Integração Numérica. Leonardo F. Guidi DMPA IM UFRGS.

Quadratura por interpolação Fórmulas de Newton-Cotes Quadratura Gaussiana. Integração Numérica. Leonardo F. Guidi DMPA IM UFRGS. Qudrtur por interpolção DMPA IM UFRGS Cálculo Numérico Índice Qudrtur por interpolção 1 Qudrtur por interpolção 2 Qudrturs simples Qudrturs composts 3 Qudrtur por interpolção Qudrtur por interpolção O

Leia mais

Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática

Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática Universidde Federl de Mins Geris Instituto de Ciêncis Exts Deprtmento de Mtemátic Aproximção Por Funções Polinomiis (Polinômios de Tylor) Wi Gerldo Moreir dos Sntos Belo Horizonte, Julho de 26 Em tudo

Leia mais

Aprender o conceito de vetor e suas propriedades como instrumento apropriado para estudar movimentos não-retilíneos;

Aprender o conceito de vetor e suas propriedades como instrumento apropriado para estudar movimentos não-retilíneos; Aul 5 Objetivos dest Aul Aprender o conceito de vetor e sus proprieddes como instrumento proprido pr estudr movimentos não-retilíneos; Entender operção de dição de vetores e multiplicção de um vetor por

Leia mais

Matemática Parte II: Análise Matemática

Matemática Parte II: Análise Matemática Mtemátic Prte II: Lic. em Enologi 009/010 Funções reis de vriável rel Um função f, definid num certo conjunto D e com vlores num conjunto E, é um regr que fz corresponder cd elemento x de D um único elemento

Leia mais

Derivada da função composta, derivada da função inversa, derivada da função implícita e derivada de funções definidas parametricamente.

Derivada da função composta, derivada da função inversa, derivada da função implícita e derivada de funções definidas parametricamente. .5.- Derivd d função compost, derivd d função invers, derivd d função implícit e derivd de funções definids prmetricmente. Teorem.3 Derivd d Função Compost Suponh-se que g: A R é diferenciável no ponto

Leia mais

Resumo com exercícios resolvidos do assunto:

Resumo com exercícios resolvidos do assunto: www.engenhrifcil.weely.com Resumo com eercícios resolvidos do ssunto: (I) (II) Teorem Fundmentl do Cálculo Integris Indefinids (I) Teorem Fundmentl do Cálculo Ness postil vmos ordr o Teorem Fundmentl do

Leia mais

1 O Conjunto dos Números Reais

1 O Conjunto dos Números Reais O Conjunto dos Números Reis O primeiro conjunto numérico que considermos é o Conjunto dos Números Nturis. Este conjunto está relciondo com operção de contgem: N = {0,,, 3,...}. Admitiremos conhecids s

Leia mais

Departamento de Matemática Faculdade de Ciências e Tecnologia Universidade de Coimbra Cálculo III - Engenharia Electrotécnica e de Computadores

Departamento de Matemática Faculdade de Ciências e Tecnologia Universidade de Coimbra Cálculo III - Engenharia Electrotécnica e de Computadores Deprtmento de Mtemátic Fculdde de Ciêncis e Tecnologi Universidde de Coimbr - Engenhri Electrotécnic e de Computdores Cálculo Integrl ÍNDICE GERL 1. Integrl prmétrico definido 1 1.1. Definição 1 1.2. Proprieddes

Leia mais

NOTA DE AULA. Tópicos em Matemática

NOTA DE AULA. Tópicos em Matemática Universidde Tecnológic Federl do Prná Cmpus Curitib Prof. Lucine Deprtmento Acdêmico de Mtemátic NOTA DE AULA Tópicos em Mtemátic Fonte: http://eclculo.if.usp.br/ 1. CONJUNTOS NUMÉRICOS: 1.1 Números Nturis

Leia mais

DETERMINANTES. Notação: det A = a 11. Exemplos: 1) Sendo A =, então det A = DETERMINANTE DE MATRIZES DE ORDEM 2

DETERMINANTES. Notação: det A = a 11. Exemplos: 1) Sendo A =, então det A = DETERMINANTE DE MATRIZES DE ORDEM 2 DETERMINANTES A tod mtriz qudrd ssoci-se um número, denomindo determinnte d mtriz, que é obtido por meio de operções entre os elementos d mtriz. Su plicção pode ser verificd, por exemplo, no cálculo d

Leia mais

COMPLEMENTOS DE MATEMÁTICA MÓDULO 1. Equações Diferenciais com Derivadas Parciais

COMPLEMENTOS DE MATEMÁTICA MÓDULO 1. Equações Diferenciais com Derivadas Parciais Complementos de Matemática 1 COMPLEMENTOS DE MATEMÁTICA MÓDULO 1 Séries de Fourier Equações Diferenciais com Derivadas Parciais Complementos de Matemática 2 Jean Baptiste Joseph Fourier (1768-1830) viveu

Leia mais

Rresumos das aulas teóricas Cap Capítulo 4. Matrizes e Sistemas de Equações Lineares

Rresumos das aulas teóricas Cap Capítulo 4. Matrizes e Sistemas de Equações Lineares Rresumos ds uls teórics ------------------ Cp ------------------------------ Cpítulo. Mtrizes e Sistems de Equções ineres Sistems de Equções ineres Definições Um sistem de m equções lineres n incógnits,

Leia mais

Eletrotécnica TEXTO Nº 7

Eletrotécnica TEXTO Nº 7 Eletrotécnic TEXTO Nº 7 CIRCUITOS TRIFÁSICOS. CIRCUITOS TRIFÁSICOS EQUILIBRADOS E SIMÉTRICOS.. Introdução A quse totlidde d energi elétric no mundo é gerd e trnsmitid por meio de sistems elétricos trifásicos

Leia mais

Faculdade de Computação

Faculdade de Computação UNIVERIDADE FEDERAL DE UBERLÂNDIA Fculdde de Computção Disciplin : Teori d Computção Professor : ndr de Amo Revisão de Grmátics Livres do Contexto (1) 1. Fzer o exercicio 2.3 d págin 128 do livro texto

Leia mais

Noção intuitiva de limite

Noção intuitiva de limite Noção intuitiv de ite Qundo se proim de 1, y se proim de 3, isto é: 3 y + 1 1,5 4 1,3 3,6 1,1 3, 1,05 3,1 1,0 3,04 1,01 3,0 De um modo gerl: Eemplo de um ite básico Qundo tende um vlor determindo, o ite

Leia mais

4 π. 8 π Considere a função real f, definida por f(x) = 2 x e duas circunferência C 1 e C 2, centradas na origem.

4 π. 8 π Considere a função real f, definida por f(x) = 2 x e duas circunferência C 1 e C 2, centradas na origem. EFOMM 2010 1. Anlise s firmtivs bixo. I - Sej K o conjunto dos qudriláteros plnos, seus subconjuntos são: P = {x K / x possui ldos opostos prlelos}; L = {x K / x possui 4 ldos congruentes}; R = {x K /

Leia mais

Resumo. Sinais e Sistemas Transformada Z. Introdução. Transformada Z Bilateral

Resumo. Sinais e Sistemas Transformada Z. Introdução. Transformada Z Bilateral Resumo Sinis e Sistems Trnsformd lco@ist.utl.pt Instituto Superior Técnico Definição Região de convergênci Trnsformd invers Proprieddes d trnsformd Avlição geométric d DTFT Crcterição de SLITs usndo trnsformd.

Leia mais

Volumes de Sólidos de Revolução. Volumes de Sólidos de Revolução. 1.O método do disco 2.O método da arruela 3.Aplicação

Volumes de Sólidos de Revolução. Volumes de Sólidos de Revolução. 1.O método do disco 2.O método da arruela 3.Aplicação UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Volumes de Sólidos

Leia mais

5) Para b = temos: 2. Seja M uma matriz real 2 x 2. Defina uma função f na qual cada elemento da matriz se desloca para a posição. e as matrizes são:

5) Para b = temos: 2. Seja M uma matriz real 2 x 2. Defina uma função f na qual cada elemento da matriz se desloca para a posição. e as matrizes são: MATEMÁTIA Sej M um mtriz rel x. Defin um função f n qul cd elemento d mtriz se desloc pr posição b seguinte no sentido horário, ou sej, se M =, c d c implic que f (M) =. Encontre tods s mtrizes d b simétrics

Leia mais

TÓPICOS. Determinantes de 1ª e 2ª ordem. Submatriz. Menor. Cofactor. Expansão em cofactores. Determinante de ordem n. Propriedades dos determinantes.

TÓPICOS. Determinantes de 1ª e 2ª ordem. Submatriz. Menor. Cofactor. Expansão em cofactores. Determinante de ordem n. Propriedades dos determinantes. Note bem: leitur destes pontmentos não dispens de modo lgum leitur tent d bibliogrfi principl d cdeir Chm-se tenção pr importânci do trblho pessol relizr pelo luno resolvendo os problems presentdos n bibliogrfi,

Leia mais

Incertezas e Propagação de Incertezas. Biologia Marinha

Incertezas e Propagação de Incertezas. Biologia Marinha Incertezs e Propgção de Incertezs Cursos: Disciplin: Docente: Biologi Biologi Mrinh Físic Crl Silv Nos cálculos deve: Ser coerente ns uniddes (converter tudo pr S.I. e tender às potêncis de 10). Fzer um

Leia mais

Sistems Lineres Form Gerl onde: ij ij coeficientes n n nn n n n n n n b... b... b...

Sistems Lineres Form Gerl onde: ij ij coeficientes n n nn n n n n n n b... b... b... Cálculo Numérico Módulo V Resolução Numéric de Sistems Lineres Prte I Profs.: Bruno Correi d Nóbreg Queiroz José Eustáquio Rngel de Queiroz Mrcelo Alves de Brros Sistems Lineres Form Gerl onde: ij ij coeficientes

Leia mais

Recordando produtos notáveis

Recordando produtos notáveis Recordndo produtos notáveis A UUL AL A Desde ul 3 estmos usndo letrs pr representr números desconhecidos. Hoje você sbe, por exemplo, que solução d equção 2x + 3 = 19 é x = 8, ou sej, o número 8 é o único

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES MATRIZES

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES MATRIZES Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl - CAPES MATRIZES Prof. Antônio Murício Medeiros Alves Profª Denise Mri Vrell Mrtinez Mtemátic Básic pr Ciêncis Sociis

Leia mais

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA LOGARITMOS PROF. CARLINHOS NOME: N O :

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA LOGARITMOS PROF. CARLINHOS NOME: N O : ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA LOGARITMOS PROF. CARLINHOS NOME: N O : 1 DEFINIÇÃO LOGARITMOS = os(rzão) + rithmos(números) Sejm e números reis positivos diferentes de zero e 1. Chm-se ritmo

Leia mais

Congruências de grau 2 e reciprocidade quadrática. Seja p > 2 um número primo e a,b,c Z com a não divisívelpor p. Resolver

Congruências de grau 2 e reciprocidade quadrática. Seja p > 2 um número primo e a,b,c Z com a não divisívelpor p. Resolver Polos Olímicos de Treinmento Curso de Teori dos Números - Nível 3 Crlos Gustvo Moreir Aul 9 Congruêncis de gru e recirocidde qudrátic 1 Congruêncis de Gru Sej > um número rimo e,b,c Z com não divisívelor.

Leia mais

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A.

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A. MÓDULO - AULA Aul Técnics de Integrção Substituição Trigonométric Objetivo Conhecer técnic de integrção chmd substituição trigonométric. Introdução Você prendeu, no Cálculo I, que integrl de um função

Leia mais

Análise numérica para solução de integrais não elementares

Análise numérica para solução de integrais não elementares UNIVERSIDADE ESTADUAL DA PARAIBA CAMPUS CAMPINA GRANDE CENTRO DE CIÊNCIAS E TECNOLOGIA ESPECIALIZACAO EM MATEMÁTICA PURA E APLICADA Análise numéric pr solução de integris não elementres por BALDOINO SONILDO

Leia mais

TÓPICOS. Equação linear. Sistema de equações lineares. Equação matricial. Soluções do sistema. Método de Gauss-Jordan. Sistemas homogéneos.

TÓPICOS. Equação linear. Sistema de equações lineares. Equação matricial. Soluções do sistema. Método de Gauss-Jordan. Sistemas homogéneos. Note bem: leitur destes pontmentos não dispens de modo lgum leitur tent d bibliogrfi principl d cdeir ÓPICOS Equção liner. AUA 4 Chm-se tenção pr importânci do trblho pessol relizr pelo luno resolvendo

Leia mais

NOTAS DE AULA CURVAS PARAMETRIZADAS. Cláudio Martins Mendes

NOTAS DE AULA CURVAS PARAMETRIZADAS. Cláudio Martins Mendes NOTAS DE AULA CURVAS PARAMETRIZADAS Cláudio Mrtins Mendes Segundo Semestre de 2005 Sumário 1 Funções com Vlores Vetoriis 2 1.1 Definições - Proprieddes.............................. 2 1.2 Movimentos no

Leia mais

Notas de Apoio. Biomatemática. Licenciatura em Farmácia Biomédica

Notas de Apoio. Biomatemática. Licenciatura em Farmácia Biomédica Nots de Apoio Biomtemátic Licencitur em Frmáci Biomédic Ricrdo Mmede Deprtmento de Mtemátic, Fculdde de Ciêncis e Tecnologi Universidde de Coimbr 04 Índice Cálculo Diferencil. Generliddes sobre funções

Leia mais

C Sistema destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET RACIOCÍNIO LÓGICO

C Sistema destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET  RACIOCÍNIO LÓGICO Pr Ordendo RACIOCÍNIO LÓGICO AULA 06 RELAÇÕES E FUNÇÕES O pr ordendo represent um ponto do sistem de eixos rtesinos. Este sistem é omposto por um pr de rets perpendiulres. A ret horizontl é hmd de eixo

Leia mais

MATRIZES E DETERMINANTES

MATRIZES E DETERMINANTES Professor: Cssio Kiechloski Mello Disciplin: Mtemátic luno: N Turm: Dt: MTRIZES E DETERMINNTES MTRIZES: Em quse todos os jornis e revists é possível encontrr tbels informtivs. N Mtemátic chmremos ests

Leia mais

SÉRIES DE FOURIER. Fabio Cardoso D Araujo Martins, Fernando Sergio Cardoso Cunha, Paula Rodrigues. Ferreira Alves, Rafael Caveari Gomes

SÉRIES DE FOURIER. Fabio Cardoso D Araujo Martins, Fernando Sergio Cardoso Cunha, Paula Rodrigues. Ferreira Alves, Rafael Caveari Gomes SÉRIES DE FOURIER Fabio Cardoso D Araujo Martins, Fernando Sergio Cardoso Cunha, Paula Rodrigues Ferreira Alves, Rafael Caveari Gomes UFF - Universidade Federal Fluminense Neste artigo mostramos com diversos

Leia mais

Integrais em curvas e superfícies

Integrais em curvas e superfícies Análise Mtemátic III Integris em curvs e superfícies Mnuel Guerr onteúdo 1 Integris em curvs 2 1.1 omprimento de um curv................................. 2 1.2 urvs prmetrizds pelo seu comprimento.......................

Leia mais

1 Distribuições Contínuas de Probabilidade

1 Distribuições Contínuas de Probabilidade Distribuições Contínus de Probbilidde São distribuições de vriáveis letóris contínus. Um vriável letóri contínu tom um numero infinito não numerável de vlores (intervlos de números reis), os quis podem

Leia mais

INTERPOLAÇÃO POLINOMIAL E INTEGRAÇÃO NUMÉRICA. Equipe de Cálculo Numérico do MAP/IME/USP

INTERPOLAÇÃO POLINOMIAL E INTEGRAÇÃO NUMÉRICA. Equipe de Cálculo Numérico do MAP/IME/USP INTERPOLAÇÃO POLINOMIAL E INTEGRAÇÃO NUMÉRICA Equipe de Cálculo Numérico do MAP/IME/USP Nests nots desenvolveremos teori d prte finl do curso, escolendo lguns cminos lterntivos à referênci principl, que

Leia mais

, então ela é integrável em [ a, b] Interpretação geométrica: seja contínua e positiva em um intervalo [ a, b]

, então ela é integrável em [ a, b] Interpretação geométrica: seja contínua e positiva em um intervalo [ a, b] Interl Deinid Se é um unção de, então su interl deinid é um interl restrit à vlores em um intervlo especíico, dimos, O resultdo é um número que depende pens de e, e não de Vejmos deinição: Deinição: Sej

Leia mais

Cálculo Integral em R

Cálculo Integral em R Cálculo Integrl em R (Primitivção e Integrção) Miguel Moreir e Miguel Cruz Conteúdo Primitivção. Noção de primitiv......................... Algums primitivs imedits................... Proprieddes ds primitivs....................4

Leia mais

3 Teoria dos Conjuntos Fuzzy

3 Teoria dos Conjuntos Fuzzy 0 Teori dos Conjuntos Fuzzy presentm-se qui lguns conceitos d teori de conjuntos fuzzy que serão necessários pr o desenvolvimento e compreensão do modelo proposto (cpítulo 5). teori de conjuntos fuzzy

Leia mais

Somos o que repetidamente fazemos. A excelência portanto, não é um feito, mas um hábito. Aristóteles

Somos o que repetidamente fazemos. A excelência portanto, não é um feito, mas um hábito. Aristóteles c L I S T A DE E X E R C Í C I O S CÁLCULO INTEGRAL Prof. ADRIANO PEDREIRA CATTAI Somos o que repetidmente fzemos. A ecelênci portnto, não é um feito, ms um hábito. Aristóteles Integrl Definid e Cálculo

Leia mais

PROFª DRª ANA SÁ PROF DR FILIPE OLIVEIRA PROF DR PHILIPPE DIDIER

PROFª DRª ANA SÁ PROF DR FILIPE OLIVEIRA PROF DR PHILIPPE DIDIER ANÁLISE MATEMÁTIA II B PROFª DRª ANA SÁ PROF DR FILIPE OLIVEIRA PROF DR PHILIPPE DIDIER FAULDADE DE IÊNIAS E TENOLOGIA DEPARTAMENTO DE MATEMÁTIA 7 n Índice 1 álculo integrl em R n : Integris duplos 1

Leia mais

Diferenciação Numérica

Diferenciação Numérica Cpítulo 6: Dierencição e Integrção Numéric Dierencição Numéric Em muits circunstâncis, torn-se diícil oter vlores de derivds de um unção: derivds que não são de ácil otenção; Eemplo clculr ª derivd: e

Leia mais