Borboletas da vida. Direção de Vagner de Almeida. Rio de Janeiro: Abia, 2004, 38 min.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Borboletas da vida. Direção de Vagner de Almeida. Rio de Janeiro: Abia, 2004, 38 min."

Transcrição

1 Borbolts d vid. Dirção Vgnr Almid. Rio Jniro: Abi, 2004, 38 min. BASTA um di. Dirção Vgnr Almid. Rio Jniro: Abi, 2006, 55min. Brnic Bnto Univrsid Doutor m Brclon. Sociologi Autor pl Univrsid s livr A Rinvnção Brsíli/ O corpo: é sxulid trnsxulid. gênro Scrtári n xpriênci Grl d trnsxul Associção Brsilir Estus d Homocultur (ABEH). Entrnoitodi:prigsgênr VgnrAlmid,sãofundmntisprvisibilizrviolêncicontrgys Os cumntári Borbolts d vid Bst um di, dirtor ntrvists trvstis/trnsxuismumrgiãopriféricriojniro.enqunto finitivmnt um Borbolts intid d trvsti, vid rltm pois sbm sus ms ss opção m ssumir lhscustrvid,guncumntáriorvlssflsnuncim. porá usênci Históris Est, trvstis/trnsxuis s violçõs cotidins ssssinds, mrcm prsguição strutur d nrrtiv políci, Bstumdi. xcção As ntrvists momnto m Borbolts ocorr d mtmorf vid são rlizds s borbolts durnt o pom di, à pouc,sgurmcompixãusbolss.emumpnoqurto,jánosit sir sus csul pr montr-s divrtir-s no Sit Club. Chgm um Club, mig comç jud mtmorf. outr splhá-ls Os olh mlhor, são stcs o btom com é przrmnt sombrs zuis, (mis-clçs), sliz n lábi. o corpão(o Ess bols vsti mágic contorn), crrg mulhr sj, instntân, prnõs prótssintitáris. s Brnic Bnto 253

2 254 cumntári. Noit Um di s são ntrvists tmp Borbolts mrcm d vid difrncim firm: Sou roupsfminins]noclçdãonoviguçu!. fminin à noit. Outro: Imgin s u ndr ssim [mquid usn strtégisncssárisprsgrntirvid.muitfirmm: Nãouum Pr hbitr o di, o lugr s normis, há um conjunto fl,comoumrjiçãoàstrvstis.essprimirlitursprcqun trvsti.essnunciçãoporisrintrprtd,forcontxtocild stblcm outrs pontm com dmirção s norms sntm gênro pls não /s trvstis. prmitm A ngocição comçr procsstrnsformçãocorporl. Qun Um o corpo s ntrvists comçou mudr, firm sus colocou clints um próts slão ixrm silicon. frqüntá-lo. El s prgunt: Qum vi pgr minhs conts? Como vou trvsti. vivr?.issignificstángocinomlhormomntoprssumir-s coxistênci Bich-bof prformncs é ctgori msculins intitári fminins. utilizd A trnsformção pr significr m mulhrcontcmtrminslugrs,smprànoit. comprnromnuncinsflsborboltsdvid.ncurod No cumntário Bst um di, prc o dirtor busc fzm noit,câmrncontr ponto n Vi Dutr. strvstis Finlmnt, trm trblhmnomrc unid, o momnto sxo poimntdstrvstismbstumdi. ncontro ntr o m nunci violênci mtrilizd trvés s mstuprousmcmisinh;lpôsrmmminhboc;mbtumuito Osrltdstrvstistrblhrssxãsustrs: Um jogmbombs. n cbç; m stuprou m btumuito; jogouocrrom cim nós; mudnçscorporisporrmvnrsxo,qundinâmicéinvrs. Muits pss crditm s trvstis trnsxuis fzm s m Apssgmumgênroproutro,ngçãogênroimpto,jo mrgns.otrblhxuléúnicltrntivxistprsobrvivrm vivr cotidinmnt s prformncs fminins mpurrm-ns pr s Borboltsdvidfirmmgtrimsrtrvstis,mssbmnão vivrmnogênrointific.várintrvistsmsuspoimntm consguirimsobrvivr. Fluminnscrioc.Astrvstissbmsusvidsnãotêmomsmovlor Os ssssint trvstis é um prátic comum n Bixd

3 Público. ds pss Ess lor hbitm consciênci o di, sbm put sus não vids. pom Não fzm rcorrr comprs o Por mntimnt pr smn ou mês, finl, pom sir pr trblhr não voltr.mormndmmgrup. ssssindstrvstis/trnsxuis? Portntoódio?Ossviolêncinrvl?Ovêm ssssint contr s trvstis trnsxuis Comproduzssódio?Aviolêncis brutlidsrquintscruld.apolíci,qunnãocumprsuppl é, grlmnt, crctrizd por invstigrpunirculps,tmbémstorncúmplicsssssin. rgião,rvl-ndimnsãodsumnizçãodstrvstis/trnsxuis.su O cso Vnss, um ds muits trvstis ssssinds nss nocixão.vnssfointrrdcomcbçtort,obrçotorto,sroups corpoficoustdisnoiml,sci.nãofoitoc,limpo,nmptorto umtrtmntohumnizocorpovnss,tmbémstornmcúmplics. sujssngu.ocorptvcompon-s.ostécnicsiml,ongr rconhcimnto.ardprd,mlncoliolutócontcmpors Ochoro,olutorituiscrcmmortsãotsociis lguém.qunmínimcuidscorpmvidnããoftivs, rconhc minh vid pr lgum cois com o sprcimnto onão-rconhcimntignificimpsibiliddcomunicção. qunocorpoécoisific,rtirolqulrpsibilidhumnid rcolhis A funcionári com pá tão dilcrs. um funrári Você rlt: Muits não rconhc vzs nd. Os corp policiis são firmm. olhmprocorpocomfsumcchorro.erpnsumtrvco, Asumnizçãodstrvstistrnsxuis plpolíci,pltécniciml)lvm-mpnsrstmdint Ossucssivssssintummsmpsso(plssssin, tods um comprnsão s pss.a trvsti humnid não é um muito sr rstrit humno pr limitd o primiro não ssssino, nglob bsolv nãoéumsrhumnopropolicil,tmpoucoprtécniciml.isso humno, mtouumtrvsti. imditmnt o primiro ssssino, pois l não mtou um sr trnsxuis. Aprguntmuitspssfzméporxistmtrvstis Quis motiv lvm um psso sjr trnsformr o Brnic Bnto 255

4 256 impt? corpo Esss rivindicr prgunts um intid já rvlm gênro impsibilid divrs dl d xistênci lh foi pssvivmogênrolémrfrntnturliz. struturs A norm biológics. gênro S tm stblc pênis, som som homns, trmins portnto, por nss comptitiv, tiv htrsxuis. A vgin signific o corpo é frágil, viris, pssivo,pntrávl.osviodnorm(pênis/homm/msculino/htrsxul sãomúltipls:umsurrd/omã/pi,uminsultovizinho,xpulsãocs vgin/mulhr/fminino/htrsxul) é obsrv cstig. As puniçõs Asnormsgênrodistribumcorpmfunçãodnormlidls ou/dscol,omprgonãocitcomportmntnão convncionis. prsntm.quntomiorviodnorm,miorocstigo. gênrofinirlugrs,sfls,gstpsívisimpsívis.prc Oscumntáripontmxtmntcpcidsnorms srávítimdviolênci,msporáhbitrodi.nontnto,trnsitrntro háumhirrqui:ogynãoousromprlimitsbinárigênro pição msculinoofminino,usrroupsfminins,pôrsiliconsignificocupr cmds mis ou nívis infrior infriorizção sumnizd sobrpts. nss hirrqui. O fminino É como fini s houvss nturlmnt infrior, qun s sloc corp fminin pr corp como msculinpotncilizssinfriorid. homns-pênismulhrs-vgins.romprconstruirnovsignificspr A concpção humnid é binári nturlizd. Divi-s m Qun gênr, um slocr trvsti é sxulid ssssind, d o/ mtriz ssssin/o htrsxul stá gin é str m m nom risco. dsntrvistdsncontouprcisouficrintrndmumhpitl,no sssnorms.nssconcpçãobinári,nãoháspçoprtrânsit.um tinhlugrprmimnohpitl. ntnto,nãopôficrnnfrmrifminintmpouconmsculin: Não públics,scol,vid.dvm,portnto,snturlizr,problmtizr Ess concpção binári humnid strutur s polítics disputnumnovconcpçãohumnid. noção humnid strutur o Est s rlçõs sociis. Estm omissão/cumplicidesttmbémésimilr.aformcomojustiç AviolêncirtrtdncumntáriécorriirmtooBrsil trtssscsmonstrháhirrquidsmorts:lgumsmrcm ssssintovtrsoprrsdiritoécondutdvítimmvid. mistnçãooutrs.umscritériprsfinirtnçãocd

5 ocupmpiçãomisinfrior.écomhouvssumsubtxtondizr: Nss crul txonomi, ssssint ds trvstis trnsxuis (r)produzin Qum mnu s um comportr pdgogi ssim!. d Ess intolrânci. txonomi, m Nss rlid, lógic cb sumnizção,vítimstrnsformmré. mnhvzirvítimqulrhumnid.sguinsslógic, Pr grntir s coiss fim como stão, há um procsso rduzisujittêmtributlnçmotopodhirrqui:são psibilidsrivindicrdirithumnsrstringumgrupomuito conômic/intlctul/polític.conformogrufstmntsspont htrsxuis, brnc, homns msculin, mmbr d lit sfr qulificrs s dirit humnid, rivindicá-l. rduz-s Os dirit cpcid humn o sujito s trnsformm, ntrr n nssprocsso,numrco-íris:linsvr,impsívlslcnçr. tm ds Qunts prcis. trvstis Sbm trnsxuis s já morts morrrm? por crims Não sbm. homofobi, Não trnsfobi Pouc/s ssssin/s lsbofobi não chgm chgm bnc s constituir s réus, m procss qus criminis. connção por ss tipo crim. Lmbro um mig trnsxul nunc há stuprd por um conhci vrr su cid. Ess violção, como foi nlgciuéficriprs,lnxpliccomclrzstontnt. tntsoutrs,jmisprcrámqulrsttístic.porquê? Sufs pl humnizção BorboltsdvidBstumdisãofundmntisnnslut significshgmônicfinmvidpúblicprivd. s Dirit Humn n problmtizção s Brnic Bnto 257

Fabiano Gontijo. fgontijo@hotmail.com. Graduada em Filosofia pela Universidade Federal do Rio de Janeiro

Fabiano Gontijo. fgontijo@hotmail.com. Graduada em Filosofia pela Universidade Federal do Rio de Janeiro UZIEL, Ann Pul. Rio Homossxulid Jniro: Grmond, ção. 2007. Fbino Gontijo Doutor m Antropologi m pl Scincs Écol s Socils Huts Frnç. Étus Profssor Adjunto Bolsist Antropologi Produtivid d m Univrsid Psquis

Leia mais

Regras. Resumo do Jogo Resumo do Jogo. Conteúdo. Conteúdo. Objetivo FRENTE do Jogo

Regras. Resumo do Jogo Resumo do Jogo. Conteúdo. Conteúdo. Objetivo FRENTE do Jogo Resumo do Jogo Resumo do Jogo Regrs -Qundo for seu turno, você deve jogr um de sus crts no «ponto n linh do tempo» que estej correto. -Se você jogr crt corretmente, terá um crt menos à su frente. -Se você

Leia mais

UTL Faculdade de Motricidade Humana. Mestrado em Reabilitação Psicomotora. Estágio CERCI Lisboa

UTL Faculdade de Motricidade Humana. Mestrado em Reabilitação Psicomotora. Estágio CERCI Lisboa UTL Fculd Motricid Humn Mstrdo m Rbilitção Psicomotor Estágio CERCI Lisbo Sssão Activid no Mio Aquático 16/11/2011 Clint: C.M., L.V., A.E., F.C. S.C. domínio Nom Dscrição Obj. Esp. Mtriis Estrtégis Critério

Leia mais

Eu sou feliz, tu és feliz CD Liturgia II (Caderno de partituras) Coordenação: Ir. Miria T. Kolling

Eu sou feliz, tu és feliz CD Liturgia II (Caderno de partituras) Coordenação: Ir. Miria T. Kolling Eu su iz, s iz Lirgi II (drn d prtirs) rdnçã: Ir. Miri T. King 1) Eu su iz, s iz (brr) & # #2 4. _ k.... k. 1 Eu su "Eu su iz, s iz!" ( "Lirgi II" Puus) iz, s _ iz, & # º #.. b... _ k _. Em cm Pi n cn

Leia mais

Semelhança e áreas 1,5

Semelhança e áreas 1,5 A UA UL LA Semelhnç e áres Introdução N Aul 17, estudmos o Teorem de Tles e semelhnç de triângulos. Nest ul, vmos tornr mis gerl o conceito de semelhnç e ver como se comportm s áres de figurs semelhntes.

Leia mais

CASA DE DAVI CD VOLTARÁ PARA REINAR 1. DEUS, TU ÉS MEU DEUS. E B C#m A DEUS, TU ÉS MEU DEUS E SENHOR DA TERRA

CASA DE DAVI CD VOLTARÁ PARA REINAR 1. DEUS, TU ÉS MEU DEUS. E B C#m A DEUS, TU ÉS MEU DEUS E SENHOR DA TERRA S VI VOLTRÁ PR RINR 1. US, TU ÉS MU US #m US, TU ÉS MU US SNHOR TRR ÉUS MR U T LOUVRI #m SM TI NÃO POSSO VIVR M HGO TI OM LGRI MOR NST NOV NÇÃO #m #m OH...OH...OH LVNTO MINH VOZ #m LVNTO MINHS MÃOS #m

Leia mais

Taxi: Opção mais rápida e cara. Deve ser evitada, a não ser que você privilegie o conforte

Taxi: Opção mais rápida e cara. Deve ser evitada, a não ser que você privilegie o conforte Vi vijr pr? Situ-s com nosss dics roportos trns mtrôs Chgd m Avião: Aroporto Hthrow: Situdo crc 20 km ost um dos mis movim ntdos d Europ possui cinco trminis Dpois pssr pls formlids imigrção pgr su bggm

Leia mais

Agora imagine pegar essas ondas com seus amigos

Agora imagine pegar essas ondas com seus amigos s v i d l M Com GABRIEL PASTORI Com certez você já sonhou com esse lugr... Agor imgine pegr esss onds com seus migos em um bot trip e um profissionl pr dr dics de surf... de do i Fer 9 1 9 0 UTubro O A

Leia mais

CAPÍTULO 9 COORDENADAS POLARES

CAPÍTULO 9 COORDENADAS POLARES Luiz Frncisco d Cruz Drtmnto d Mtmátic Uns/Buru CAPÍTULO 9 COORDENADAS POLARES O lno, tmbém chmdo d R, ond R RR {(,)/, R}, ou sj, o roduto crtsino d R or R, é o conjunto d todos os rs ordndos (,), R El

Leia mais

Regulamento Promoção Promo Dotz

Regulamento Promoção Promo Dotz Regulmento Promoção Promo Dotz 1. Empres Promotor 1.1 Est promoção é relizd pel CBSM - Compnhi Brsileir de Soluções de Mrketing, dministrdor do Progrm Dotz, com endereço n Ru Joquim Florino n. 533 / 15º

Leia mais

BALIZA. Cor central.da PLAYMOBIL podes fazer passes. verde-claro curtos, passes longos e, até, rematar para com a nova função de rotação.

BALIZA. Cor central.da PLAYMOBIL podes fazer passes. verde-claro curtos, passes longos e, até, rematar para com a nova função de rotação. PONTAP DE SAÍDA TCNICAS DE Pntpé bliz Est lnc cntc n iníci jg pós cd gl. Est Gnhs cntr p dis"d jg- bl qund cm dis st jgdrs cir list d cmp tu d quip: pntpé é dd REMATE ntr d círcul cntrl. Os jgdrs jg cm

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA FUVEST 2016 - FASE 1. POR PROFA. MARIA ANTÔNIA CONCEICÃO GOUVEIA.

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA FUVEST 2016 - FASE 1. POR PROFA. MARIA ANTÔNIA CONCEICÃO GOUVEIA. 6 ) RESOLUÇÃO DA PROVA DE MATEMÁTICA DA FUVEST 06 - FASE. POR PROFA. MARIA ANTÔNIA CONCEICÃO GOUVEIA. 0 De 869 té hoje, ocorrerm s seguintes munçs e moe no Brsil: () em 94, foi crio o cruzeiro, c cruzeiro

Leia mais

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A.

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A. MÓDULO - AULA Aul Técnics de Integrção Substituição Trigonométric Objetivo Conhecer técnic de integrção chmd substituição trigonométric. Introdução Você prendeu, no Cálculo I, que integrl de um função

Leia mais

(x, y) dy. (x, y) dy =

(x, y) dy. (x, y) dy = Seção 7 Função Gm A expressão n! = 1 3... n (1 está definid pens pr vlores inteiros positivos de n. Um primeir extensão é feit dizendo que! = 1. Ms queremos estender noção de ftoril inclusive pr vlores

Leia mais

1) VAMOS CELEBRAR Autor:Piter di Laura/Maria Eduarda/Carlos Tocco. Intro: E A9 E/G# D9 A/C# E/B A/C# E/G# D9 A9 E A9 E TODOS REUNIDOS NA CASA DE DEUS

1) VAMOS CELEBRAR Autor:Piter di Laura/Maria Eduarda/Carlos Tocco. Intro: E A9 E/G# D9 A/C# E/B A/C# E/G# D9 A9 E A9 E TODOS REUNIDOS NA CASA DE DEUS 1) VAMOS CLBRAR Autor:Piter di Laura/Maria duarda/carlos Tocco Intro: /# D9 A/C# /B A/C# /# D9 TODOS RUNIDOS NA CASA D DUS COM CANTOS D ALRIA RAND LOUVOR VAMOS CLBRAR OS FITOS DO SNHOR SUA BONDAD QU NUNCA

Leia mais

ESCOLA SECUNDÁRIA DE CALDAS TAIPAS CURSO PROFISSIONAL DE TÉCNICO DE COMÉRCIO. DISCIPLINA: ORGANIZAR E GERIR A EMPRESA (10º Ano Turma K)

ESCOLA SECUNDÁRIA DE CALDAS TAIPAS CURSO PROFISSIONAL DE TÉCNICO DE COMÉRCIO. DISCIPLINA: ORGANIZAR E GERIR A EMPRESA (10º Ano Turma K) ESCOLA SECUNDÁRIA DE CALDAS TAIPAS CURSO PROFISSIONAL DE TÉCNICO DE COMÉRCIO DISCIPLINA: ORGANIZAR E GERIR A EMPRESA (10º Ano Turm K) PLANIFICAÇÃO ANUAL Diretor do Curso Celso Mnuel Lim Docente Celso Mnuel

Leia mais

A VARIAÇÃO ENTRE PERDA & PERCA: UM CASO DE MUDANÇA LINGUÍSTICA EM CURSO?

A VARIAÇÃO ENTRE PERDA & PERCA: UM CASO DE MUDANÇA LINGUÍSTICA EM CURSO? A VARIAÇÃO ENTRE PERDA & PERCA: UM CASO DE MUDANÇA LINGUÍSTICA EM CURSO? Luís Augusto Chavs Frir, UNIOESTE 01. Introdução. Esta é uma psquisa introdutória qu foi concrtizada como um studo piloto d campo,

Leia mais

MRP / MRP II MRP MRP / MRP II 28/04/2009. www.paulorodrigues.pro.br. Material Required Planning (anos 60) Manufacturing Resource Planning (anos 80)

MRP / MRP II MRP MRP / MRP II 28/04/2009. www.paulorodrigues.pro.br. Material Required Planning (anos 60) Manufacturing Resource Planning (anos 80) MSc. Pulo Cesr C. Rodrigues pulo.rodrigues@usc.br www.pulorodrigues.pro.br Mestre em Engenhri de Produção MRP Mteril Required Plnning (nos 60) Mnufcturing Resource Plnning (nos 80) MRP = Mteril Requirement

Leia mais

Projeto de extensão Judô Escolar certifica alunos da Escola de Ensino Básico Professor Mota Pires

Projeto de extensão Judô Escolar certifica alunos da Escola de Ensino Básico Professor Mota Pires Projto xtnsão Judô Escolr crtific lunos d Escol Ensino Básico Profssor Mot Pirs No di 7 julho 2015 form crtificdos os lunos d Escol Ensino Básico Profssor Mot Pirs, Arrnguá, qu prticiprm do curso Judô

Leia mais

PSI-2432: Projeto e Implementação de Filtros Digitais Projeto Proposto: Conversor de taxas de amostragem

PSI-2432: Projeto e Implementação de Filtros Digitais Projeto Proposto: Conversor de taxas de amostragem PSI-2432: Projto Implmntação d Filtros Digitais Projto Proposto: Convrsor d taxas d amostragm Migul Arjona Ramírz 3 d novmbro d 2005 Est projto consist m implmntar no MATLAB um sistma para troca d taxa

Leia mais

Casos Latinos 1ª Declinação Latina 2ª Declinação Latina

Casos Latinos 1ª Declinação Latina 2ª Declinação Latina Csos Ltinos 1ª Declinção Ltin 2ª Declinção Ltin 1 Csos Ltinos 1. Em um orção podemos encontrr seis elementos: sujeito, voctivo, djunto dnominl restritivo, objeto indireto, djunto dverbil e objeto direto.

Leia mais

Análise de Variância com Dois Factores

Análise de Variância com Dois Factores Análise de Vriânci com Dois Fctores Modelo sem intercção Eemplo Neste eemplo, o testrmos hipótese de s três lojs terem volumes médios de vends iguis, estmos testr se o fctor Loj tem influênci no volume

Leia mais

9.1 Indutores e Indutância

9.1 Indutores e Indutância Cpítuo 9 Indutânci 9.1 Indutores e Indutânci Neste cpítuo, estudmos os indutores e sus indutâncis, cujs proprieddes decorrem diretmente d ei de indução de Frdy. Cpcitores: Recpitução Lembre-se que, no

Leia mais

Associação de Resistores e Resistência Equivalente

Associação de Resistores e Resistência Equivalente Associção d sistors sistêci Equivlt. Itrodução A ális projto d circuitos rqurm m muitos csos dtrmição d rsistêci quivlt prtir d dois trmiis quisqur do circuito. Além disso, pod-s um séri d csos práticos

Leia mais

Alteração da seqüência de execução de instruções

Alteração da seqüência de execução de instruções Iníci Busc d próxim Excut Prd Cicl busc Cicl xcuçã Prgrm Sqüênci instruçõs m mmóri Trdutr : Cmpilr X Intrprtr / Linkditr Cnvrt prgrm-fnt m prgrm bjt (lingugm máqui) Prgrm cmpil = mis rápi Prgrm Intrprt

Leia mais

Apenas 5% dos Brasileiros sabem falar Inglês

Apenas 5% dos Brasileiros sabem falar Inglês Apns 5% ds Brsilirs sb flr Inglês D crd cm um lvntmnt fit pl British Cncil pns 5% d ppulçã sb fl r Dvs lbrr stms épcs pré-vnts sprtivs s lhs d mund td cmçm s vltr cd vz mis pr Brsil pr iss nã bst dminr

Leia mais

Substituição Trigonométrica. Substituição Trigonométrica. Se a integral fosse. a substituição u = a 2 x 2 poderia ser eficaz, mas, como está,

Substituição Trigonométrica. Substituição Trigonométrica. Se a integral fosse. a substituição u = a 2 x 2 poderia ser eficaz, mas, como está, UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I. Introdução Se integrl

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA

UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA PRIMEIRO SEMESTRE DE 2015 13 de Fevereiro de 2015 Prte I Álgebr Liner 1 Questão: Sejm

Leia mais

Recordando produtos notáveis

Recordando produtos notáveis Recordndo produtos notáveis A UUL AL A Desde ul 3 estmos usndo letrs pr representr números desconhecidos. Hoje você sbe, por exemplo, que solução d equção 2x + 3 = 19 é x = 8, ou sej, o número 8 é o único

Leia mais

CRUZAMENTO Indivíduo 12 Indivíduo 18 aa X Aa

CRUZAMENTO Indivíduo 12 Indivíduo 18 aa X Aa BIO 3E ul 07 07.01. Pr determinr se um crcterístic genétic é dominnte ou recessiv trvés d interpretção de um genelogi, deve-se procurr um cruzmento entre indivíduos normis que tenh, pelo menos, um descendente

Leia mais

Liberdade de expressão na mídia: seus prós e contras

Liberdade de expressão na mídia: seus prós e contras Universidde Estdul de Cmpins Fernnd Resende Serrdourd RA: 093739 Disciplin: CS101- Métodos e Técnics de Pesquis Professor: Armndo Vlente Propost de Projeto de Pesquis Liberdde de expressão n mídi: seus

Leia mais

TEMA 5 2º/3º ciclo. A LIndo de perguntas. saudável? Luísa, 15 anos

TEMA 5 2º/3º ciclo. A LIndo de perguntas. saudável? Luísa, 15 anos 2º/3º cicl s O Ã Ç T N E M I d pguns u m mu um p z pdms f ps O qu sudávl? blnç d i c n c id p Sá d p d n cm p, ic mbém é g á s n v ic. Dsc ís f m f civ b id v m u i d lóics. c s impânc s g õs sb ç n s

Leia mais

A atual relevância do ensino do inglês jurídico nos cursos de graduação em Direito

A atual relevância do ensino do inglês jurídico nos cursos de graduação em Direito A tul rlvânci nsino nos cursos grdução m Brv rflxão crc d ncssid s pssr lcionr o nos cursos grdução m sort mlhor prprr os futuros profissionis r pr o xrcício d dvocci mgistrtur promotori Cro migo litor:

Leia mais

Vamos analisar o seguinte circuito trifásico: Esta aula:! Sistemas Trifásicos equilibrados com Transformador ideal

Vamos analisar o seguinte circuito trifásico: Esta aula:! Sistemas Trifásicos equilibrados com Transformador ideal EA6 Circuits FEEC UNCAMP Aul 6 Est ul:! Sistms Trifásics quilibrds cm Trnsfrmdr idl Nst ul nlisrms um sistm trifásic quilibrd cm trnsfrmdr Cm sistm é quilibrd, pdms nlisr circuit trifásic trtnd pns d um

Leia mais

MATRIZES. Matriz é uma tabela de números formada por m linhas e n colunas. Dizemos que essa matriz tem ordem m x n (lê-se: m por n), com m, n N*

MATRIZES. Matriz é uma tabela de números formada por m linhas e n colunas. Dizemos que essa matriz tem ordem m x n (lê-se: m por n), com m, n N* MTRIZES DEFINIÇÃO: Mtriz é um tl d númros formd por m linhs n coluns. Dizmos qu ss mtriz tm ordm m n (lê-s: m por n), com m, n N* Grlmnt dispomos os lmntos d um mtriz ntr prêntss ou ntr colchts. m m m

Leia mais

Somos o que repetidamente fazemos. A excelência portanto, não é um feito, mas um hábito. Aristóteles

Somos o que repetidamente fazemos. A excelência portanto, não é um feito, mas um hábito. Aristóteles c L I S T A DE E X E R C Í C I O S CÁLCULO INTEGRAL Prof. ADRIANO PEDREIRA CATTAI Somos o que repetidmente fzemos. A ecelênci portnto, não é um feito, ms um hábito. Aristóteles Integrl Definid e Cálculo

Leia mais

Comportamento de RISCO

Comportamento de RISCO Comportmento de RISCO SEXO e um responsilidde Aprtment203/1016YA FCRISKY Cred Progrm Ncionl De Lut Contr SIDA Poe seguinte list por ordem, do comportmento mis seguro pr o mis rriscdo c d Ter vários prceiros

Leia mais

= 1, independente do valor de x, logo seria uma função afim e não exponencial.

= 1, independente do valor de x, logo seria uma função afim e não exponencial. 6. Função Eponncil É todo função qu pod sr scrit n form: f: R R + = Em qu é um númro rl tl qu 0

Leia mais

CD CORAÇÃO DA NOIVA - 1. O SENHOR É BOM INTR:E D A/C# C7+ B E D A/C# O SENHOR É BOM C7+ B E SEU AMOR DURA PARA SEMPRE ELE É BOM...

CD CORAÇÃO DA NOIVA - 1. O SENHOR É BOM INTR:E D A/C# C7+ B E D A/C# O SENHOR É BOM C7+ B E SEU AMOR DURA PARA SEMPRE ELE É BOM... C CORÇÃO NOIV - 1. O SNHOR É OM INTR: /C# C7+ /C# O SNHOR É OM C7+ SU MOR UR PR SMPR L É OM... Letra e Música: avi Silva C CORÇÃO NOIV - 2. SNTO É O TU NOM M TO TRR S OUVIRÁ UM NOVO SOM UM CNÇÃO MOR PRCORRRÁ

Leia mais

Operadores momento e energia e o Princípio da Incerteza

Operadores momento e energia e o Princípio da Incerteza Operdores momento e energi e o Princípio d Incertez A U L A 5 Mets d ul Definir os operdores quânticos do momento liner e d energi e enuncir o Princípio d Incertez de Heisenberg. objetivos clculr grndezs

Leia mais

Apostila De Matemática GEOMETRIA: REVISÃO DO ENSINO FUNDAMENTAL, PRISMAS E PIRÂMIDES

Apostila De Matemática GEOMETRIA: REVISÃO DO ENSINO FUNDAMENTAL, PRISMAS E PIRÂMIDES posti De Mtemátic GEOMETRI: REVISÃO DO ENSINO FUNDMENTL, PRISMS E PIRÂMIDES posti de Mtemátic (por Sérgio Le Jr.) GEOMETRI 1. REVISÃO DO ENSINO FUNDMENTL 1. 1. Reções métrics de um triânguo retânguo. Pr

Leia mais

WASTE TO ENERGY: UMA ALTERNATIVA VIÁVEL PARA O BRASIL? 01/10/2015 FIESP São Paulo/SP

WASTE TO ENERGY: UMA ALTERNATIVA VIÁVEL PARA O BRASIL? 01/10/2015 FIESP São Paulo/SP WASTE TO ENERGY: UMA ALTERNATIVA VIÁVEL PARA O BRASIL? 01/10/2015 FIESP São Pulo/SP PNRS E O WASTE-TO-ENERGY Definições do Artigo 3º - A nov ordenção básic dos processos Ordem de prioriddes do Artigo 9º

Leia mais

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou POLINÔMIOS Definição: Um polinômio de gru n é um função que pode ser escrit n form P() n n i 0... n i em que cd i é um número compleo (ou i 0 rel) tl que n é um número nturl e n 0. Os números i são denomindos

Leia mais

Taxi: Opção mais rápida e cara. Deve ser evitada, a não ser que você privilegie o conforte

Taxi: Opção mais rápida e cara. Deve ser evitada, a não ser que você privilegie o conforte Curso grátis Inglês pr vigm Vi vijr pr? Situ-s com nosss dics roportos trns mtrôs Chgd m Avião: Aroporto Hthrow: Situdo crc 20 km ost um dos mis movim ntdos d Europ possui cinco trminis Dpois pssr pls

Leia mais

1º semestre de Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Função Exponencial

1º semestre de Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Função Exponencial º semestre de Engenhri Civil/Mecânic Cálculo Prof Olg (º sem de 05) Função Eponencil Definição: É tod função f: R R d form =, com R >0 e. Eemplos: = ; = ( ) ; = 3 ; = e Gráfico: ) Construir o gráfico d

Leia mais

Expressão Semi-Empírica da Energia de Ligação

Expressão Semi-Empírica da Energia de Ligação Exprssão Smi-Empíric d Enrgi d Ligção om o pssr do tmpo n usênci d um tori dtlhd pr dscrvr strutur nuclr, vários modlos form dsnvolvidos, cd qul corrlcionndo os ddos xprimntis d um conjunto mis ou mnos

Leia mais

IFC Câmpus Santa Rosa do Sul capacita 18 profissionais locais para elaboração do Cadastro Ambiental Rural CAR

IFC Câmpus Santa Rosa do Sul capacita 18 profissionais locais para elaboração do Cadastro Ambiental Rural CAR IFC Câmpus Snt Ros do Sul cpcit 18 profissionis locis pr lborção do Cstro Ambintl Rurl CAR No di 10 bril 2015, no Cntro Trinmnto Arrnguá (CETRAR), foi rlizdo um curso cpcitção profissionis rgião pr lborção

Leia mais

TEMA CENTRAL: A interface do cuidado de enfermagem com as políticas de atenção ao idoso.

TEMA CENTRAL: A interface do cuidado de enfermagem com as políticas de atenção ao idoso. TERMO DE ADESÃO A POLITICA DE INSCRIÇÃO NOS EVENTOS DA ASSOCIAÇÃO BRASILEIRA DE ENFERMAGEM 9ª. JORNADA BRASILEIRA DE ENFERMAGEM GERIÁTRICA E GERONTOLÓGICA TEMA CENTRAL: A interfce do cuiddo de enfermgem

Leia mais

!!!!!! Este programa foi desenvolvido pelo Departamento dos ministérios da Criança a partir das propostas de textos das palestras para os adultos.!

!!!!!! Este programa foi desenvolvido pelo Departamento dos ministérios da Criança a partir das propostas de textos das palestras para os adultos.! Este progrm foi desenvolvido pelo Deprtmento dos ministérios d Crinç prtir ds proposts de textos ds plestrs pr os dultos. Nots importntes pr o Monitor: Sempre que ler um texto bíblico, fç-o com Bíbli bert.

Leia mais

Resumo com exercícios resolvidos do assunto: Aplicações da Integral

Resumo com exercícios resolvidos do assunto: Aplicações da Integral www.engenhrifcil.weely.com Resumo com exercícios resolvidos do ssunto: Aplicções d Integrl (I) (II) (III) Áre Volume de sólidos de Revolução Comprimento de Arco (I) Áre Dd um função positiv f(x), áre A

Leia mais

DENÚNCIAS DE CORRUPÇÃO CONTRA O GOVERNO LULA E O PT

DENÚNCIAS DE CORRUPÇÃO CONTRA O GOVERNO LULA E O PT DENÚNCIAS DE CORRUPÇÃO CONTRA O GOVERNO LULA E O PT GOVERNO FEDERAL COM MAIS CASOS DE CORRUPÇÃO, em Mrço de 2006 - [estimuld e únic, em %] Em 1º lugr Som ds menções Bse: Totl d mostr Collor Lul FHC 11

Leia mais

Cálculo Numérico Módulo III Resolução Numérica de Sistemas Lineares Parte I

Cálculo Numérico Módulo III Resolução Numérica de Sistemas Lineares Parte I Cálculo Numérico Módulo III Resolução Numéric de Sistems Lineres Prte I Prof: Reinldo Hs Sistems Lineres Form Gerl... n n b... n n b onde: ij n n coeficientes i incógnits b i termos independentes... nn

Leia mais

A Função Densidade de Probabilidade

A Função Densidade de Probabilidade Prof. Lorí Vili, Dr. vili@mt.ufrgs.r http://www.mt.ufrgs.r/~vili/ Sj X um vriávl ltóri com conjunto d vlors X(S). S o conjunto d vlors for infinito não numrávl ntão vriávl é dit contínu. A Função Dnsidd

Leia mais

Linguagens Formais e Autômatos (LFA)

Linguagens Formais e Autômatos (LFA) PU-Rio Lingugens Formis e Autômtos (LFA) omplemento d Aul de 21/08/2013 Grmátics, eus Tipos, Algums Proprieddes e Hierrqui de homsky lrisse. de ouz, 2013 1 PU-Rio Dic pr responder Pergunts finis d ul lrisse.

Leia mais

07 AVALIAÇÃO DO EFEITO DO TRATAMENTO DE

07 AVALIAÇÃO DO EFEITO DO TRATAMENTO DE 07 AVALIAÇÃO DO EFEITO DO TRATAMENTO DE SEMENTES NA QUALIDADE FISIOLOGICA DA SEMENTE E A EFICIENCIA NO CONTROLE DE PRAGAS INICIAIS NA CULTURA DA SOJA Objetivo Este trblho tem como objetivo vlir o efeito

Leia mais

1 As grandezas A, B e C são tais que A é diretamente proporcional a B e inversamente proporcional a C.

1 As grandezas A, B e C são tais que A é diretamente proporcional a B e inversamente proporcional a C. As grndezs A, B e C são tis que A é diretmente proporcionl B e inversmente proporcionl C. Qundo B = 00 e C = 4 tem-se A = 5. Qul será o vlor de A qundo tivermos B = 0 e C = 5? B AC Temos, pelo enuncido,

Leia mais

Internação WEB BR Distribuidora v20130701.docx. Manual de Internação

Internação WEB BR Distribuidora v20130701.docx. Manual de Internação Mnul de Internção ÍNDICE CARO CREDENCIADO, LEIA COM ATENÇÃO.... 3 FATURAMENTO... 3 PROBLEMAS DE CADASTRO... 3 PENDÊNCIA DO ATENDIMENTO... 3 ACESSANDO O MEDLINK WEB... 4 ADMINISTRAÇÃO DE USUÁRIOS... 5 CRIANDO

Leia mais

Hewlett-Packard O ESTUDO DA RETA. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard O ESTUDO DA RETA. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hewlett-Pkrd O ESTUDO DA RETA Auls 01 05 Elson Rodrigues, Griel Crvlho e Pulo Luiz Sumário EQUAÇÃO GERAL DA RETA... 2 Csos espeiis... 2 Determinção d equção gerl de um ret prtir de dois de seus pontos...

Leia mais

Exercícios Resolvidos. Assunto: Integral Dupla. Comentários Iniciais:

Exercícios Resolvidos. Assunto: Integral Dupla. Comentários Iniciais: Escol d Engnhri ndustril tlúrgic d olt dond Profssor: Slt Sou d Olivir Buffoni Ercícios solvidos ssunto: ntgrl Dupl Comntários niciis: É com imnso prr qu trgo lguns rcícios rsolvidos sobr intgris dupls

Leia mais

Capítulo 1 Introdução à Física

Capítulo 1 Introdução à Física Vetor Pré Vestiulr Comunitário Físic 1 Cpítulo 1 Introdução à Físic Antes de começrem com os conceitos práticos d Físic, é imprescindível pr os lunos de Pré-Vestiulr estrem certificdos de que dominm os

Leia mais

Aprimorando os Conhecimentos de Mecânica Lista 7 Grandezas Cinemáticas I

Aprimorando os Conhecimentos de Mecânica Lista 7 Grandezas Cinemáticas I Aprimorndo os Conhecimentos de Mecânic List 7 Grndezs Cinemátics I 1. (PUCCAMP-98) Num birro, onde todos os qurteirões são qudrdos e s rus prlels distm 100m um d outr, um trnseunte fz o percurso de P Q

Leia mais

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c.

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c. EQUAÇÃO DO GRAU Você já estudou em série nterior s equções do 1 gru, o gru de um equção é ddo pelo mior expoente d vriável, vej lguns exemplos: x + = 3 equção do 1 gru já que o expoente do x é 1 5x 8 =

Leia mais

Nome: N.º: endereço: data: Telefone: PARA QUEM CURSA A 1 a SÉRIE DO ENSINO MÉDIO EM Disciplina: MaTeMÁTiCa

Nome: N.º: endereço: data: Telefone:   PARA QUEM CURSA A 1 a SÉRIE DO ENSINO MÉDIO EM Disciplina: MaTeMÁTiCa Nome: N.º: endereço: dt: Telefone: E-mil: Colégio PARA QUEM CURSA A SÉRIE DO ENSINO MÉDIO EM 05 Disciplin: MTeMÁTiC Prov: desfio not: QUESTÃO 6 O Dr. Mni Aco not os números trvés de um código especil.

Leia mais

CD MOSTRA-ME TUA GLÓRIA - 1. ELE REINARÁ INTR: E B/E C#m B E/G# A9 E B A E B A IGUAL A TI JESUS OUTRO NÃO HÁ E B A CHEIO DE GLÓRIA E PODER

CD MOSTRA-ME TUA GLÓRIA - 1. ELE REINARÁ INTR: E B/E C#m B E/G# A9 E B A E B A IGUAL A TI JESUS OUTRO NÃO HÁ E B A CHEIO DE GLÓRIA E PODER CD MOSTR-ME TU LÓRI - 1. ELE REINRÁ INTR: E B/E C#m B E/# 9 E B E B IUL TI JESUS OUTRO NÃO HÁ E B CHEIO DE LÓRI E PODER C#m7 B E/# TEU REINDO NÃO VI TER FIM E B E B COM TEU OLHR DE FOO VENS PR REINR E

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear Geometri Alític e Álgebr Lier 8. Sistems Lieres Muitos problems ds ciêcis turis e sociis, como tmbém ds egehris e ds ciêcis físics, trtm de equções que relciom dois cojutos de vriáveis. Um equção do tipo,

Leia mais

Convocatòri a 2015. Pàg. 2 / 4. c) por ruas muito ruidosas. (0, 5punts)

Convocatòri a 2015. Pàg. 2 / 4. c) por ruas muito ruidosas. (0, 5punts) Convoctòri Aferru un etiquet identifictiv v999999999 de codi de brres Portuguès (més grns de 25 nys) Model 1 Not 1ª Not 2ª Aferru l cpçler d exmen un cop cbt l exercici TEXTO Um clássico lisboet O elétrico

Leia mais

MESTRADO INTEGRADO EM ENGENHARIA INFORMÁTICA E COMPUTAÇÃO EIC0011 MATEMÁTICA DISCRETA

MESTRADO INTEGRADO EM ENGENHARIA INFORMÁTICA E COMPUTAÇÃO EIC0011 MATEMÁTICA DISCRETA 1. Tm 40 livros irnts qu vi gurr m 4 ixs ors irnts, olono 10 livros m ix.. Qunts possiilis tm istriuir os livros pls ixs irnts? Justiiqu.. Suponh gor qu tinh 60 livros. Qunts possiilis pr os olor ns 4

Leia mais

3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos

3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos 3. Cálculo integrl em IR 3.. Integrl Indefinido 3... Definição, Proprieddes e Exemplos A noção de integrl indefinido prece ssocid à de derivd de um função como se pode verificr prtir d su definição: Definição

Leia mais

Ângulo completo (360 ) Agora, tente responder: que ângulos são iguais quando os palitos estão na posição da figura abaixo?

Ângulo completo (360 ) Agora, tente responder: que ângulos são iguais quando os palitos estão na posição da figura abaixo? N Aul 30, você já viu que dus rets concorrentes formm qutro ângulos. Você tmbém viu que, qundo os qutro ângulos são iguis, s rets são perpendiculres e cd ângulo é um ângulo reto, ou sej, mede 90 (90 grus),

Leia mais

Transporte de solvente através de membranas: estado estacionário

Transporte de solvente através de membranas: estado estacionário Trnsporte de solvente trvés de membrns: estdo estcionário Estudos experimentis mostrm que o fluxo de solvente (águ) em respost pressão hidráulic, em um meio homogêneo e poroso, é nálogo o fluxo difusivo

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO 2015 GRUPO I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO 2015 GRUPO I Associção de Professores de Mtemátic Contctos: Ru Dr. João Couto, n.º 27-A 1500-236 Lisbo Tel.: +351 21 716 36 90 / 21 711 03 77 Fx: +351 21 716 64 24 http://www.pm.pt emil: gerl@pm.pt PROPOSTA DE RESOLUÇÃO

Leia mais

Gabarito - Matemática Grupo G

Gabarito - Matemática Grupo G 1 QUESTÃO: (1,0 ponto) Avlidor Revisor Um resturnte cobr, no lmoço, té s 16 h, o preço fixo de R$ 1,00 por pesso. Após s 16h, esse vlor ci pr R$ 1,00. Em determindo di, 0 pessos lmoçrm no resturnte, sendo

Leia mais

Aula 09 Equações de Estado (parte II)

Aula 09 Equações de Estado (parte II) Aul 9 Equções de Estdo (prte II) Recpitulndo (d prte I): s equções de estdo têm form (sistems de ordem n ) = A + B u y = C + D u onde: A é um mtriz n n B é um mtriz n p C é um mtriz q n D é um mtriz q

Leia mais

Universidade Estadual do Sudoeste da Bahia

Universidade Estadual do Sudoeste da Bahia Universidde Estdul do Sudoeste d Bhi Deprtmento de Estudos Básicos e Instrumentis 3 Vetores Físic I Prof. Roberto Cludino Ferreir 1 ÍNDICE 1. Grndez Vetoril; 2. O que é um vetor; 3. Representção de um

Leia mais

turismo corporate negócio noronha roma seul garopaba brasília são lu gramado brasília são paulo recife natal tóquio lisboa rio de janeiro capadócia

turismo corporate negócio noronha roma seul garopaba brasília são lu gramado brasília são paulo recife natal tóquio lisboa rio de janeiro capadócia brlim sã l brlim santg rcif curi sul punta dl st rma sul nrnha r rcif rcif garpabacapa nrnha mntvidéu r barilch punta dl st mació sã paul mació sul capadóc r mnt SUPER sã l ngóci gramad turism FÉRIAS crprat

Leia mais

BOLETIM TÉCNICO LAMINADOS

BOLETIM TÉCNICO LAMINADOS A BOLETIM TÉCNICO LAMINADOS Últim tulizção Mio/2011 VERSÃO MAIO/2011 ACABAMENTOS NATURAL: O cbmento pdrão d chp possui bi reflectânci e pode presentr vrições de brilho. BRILHANTE: Esse tipo de cbmento

Leia mais

COLÉGIO NAVAL 2016 (1º dia)

COLÉGIO NAVAL 2016 (1º dia) COLÉGIO NAVAL 016 (1º di) MATEMÁTICA PROVA AMARELA Nº 01 PROVA ROSA Nº 0 ( 5 40) 01) Sej S som dos vlores inteiros que stisfzem inequção 10 1 0. Sendo ssim, pode-se firmr que + ) S é um número divisíel

Leia mais

Resumo Executivo. Análise da Cobertura

Resumo Executivo. Análise da Cobertura x f R T V z E s s FQ Z KL o H R ut K qw A O V B U r G M o z Rsumo Excutivo Anális d Cobrtur d Imprns sobr Mulhr Trblho Estudo coordndo pl ANDI Comunicção Diritos plo Instituto Ptríci Glvão no âmbito do

Leia mais

COMPENSAÇÃO ANGULAR E REMOÇÃO DA COMPONENTE DE SEQÜÊNCIA ZERO NA PROTEÇÃO DIFERENCIAL

COMPENSAÇÃO ANGULAR E REMOÇÃO DA COMPONENTE DE SEQÜÊNCIA ZERO NA PROTEÇÃO DIFERENCIAL SHWETZER ENGNEERNG LORTORES, OMERL LTD OMPENSÇÃO NGULR E REMOÇÃO D OMPONENTE DE SEQÜÊN ZERO N PROTEÇÃO DFERENL RFEL RDOSO ntrodução O prinípio d proteção diferenil é de que som ds orrentes que entrm n

Leia mais

McAfee Email Gateway Blade Server

McAfee Email Gateway Blade Server Gui de início rápido Revisão B McAfee Emil Gtewy Blde Server versão 7.x Esse gui de início rápido serve como um roteiro ásico pr instlção do servidor lde do McAfee Emil Gtewy. Pr oter instruções detlhds

Leia mais

Streptococcus mutans, mas podem me

Streptococcus mutans, mas podem me Estação Saída Estação 1 - Olá moçada!! Mu nom é Strptococcus mutans, mas podm m chamar d Sr. Mutans. Vocês nm imaginam, mas u stou prsnt m uma part muito important do su corpo: a cavidad bucal!! Eu sou

Leia mais

1 Distribuições Contínuas de Probabilidade

1 Distribuições Contínuas de Probabilidade Distribuições Contínus de Probbilidde São distribuições de vriáveis letóris contínus. Um vriável letóri contínu tom um numero infinito não numerável de vlores (intervlos de números reis), os quis podem

Leia mais

DESAFIOS. π e. π <y < π, satisfazendo seny = 8 x

DESAFIOS. π e. π <y < π, satisfazendo seny = 8 x DESAFIOS ENZO MATEMÁTICA 01-(FUVEST) Sejm x e y dois números reis, com 0

Leia mais

Calculando volumes. Para pensar. Para construir um cubo cuja aresta seja o dobro de a, de quantos cubos de aresta a precisaremos?

Calculando volumes. Para pensar. Para construir um cubo cuja aresta seja o dobro de a, de quantos cubos de aresta a precisaremos? A UA UL LA 58 Clculndo volumes Pr pensr l Considere um cubo de rest : Pr construir um cubo cuj rest sej o dobro de, de quntos cubos de rest precisremos? l Pegue um cix de fósforos e um cix de sptos. Considerndo

Leia mais

Função Quadrática (Função do 2º grau) Profº José Leonardo Giovannini (Zé Leo)

Função Quadrática (Função do 2º grau) Profº José Leonardo Giovannini (Zé Leo) Função Qudrátic (Função do º gru) Proº José Leonrdo Gionnini (Zé Leo) Zeros ou rízes e Equções do º Gru Chm-se zeros ou rízes d unção polinomil do º gru () = + b + c, reis tis que () =., os números DEFINIÇÃO:

Leia mais

O Presidente da Federação Mineira de Basketball, no uso de suas atribuições estatutárias, RESOLVE:

O Presidente da Federação Mineira de Basketball, no uso de suas atribuições estatutárias, RESOLVE: NOTA OFICIAL Nº 079.2014 O Presidente d Federção Mineir de Bsketbll, no uso de sus tribuições esttutáris, RESOLVE: DA COORDENAÇÃO TÉCNICA 1. Convocr Seleção Mineir Sub 17, Nipe Msculino, pr disput d X

Leia mais

INTEGRAÇÃO MÉTODO DA SUBSTITUIÇÃO

INTEGRAÇÃO MÉTODO DA SUBSTITUIÇÃO INTEGRAÇÃO MÉTODO DA UBTITUIÇÃO o MUDANÇA DE VARIAVEL PARA INTEGRAÇÃO Emplos Ercícios MÉTODO DA INTEGRAÇÃO POR PARTE Emplos Ercícios7 INTEGRAL DEFINIDA8 Emplos Ercícios REFERÊNCIA BIBLIOGRÁFICA INTRODUÇÃO:

Leia mais

, então ela é integrável em [ a, b] Interpretação geométrica: seja contínua e positiva em um intervalo [ a, b]

, então ela é integrável em [ a, b] Interpretação geométrica: seja contínua e positiva em um intervalo [ a, b] Interl Deinid Se é um unção de, então su interl deinid é um interl restrit à vlores em um intervlo especíico, dimos, O resultdo é um número que depende pens de e, e não de Vejmos deinição: Deinição: Sej

Leia mais

Coordenadas polares. a = d2 r dt 2. Em coordenadas cartesianas, o vetor posição é simplesmente escrito como

Coordenadas polares. a = d2 r dt 2. Em coordenadas cartesianas, o vetor posição é simplesmente escrito como Coordnadas polars Sja o vtor posição d uma partícula d massa m rprsntado por r. S a partícula s mov, ntão su vtor posição dpnd do tmpo, isto é, r = r t), ond rprsntamos a coordnada tmporal pla variávl

Leia mais

Grafos. Luís Antunes. Grafos dirigidos. Grafos não dirigidos. Definição: Um grafo em que os ramos não são direccionados.

Grafos. Luís Antunes. Grafos dirigidos. Grafos não dirigidos. Definição: Um grafo em que os ramos não são direccionados. Luís Antuns Grfos Grfo: G=(V,E): onjunto vértis/nós V um onjunto rmos/ros E VxV. Rprsntção visul: Grfos não irigios Dfinição: Um grfo m qu os rmos não são irionos. Grfos irigios Dfinição: Um grfo m qu

Leia mais

Alocação sequencial - Pilhas

Alocação sequencial - Pilhas Alocção seqüencil - pilhs Alocção sequencil - Pilhs Pilhs A estrutur de ddos Pilh é bstnte intuitiv. A nlogi é um pilh de prtos. Se quisermos usr um pilh de prtos com máxim segurnç, devemos inserir um

Leia mais

Cap. 19: Linkage Dois pares de genes localizados no mesmo par de cromossomos homólogos

Cap. 19: Linkage Dois pares de genes localizados no mesmo par de cromossomos homólogos Cp. 19: Linkge Dois pres de genes loclizdos no mesmo pr de cromossomos homólogos Equipe de iologi Linkge Genes ligdos: ocorrem qundo dois ou mis genes estão loclizdos no mesmo cromossomo. Esses genes não

Leia mais

Interpretação Geométrica. Área de um figura plana

Interpretação Geométrica. Área de um figura plana Integrl Definid Interpretção Geométric Áre de um figur pln Interpretção Geométric Áre de um figur pln Sej f(x) contínu e não negtiv em um intervlo [,]. Vmos clculr áre d região S. Interpretção Geométric

Leia mais

Capítulo IV. Funções Contínuas. 4.1 Noção de Continuidade

Capítulo IV. Funções Contínuas. 4.1 Noção de Continuidade Cpítulo IV Funções Contínus 4 Noção de Continuidde Um idei muito básic de função contínu é de que o seu gráfico pode ser trçdo sem levntr o lápis do ppel; se houver necessidde de interromper o trço do

Leia mais

Seu pé direito nas melhores faculdades

Seu pé direito nas melhores faculdades Seu pé direito ns melhores fculddes IBMEC 03/junho/007 ANÁLISE QUANTITATIVA E LÓGICA DISCUSIVA 01. O dministrdor de um boliche pretende umentr os gnhos com sus pists. Atulmente, cobr $ 6,00 por um hor

Leia mais

Uniforme Exponencial Normal Gama Weibull Lognormal. t (Student) χ 2 (Qui-quadrado) F (Snedekor)

Uniforme Exponencial Normal Gama Weibull Lognormal. t (Student) χ 2 (Qui-quadrado) F (Snedekor) Prof. Lorí Vili, Dr. vili@pucrs.br vili@m.ufrgs.br hp://www.pucrs.br/fm/vili/ hp://www.m.ufrgs.br/~vili/ Uniform Exponncil Norml Gm Wibull Lognorml (Sudn) χ (Qui-qudrdo) F (Sndkor) Um VAC X é uniform no

Leia mais

SERVIÇO PÚBLICO FEDERAL Ministério da Educação

SERVIÇO PÚBLICO FEDERAL Ministério da Educação SERVIÇO PÚBLICO FEDERAL Ministério d Educção Universidde Federl do Rio Grnde Universidde Abert do Brsil Administrção Bchreldo Mtemátic pr Ciêncis Sociis Aplicds I Rodrigo Brbos Sores . Mtrizes:.. Introdução:

Leia mais

Aula de solução de problemas: cinemática em 1 e 2 dimensões

Aula de solução de problemas: cinemática em 1 e 2 dimensões Aul de solução de problems: cinemátic em 1 e dimensões Crlos Mciel O. Bstos, Edurdo R. Azevedo FCM 01 - Físic Gerl pr Químicos 1. Velocidde instntâne 1 A posição de um corpo oscil pendurdo por um mol é

Leia mais

Licença de uso exclusiva para Petrobrás S.A. Licença de uso exclusiva para Petrobrás S.A. NBR 13434

Licença de uso exclusiva para Petrobrás S.A. Licença de uso exclusiva para Petrobrás S.A. NBR 13434 ABNT-Associção Brsileir de Norms Técnics Sede: Rio de Jneiro Av. Treze de Mio, 13-28º ndr CEP 20003-900 - Cix Postl 1680 Rio de Jneiro - RJ Tel.: PABX (021) 210-3122 Fx: (021) 220-1762/220-6436 Endereço

Leia mais