Módulo de Matrizes e Sistemas Lineares. Operações com Matrizes

Tamanho: px
Começar a partir da página:

Download "Módulo de Matrizes e Sistemas Lineares. Operações com Matrizes"

Transcrição

1 Módulo de Mtrzes e Sstems Lneres Operções com Mtrzes

2 Mtrzes e Sstems Lneres Operções com Mtrzes 1 Exercícos Introdutóros Exercíco 1. Encontre o vlor de () 2 A. 1/2 A. 3 A. Exercíco 2. Determne ) A + B. b) A B c) A B. Exercíco 3. A A Consdere s mtrzes 2 2 e B Consdere s mtrzes A B C , Determne o vlor de A + B + C. Exercíco 4. determne o vlor de , 0 A 0 I + A + A 2 + A A 100. Exercíco 5. () Exercíco 6. Determne os produtos de mtrzes: () Determne A 2. Determne A A Determne A n, pr n N Exercíco 7. Exercíco 8. Determne, b, c e d ts que 2 2 c A b d Determne x e y de modo que s mtrzes x stsfçm AB BA., B 2 Exercícos de Fxção y 1/2 2 3/2 Exercíco 9. Consdere s mtrzes qudrds A ( j ) 3 3 e B (b j ) 3 3 que stsfzem j 2 + j 2 e b j 2j. Determne som dos elementos d dgonl prncpl de A + B. 1 mtemtc@obmep.org.br

3 Exercíco 10. Exercíco 11. Determne x e y de modo que 1 3x + 0 2y y 0 x 4 Determne x e y de modo que x 3 4 y Exercíco 12. Encontre um mtrz A ( j ) 2 2, com coefcentes res, tl que Exercíco As mtrzes A ( j ) 3 3 e B (b j ) 3 3 stsfzem j j e b j j. Determne mtrz C A B. Exercíco 14. Determne A A Exercíco 15. A ( j ) 2 2 é um mtrz tl que A 2 0, determne o Exercíco 16. Determne o vlor de bcd se s mtrzes são gus. + b b c + d c d e Exercícos de Aprofundmento e de Exmes Exercíco 18. Prove que se A e B são mtrzes qudrds de mesm ordem com AB BA então () (A + B) 2 A 2 + 2AB + B 2. A 2 B 2 (A + B)(A B). (A + B) n n 0 (n )A B n. Exercíco 19. Determne tods s mtrzes com coefcentes res que comutm com Exercíco 20. K Prove que A c b d,, stsfz equção x 2 ( + d)x + (d bc) 0. Exercíco 21. Dd mtrz A 0 1, e o polnômo p(x) x x 2017, determn os elementos d mtrz p(a). Exercíco 22. Consdere sequênc de Fboncc defnd por: F 0 F 1 0 e F n+1 F n + F n 1. A mostre que se n N, então A n F n+1 F n, F n F n 1. Exercíco 17. A cos α sen α sen α cos α, determne A n, pr n N. 2 mtemtc@obmep.org.br

4 1. () 2. Temos ) A + B b) A B c) 3. Temos A + B + C 4. Perceb que Resposts e Soluções. A A A A 2 e Portnto, 5. () 6. () A 3 I + A + A 2 + A A 100 I + A + A A 2 A 3 A 2 A mtemtc@obmep.org.br

5 Suponh que pr k N, tenhmos Então Portnto, A k A k+1 A k A 1 k 1 k A n 1 k n, Anlogmente, temos BA 3y 2 y x/ x/2. Pr que ocorr guldde, devemos ter 4y 2x 0 e y x/2 0. Esss equções são equvlentes e ssm pr qulquer pr (x, y) com x 2y occorre guldde. 9. c j denot s entrds d mtrz som, temos Portnto, c j 2 + j 2 + 2j ( + j) 2. c 11 + c 22 + c A som ds mtrzes é gul 1 3x + 2y x + y 4. pr todo n N 7. A multplcção ds dus prmers mtrzes produz + 2c 2 2c b + 2d 2b 2d Portnto, precsmos resolver o sstem: + 2c 5 b + 2d 7 2 2c 2 2b 2d 2. Resolvendo o sstem nteror, encontrmos 1, b 1, c 2 e d Temos AB 3 1 y 1/2 4 x 2 3/2 3y 2 0 4y 2x 2 + 3x/2 Pr que ocorr guldde, devemos ter 3x + 2y 8 x + y 3 Resolvendo o sstem nteror, obtemos x 2 e y O produto ds dus prmers mtrzes é Queremos que 2x + y 3x + 4y 2x + y 3. 3x + 4y 7 A solução desse sstem é (x, y) (1, 1). 12. O produto ds dus prmers mtrzes é Queremos que mtemtc@obmep.org.br

6 Um solução do sstem nteror é 11 4 e A solução gerl é com t e k res. ( 11, 12, 21, 22 ) (4 2t, t, 5 2k, k), 13. c j são s entrds d mtrz C, então Portnto, C 3A. c j 1 b 1j + 2 b 2j + 3 b 3j j + j + j 3j 3 j 14. Podemos encontrr s potêncs de A recursvmente A 2 A 3 A 2 A A 4 A 3 A c j denotm s entrds d mtrz A 2, então 0 0 c 11 c Portnto, 11 ± , então Consderemos gor o cso com Anlsndo s entrds c 12 e c 21, obtemos 0 c e 0 c Como 11 0, então Logo, A 2 é um mtrz dgonl de entrds 1 e Isso mplc que 11 0 e temos um bsurdo. Consequentemente, Como s mmtrzes são gus, podemos construr o sstem + b 5 c + d 3. b 3 c d 1 Resolvendo o sstem nteror, obtemos 4, b 1, c 1 e d 2. Assm, bcd Suponh que ddo k N tenhmos Dí, A k A k+1 A k A Portnto, pr todo n N 18. cos kα sen kα cos kα sen kα sen kα cos kα. sen kα cos α cos kα sen α cos(k + 1)α sen(k + 1)α sen(k + 1)α cos(k + 1)α A n cos nα sen nα sen nα cos nα.. sen α cos α () Pel propredde de dstrbutvdde e d relção AB BA, temos (A + B)(A + B) A 2 + AB + BA + B 2 A 2 + 2AB + B mtemtc@obmep.org.br

7 Pel propredde de dstrbutvdde e d relção AB BA, temos (A + B)(A B) A 2 + BA AB B 2 A 2 B 2. Suponh que pr k N tenhmos (A + B) k k 0 ( ) k A B k Portnto, pel propredde de dstrbutvdde, temos (A + B) k+1 (A + B) ( k 0 ( ) k k 0 A +1 B k + ( ) k A B k ) k 0 ( ) k BA B k Como AB BA, segue que BA B k A B k+1. Além dsso, pel relção de Stfel, ( ) ( ) ( ) k k k l 1 l l Assm, o somtóro nteror pode ser reorgnzdo, fzendo l 1, como ( ) k + 1 A l B k+1 l k+1 l0 l Isso mostr que fórmul dd tmbém serve pr k + 1. gue que vlerá pr todo n N. 19. Suponh que comut com K, então c + b c + d T c b d TK KT, + c c b + d Um condção necessár e sufcente pr que els comutem é que + c + b b + d c + d d d Portnto c 0 e d. Dí, s mtrzes que comutm com K são s mtrzes d form com e b res. 20. b 0, A 2 ( + d)a + (d bc)i 2 + bc b + bd 2 + d b + bd c + dc bc + d 2 c + cd d + d 2 d bc + d bc + d bc d bc 21. Clculemos nclmente s prmers potêncs de A: Dí, Assm A 2 A 3 A 2 A I 0 1 p(a) A A 2017 (A 3 ) (A 3 ) 672 A ( I) ( I) 672 A I + A mtemtc@obmep.org.br

8 22. Clculemos nclmente s prmers potêncs de A: Dí, A 2 A 3 A 2 A I 3 2 Suponh que pr k N A k Então A k+1 A k A Portnto frmção vle pr todo n N. Produzdo por Arqumedes Curso de Ensno contto@cursorqumedes.com 7 mtemtc@obmep.org.br

6.2 Sabendo que as matrizes do exercício precedente representam transformações lineares 2 2

6.2 Sabendo que as matrizes do exercício precedente representam transformações lineares 2 2 Cpítulo Vlores própros e vectores própros. Encontrr os vlores e vectores própros ds seguntes mtrzes ) e) f). Sendo que s mtrzes do exercíco precedente representm trnsformções lneres R R, represente s rects

Leia mais

MATRIZES. pela matriz N = :

MATRIZES. pela matriz N = : MATQUEST MATRIZES PROF.: JOSÉ LUÍS MATRIZES - (CEFET-SP) Se A, B e C são mtres do tpo, e, respectvmente, então o produto A. B. C: ) é mtr do tpo ; é mtr do tpo ; é mtr do tpo ; é mtr do tpo ; não é defndo.

Leia mais

AUTOVALORES E AUTOVETORES

AUTOVALORES E AUTOVETORES UTOLOES E UTOETOES Defnção Sej T : um operdor lner Um vetor v, v, é dto utovetor, vetor própro ou vetor crcterístco do operdor T, se exstr λ tl que T v) = λ v O esclr λ é denomndo utovlor, vlor própro

Leia mais

Método de Gauss-Seidel

Método de Gauss-Seidel Método de Guss-Sedel É o ms usdo pr resolver sstems de equções lneres. Suponhmos que temos um sstem A=b e que n= Vmos resolver cd equção em ordem um ds vráves e escrevemos 0/0/9 MN em que Método de Guss-Sedel

Leia mais

Exemplo: y 3, já que sen 2 e log A matriz nula m n, indicada por O m n é tal que a ij 0, i {1, 2, 3,..., m} e j {1, 2, 3,..., n}.

Exemplo: y 3, já que sen 2 e log A matriz nula m n, indicada por O m n é tal que a ij 0, i {1, 2, 3,..., m} e j {1, 2, 3,..., n}. Mrzes Mrz rel Defnção Sem m e n dos números neros Um mrz rel de ordem m n é um conuno de mn números res, dsrbuídos em m lnhs e n coluns, formndo um bel que se ndc em gerl por 9 Eemplo: A mrz A é um mrz

Leia mais

Obtendo uma solução básica factível inicial. Método Simplex duas fases

Obtendo uma solução básica factível inicial. Método Simplex duas fases Obtendo um solução básc fctível ncl Método Smple dus fses Bse ncl FASE I Como determnr um prtção básc fctível ncl (A(B, N)). Algums clsses de problems de otmzção lner oferecem nturlmente solução básc fctível

Leia mais

Revisão de Matemática Simulado 301/302. Fatorial. Análise combinatória

Revisão de Matemática Simulado 301/302. Fatorial. Análise combinatória Revsão de Mtemátc Smuldo / Ftorl Eemplos: )! + 5! =! b) - Smplfcr (n+)! (n-)! b) Resolv s equções: (+)! = Permutção Smples Análse combntór Permutções são grupmentos com n elementos, de form que os n elementos

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MATA07 ÁLGEBRA LINEAR A PROFESSORES: Glória Márcia, Enaldo Vergasta. 1 a LISTA DE EXERCÍCIOS

UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MATA07 ÁLGEBRA LINEAR A PROFESSORES: Glória Márcia, Enaldo Vergasta. 1 a LISTA DE EXERCÍCIOS NIESIDADE FEDEAL DA BAHIA DEPATAMENTO DE MATEMÁTICA MATA7 ÁLGEBA LINEA A POFESSOES: Glór Márc Enldo ergst LISTA DE EXECÍCIOS ) Sejm A B e C mtres nversíves de mesm ordem encontre epressão d mtr X nos tens

Leia mais

Aula 1b Problemas de Valores Característicos I

Aula 1b Problemas de Valores Característicos I Unversdde Federl do ABC Aul b Problems de Vlores Crcterístcos I EN4 Dnâmc de Fludos Computconl EN4 Dnâmc de Fludos Computconl . U CASO CO DOIS GRAUS DE LIBERDADE EN4 Dnâmc de Fludos Computconl Vbrção em

Leia mais

Universidade do Vale do Rio dos Sinos UNISINOS Programa de Pós-Graduação em Engenharia Mecânica. Ajuste de equações

Universidade do Vale do Rio dos Sinos UNISINOS Programa de Pós-Graduação em Engenharia Mecânica. Ajuste de equações Unversdde do Vle do Ro dos Snos UNISINOS Progrm de Pós-Grdução em Engenhr Mecânc Ajuste de equções Ajuste de curvs Técnc usd pr representr crcterístcs e comportmento de sstems térmcos. Ddos representdos

Leia mais

Matemática B Extensivo V. 8

Matemática B Extensivo V. 8 Mtemátic B Extensivo V. 8 Resolv Aul 9 9.01) = ; b = c = + b c + 9 c = Distânci focl = c 0 9.0) x = 0 0 x = ; b = c = + b c = + c = Como o eixo rel está sobre o eixo e o centro é (0, 0), então F 1 (0,

Leia mais

Bhaskara e sua turma Cícero Thiago B. Magalh~aes

Bhaskara e sua turma Cícero Thiago B. Magalh~aes 1 Equções de Segundo Gru Bhskr e su turm Cícero Thigo B Mglh~es Um equção do segundo gru é um equção do tipo x + bx + c = 0, em que, b e c são números reis ddos, com 0 Dd um equção do segundo gru como

Leia mais

1 ÁLGEBRA MATRICIAL 1.1 TIPOS ESPECIAIS DE MATRIZES. Teorema. Sejam A uma matriz k x m e B uma matriz m x n. Então (AB) T = B T A T

1 ÁLGEBRA MATRICIAL 1.1 TIPOS ESPECIAIS DE MATRIZES. Teorema. Sejam A uma matriz k x m e B uma matriz m x n. Então (AB) T = B T A T ÁLGEBRA MATRICIAL Teorem Sejm A um mtriz k x m e B um mtriz m x n Então (AB) T = B T A T Demonstrção Pr isso precismos d definição de mtriz trnspost Definição Mtriz trnspost (AB) T = (AB) ji i j = A jh

Leia mais

1.6- MÉTODOS ITERATIVOS DE SOLUÇÃO DE SISTEMAS LINEARES PRÉ-REQUISITOS PARA MÉTODOS ITERATIVOS

1.6- MÉTODOS ITERATIVOS DE SOLUÇÃO DE SISTEMAS LINEARES PRÉ-REQUISITOS PARA MÉTODOS ITERATIVOS .6- MÉTODOS ITRATIVOS D SOLUÇÃO D SISTMAS LINARS PRÉ-RQUISITOS PARA MÉTODOS ITRATIVOS.6.- NORMAS D VTORS Defção.6.- Chm-se orm de um vetor,, qulquer fução defd um espço vetorl, com vlores em R, stsfzedo

Leia mais

PARTE I. Figura Adição de dois vetores: C = A + B.

PARTE I. Figura Adição de dois vetores: C = A + B. 1 PRTE I FUNDENTS D ESTÁTIC VETRIL estudo d estátc dos corpos rígdos requer plcção de operções com vetores. Estes entes mtemátcos são defndos pr representr s grndes físcs que se comportm dferentemente

Leia mais

Resolução: a) o menor valor possível para a razão r ; b) o valor do décimo oitavo termo da PA, para a condição do item a.

Resolução: a) o menor valor possível para a razão r ; b) o valor do décimo oitavo termo da PA, para a condição do item a. O segundo, o sétimo e o vigésimo sétimo termos de um Progressão Aritmétic (PA) de números inteiros, de rzão r, formm, nest ordem, um Progressão Geométric (PG), de rzão q, com qer ~ (nturl diferente de

Leia mais

1 Assinale a alternativa verdadeira: a) < <

1 Assinale a alternativa verdadeira: a) < < MATEMÁTICA Assinle lterntiv verddeir: ) 6 < 7 6 < 6 b) 7 6 < 6 < 6 c) 7 6 < 6 < 6 d) 6 < 6 < 7 6 e) 6 < 7 6 < 6 Pr * {} temos: ) *, * + e + * + ) + > + + > ) Ds equções (I) e (II) result 7 6 < ( 6 )

Leia mais

Prof. Ms. Aldo Vieira Aluno:

Prof. Ms. Aldo Vieira Aluno: Prof. Ms. Aldo Vieir Aluno: Fich 1 Chmmos de mtriz, tod tbel numéric com m linhs e n coluns. Neste cso, dizemos que mtriz é do tipo m x n (onde lemos m por n ) ou que su ordem é m x n. Devemos representr

Leia mais

Conceitos fundamentais. Prof. Emerson Passos

Conceitos fundamentais. Prof. Emerson Passos Cocetos fudmets Prof. Emerso Pssos 1. Espço dos vetores de estdo. Operdores leres. Represetção de vetores de estdo e operdores. 2. Observáves. Autovlores e utovetores de um observável. Medd Mecâc Quâtc.

Leia mais

CAP. VI Integração e diferenciação numéricas. 1. Introdução

CAP. VI Integração e diferenciação numéricas. 1. Introdução CAP. VI Integrção e dferencção numércs. Introdução Se um função f é contínu num ntervlo [ ; ] e é conecd su prmtv F, o ntegrl defndo dquel função entre e pode clculr-se pel fórmul fundmentl do cálculo

Leia mais

EQUAÇÕES LINEARES E DECOMPOSIÇÃO DOS VALORES SINGULARES (SVD)

EQUAÇÕES LINEARES E DECOMPOSIÇÃO DOS VALORES SINGULARES (SVD) EQUAÇÕES LINEARES E DECOMPOSIÇÃO DOS VALORES SINGULARES (SVD) 1 Equções Leres Em otção mtrcl um sstem de equções leres pode ser represetdo como 11 21 1 12 22 2 1 x1 b1 2 x2 b2. x b ou A.X = b (1) Pr solução,

Leia mais

Universidade Federal de Rio de Janeiro

Universidade Federal de Rio de Janeiro Universidde Federl de Rio de Jneiro Instituto de Mtemátic Deprtmento de Métodos Mtemáticos Prof. Jime E. Muñoz River river@im.ufrj.r ttp//www.im.ufrj.r/ river Grito d Primeir Prov de Cálculo I Rio de Jneiro

Leia mais

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c.

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c. EQUAÇÃO DO GRAU Você já estudou em série nterior s equções do 1 gru, o gru de um equção é ddo pelo mior expoente d vriável, vej lguns exemplos: x + = 3 equção do 1 gru já que o expoente do x é 1 5x 8 =

Leia mais

Exercícios. setor Aula 25

Exercícios. setor Aula 25 setor 08 080409 080409-SP Aul 5 PROGRESSÃO ARITMÉTICA. Determinr o número de múltiplos de 7 que estão compreendidos entre 00 e 000. r 7 00 7 PA 05 30 4 n 994 00 98 98 + 7 05 n + (n ) r 994 05 + (n ) 7

Leia mais

Solução da Terceira Lista de Exercícios Profa. Carmem Hara

Solução da Terceira Lista de Exercícios Profa. Carmem Hara Exercíco 1: Consdere grmátc G xo: B ǫ ǫ B B Introdução eor d Computção olução d ercer Lst de Exercícos Prof. Crmem Hr. Mostre um dervção ms esquerd d plvr. B B B B B. Quntos pssos de dervção tem o tem

Leia mais

MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON

MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON PROFJWPS@GMAIL.COM MATRIZES Definição e Notção... 11 21 m1 12... 22 m2............ 1n.. 2n. mn Chmmos de Mtriz todo conjunto de vlores, dispostos

Leia mais

Matemática B Superintensivo

Matemática B Superintensivo GRITO Mtemátic Superintensivo Eercícios 0) 4 m M, m 0 m N tg 0 = b = b = b = = cos 0 = 4 = = 4. =.,7 =,4 MN =, +,4 + MN =,9 m tg 60 = = =.. = h = + = 0 m 04) 0) D O vlor de n figur bio é: (Errt) 4 sen

Leia mais

Proposta de resolução do Exame Nacional de Matemática A 2016 (1 ạ fase) GRUPO I (Versão 1)

Proposta de resolução do Exame Nacional de Matemática A 2016 (1 ạ fase) GRUPO I (Versão 1) Propost de resolução do Eme Nconl de Mtemátc A 06 ( ạ fse) GRUPO I (Versão ). Sbemos que P(A) =, P(B) = e P(A B) = 5 0 6 Assm, P(A B) P(A B) = = 6 P(B) 6 P(A B) = 6 0 P(A B) = 6 0 P(A B) = 0 Tem-se que

Leia mais

CAPÍTULO IV DIFERENCIAÇÃO NUMÉRICA

CAPÍTULO IV DIFERENCIAÇÃO NUMÉRICA PMR Mecânc Computconl CAPÍTULO IV DIFERENCIAÇÃO NUMÉRICA O problem de derencção numérc prentemente é semelnte o de ntegrção numérc ou sej obtendo-se um polnômo nterpoldor ou outr unção nterpoldor d unção

Leia mais

XI OMABC NÍVEL O lugar geométrico dos pontos P x, y cuja distância ao ponto Q 1, 2 é igual a y é uma:

XI OMABC NÍVEL O lugar geométrico dos pontos P x, y cuja distância ao ponto Q 1, 2 é igual a y é uma: O lugr geométrco dos pontos P x, y cu dstânc o ponto Q, é gul y é um: prábol com foco no ponto Q crcunferênc de ro gul N fgur segur, o trângulo ABC é equlátero de ldo 0, crcunferênc mor é tngente os três

Leia mais

CÁLCULO I. 1 Funções denidas por uma integral

CÁLCULO I. 1 Funções denidas por uma integral CÁLCULO I Prof. Mrcos Diniz Prof. André Almeid Prof. Edilson Neri Júnior Prof. Emerson Veig Prof. Tigo Coelho Aul n o 26: Teorem do Vlor Médio pr Integris. Teorem Fundmentl do Cálculo II. Funções dds por

Leia mais

Sequências Teoria e exercícios

Sequências Teoria e exercícios Sequêcs Teor e exercícos Notção forml Defmos um dd sequêc de úmeros complexos por { } ( ) Normlmete temos teresse em descobrr um fórmul fechd que sej cpz de expressr o -ésmo termo d sequêc como fução de

Leia mais

As fórmulas aditivas e as leis do seno e do cosseno

As fórmulas aditivas e as leis do seno e do cosseno ul 3 s fórmuls ditivs e s leis do MÓDULO 2 - UL 3 utor: elso ost seno e do cosseno Objetivos 1) ompreender importânci d lei do seno e do cosseno pr o cálculo d distânci entre dois pontos sem necessidde

Leia mais

MÉTODO DE HOLZER PARA VIBRAÇÕES TORCIONAIS

MÉTODO DE HOLZER PARA VIBRAÇÕES TORCIONAIS ÉODO DE HOZE PAA VIBAÇÕES OCIONAIS Este método prómdo é dequdo pr vgs com crcterístcs não unformes centuds, ou sstems com um número grnde de msss concentrds. Substtu-se o sstem contínuo por um sstem dscreto

Leia mais

Vestibular UFRGS 2013 Resolução da Prova de Matemática

Vestibular UFRGS 2013 Resolução da Prova de Matemática Vestibulr UFRG 0 Resolução d Prov de Mtemátic 6. Alterntiv (C) 00 bilhões 00. ( 000 000 000) 00 000 000 000 0 7. Alterntiv (B) Qundo multiplicmos dois números com o lgrismo ds uniddes igul 4, o lgrismo

Leia mais

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução (9) - www.elitecmpins.com.br O ELITE RESOLVE MATEMÁTICA QUESTÃO Se Améli der R$, Lúci, então mbs ficrão com mesm qunti. Se Mri der um terço do que tem Lúci, então est ficrá com R$, mis do que Améli. Se

Leia mais

( 2 5 ) simplificando a fração. Matemática A Extensivo V. 8 GABARITO. Matemática A. Exercícios. (( ) ) trocando a base log 5 01) B 04) B.

( 2 5 ) simplificando a fração. Matemática A Extensivo V. 8 GABARITO. Matemática A. Exercícios. (( ) ) trocando a base log 5 01) B 04) B. Mtemátic A Etensivo V. Eercícios 0) B 0) B f() = I. = y = 6 6 = ftorndo 6 = = II. = y = 6 = 6 = pel propriedde N = N = De (I) e (II) podemos firmr que =, então: ) 6 = = 6 ftorndo 6 = = pel propriedde N

Leia mais

Funções de Transferência

Funções de Transferência Funções de Trnsferênc Em teor de controle, funções chmd funções de trnsferênc são comumente usds r crcterzr s relções de entrd-síd de comonentes ou sstems que odem ser descrtos or equções dferencs. FUNÇÃO

Leia mais

Prof.(s): Judson Santos - Luciano Santos 1º S I M U L A D O ITA/IME

Prof.(s): Judson Santos - Luciano Santos 1º S I M U L A D O ITA/IME Prof.(s): Judson Sntos - Lucino Sntos y 0) Sbendo que (,,, ) estão em progressão ritmétic nest ordem y stisfendo s condições de eistênci dos ritmos. Então o vlor d epressão y é igul : ) b) y 0) Sej,, 4,,

Leia mais

2 Teoria de membranas elásticas

2 Teoria de membranas elásticas Teor de membrns elástcs teor de membrn pr mters ltmente deformáves dfere d elstcdde clássc, á que s deformções n superfíce méd d membrn deformd são em módulo mores que undde. Dentro dests crcunstâncs utlz-se

Leia mais

IME MATEMÁTICA. Questão 01. Calcule o número natural n que torna o determinante abaixo igual a 5. Resolução:

IME MATEMÁTICA. Questão 01. Calcule o número natural n que torna o determinante abaixo igual a 5. Resolução: IME MATEMÁTICA A mtemátic é o lfbeto com que Deus escreveu o mundo Glileu Glilei Questão Clcule o número nturl n que torn o determinnte bixo igul 5. log (n ) log (n + ) log (n ) log (n ) Adicionndo s três

Leia mais

Integral. (1) Queremos calcular o valor médio da temperatura ao longo do dia. O valor. a i

Integral. (1) Queremos calcular o valor médio da temperatura ao longo do dia. O valor. a i Integrl Noção de Integrl. Integrl é o nálogo pr unções d noção de som. Ddos n números 1, 2,..., n, podemos tomr su som 1 + 2 +... + n = i. O integrl de = té = b dum unção contínu é um mneir de somr todos

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prov Escrit de MATEMÁTICA A - o Ano 0 - Fse Propost de resolução GRUPO I. Como comissão deve ter etmente mulheres, num totl de pessos, será constituíd por um único homem. Logo, como eistem 6 homens no

Leia mais

Cálculo de Limites. Sumário

Cálculo de Limites. Sumário 6 Cálculo de Limites Sumário 6. Limites de Sequêncis................. 3 6.2 Exercícios Recomenddos............... 5 6.3 Limites de Funções.................. 7 6.4 Exercícios Recomenddos...............

Leia mais

SOCIEDADE PORTUGUESA DE MATEMÁTICA

SOCIEDADE PORTUGUESA DE MATEMÁTICA SOCIEDADE PORTUGUESA DE MATEMÁTICA Propost de Resolução do Exme de Mtemátc A - º ANO Códgo 65 - Fse - 07 - de junho de 07 Grupo I 5 6 7 8 Versão A B D A B C D C Versão D D B C C A B A Grupo II. 0 5 5 5

Leia mais

Resumo com exercícios resolvidos do assunto: Aplicações da Integral

Resumo com exercícios resolvidos do assunto: Aplicações da Integral www.engenhrifcil.weely.com Resumo com exercícios resolvidos do ssunto: Aplicções d Integrl (I) (II) (III) Áre Volume de sólidos de Revolução Comprimento de Arco (I) Áre Dd um função positiv f(x), áre A

Leia mais

V ( ) 3 ( ) ( ) ( ) ( ) { } { } ( r ) 2. Questões tipo exame Os triângulos [ BC Da figura ao lado são semelhantes, pelo que: BC CC. Pág.

V ( ) 3 ( ) ( ) ( ) ( ) { } { } ( r ) 2. Questões tipo exame Os triângulos [ BC Da figura ao lado são semelhantes, pelo que: BC CC. Pág. António: c ; Diogo: ( ) i e ; Rit: e c Pág Se s firmções dos três migos são verddeirs, firmção do António é verddeir, pelo que proposição c é verddeir e, consequentemente, proposição c é fls Por outro

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA

UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA PRIMEIRO SEMESTRE DE 2015 13 de Fevereiro de 2015 Prte I Álgebr Liner 1 Questão: Sejm

Leia mais

1. Sejam R e S duas relações entre os conjuntos não vazios E e F. Então mostre que

1. Sejam R e S duas relações entre os conjuntos não vazios E e F. Então mostre que 2 List de exercícios de Álgebr 1. Sejm R e S dus relções entre os conjuntos não vzios E e F. Então mostre que ) R 1 S 1 = (R S) 1, b) R 1 S 1 = (R S) 1. Solução: Pr primeir iguldde, temos que (, b) R 1

Leia mais

SERVIÇO PÚBLICO FEDERAL Ministério da Educação

SERVIÇO PÚBLICO FEDERAL Ministério da Educação SERVIÇO PÚBLICO FEDERAL Ministério d Educção Universidde Federl do Rio Grnde Universidde Abert do Brsil Administrção Bchreldo Mtemátic pr Ciêncis Sociis Aplicds I Rodrigo Brbos Sores . Mtrizes:.. Introdução:

Leia mais

Elementos de Análise - Lista 6 - Solução

Elementos de Análise - Lista 6 - Solução Elementos de Análise - List 6 - Solução 1. Pr cd f bixo considere F (x) = x f(t) dt. Pr quis vlores de x temos F (x) = f(x)? () f(x) = se x 1, f(x) = 1 se x > 1; F (x) = se x 1, F (x) = x 1 se x > 1. Portnto

Leia mais

Desigualdades - Parte II. n (a1 b 1 +a 2 b a n b n ) 2.

Desigualdades - Parte II. n (a1 b 1 +a 2 b a n b n ) 2. Polos Olímpicos de Treinmento Curso de Álgebr - Nível Prof. Mrcelo Mendes Aul 9 Desigulddes - Prte II A Desiguldde de Cuchy-Schwrz Sejm,,..., n,b,b,...,b n números reis. Então: + +...+ ) n b +b +...+b

Leia mais

Método de Eliminação de Gauss

Método de Eliminação de Gauss étodo de Elmção de Guss A de ásc deste método é trsformr o sstem A um sstem equvlete A () (), ode A () é um mtrz trgulr superor, efectudo trsformções elemetres sore s lhs do sstem ddo. Cosdere-se o sstem

Leia mais

Resolução Numérica de Sistemas Lineares Parte I

Resolução Numérica de Sistemas Lineares Parte I Cálculo Numérico Resolução Numéric de Sistems ineres Prte I Prof. Jorge Cvlcnti jorge.cvlcnti@univsf.edu.br MATERIA ADAPTADO DOS SIDES DA DISCIPINA CÁCUO NUMÉRICO DA UFCG - www.dsc.ufcg.edu.br/~cnum/ Sistems

Leia mais

Matemática. Resolução das atividades complementares. M24 Equações Polinomiais. 1 (PUC-SP) No universo C, a equação

Matemática. Resolução das atividades complementares. M24 Equações Polinomiais. 1 (PUC-SP) No universo C, a equação Resolução ds tividdes complementres Mtemátic M Equções Polinomiis p. 86 (PUC-SP) No universo C, equção 0 0 0 dmite: ) três rízes rcionis c) dus rízes irrcionis e) um únic riz positiv b) dus rízes não reis

Leia mais

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral Escol Superior de Agricultur Luiz de Queiroz Universidde de São Pulo Módulo I: Cálculo Diferencil e Integrl Teori d Integrção e Aplicções Professor Rent Alcrde Sermrini Nots de ul do professor Idemuro

Leia mais

Interpolação Segmentada

Interpolação Segmentada Interpolação Segmentada Uma splne é uma função segmentada e consste na junção de váras funções defndas num ntervalo, de tal forma que as partes que estão lgadas umas às outras de uma manera contínua e

Leia mais

6. ÁLGEBRA LINEAR MATRIZES

6. ÁLGEBRA LINEAR MATRIZES MATRIZES. ÁLGEBRA LINEAR Definição Digonl Principl Mtriz Unidde Mtriz Trnspost Iguldde entre Mtrizes Mtriz Nul Um mtriz m n um tbel de números reis dispostos em m linhs e n coluns. Sempre que m for igul

Leia mais

TÓPICOS. Exercícios. Os vectores que constituem as colunas da matriz, 1 = [ 2 0 1] T

TÓPICOS. Exercícios. Os vectores que constituem as colunas da matriz, 1 = [ 2 0 1] T Note em: letur destes pontmentos não dspens de modo lgum letur tent d logrf prncpl d cder Chm-se tenção pr mportânc do trlho pessol relzr pelo luno resolendo os prolems presentdos n logrf, sem consult

Leia mais

XXXIV Olimpíada Brasileira de Matemática GABARITO Segunda Fase

XXXIV Olimpíada Brasileira de Matemática GABARITO Segunda Fase XXXIV Olimpíd Brsileir de Mtemátic GABARITO Segund Fse Soluções Nível 3 Segund Fse Prte A PARTE A N prte A serão tribuídos 4 pontos pr cd respost corret e pontução máxim pr ess prte será 0. NENHUM PONTO

Leia mais

6º Teste de avaliação versão1. Grupo I

6º Teste de avaliação versão1. Grupo I Escol Secundár com 3º cclo D. Dns 0º Ano de Mtemátc A 6º Teste de vlção versão Grupo I As cnco questões deste grupo são de escolh múltpl. Pr cd um dels são ndcds qutro lterntvs, ds qus só um está corret.

Leia mais

(x, y) dy. (x, y) dy =

(x, y) dy. (x, y) dy = Seção 7 Função Gm A expressão n! = 1 3... n (1 está definid pens pr vlores inteiros positivos de n. Um primeir extensão é feit dizendo que! = 1. Ms queremos estender noção de ftoril inclusive pr vlores

Leia mais

Muitas vezes, conhecemos a derivada de uma função, y = f (x) = F(x), e queremos encontrar a própria função f(x).

Muitas vezes, conhecemos a derivada de uma função, y = f (x) = F(x), e queremos encontrar a própria função f(x). Integrção Muts vezes, conhecemos dervd de um função, y f (x) F(x), e queremos encontrr própr função f(x). Por exemplo, se semos que dervd de um função f(x) é função F(x) 2x, qul deve ser, então, função

Leia mais

TÓPICO. Fundamentos da Matemática II DERIVADA DIRECIONAL E PLANO TANGENTE8. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

TÓPICO. Fundamentos da Matemática II DERIVADA DIRECIONAL E PLANO TANGENTE8. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques DERIVADA DIRECIONAL E PLANO TANGENTE8 TÓPICO Gil d Cost Mrques Fundmentos d Mtemátic II 8.1 Diferencil totl de um função esclr 8.2 Derivd num Direção e Máxim Derivd Direcionl 8.3 Perpendiculr um superfície

Leia mais

Propriedades Matemáticas

Propriedades Matemáticas Proprieddes Mtemátics Guilherme Ferreir guifs2@hotmil.com Setembro, 2018 Sumário 1 Introdução 2 2 Potêncis 2 3 Rízes 3 4 Frções 4 5 Produtos Notáveis 4 6 Logritmos 5 6.1 Consequêncis direts d definição

Leia mais

Angela Nieckele PUC-Rio DIFUSÃO

Angela Nieckele PUC-Rio DIFUSÃO Angel ecele UC-Ro IFUSÃO Angel ecele UC-Ro q e qw q w e S w d qe W w e E dw de Angel ecele UC-Ro ossíves ers pr vlr o luo erl em egru: erl ms smples possível porém nclnção de d/d ns ces do volume de controle

Leia mais

4. Teorema de Green. F d r = A. dydx. (1) Pelas razões acima referidas, a prova deste teorema para o caso geral está longe

4. Teorema de Green. F d r = A. dydx. (1) Pelas razões acima referidas, a prova deste teorema para o caso geral está longe 4 Teorem de Green Sej U um berto de R 2 e r : [, b] U um cminho seccionlmente, fechdo e simples, isto é, r não se uto-intersect, excepto ns extremiddes Sej região interior r([, b]) prte d dificuldde n

Leia mais

Métodos Numéricos Ajuste de Curva pelo Método dos Quadrados Mínimos-MQM. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Ajuste de Curva pelo Método dos Quadrados Mínimos-MQM. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numércos Ajuste de Curv pelo Método dos Qudrdos Mímos-MQM Professor Volmr Eugêo Wlhelm Professor Mr Kle Método dos Qudrdos Mímos Ajuste Ler Professor Volmr Eugêo Wlhelm Professor Mr Kle Método

Leia mais

Diogo Pinheiro Fernandes Pedrosa

Diogo Pinheiro Fernandes Pedrosa Integrção Numéric Diogo Pinheiro Fernndes Pedros Universidde Federl do Rio Grnde do Norte Centro de Tecnologi Deprtmento de Engenhri de Computção e Automção http://www.dc.ufrn.br/ 1 Introdução O conceito

Leia mais

Otimização Linear curso 1. Maristela Santos (algumas aulas: Marcos Arenales) Solução Gráfica

Otimização Linear curso 1. Maristela Santos (algumas aulas: Marcos Arenales) Solução Gráfica Otmzção Ler curso Mrstel Stos (lgums uls: Mrcos Areles) Solução Gráfc Otmzção Ler Modelo mtemátco c c c ) ( f Mmzr L fução obetvo sueto : m m m m b b b L M L L restrções ( ) 0 0 0. codção de ão-egtvdde

Leia mais

Módulo e Equação Modular (valor absoluto)?

Módulo e Equação Modular (valor absoluto)? Mtemátic Básic Unidde 6 Função Modulr RANILDO LOES Slides disponíveis no nosso SITE: https://ueedgrtito.wordpress.com Módulo e Equção Modulr (vlor bsoluto)? - - - - R uniddes uniddes Definição, se, se

Leia mais

xy 1 + x 2 y + x 1 y 2 x 2 y 1 x 1 y xy 2 = 0 (y 1 y 2 ) x + (x 2 x 1 ) y + (x 1 y 2 x 2 y 1 ) = 0

xy 1 + x 2 y + x 1 y 2 x 2 y 1 x 1 y xy 2 = 0 (y 1 y 2 ) x + (x 2 x 1 ) y + (x 1 y 2 x 2 y 1 ) = 0 EQUAÇÃO DA RETA NO PLANO 1 Equção d ret Denominmos equção de um ret no R 2 tod equção ns incógnits x e y que é stisfeit pelos pontos P (x, y) que pertencem à ret e só por eles. 1.1 Alinhmento de três pontos

Leia mais

EQUAÇÕES E INEQUAÇÕES POLINOMIAIS

EQUAÇÕES E INEQUAÇÕES POLINOMIAIS EQUAÇÕES E INEQUAÇÕES POLINOMIAIS Um dos grndes problems de mtemátic n ntiguidde er resolução de equções polinomiis. Encontrr um fórmul ou um método pr resolver tis equções er um grnde desfio. E ind hoje

Leia mais

TP062-Métodos Numéricos para Engenharia de Produção Ajuste de Curva pelo Método dos Quadrados Mínimos-MQM

TP062-Métodos Numéricos para Engenharia de Produção Ajuste de Curva pelo Método dos Quadrados Mínimos-MQM TP06-Métodos Numércos pr Egehr de Produção Ajuste de Curv pelo Método dos Qudrdos Mímos-MQM Prof. Volmr Wlhelm Curtb, 05 Método dos Qudrdos Mímos Ajuste Ler Prof. Volmr - UFPR - TP06 Método dos Qudrdos

Leia mais

Notas de Aula: Mecânica dos Sólidos I Prof. Willyan Machado Giufrida. Características geométrica das superfícies planas

Notas de Aula: Mecânica dos Sólidos I Prof. Willyan Machado Giufrida. Características geométrica das superfícies planas Nots de ul: Mecânc dos Sóldos I Prof Wllyn Mchdo Gufrd Crcterístcs geométrc ds superfíces plns Nots de ul: Mecânc dos Sóldos I Prof Wllyn Mchdo Gufrd Momento estátco Centro de Grvdde (CG) Momento estátco

Leia mais

1.3 O método da Decomposição LU A Decomposição LU. Teorema ( Teorema da Decomposição LU)

1.3 O método da Decomposição LU A Decomposição LU. Teorema ( Teorema da Decomposição LU) . O método d Decomposção U.. A Decomposção U Teorem.. ( Teorem d Decomposção U) Sej A m mtrz qdrd de ordem n, e A k o menor prncp, consttído ds prmers nhs e cons. Assmmos qe det(a k ) pr k,,..., n. Então

Leia mais

Fatoração e Produtos Notáveis

Fatoração e Produtos Notáveis Ftorção e Produtos Notáveis 1. (G1 - cftmg 014) Simplificndo epressão 1 4 6 4 5 4 16 48 obtém-se ). b) 4 +. c). d) 4 +.. (G1 - ifce 014) O vlor d epressão: b b ) b. b) b. c) b. d) 4b. e) 6b. é. (Upf 014)

Leia mais

Aulas 1 a 3. Aulas 4 e 5. Revisão Primeiro Semestre 2012 prof. Lessa. 4. (UNIFESP) Se 0 < a < b, racionalizando o denominador, tem-se que

Aulas 1 a 3. Aulas 4 e 5. Revisão Primeiro Semestre 2012 prof. Lessa. 4. (UNIFESP) Se 0 < a < b, racionalizando o denominador, tem-se que Revisão Primeiro Semestre 01 prof. Less Auls 1 1. (ESPM) A metde de vlem, respectivmente: A) 0,6 1 e e 1. Se 1 e 9 e 9 8 e 1, e o triplo de x =, então o vlor de x é: A) 6. (FUVEST) Rcionlizr o denomindor

Leia mais

Análise Complexa Resolução de alguns exercícios do capítulo 1

Análise Complexa Resolução de alguns exercícios do capítulo 1 Análse Complexa Resolução de alguns exercícos do capítulo 1 1. Tem-se:. = (0, 1) = (0, 1) =. 3. Sejam a, b R. Então Exercíco nº1 = (0, 1).(0, 1) = (0.0 1.1, 0.1 + 1.0) = ( 1, 0) = 1. a + b = a b = a +

Leia mais

Comprimento de arco. Universidade de Brasília Departamento de Matemática

Comprimento de arco. Universidade de Brasília Departamento de Matemática Universidde de Brsíli Deprtmento de Mtemátic Cálculo Comprimento de rco Considerefunçãof(x) = (2/3) x 3 definidnointervlo[,],cujográficoestáilustrdo bixo. Neste texto vmos desenvolver um técnic pr clculr

Leia mais

3.18 EXERCÍCIOS pg. 112

3.18 EXERCÍCIOS pg. 112 89 8 EXERCÍCIOS pg Investigue continuidde nos pontos indicdos sen, 0 em 0 0, 0 sen 0 0 0 Portnto não é contínu em 0 b em 0 0 0 0 0 0 0 0 0 0 0 0 0 Portnto é contínu em 0 8, em, c 8 Portnto, unção é contínu

Leia mais

DERIVADAS DAS FUNÇÕES SIMPLES12

DERIVADAS DAS FUNÇÕES SIMPLES12 DERIVADAS DAS FUNÇÕES SIMPLES2 Gil d Cost Mrques Fundentos de Mteátic I 2. Introdução 2.2 Derivd de y = n, n 2.2. Derivd de y = / pr 0 2.2.2 Derivd de y = n, pr 0, n =,, isto é, n é u núero inteiro negtivo

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, utilizaremos o Teorema Fundamental do Cálculo (TFC) para o cálculo da área entre duas curvas.

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, utilizaremos o Teorema Fundamental do Cálculo (TFC) para o cálculo da área entre duas curvas. CÁLCULO L1 NOTAS DA DÉCIMA SÉTIMA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nest ul, utilizremos o Teorem Fundmentl do Cálculo (TFC) pr o cálculo d áre entre dus curvs. 1. A áre entre dus curvs A

Leia mais

Definição 1. (Volume do Cilindro) O volume V de um um cilindro reto é dado pelo produto: V = area da base altura.

Definição 1. (Volume do Cilindro) O volume V de um um cilindro reto é dado pelo produto: V = area da base altura. Cálculo I Aul 2 - Cálculo de Volumes Dt: 29/6/25 Objetivos d Aul: Clculr volumes de sólidos por seções trnsversis Plvrs-chves: Seções Trnsversis - Volumes Volume de um Cilindro Nosso objetivo nest unidde

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 2. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 2. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 6 FASE. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA. O gráfico de brrs bixo exibe distribuição d idde de um grupo de pessos. ) Mostre que, nesse grupo,

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO 2015 GRUPO I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO 2015 GRUPO I Associção de Professores de Mtemátic Contctos: Ru Dr. João Couto, n.º 27-A 1500-236 Lisbo Tel.: +351 21 716 36 90 / 21 711 03 77 Fx: +351 21 716 64 24 http://www.pm.pt emil: gerl@pm.pt PROPOSTA DE RESOLUÇÃO

Leia mais

Integrais Imprópias Aula 35

Integrais Imprópias Aula 35 Frções Prciis - Continução e Integris Imprópis Aul 35 Alexndre Nolsco de Crvlho Universidde de São Pulo São Crlos SP, Brzil 05 de Junho de 203 Primeiro Semestre de 203 Turm 20304 - Engenhri de Computção

Leia mais

Prova 1 Soluções MA-602 Análise II 27/4/2009 Escolha 5 questões

Prova 1 Soluções MA-602 Análise II 27/4/2009 Escolha 5 questões Prov 1 Soluções MA-602 Análise II 27/4/2009 Escolh 5 questões 1. Sej f : [, b] R um função limitd. Mostre que f é integrável se, e só se, existe um sequênci de prtições P n P [,b] do intervlo [, b] tl

Leia mais

LISTA GERAL DE MATRIZES OPERAÇÕES E DETERMINANTES - GABARITO. b =

LISTA GERAL DE MATRIZES OPERAÇÕES E DETERMINANTES - GABARITO. b = LIS GERL DE MRIZES OPERÇÕES E DEERMINNES - GBRIO Dds s mtries [ ij ] tl que j ij i e [ ij ] B tl que ij j i, determine: c Solução Não é necessário construir tods s mtries Bst identificr os elementos indicdos

Leia mais

MATEMÁTICA II - Engenharias/Itatiba MATRIZES

MATEMÁTICA II - Engenharias/Itatiba MATRIZES MTEMÁTI II - Engenhris/Ittib o Semestre de 9 Prof Murício Fbbri -9 Série de Eercícios MTRIZES Um mtriz de dimensões m n é um conjunto ordendo de mn elementos, disostos em um grde retngulr de m linhs e

Leia mais

Teorema 1. Seja A um anel comutativo. Então A é um domínio de integridade se e somente se A é isomorfo a um subanel de um corpo.

Teorema 1. Seja A um anel comutativo. Então A é um domínio de integridade se e somente se A é isomorfo a um subanel de um corpo. 1. Domínios Um domínio de integridde (ou simplesmente domínio) é um nel comuttivo unitário A tl que se, b A e b = 0 então = 0 ou b = 0. Por exemplo Z e Z[X] são domínios e mis em gerl se A é um domínio

Leia mais

TP062-Métodos Numéricos para Engenharia de Produção Sistemas Lineares Métodos Iterativos

TP062-Métodos Numéricos para Engenharia de Produção Sistemas Lineares Métodos Iterativos TP6-Métodos Numércos pr Egehr de Produção Sstems Leres Métodos Itertvos Prof. Volmr Wlhelm Curt, 5 Resolução de Sstems Leres Métodos Itertvos Itrodução É stte comum ecotrr sstems leres que evolvem um grde

Leia mais

1a Verificação Refino dos Aços I EEIMVR-UFF, Setembro de 2011 Prova A

1a Verificação Refino dos Aços I EEIMVR-UFF, Setembro de 2011 Prova A 1 Verfcção Refno dos s I EEIMVR-UFF, Setembro de 11 Prov A 1. Clcule o vlor de γ no ferro, 168 o C, com os ddos fornecdos n prov. Vmos em ul que o S G e o γ estão relcondos trvés de, 5585γ G R ln M Logo,

Leia mais

Métodos Numéricos Sistemas Lineares Métodos Iterativos. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Sistemas Lineares Métodos Iterativos. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numércos Sstems Leres Métodos Itertvos Professor Volmr Eugêo Wlhelm Professor Mr Kle Resolução de Sstems Leres Métodos Itertvos Itrodução É stte comum ecotrr sstems leres que evolvem um grde porcetgem

Leia mais

Cálculo Diferencial e Integral I 2 o Teste - LEAN, MEAer, MEAmb, MEBiol, MEMec

Cálculo Diferencial e Integral I 2 o Teste - LEAN, MEAer, MEAmb, MEBiol, MEMec Cálculo Diferencil e Integrl I o Teste - LEAN, MEAer, MEAmb, MEBiol, MEMec de Junho de, h Durção: hm Apresente todos os cálculos e justificções relevntes..5 vl.) Clcule, se eistirem em R, os limites i)

Leia mais

Resoluções dos exercícios propostos

Resoluções dos exercícios propostos os fundmentos d físic 1 Unidde D Cpítulo 11 Os princípios d Dinâmic 1 P.230 prtícul está em MRU, pois resultnte ds forçs que gem nel é nul. P.231 O objeto, livre d ção de forç, prossegue por inérci em

Leia mais

Fernando Nogueira Dualidade 1

Fernando Nogueira Dualidade 1 Dldde Fernndo Noger Dldde Fernndo Noger Dldde 8 6.5 M ( ) ( ) ( ).5.5.5.5.5.5.5.5.5 é m lmtnte speror é m lmtnte speror melhor Pr encontrr o lmtnte speror mltplc-se s restrções por constntes postvs e som-se

Leia mais

1. Conceito de logaritmo

1. Conceito de logaritmo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Logritmos Prof.: Rogério

Leia mais

Complexidade de Algoritmos

Complexidade de Algoritmos Complexdde de Algortmos Prof. Dego Buchger dego.uchger@outlook.com dego.uchger@udesc.r Prof. Crsto Dm Vscocellos crsto.vscocellos@udesc.r Aálse de Complexdde de Tempo de Algortmos Recursvos Algortmos Recursvos

Leia mais

CAPÍTULO 5 - ESTUDO DA VARIAÇÃO DAS FUNÇÕES

CAPÍTULO 5 - ESTUDO DA VARIAÇÃO DAS FUNÇÕES CAPÍTULO 5 - ESTUDO DA VARIAÇÃO DAS FUNÇÕES 5.- Teorems Fundmentis do Cálculo Diferencil Os teorems de Rolle, de Lgrnge, de Cuch e regr de L Hospitl são os qutro teorems fundmentis do cálculo diferencil

Leia mais