Aos pais e professores
|
|
|
- Jerónimo Gomes Brandt
- 9 Há anos
- Visualizações:
Transcrição
1 MAT3_015_F01_5PCImg.indd 9 9/09/16 10:03 prcels ou termos som ou totl Pr dicionres mentlmente, podes decompor os números e dicioná-los por ordens = ( ) + ( ) MAT3_015_F0.indd 18 9/09/16 10:03 MAT3_06 MAT3_015_F06.indd 81 9/09/16 10:03 Construção A Construção B Construção C 1 cm³ 1 cm³ 1 cm³ c l Apêndice, pág. 156 MAT3_015_F08.indd 116 9/09/16 10:03 MAT3_09 MAT3_015_F09.indd 19 9/09/16 10:03 Aos pis e professores O presente livro A Mtemátic, embor destindo os lunos do 3. e. nos, trblh generlidde dos conteúdos de Mtemátic previstos pr o 1. ciclo do ensino básico. O livro encontr-se orgnizdo em três grndes uniddes, correspondentes os domínios definidos no Progrm: Números e Operções, Geometri e Medid e Orgnizção e Trtmento de Ddos. 1Números e Operções Geometri e Medid Orgnizção e Trtmento 3 de Ddos 9 81 N bordgem de cd tem seguem-se sempre três etps:, e. Adição Medição do volume 1 Pint s plvrs que podes ssocir à operção dição. 1 Por quntos cubos de 1 cm³ é formd cd construção? crescentr reunir o todo vezes retirr prcels menos somr diferenç mis reduzir juntr subtrir A dição é operção ritmétic que tem o sentido de juntr ou crescentr e que se represent pelo sinl + (mis). Os números que se dicionm são os termos ou prcels e o resultdo é som ou totl. Pr clculr o volume de um prlelepípedo, multiplic-se medid do comprimento do prlelepípedo ( frente ) pel medid d lrgur (medid lterl ou profundidde) e pel medid d ltur, tods expresss n mesm unidde de medid. Por exemplo: = 5 V = c * l * Clcul mentlmente e regist s soms. Observ o exemplo = = = = = = = = DICA Pr clculr o volume do cubo (um cso prticulr do prlelepípedo), como s medids do comprimento, d lrgur e d ltur são iguis, chmmos-lhe pens rest. Então: V = * * (rest o cubo) A medid do volume, como já prendeste, é express em uniddes cúbics (m³, dm³, cm³). Complet tbel seguinte. Observ o exemplo. 1 + = = = = = = Cubo rest volume 1 cm 1 * 1 * 1 = 1 cm³ rest cm Cubo volume = = = = = = cm 3 cm 5 cm 10 cm Introdução o tem trvés de um questão, tividde ou exercício que mobilizm conhecimentos nteriores n perspetiv do novo tem. Síntese d informção essencil sobre o ssunto. Regrs e procedimentos. Aquisição ds competêncis essenciis sobre esse tem, trvés de um conjunto vrido de proposts de tividdes e exercícios. Embor bordgem sej sequencil dentro de cd tem, os cpítulos e os tems são independentes, pelo que s tividdes poderão ser relizds sequencil ou lterndmente o longo do livro. Pr isso, serão úteis o índice e referênci os tems do Progrm presentdos ns págins seguintes. Mnuel Rngel 3
2 Índice 1 Números e Operções 1.1 Sistem de numerção deciml Leitur de números Numerção romn Numeris ordinis Adição Resolução de problems Subtrção Resolução de problems Multiplicção Resolução de problems Divisão Resolução de problems Múltiplos e divisores Arredondmentos Identificção ds prtes frcionáris Representção de frções n ret numéric Frções equivlentes Ordenção de números frcionários ( Frções com o mesmo denomindor) 1.15 Ordenção de números frcionários ( Frções com o mesmo numerdor) 1.16 Frções própris e frções imprópris Adição e subtrção de números rcionis Multiplicção de números rcionis Divisão de números rcionis Frções decimis Representção de números rcionis por dízims Adição e subtrção de numeris decimis Multiplicção de numeris decimis Divisão de numeris decimis... 79
3 Um frção impróri represent um número inteiro se o numerdor for múltiplo do denomindor. Por exemplo: * 6 = 1 então 1 = = 5 já que 5 * 5 = 5 Repr ind que: O 1 pode ser representdo por qulquer frção que tenh o numerdor igul o denomindor (mbos diferentes de zero). Por exemplo: O zero pode ser representdo por um frção de numerdor zero e denomindor um qulquer número nturl. Por exemplo: 0 8 Circund s frções que representm números inteiros Escreve três frções que representem o número Quis são s frções de denomindor 8 que representm cd um dos seguintes números? Quis são s frções de numerdor 1 que representm cd um dos seguintes números? Escreve um frção de denomindor 5 que sej mior do que e menor do que 5. 58
4 3 Escreve, pr cd cso, frções decimis equivlentes. Observ o exemplo. 1 Números e Operções 10 = = = = 1 10 = = = = = = = = = = = = Escreve, pr cd cso, frções equivlentes, multiplicndo, sucessivmente, mbos os termos d frção por 10. Observ o exemplo. 5 = 0 50 = = = 9 = = 5 35 = = 50 = = 1 = = = = 1 75 = = 5 Simplific s frções. Observ os exemplos = = 10 0 = = = = = = = = = = = = = = 69
5 Cpcidde 1 Observ s dus situções bixo ilustrds. Qunts cixs pequens poderão cber dentro de cd cixote? Situção A Situção B 1 cm 30 cm 7 cm 10 cm 0 cm 60 cm 0 cm 0 cm 15 cm 36 cm 0 cm 1 cm R.: O cixote A poderá levr cixs pequens. cixs pequens. O cixote B poderá levr A cpcidde corresponde o espço disponível dentro de um recipiente ou contentor, ou sej, corresponde o volume interno desse recipiente. Assim, em gerl, referimo-nos à cpcidde de um piscin, de um tnque, de um depósito de águ ou de combustível, de um grrf ou de um copo, de um utotnque, do contentor de um cmião, etc. As uniddes utilizds pr exprimir cpcidde poderão, pois, ser s usds pr o volume. No entnto, e sobretudo pr os líquidos, no Sistem Interncionl de medids, unidde mis comum pr exprimir cpcidde é o litro (símbolo ) e os respetivos múltiplos e submúltiplos. MÚLTIPLOS UNIDADE SUBMÚLTIPLOS k quilolitro 1000 h hectolitro 100 d declitro 10 litro d decilitro c centilitro O litro corresponde, ns uniddes de volume, 1 dm³: 1 = 1 dm³ Então: 00 : 1000 m mililitro 1 10 do do do : 10 : 10 : m³ 1 dm³ 1 cm³ k 1 1 m Apêndice, pág. 156
6 Geometri e Medid Complet tbel, fzendo equivlênci. Grrf de 1 litro Grrf de 1,5 litro Grrfão de 3 litros Grrfão de 5 litros Grrf de 1 de litro (0,5 ) Grrf de 1 de litro (0,5 ) 3 Com águ de um grrf de 0,5 posso encher estes 5 copos pequenos Qul é cpcidde de cd copo? 3.. Quntos copos poderi encher com um grrf de 1,5? 3.3. E com um grrfão de 5, quntos copos iguis poderi encher? Complet s igulddes, convertendo pr s uniddes indicds no exemplo. 1 = 10 d = 100 c = 1000 m = = = 0,5 = = =,5 = = = 6,5 = = = 1 = = =,3 = = = 5 Decompõe. Observ os exemplos. 3,5 k = 3 k + h + 5 d,3 = d d + c 13, c = 35,99 h = 675,3 = 0,75 k = 119
Calculando volumes. Para construir um cubo cuja aresta seja o dobro de a, de quantos cubos de aresta a precisaremos?
A UA UL LA Acesse: http://fuvestibulr.com.br/ Clculndo volumes Pr pensr l Considere um cubo de rest : Pr construir um cubo cuj rest sej o dobro de, de quntos cubos de rest precisremos? l Pegue um cix de
MATEMÁTICA. Professor : Dêner Rocha. Monster Concursos 1
MATEMÁTICA Professor : Dêner Roch Monster Concursos Adição e Subtrção de Números Inteiros ) (+) + (+7) = + + 7 = +0 (tirmos os prentes e conservmos os sinis dos números) b) (-9) + (-8) = - 9-8 = -7 (tirmos
Calculando volumes. Para pensar. Para construir um cubo cuja aresta seja o dobro de a, de quantos cubos de aresta a precisaremos?
A UA UL LA 58 Clculndo volumes Pr pensr l Considere um cubo de rest : Pr construir um cubo cuj rest sej o dobro de, de quntos cubos de rest precisremos? l Pegue um cix de fósforos e um cix de sptos. Considerndo
Progressões Aritméticas
Segund Etp Progressões Aritmétics Definição São sequêncis numérics onde cd elemento, prtir do segundo, é obtido trvés d som de seu ntecessor com um constnte (rzão).,,,,,, 1 3 4 n 1 n 1 1º termo º termo
AULA 1. 1 NÚMEROS E OPERAÇÕES 1.1 Linguagem Matemática
1 NÚMEROS E OPERAÇÕES 1.1 Lingugem Mtemátic AULA 1 1 1.2 Conjuntos Numéricos Chm-se conjunto o grupmento num todo de objetos, bem definidos e discerníveis, de noss percepção ou de nosso entendimento, chmdos
Um disco rígido de 300Gb foi dividido em quatro partições. O conselho directivo ficou. 24, os alunos ficaram com 3 8
GUIÃO REVISÕES Simplificção de expressões Um disco rígido de 00Gb foi dividido em qutro prtições. O conselho directivo ficou com 1 4, os docentes ficrm com 1 4, os lunos ficrm com 8 e o restnte ficou pr
CONJUNTOS NUMÉRICOS NOTAÇÕES BÁSICAS. : Variáveis e parâmetros. : Conjuntos. : Pertence. : Não pertence. : Está contido. : Não está contido.
CONJUNTOS NUMÉRICOS NOTAÇÕES BÁSICAS,,... A, B,... ~ > < : Vriáveis e prâmetros : Conjuntos : Pertence : Não pertence : Está contido : Não está contido : Contém : Não contém : Existe : Não existe : Existe
PLANIFICAÇÃO DE MATEMÁTICA setembro/outubro
AGRUPAMNTO D SCOLAS MARQUÊS D MARIALVA- Cntnhede 1.º ANO D SCOLARIDAD PLANIFICAÇÃO D MATMÁTICA setembr/utubr (GM1) (dptds à unidde) bjets e pnts; Cmprçã de distâncis entre pres de bjets e pnts UNIDAD 1
EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c.
EQUAÇÃO DO GRAU Você já estudou em série nterior s equções do 1 gru, o gru de um equção é ddo pelo mior expoente d vriável, vej lguns exemplos: x + = 3 equção do 1 gru já que o expoente do x é 1 5x 8 =
SERVIÇO PÚBLICO FEDERAL Ministério da Educação
SERVIÇO PÚBLICO FEDERAL Ministério d Educção Universidde Federl do Rio Grnde Universidde Abert do Brsil Administrção Bchreldo Mtemátic pr Ciêncis Sociis Aplicds I Rodrigo Brbos Sores . Mtrizes:.. Introdução:
Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES MATRIZES
Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl - CAPES MATRIZES Prof. Antônio Murício Medeiros Alves Profª Denise Mri Vrell Mrtinez Mtemátic Básic pr Ciêncis Sociis
Material envolvendo estudo de matrizes e determinantes
E. E. E. M. ÁREA DE CONHECIMENTO DE MATEMÁTICA E SUAS TECNOLOGIAS PROFESSORA ALEXANDRA MARIA º TRIMESTRE/ SÉRIE º ANO NOME: Nº TURMA: Mteril envolvendo estudo de mtrizes e determinntes INSTRUÇÕES:. Este
Conjuntos Numéricos e Operações I
Conjuntos Numéricos e Operções I Ao estudr o livro, o luno está sendo conduzido pel mão do utor. Os exercícios lhe fornecem o ensejo de cminhr mis solto e, ssim, ir gnhndo independênci. Pr quem está convencido
Material Teórico - Módulo de Razões e Proporções. Proporções e Conceitos Relacionados. Sétimo Ano do Ensino Fundamental
Mteril Teórico - Módulo de Rzões e Proporções Proporções e Conceitos Relciondos Sétimo Ano do Ensino Fundmentl Prof. Frncisco Bruno Holnd Prof. Antonio Cminh Muniz Neto Portl OBMEP 1 Introdução N ul nterior,
Os números racionais. Capítulo 3
Cpítulo 3 Os números rcionis De modo informl, dizemos que o conjunto Q dos números rcionis é composto pels frções crids prtir de inteiros, desde que o denomindor não sej zero. Assim como fizemos nteriormente,
Sumário. Volta às aulas. Vamos recordar? Regiões planas e seus contornos Números Sólidos geométricos... 29
Sumário Volt às uls. Vmos recordr?... 7 1 Números... 10 Números... ej como tudo começou... 11 Os números de 0 10... 13 A dezen... 18 Os números de 0 1... 1 Números e dinheiro... 23 Ordem nos números...
SÍNTESE DE CONTEÚDO MATEMÁTICA SEGUNDA SÉRIE - ENSINO MÉDIO ASSUNTO : OS PRISMAS (PARTE 2) NOME :...NÚMERO :... TURMA :...
SÍNTESE DE CONTEÚDO MATEMÁTICA SEGUNDA SÉRIE - ENSINO MÉDIO ASSUNTO : OS PRISMAS (PARTE ) 1 NOME :...NÚMERO :... TURMA :... 6) Áres relcionds os prisms : ) Áre d bse : É áre do polígono que represent bse.
1. Conceito de logaritmo
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Logritmos Prof.: Rogério
ÁLGEBRA LINEAR Equações Lineares na Álgebra Linear EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS
EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS Equção Liner * Sej,,,...,, (números reis) e n (n ) 2 3 n x, x, x,..., x (números reis) 2 3 n Chm-se equção Liner sobre
Revisão EXAMES FINAIS Data: 2015.
Revisão EXAMES FINAIS Dt: 0. Componente Curriculr: Mtemátic Ano: 8º Turms : 8 A, 8 B e 8 C Professor (): Anelise Bruch DICAS Use s eplicções que form copids no cderno; Use e buse do livro didático, nele
PARTE I. LISTA PREPARATÓRIA PARA RECUPERAÇÃO FINAL MATEMÁTICA (8º ano)
PARTE I 1) Em 1940 populção brsileir er de 41 milhões de hbitntes. Em 1950 pssou pr 5 milhões. Clcule o umento populcionl em porcentgem ness décd. 6) Considere o heágono composto por dois retângulos e
Matrizes. Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Márcia A.F. Dias de Moraes. Matrizes Conceitos Básicos
Mtemátic pr Economists LES uls e Mtrizes Ching Cpítulos e Usos em economi Mtrizes ) Resolução sistems lineres ) Econometri ) Mtriz Insumo Produto Márci.F. Dis de Mores Álgebr Mtricil Conceitos Básicos
LISTA PREPARATÓRIA PARA RECUPERAÇÃO FINAL MATEMÁTICA (9º ano)
PARTE I ) Determine s potêncis: ) 4 = b) - = ) Escrev usndo potênci de bse 0: ) 7 bilhões: b) um milionésimo: ) Trnsforme os números ddos em potencições e simplifique epressão: 0000000 00000 5 = 4) Escrev
Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Luiz Fernando Satolo
Mtemátic pr Economists LES Auls 5 e Mtrizes Ching Cpítulos e 5 Luiz Fernndo Stolo Mtrizes Usos em economi ) Resolução sistems lineres ) Econometri ) Mtriz Insumo Produto Álgebr Mtricil Conceitos Básicos
E m Física chamam-se grandezas àquelas propriedades de um sistema físico
Bertolo Apêndice A 1 Vetores E m Físic chmm-se grndezs àquels proprieddes de um sistem físico que podem ser medids. Els vrim durnte um fenômeno que ocorre com o sistem, e se relcionm formndo s leis físics.
a) 3 ( 2) = d) 4 + ( 3) = g) = b) 4 5 = e) 2 5 = h) = c) = f) = i) =
List Mtemátic -) Efetue s dições e subtrções: ) ( ) = d) + ( ) = g) + 7 = b) = e) = h) + = c) 7 + = f) + = i) 7 = ) Efetue s multiplicções e divisões: ).( ) = d).( ) = g) ( ) = b).( 7) = e).( 6) = h) (
COLÉGIO OBJETIVO JÚNIOR
COLÉGIO OJETIVO JÚNIOR NOME: N. o : DT: / /0 FOLHETO DE MTEMÁTIC (V.C. E R.V.) 9. o NO Este folheto é um roteiro pr você recuperr o conteúdo trblhdo em 0. Como ele vi servir de bse pr você estudr pr s
Conjuntos Numéricos. Conjuntos Numéricos
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA.. Proprieddes dos números
Tópicos Especiais de Álgebra Linear Tema # 2. Resolução de problema que conduzem a s.e.l. com única solução. Introdução à Resolução de Problemas
Tópicos Especiis de Álgebr Liner Tem # 2. Resolução de problem que conduzem s.e.l. com únic solução Assunto: Resolução de problems que conduzem Sistem de Equções Lineres utilizndo invers d mtriz. Introdução
Razão entre dois números é o quociente do primeiro pelo segundo número. a : b ou. antecedente. a b. consequente
1 PROPORCIONALIDADE Rzão Rzão entre dois números é o quociente do primeiro pelo segundo número. Em um rzão A rzão temos que: ntecedente é lid como está pr. : ou consequente Proporção Chmmos de proporção
2. Prisma de base hexagonal: formado 8 faces, 2 hexágonos (bases), 6 retângulos (faces laterais).
unifmu Nome: Professor: Ricrdo Luís de Souz Curso de Design Mtemátic Aplicd Atividde Explortóri V Turm: Dt: SÓLIDOS GEOMÉTRICOS: CÁLCULO DE ÁREA SUPERFICIAL E DE VOLUME Objetivo: Conecer e nomer os principis
Aula 1 - POTI = Produtos Notáveis
Aul 1 - POTI = Produtos Notáveis O que temos seguir são s demonstrções lgébrics dos sete principis produtos notáveis e tmbém prov geométric dos três primeiros. 1) Qudrdo d Som ( + b) = ( + b) * ( + b)
têm, em média 13 anos. Se entrar na sala um rapaz de 23 anos, qual passa a ser a média das idades do grupo? Registree seu raciocínio utilizado.
ÃO FINAL MATEMÁTICA (8º no) PARTE I ) Em 90 populção rsileir er de milhões de hitntes. Em 950 pssou pr 5 milhões. Clcule o umento populcionl em porcentgem ness décd. ) Num microempres há 8 funcionários,
a x = é solução da equação b = 19. O valor de x + y é: a + b é: Professor Docente I - CONHECIMENTOS ESPECÍFICOS 26. A fração irredutível
CONHECIMENTOS ESPECÍFICOS 6. A frção irredutível O vlor de A) 8 B) 7 66 8 9 = 6. + b = é solução d equção b 7. Sejm e ynúmeros reis, tis que + y A) 6 B) 7 78 8 88 = 9. O vlor de + y e 8. Sejm e b números
se vai Devagar Devagar se vai longe longe...
Compelm M et e tn át os de M ic Devgr Devgr se se vi vi o o longe... longe 130 ) Describe the pttern by telling how ech ttribute chnges. A c) Respost possível: b B B B A b b... A b) Drw or describe the
NÃO existe raiz real de um número negativo se o índice do radical for par.
1 RADICIAÇÃO A rdicição é operção invers d potencição. Sbemos que: ) b) Sendo e b números reis positivos e n um número inteiro mior que 1, temos, por definição: sinl do rdicl n índice Qundo o índice é,
Faça no caderno Vá aos plantões
LISTA PREPARATÓRIA PARA RECUPERAÇÃO FINAL MATEMÁTICA (8º no) Fç no cderno Vá os plntões PARTE I ) Em 90 populção rsileir er de milhões de hitntes. Em 950 pssou pr 5 milhões. Clcule o umento populcionl
CONJUNTOS NUMÉRICOS Símbolos Matemáticos
CONJUNTOS NUMÉRICOS Símolos Mtemáticos,,... vriáveis e prâmetros igul A, B,... conjuntos diferente pertence > mior que não pertence < menor que está contido mior ou igul não está contido menor ou igul
Hewlett-Packard PORCENTAGEM. Aulas 01 a 04. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos
Hewlett-Pckrd PORCENTAGEM Auls 01 04 Elson Rodrigues, Gbriel Crvlho e Pulo Luiz Rmos Sumário PORCENTAGEM... 1 COMPARANDO VALORES - Inspirção... 1 Porcentgem Definição:... 1... 1 UM VALOR PERCENTUAL DE
Unidade 8 Geometria: circunferência
Sugestões de tividdes Unidde 8 Geometri: circunferênci 8 MTMÁTI Mtemátic. s dus circunferêncis n figur seguir são tngentes externmente. 3. N figur estão representdos um ângulo inscrito com vértice em P
Diogo Pinheiro Fernandes Pedrosa
Integrção Numéric Diogo Pinheiro Fernndes Pedros Universidde Federl do Rio Grnde do Norte Centro de Tecnologi Deprtmento de Engenhri de Computção e Automção http://www.dc.ufrn.br/ 1 Introdução O conceito
Recordando produtos notáveis
Recordndo produtos notáveis A UUL AL A Desde ul 3 estmos usndo letrs pr representr números desconhecidos. Hoje você sbe, por exemplo, que solução d equção 2x + 3 = 19 é x = 8, ou sej, o número 8 é o único
3 Teoria dos Conjuntos Fuzzy
0 Teori dos Conjuntos Fuzzy presentm-se qui lguns conceitos d teori de conjuntos fuzzy que serão necessários pr o desenvolvimento e compreensão do modelo proposto (cpítulo 5). teori de conjuntos fuzzy
Trigonometria FÓRMULAS PARA AJUDÁ-LO EM TRIGONOMETRIA
Trigonometri é o estudo dos triângulos, que contêm ângulos, clro. Conheç lgums regrs especiis pr ângulos e váris outrs funções, definições e trnslções importntes. Senos e cossenos são dus funções trigonométrics
d) xy 2 h) x c a b c) d) e) 20
AS RESPOSTAS ESTÃO NO FINAL DOS EXERCÍCIOS. Rdicis ) Escrev em form de potênci com epoente frcionário ) Escrev em form de rdicl ) Dividindo o índice do rdicl e os epoentes de todos os ftores do rdicndo
Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Curitiba MATEMÁTICA BÁSICA NOTAS DE AULA
Ministério d Educção Universidde Tecnológic Federl do Prná Cmpus Curitib MATEMÁTICA BÁSICA NOTAS DE AULA SUMÁRIO. FRAÇÕES.... Adição e Subtrção.... Multiplicção.... Divisão.... Número Misto.... Conversão
ESTATÍSTICA APLICADA. 1 Introdução à Estatística. 1.1 Definição
ESTATÍSTICA APLICADA 1 Introdução à Esttístic 1.1 Definição Esttístic é um áre do conhecimento que trduz ftos prtir de nálise de ddos numéricos. Surgiu d necessidde de mnipulr os ddos coletdos, com o objetivo
Integral. (1) Queremos calcular o valor médio da temperatura ao longo do dia. O valor. a i
Integrl Noção de Integrl. Integrl é o nálogo pr unções d noção de som. Ddos n números 1, 2,..., n, podemos tomr su som 1 + 2 +... + n = i. O integrl de = té = b dum unção contínu é um mneir de somr todos
Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES DETERMINANTES
Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl - APES DETERMINANTES Prof Antônio Murício Medeiros Alves Profª Denise Mri Vrell Mrtinez Mtemátic Básic pr iêncis
Roteiro da aula. MA091 Matemática básica. Divisão e produto. Francisco A. M. Gomes. Março de 2016 4 Exercícios
Roteiro d ul MA09 Mtemátic ásic Aul Divisão. Operções com frções Frncisco A. M. Gomes UNICAMP - IMECC Mrço de 06 Divisão e frções Multiplicção e divisão de frções Som e sutrção de frções Frncisco A. M.
Solução da prova da 1 fase OBMEP 2013 Nível 1
Solução d prov d fse OBMEP 0 Nível QUESTÃO Qundo brir fit métric, Don Céli verá o trecho d fit representdo n figur; mnch cinzent corresponde à porção d fit que estv em volt d cintur de Mrt. A medid d cintur
Introdução à Integral Definida. Aula 04 Matemática II Agronomia Prof. Danilene Donin Berticelli
Introdução à Integrl Definid Aul 04 Mtemátic II Agronomi Prof. Dnilene Donin Berticelli Áre Desde os tempos mis ntigos os mtemáticos se preocupm com o prolem de determinr áre de um figur pln. O procedimento
Disponível em: < Acesso em: 1 nov A seja igual ao oposto aditivo
RESOLUÇÃO D VLIÇÃO DE MTEMÁTIC-TIPOCONSULTEC-UNIDDE I- -EM PROFESSOR MRI NTÔNI CONCEIÇÃO GOUVEI PESQUIS: PROFESSOR WLTER PORTO - (UNEB) Disponível em: cesso em: nov
é: y y x y 31 2 d) 18 e) O algarismo das unidades de é igual a: a) 1 b) 3 c) 5 d) 7 e) 9
0. Dentre s firmtivs bio, ssinle quel que NÃO é verddeir pr todo nturl n: - n = b - n- = - n+ n n c d - n = -- n e - n- = -- n 07. O lgrismo ds uniddes de 00. 7 00. 00 é igul : b c d 7 e 0. O vlor de 6
Potencial Elétrico. Evandro Bastos dos Santos. 14 de Março de 2017
Potencil Elétrico Evndro Bstos dos Sntos 14 de Mrço de 2017 1 Energi Potencil Elétric Vmos começr fzendo um nlogi mecânic. Pr um corpo cindo em um cmpo grvitcionl g, prtir de um ltur h i té um ltur h f,
UNITAU APOSTILA. SUCESSÃO, PA e PG PROF. CARLINHOS
ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA SUCESSÃO, PA e PG PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: blog.portlpositivo.com.br/cpitcr 1 SUCESSÃO OU SEQUENCIA NUMÉRICA Sucessão ou seqüênci
DECivil Secção de Mecânica Estrutural e Estruturas MECÂNICA I ENUNCIADOS DE PROBLEMAS
Eivil Secção de Mecânic Estruturl e Estruturs MEÂNI I ENUNIOS E ROLEMS Fevereiro de 2010 ÍTULO 3 ROLEM 3.1 onsidere plc em form de L, que fz prte d fundção em ensoleirmento gerl de um edifício, e que está
Diagrama de Blocos. Estruturas de Sistemas Discretos. Grafo de Fluxo. Sistemas IIR Forma Directa I
Estruturs de Sistems Discretos Luís Clds de Oliveir Digrm de Blocos As equções às diferençs podem ser representds num digrm de locos com símolos pr:. Representções gráfics ds equções às diferençs som de
FUNÇÃO DO 2º GRAU OU QUADRÁTICA
FUNÇÃO DO º GRAU OU QUADRÁTICA - Definição É tod função do tipo f() = + + c, com *, e c. c y Eemplos,, c números e coeficient termo vr vr iável iável es independen reis indepemdem dependente de te ou te
CÁLCULO I. 1 Área entre Curvas. Objetivos da Aula. Aula n o 24: Área entre Curvas, Comprimento de Arco e Trabalho. Calcular área entre curvas;
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeid Aul n o : Áre entre Curvs, Comprimento de Arco e Trblho Objetivos d Aul Clculr áre entre curvs; Clculr o comprimento de rco; Denir Trblho. 1 Áre entre
Prova Escrita de MATEMÁTICA A - 12o Ano a Fase
Prov Escrit de MATEMÁTICA A - o Ano 0 - Fse Propost de resolução GRUPO I. Como comissão deve ter etmente mulheres, num totl de pessos, será constituíd por um único homem. Logo, como eistem 6 homens no
I REVISÃO DE CONCEITOS BÁSICOS
I REVISÃO DE CONCEITOS BÁSICOS. Elementos Básicos de Mtemátic. Regrs de Sinis ADIÇÃO: - qundo os números tem o mesmo sinl, somm-se os módulos e tribui-se o resultdo o sinl comum. E: (+)+(+9)=+4 ou 4 (-)+(-)=
Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais
POTÊNCIAS A potênci de epoente n ( n nturl mior que ) do número, representd por n, é o produto de n ftores iguis. n =...... ( n ftores) é chmdo de bse n é chmdo de epoente Eemplos =... = 8 =... = PROPRIEDADES
Disciplina de Matemática Aplicada I Curso Técnico em Mecânica Profª Valéria Espíndola Lessa APOSTILA 1
Disciplin de Mtemátic Aplicd I Curso Técnico em Mecânic Profª Vléri Espíndol Less APOSTILA Frções Decimis Potêncis Rzão e Proporção Porcentgem Regr de Três Erechim, 0 FRAÇÕES E NÚMEROS DECIMAIS Frções
3.3 Autómatos finitos não determinísticos com transições por ε (AFND-ε)
TRANSIÇÕES POR (AFND-) 43 3.3 Autómtos finitos não determinísticos com trnsições por (AFND-) Vmos gor considerr utómtos finitos que podem mudr de estdo sem consumir qulquer símbolo, isto é, são utómtos
81,9(56,'$'( )('(5$/ '2 5,2 '( -$1(,52 &21&8562 '( 6(/(d 2 0$7(0É7,&$
81,9(56,'$'( )('(5$/ ' 5, '( -$1(,5 &1&856 '( 6(/(d 0$7(0É7,&$ -867,),48( 7'$6 $6 68$6 5(667$6 De um retângulo de 18 cm de lrgur e 48 cm de comprimento form retirdos dois qudrdos de ldos iguis 7 cm, como
CPV O Cursinho que Mais Aprova na GV
CPV O Cursinho que Mis Aprov n GV FGV ADM 04/dezembro/016 MATEMÁTICA APLICADA 01. ) Represente grficmente no plno crtesino função: P(t) = t 4t + 10 se t 4 1 t se t > 4 Se função P(t), em centens de reis,
Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I
scol Secundári com º ciclo. inis 0º no de Mtemátic TM MTRI N PLN N SPÇ I s questões 5 são de escolh múltipl TP nº 5 entregr no di 0 ª prte Pr cd um dels são indicds qutro lterntivs, ds quis só um está
Área entre curvas e a Integral definida
Universidde de Brsíli Deprtmento de Mtemátic Cálculo Áre entre curvs e Integrl definid Sej S região do plno delimitd pels curvs y = f(x) e y = g(x) e s rets verticis x = e x = b, onde f e g são funções
GEOMETRIA ESPACIAL. 1) O número de vértices de um dodecaedro formado por triângulos é. 2) O número de diagonais de um prisma octogonal regular é
GEOMETRIA ESPACIAL 1) O número de vértices de um dodecedro formdo por triângulos é () 6 (b) 8 (c) 10 (d) 15 (e) 0 ) O número de digonis de um prism octogonl regulr é () 0 (b) (c) 6 (d) 40 (e) 60 ) (UFRGS)
Nota de aula_2 2- FUNÇÃO POLINOMIAL
Universidde Tecnológic Federl do Prná Cmpus Curiti Prof. Lucine Deprtmento Acdêmico de Mtemátic Not de ul_ - FUNÇÃO POLINOMIAL Definição 8: Função polinomil com um vriável ou simplesmente função polinomil
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA AGRÍCOLA
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA AGRÍCOLA Editl PPGEA 04/2016: http://portl.ufgd.edu.br/pos-grduco/mestrdo-engenhrigricol 1.1 Conttos: Horário de tendimento d secretri: d 8 s 11 h e ds 13 s 16 h;
Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução
(9) - www.elitecmpins.com.br O ELITE RESOLVE MATEMÁTICA QUESTÃO Se Améli der R$, Lúci, então mbs ficrão com mesm qunti. Se Mri der um terço do que tem Lúci, então est ficrá com R$, mis do que Améli. Se
Prova Escrita de MATEMÁTICA A - 12o Ano a Fase
Prov Escrit de MATEMÁTICA A - 1o Ano 017-1 Fse Propost de resolução GRUP I 1. s números nturis de qutro lgrismos que se podem formr com os lgrismos de 1 9 e que são múltiplos de, são constituídos por 3
( 2 5 ) simplificando a fração. Matemática A Extensivo V. 8 GABARITO. Matemática A. Exercícios. (( ) ) trocando a base log 5 01) B 04) B.
Mtemátic A Etensivo V. Eercícios 0) B 0) B f() = I. = y = 6 6 = ftorndo 6 = = II. = y = 6 = 6 = pel propriedde N = N = De (I) e (II) podemos firmr que =, então: ) 6 = = 6 ftorndo 6 = = pel propriedde N
CÁLCULO I. 1 Funções denidas por uma integral
CÁLCULO I Prof. Mrcos Diniz Prof. André Almeid Prof. Edilson Neri Júnior Prof. Emerson Veig Prof. Tigo Coelho Aul n o 26: Teorem do Vlor Médio pr Integris. Teorem Fundmentl do Cálculo II. Funções dds por
MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON
MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON [email protected] MATRIZES Definição e Notção... 11 21 m1 12... 22 m2............ 1n.. 2n. mn Chmmos de Mtriz todo conjunto de vlores, dispostos
Física Geral e Experimental I (2011/01)
Diretori de Ciêncis Exts Lbortório de Físic Roteiro Físic Gerl e Experimentl I (/ Experimento: Cinemátic do M. R. U. e M. R. U. V. . Cinemátic do M.R.U. e do M.R.U.V. Nest tref serão borddos os seguintes
Escola Secundária/2,3 da Sé-Lamego Ficha de Trabalho de Matemática A Ano Lectivo 2011/12 Distribuição de probabilidades 12.º Ano
Escol Secundári/, d Sé-Lmego Fich de Trlho de Mtemátic A Ano Lectivo 0/ Distriuição de proiliddes.º Ano Nome: N.º: Turm:. Num turm do.º no, distriuição dos lunos por idde e sexo é seguinte: Pr formr um
