Análise de correlação canônica na descrição de potenciais de desenvolvimento nos municípios de Minas Gerais

Tamanho: px
Começar a partir da página:

Download "Análise de correlação canônica na descrição de potenciais de desenvolvimento nos municípios de Minas Gerais"

Transcrição

1 Anális d corrlação canônica na dscrição d otnciais d dsnvolvimnto nos municíios d Minas Grais Introdução Naj Clécio Nuns da Silva Wdrson Landro Frrira Gilbrto Rodrigus Liska João Domingos Scalon Marclo Ânglo Cirillo Conform Johnson & Wichrn (007) a anális d corrlação canônica é uma técnica statística multivariada qu md a xistência a intnsidad da associação ntr dois conjuntos ou gruos d variávis alatórias (X Y) cujo objtivo rincial é dtrminar os ars d combinaçõs linars U a' X V b' Y tais qu tnham a maior corrlação ossívl ou sja sndo o rimiro gruo d variávis rrsntado lo vtor alatório X( ) o sgundo gruo d q variávis rrsntado lo vtor alatório Yq ( ) ntão dv-s ncontrar os vtors a' b' q ara os quais a corrlação ntr U a' X V b' Y sja máxima. As combinaçõs linars U V qu odm sr construídas são chamadas d variávis canônicas a corrlação ntr las Corr U V é chamada d corrlação canônica. Nst trabalho utilizou-s da anális d corrlação canônica ara os otnciais d dsnvolvimnto na ára conômica agrocuária or mio d um conjunto d dados oriundos do Zonamnto Ecológico Econômico (ZEE) d todos os municíios do stado d Minas Grais rfrnts ao ano d 004 (Scolforo t al. 008b). Matrial métodos Na anális dos otnciais foi utilizado dados d todos os 85 municíios do stado d Minas Grais dsts foram analisadas 6 variávis: - Índic do valor adicionado industrial (IVAI); - Índic do valor adicionado srviços (IVAS); - Índic do roduto intrno bruto (IPIB); 4 - Índic do valor adicionado agrocuário (IVAA); 5 - Índic d agricultors familiars (IAF); 6 - Índic d mrgo formal (IEF). Doutorando do Programa d Pós-Graduação m Estatística Ex. Agrocuária DEX - UFLA. naj.silva@ifac.du.br wdlan@hotmail.com gilbrtoliska@dx.ufla.br. Docnt do Programa d Pós-Graduação m Estatística Ex. Agrocuária DEX - UFLA. scalon@dx.ufla.br macufla@dx.ufla.br. 4

2 D acordo com Johnson & Wichrn (007) ara validação da anális d corrlação canônica s faz ncssário uma anális da matriz d covariâncias ou d corrlaçõs R a fim d dtrminar s las são róximas ou não da matriz nula. As hiótss ara validar a anális d corrlação canônica odm sr dadas or: H : contra 0 U V U V U V A statística do tst é dada or: Ha. : 0 ln n q ln () i i m qu n é o tamanho da amostra. A statística do tst stá associada a uma distribuição Qui- quadrado v com v q graus d librdad. S ln v ntão rjita-s H 0 ou sja a matriz d covariâncias é difrnt d zro ara algum nívl d significância considrado indicando qu s od fazr anális d corrlação canônica. Tm-s também s a hióts nula H0 : 0 for rjitada é natural buscar um númro d corrlaçõs canônicas r qu difrm significativamnt d zro. Em qu * k é a anotação abrviada d * Uk Vk. A rincíio tsta-s a hióts d qu a rimira corrlação é não nula as dmais são nulas; m sguida tsta-s qu as duas rimiras corrlaçõs são não nulas as dmais ; assim or diant. Para o k-ésimo asso dss rocsso tsta-s a hióts k H dada or: 0 k * * * * * * H0 : k 0 k... 0 k k * Ha : i 0 ara algum i k A statística do tst é dada or: ln n q ln () i ik m qu a statística do tst stá também associada a uma distribuição Qui-quadrado v orém com v kq k graus d librdad. D acordo com Mingoti (007) a roorção da variância total xlicada or cada variávl é dada or: PVTE Uk q icorr Uk X i icorr Vk Yi PVTEV k () q 5

3 Todas as análiss foram fitas no softwar R (R Dvlomnt Cor Tam 0). Rsultados discussõs Na Figura é arsntado o gráfico bilot com o intuito d agruar as variávis com corrlaçõs róximas rliminar à anális d corrlação canônica. Figura : Bilot considrando a matriz d corrlação das variávis m studo. Pla Figura obsrva-s qu as variávis IVAI IVAS IPIB odm formar o gruo X (indicador conômico) já qu ssas variávis são corrlacionadas ois os vtors or las formados ossum normas smlhants stão no msmo quadrant. As variávis IVAA IAF IEF não são indndnts das dmais variávis odm formar o gruo Y (indicador agrocuário). Na tabla tm-s a matriz d corrlaçõs ntr as variávis d cada gruo. Tabla : Matriz d corrlação ntr as 6 variávis rfrnts aos 85 municíios. Variávl IVAI IVAS IPIB IVAA IAF IEF IVAI IVAS IPIB IVAA IAF IEF

4 D acordo com a matriz d corrlação arsntadas na Tabla xistm corrlaçõs forts ntr as variávis IPIB IVAI IPIB IVAS IVAI IVAS (variávis do gruo X) localizados na art surior squrda (x) corrlaçõs fraca modrada ntr as variávis do gruo Y localizados na art infrior dirita (x). Para validação da anális d corrlação canônica o valor da statística do tst foi d ln 487 o valor tablado da Qui-quadrado foi d 95%. Como ln 95% ntão rjita-s a hióts nula ou sja a matriz das covariância dos gruos X Y é statisticamnt difrnt d zro ao nívl d 5% d significância indicando qu s od fazr anális d corrlação canônica. Os ars d variávis canônicas formados los dois gruos suas rsctivas corrlaçõs stão xrssos a sguir: U V 78IVAI IVAS 07IPIB -0097IVAA-0097IAF-0086IEF 0440 (4) U V U V 408IVAI-0 084IVAS+0890IPIB 000IVAA+00685IAF-0467IEF 0090 (5) U V U V 008IVAI-76IVAS+609IPIB 005IVAA-0IAF-045IEF (6) U V Vrifica-s qu o rimiro ar d variávis canônicas (4) arsntou uma corrlação modrada d 0440 os dmais ars d variávis canônicas arsntaram corrlaçõs fracas. Ralizando o tst squncial das corrlaçõs canônicas individuais ncontrou-s qu: Para H : 0 0 contra * * * 0 U V U V U V * a Ui Vi ln ntão rjita-s a hióts nula ou sja uma das duas H : 0 ara algum i obtv- s qu 45% corrlaçõs i é difrnt d zro ao nívl d 5% d significância. Para H : contra * * * 0 U V U V U V H : 0 obtv-s qu * a U V 5% ln ou sja a trcira corrlação também é difrnt d zro ao 7

5 nívl d 5% d significância. Logo utilizam-s os três ars d corrlaçõs canônicas ara rrsntar os dois gruos d variávis. A roorção da variação total xlicada or cada variávl canônica stá xrssa a sguir: PVTEU 687% PVTE 669% 6 00% U PVTE U PVTEV 598% PVTE 78% 0 76% V PVTE V. (7) Em (7) obsrva-s qu a roorção da variação total xlicada ara U é d 687% ara V é d 598% ou sja a variávl U rrsnta 687% da variação total do gruo X a variávl V rrsnta 598% da variação total do gruo Y. Portanto o rimiro ar d variávis canônicas rrsnta os gruos X Y uma vz qu a corrlação canônica ntr sss gruos é d 440% os dmais ars arsntaram corrlaçõs canônicas muito baixas. 4 Conclusõs A anális d corrlação canônica foi mrgada com sucsso ara as variávis do zonamnto cológico conômico. O gruo formado las variávis IVAI IVAS IPIB od sr xlicado lo gruo d variávis IVAA IAF IEF uma vz qu a roorção da variação total do rimiro ar d variávis canônicas associadas aos gruos é d 687% ara o rimiro gruo d 598% ara o sgundo gruo. 5 Rfrências [] JOHNSON R. A. WICHERN D.W.; Alid Multivariat Statistical Analysis. 6. d. Nw Jrsy: Prntic Hall [] MINGOTI S. A. Anális d dados através d métodos d statística multivariada: uma abordagm alicada. Editora UFMG Blo Horizont [] R DEVELOPMENT CORE TEAM. R: a languag and nvironmnt for statistical comuting. Vinna: R Foundation for Statistical Comuting [4] SCOLFORO J. R. S.; OLIVEIRA A. D.; CARVALHO L. M. T. Zonamnto cológico-conômico do Estado d Minas Grais: comonnt sócio conômico. Lavras: UFLA 008b

Análise multivariada aplicada na classificação de fornecedores de uma indústria de laticínios

Análise multivariada aplicada na classificação de fornecedores de uma indústria de laticínios Anális multivariada alicada na classificação d forncdors d uma indústria d laticínios Enio Júnior Sidl Univrsidad Fdral d Santa Maria Avnida Roraima, 000. Santa Maria / RS jrsidl@hotmail.com Luis Fli Dias

Leia mais

Probabilidades e Estatística

Probabilidades e Estatística Probabilidads Estatística o Tst Tst A 2 o smstr 2004/05 Duração: hora 0 minutos 0/04/005 9 horas RESOLUÇÃO ABREVIADA. Acontcimnto Probabilidad IP incêndio d pqunas proporçõs P (IP ) 0.75 IP incêndio d

Leia mais

λ, para x 0. Outras Distribuições de Probabilidade Contínuas

λ, para x 0. Outras Distribuições de Probabilidade Contínuas abilidad Estatística I Antonio Roqu Aula 3 Outras Distribuiçõs d abilidad Contínuas Vamos agora studar mais algumas distribuiçõs d probabilidads para variávis contínuas. Distribuição Eponncial Uma variávl

Leia mais

Fundação Escola Técnica Liberato Salzano Vieira da Cunha Curso de Eletrônica Eletrônica de Potência Prof. Irineu Alfredo Ronconi Junior

Fundação Escola Técnica Liberato Salzano Vieira da Cunha Curso de Eletrônica Eletrônica de Potência Prof. Irineu Alfredo Ronconi Junior Fundação Escola écnica Librato Salzano Viira da Cunha Curso d Eltrônica Eltrônica d Potência Prof. Irinu Alfrdo onconi Junior Introdução: O rsnt txto dvrá tratar d uma art da Eltrônica conhcida como Eltrônica

Leia mais

Estatística II. Aula 8. Prof. Patricia Maria Bortolon, D. Sc.

Estatística II. Aula 8. Prof. Patricia Maria Bortolon, D. Sc. Estatística II Aula 8 Pro. Patricia Maria Bortolon, D. Sc. Tsts Qui Quadrado Objtivos da Aula 8 Nsta aula, você aprndrá: Como quando utilizar o tst qui-quadrado para tablas d contingência Como utilizar

Leia mais

Teste do Qui-Quadrado( ) 2 x

Teste do Qui-Quadrado( ) 2 x Tst do Qui-Quadrado( ) Tst do Qui-Quadrado É usado quando qurmos comparar Frqüências Obsrvadas (F ) com Frqüências Espradas (F ). Divid-s m três tipos: Tst d adquação do ajustamnto Tst d adrência Tst d

Leia mais

Cálculo de Autovalores, Autovetores e Autoespaços Seja o operador linear tal que. Por definição,, com e. Considere o operador identidade tal que.

Cálculo de Autovalores, Autovetores e Autoespaços Seja o operador linear tal que. Por definição,, com e. Considere o operador identidade tal que. AUTOVALORES E AUTOVETORES Dfiniçõs Sja um oprador linar Um vtor, é dito autovtor, vtor próprio ou vtor caractrístico do oprador T, s xistir tal qu O scalar é dnominado autovalor, valor próprio ou valor

Leia mais

3 ANALISE ESTÁTICA DA ESTABILIDADE - MÉTODO RAYLEIGH RITZ.

3 ANALISE ESTÁTICA DA ESTABILIDADE - MÉTODO RAYLEIGH RITZ. ANALISE ESTÁTICA DA ESTABILIDADE MÉTODO RAYLEIGH RITZ Alguns roblmas d stabilidad d struturas não odm sr rsolvidos or métodos analíticos ou são rsolvidos d forma mais fácil utilizando métodos aroximados

Leia mais

ATIVIDADES PARA SALA. Capítulo 11 FÍSICA 2. Associação de resistores Associação mista. 2? a série Ensino Médio Livro 3? B Veja a figura.

ATIVIDADES PARA SALA. Capítulo 11 FÍSICA 2. Associação de resistores Associação mista. 2? a série Ensino Médio Livro 3? B Veja a figura. soluçõs apítulo 11 ssociação d rsistors ssociação mista TVES SL 01 Vja a figura. 3 ss modo, vrifica-s qu os rsistors stão associados m parallo. Obtém-s a rsistência, qui- 5 valnt à associação dos rsistors,

Leia mais

Solução da equação de Poisson 1D com coordenada generalizada

Solução da equação de Poisson 1D com coordenada generalizada Solução da quação d Poisson 1D com coordnada gnralizada Guilhrm Brtoldo 8 d Agosto d 2012 1 Introdução Ao s rsolvr a quação d Poisson unidimnsional d 2 T = fx), 0 x 1, 1) dx2 sujita às condiçõs d contorno

Leia mais

FUNÇÕES DE UMA VARIÁVEL COMPLEXA

FUNÇÕES DE UMA VARIÁVEL COMPLEXA FUNÇÕES DE UMA VARIÁVEL COMPLEXA Ettor A. d Barros 1. INTRODUÇÃO Sja s um númro complxo qualqur prtncnt a um conjunto S d númros complxos. Dizmos qu s é uma variávl complxa. S, para cada valor d s, o valor

Leia mais

III Encontro de Educação, Ciência e Tecnologia

III Encontro de Educação, Ciência e Tecnologia Ára d Publicação: Matmática UMA MANEIRA SIMPLES DE DETERMINAR TODOS OS TERNOS PITAGÓRICOS SILVA, Rodrigo M. F. da 1 ; SILVA, Lucas da² ; FILHO, Danil Cordiro d Morais ² 1 UFCG/CCT/UAMAT/Voluntário PET-

Leia mais

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P 26 a Aula 20065 AMIV 26 Exponncial d matrizs smlhants Proposição 26 S A SJS ntão Dmonstração Tmos A SJS A % SJS SJS SJ % S ond A, S J são matrizs n n ", (com dt S 0), # S $ S, dond ; A & SJ % S SJS SJ

Leia mais

estados. Os estados são influenciados por seus próprios valores passados x

estados. Os estados são influenciados por seus próprios valores passados x 3 Filtro d Kalman Criado por Rudolph E. Kalman [BROWN97] m 1960, o filtro d Kalman (FK) foi dsnvolvido inicialmnt como uma solução rcursiva para filtragm linar d dados discrtos. Para isto, utiliza quaçõs

Leia mais

TÓPICOS DE MATEMÁTICA PROF.: PATRÍCIA ALVES

TÓPICOS DE MATEMÁTICA PROF.: PATRÍCIA ALVES TÓPICOS DE MATEMÁTICA PROF.: PATRÍCIA ALVES 33 MATRIZES 1. Dê o tipo d cada uma das sguints prtncm às diagonais principais matrizs: scundárias d A. 1 3 a) A 7 2 7. Qual é o lmnto a 46 da matriz i j 2 j

Leia mais

Principais Modelos Contínuos

Principais Modelos Contínuos rincipais Modlos Contínuos . Modlo uniform Uma v.a. contínua tm distribuição uniform com parâmtros < s sua função dnsidad d probabilidad é dada por c c f. 0. Var E F 0 0 A função d distribuição acumulada

Leia mais

Estatística. 6 - Distribuições de Probabilidade de Variáveis Aleatórias Contínuas

Estatística. 6 - Distribuições de Probabilidade de Variáveis Aleatórias Contínuas Estatística 6 - Distribuiçõs d Probabilidad d Variávis Alatórias Contínuas 06 - Distribuição Uniform Variávl alatória contínua podndo assumir qualqur valors dntro d um intrvalo [a,b] tal qu: f ( x) para

Leia mais

MÉTODO DOS DESLOCAMENTOS: BARRAS AXIALMENTE INDEFORMÁVEIS

MÉTODO DOS DESLOCAMENTOS: BARRAS AXIALMENTE INDEFORMÁVEIS MÉTODO DOS DESLOCAMENTOS: BARRAS AXIALMENTE INDEFORMÁVEIS Sja uma strutura hirstática constituida or barras axialmnt indformávis: P 2 P Porqu as barras são axialmnt dformávis, xistm g.l. hirgométricos

Leia mais

MAE Introdução à Probabilidade e Estatística I Gabarito Lista de Exercícios 3

MAE Introdução à Probabilidade e Estatística I Gabarito Lista de Exercícios 3 MAE 0219 - Introdução à Probabilidad Estatística I Gabarito Lista d Exrcícios 3 Sgundo Smstr d 2017 Obsrvação: Nos cálculos abaixo, considramos aproximaçõs por duas casas dcimais. EXERCÍCIO 1. a. Construa

Leia mais

UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ECONOMIA

UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ECONOMIA UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISRAÇÃO E CONABILIDADE DEPARAMENO DE ECONOMIA EAE 26 Macroconomia I 1º Smstr d 217 Profssor Frnando Rugitsky Lista d Exrcícios 4 [1] Considr uma macroconomia

Leia mais

TÓPICOS. ordem; grau; curvas integrais; condições iniciais e fronteira. 1. Equações Diferenciais. Conceitos Gerais.

TÓPICOS. ordem; grau; curvas integrais; condições iniciais e fronteira. 1. Equações Diferenciais. Conceitos Gerais. Not bm, a litura dsts apontamntos não dispnsa d modo algum a litura atnta da bibliografia principal da cadira hama-s à atnção para a importância do trabalho pssoal a ralizar plo aluno rsolvndo os problmas

Leia mais

4. RESULTADOS E DISCUSSÃO

4. RESULTADOS E DISCUSSÃO 4. RESULTADOS E DISCUSSÃO O conjunto d dados original aprsntava alguns valors prdidos, uma vz qu houv a mort d plantas nas parclas ants da colta dos dados, grando assim um conjunto d dados dsalancado,

Leia mais

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O Prparar o Eam 05 Matmática A E X A M E 0.ª FASE, V E R S Ã O P R O P O S T A D E R E S O L U Ç Ã O. Tm-s qu P A P A P A GRUPO I ITENS DE ESCOLHA MÚLTIPLA 0, 0, 0,. Assim: P B A PB A 0,8 0,8 PB A 0,8 0,

Leia mais

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO II/05 UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE ECONOMIA 0//5 MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO ECONOMIA DA INFORMAÇÃO E DOS INCENTIVOS APLICADA À ECONOMIA DO SETOR PÚBLICO Prof. Maurício

Leia mais

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO II/05 UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE ECONOMIA 0//5 MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO ECONOMIA DA INFORMAÇÃO E DOS INCENTIVOS APLICADA À ECONOMIA DO SETOR PÚBLICO Prof. Maurício

Leia mais

Seja f uma função r.v.r. de domínio D e seja a R um ponto de acumulação de

Seja f uma função r.v.r. de domínio D e seja a R um ponto de acumulação de p-p8 : Continuidad d funçõs rais d variávl ral. Lr atntamnt. Dominar os concitos. Fazr rcícios. Função contínua, prolongávl por continuidad, dscontínua. Classificação d dscontinuidads. Continuidad num

Leia mais

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2 Eam Nacional d 0 (. a fas) Prova Escrita d Matmática. o no d Escolaridad Prova 3/Vrsõs GRUPO I Itns Vrsão Vrsão. (C) (). () (C) 3. () (C). (D) (). (C) (). () () 7. () (D) 8. (C) (D) Justificaçõs:. P( )

Leia mais

Algoritmo de integração numérica - Euler: Considerando a seguinte equação diferencial:

Algoritmo de integração numérica - Euler: Considerando a seguinte equação diferencial: Lista B Aulas Práticas d Scilab Equaçõs difrnciais Introdução: Considr um corpo d massa m fito d um matrial cujo calor spcífico à prssão constant sja c p. Est corpo stá inicialmnt a uma tmpratura T 0,

Leia mais

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O Prparar o Eam 05 Matmática A E X A M E 0.ª FASE, V E R S Ã O P R O P O S T A D E R E S O L U Ç Ã O. Tm-s qu P A P A P A GRUPO I ITENS DE ESCOLHA MÚLTIPLA 0, 0, 0,. Assim: P B A PB A 0,8 0,8 PB A 0,8 0,

Leia mais

CURSO: MARKETING ECONOMIA I Época Normal 11 de Fevereiro de 2009 duração: 2h. Resolução NOME: Nº. GRUPO I (7 valores)

CURSO: MARKETING ECONOMIA I Época Normal 11 de Fevereiro de 2009 duração: 2h. Resolução NOME: Nº. GRUPO I (7 valores) URO: MARKTING ONOMIA I Éoca Normal 11 d Fvriro d 009 duração: h NOM: Nº. RPONA NO NUNIAO Rsolução GRUPO I (7 valors) dv assinalar com um círculo a rsosta corrcta cada qustão tm uma cotação d 1 val cada

Leia mais

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5 P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5 GRUPO I ITENS DE ESCOLHA MÚLTIPLA 1. Agrupando num bloco a Ana, a Bruna, o Carlos, a Diana o Eduardo, o bloco os rstants st amigos prmutam

Leia mais

1. Problema Os dados apresentados abaixo relacionam x, o nível umidade de uma mistura de um determinado produto, a Y, a densidade do produto acabado.

1. Problema Os dados apresentados abaixo relacionam x, o nível umidade de uma mistura de um determinado produto, a Y, a densidade do produto acabado. 1. Problma Os dados aprsntados abaixo rlacionam x, o nívl umidad d uma mistura d um dtrminado produto, a Y, a dnsidad do produto acabado. x 7 9 10 13 14 15 16 19 Y 9.07 9.94 10.75 12.45 12.97 13.34 14.25

Leia mais

Aula Expressão do produto misto em coordenadas

Aula Expressão do produto misto em coordenadas Aula 15 Nsta aula vamos xprssar o produto misto m trmos d coordnadas, analisar as propridads dcorrnts dssa xprssão fazr algumas aplicaçõs intrssants dos produtos vtorial misto. 1. Exprssão do produto misto

Leia mais

LEITURA 1: CAMPO ELÁSTICO PRÓXIMO À PONTA DA TRINCA

LEITURA 1: CAMPO ELÁSTICO PRÓXIMO À PONTA DA TRINCA Fadiga dos Matriais Mtálicos Prof. Carlos Baptista Cap. 4 PROPAGAÇÃO DE TRINCAS POR FADIGA LEITURA 1: CAMPO ELÁSTICO PRÓXIMO À PONTA DA TRINCA Qualqur solução do campo d tnsõs para um dado problma m lasticidad

Leia mais

Algumas distribuições de variáveis aleatórias discretas importantes:

Algumas distribuições de variáveis aleatórias discretas importantes: Algumas distribuiçõs d variávis alatórias discrtas importants: Distribuição Uniform Discrta Enquadram-s aqui as distribuiçõs m qu os possívis valors da variávl alatória tnham todos a msma probabilidad

Leia mais

Material Teórico - Módulo Equações e Sistemas de Equações Fracionárias. Sistemas de Equações Fracionárias. Oitavo Ano

Material Teórico - Módulo Equações e Sistemas de Equações Fracionárias. Sistemas de Equações Fracionárias. Oitavo Ano Matrial Tórico - Módulo Equaçõs Sistmas d Equaçõs Fracionárias Sistmas d Equaçõs Fracionárias Oitavo Ano Autor: Prof Ulisss Lima Parnt Rvisor: Prof Antonio Caminha M Nto Sistmas d quaçõs fracionárias Nssa

Leia mais

Programa de Pós-Graduação Processo de Seleção 2 0 Semestre 2008 Exame de Conhecimento em Física

Programa de Pós-Graduação Processo de Seleção 2 0 Semestre 2008 Exame de Conhecimento em Física UNIVERSIDADE FEDERAL DE GOIAS INSTITUTO DE FÍSICA C.P. 131, CEP 74001-970, Goiânia - Goiás - Brazil. Fon/Fax: +55 62 521-1029 Programa d Pós-Graduação Procsso d Slção 2 0 Smstr 2008 Exam d Conhcimnto m

Leia mais

Justifique todas as passagens

Justifique todas as passagens ā Prova d Cálculo II - MAT2 - IOUSP /2/204 Nom : GABARITO N ō USP : Profssor : Oswaldo Rio Branco d Olivira Justifiqu todas as passagns Q 2 4 5 Total N. Considr a função f : R 2 R dfinida por f(x,y) =

Leia mais

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia UNIVERSIDADE DE SÃO PAULO Faculdad d Economia, Administração Contabilidad d Ribirão Prto Dpartamnto d Economia Nom: Númro: REC200 MICROECONOMIA II PRIMEIRA PROVA (20) () Para cada uma das funçõs d produção

Leia mais

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia UNIVERSIDADE DE SÃO PAULO Faculdad d Economia, Administração Contabilidad d Ribirão Prto Dpartamnto d Economia Nom: Númro: REC00 MICROECONOMIA II PRIMEIRA PROVA (0) () Para cada uma das funçõs d produção

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO Grupo I. Questões

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO Grupo I. Questões PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 63) ª FASE 1 DE JULHO 014 Grupo I Qustõs 1 3 4 6 7 8 Vrsão 1 C B B D C A B C Vrsão B C C A B A D D 1 Grupo II 11 O complo

Leia mais

10 Encontro de Ensino, Pesquisa e Extensão, Presidente Prudente, 21 a 24 de outubro, 2013

10 Encontro de Ensino, Pesquisa e Extensão, Presidente Prudente, 21 a 24 de outubro, 2013 10 Encontro d Ensino, Psquisa Extnsão, Prsidnt Prudnt, 21 a 24 d outubro, 2013 DIFERENCIAÇÃO COMPLEXA E AS CONDIÇÕES DE CAUCHY-RIEMANN Pâmla Catarina d Sousa Brandão1, Frnando Prira Sousa2 1 Aluna do Curso

Leia mais

FILTROS. Assim, para a frequência de corte ω c temos que quando g=1/2 ( )= 1 2 ( ) = 1 2 ( ) e quando = 1 2

FILTROS. Assim, para a frequência de corte ω c temos que quando g=1/2 ( )= 1 2 ( ) = 1 2 ( ) e quando = 1 2 FILTROS Como tmos visto, quando tmos lmntos rativos nos circuitos, as tnsõs sobr os lmntos d um circuitos m CA são dpndnts da frquência. Est comportamnto m circuitos montados como divisors d tnsão prmit

Leia mais

Campo elétrico. Antes de estudar o capítulo PARTE I

Campo elétrico. Antes de estudar o capítulo PARTE I PART I Unidad A 2 Capítulo Sçõs: 21 Concito d 22 d cargas puntiforms 2 uniform Ants d studar o capítulo Vja nsta tabla os tmas principais do capítulo marqu um X na coluna qu mlhor traduz o qu você pnsa

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adriano Pdrira Cattai apcattai@ahoocombr Univrsidad Fdral da Bahia UFBA, MAT A01, 006 3 Suprfíci Cilíndrica 31 Introdução Dfinição d Suprfíci Podmos obtr suprfícis não somnt por mio d uma quação do tipo

Leia mais

Laboratório de Física

Laboratório de Física Laboratório d Física Exprimnto 01: Associação d Rsistors Disciplina: Laboratório d Física Exprimntal II Profssor: Turma: Data: / /20 Alunos (noms compltos m ordm alfabética): 1: 2: 3: 4: 5: 2/15 01 Associação

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO 2014 Grupo I.

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO 2014 Grupo I. Associação d Profssors d Matmática Contactos: Rua Dr João Couto, nº 7-A 100-6 Lisboa Tl: +1 1 716 6 90 / 1 711 0 77 Fa: +1 1 716 64 4 http://wwwapmpt mail: gral@apmpt PROPOSTA DE RESOLUÇÃO DA PROVA DE

Leia mais

Questões para o concurso de professores Colégio Pedro II

Questões para o concurso de professores Colégio Pedro II Qustõs para o concurso d profssors Colégio Pdro II Profs Marilis, Andrzinho Fábio Prova Discursiva 1ª QUESTÃO Jhosy viaja com sua sposa, Paty, sua filha filho para a Rgião dos Lagos para curtir um friadão

Leia mais

VI - ANÁLISE CUSTO - VOLUME - RESULTADOS

VI - ANÁLISE CUSTO - VOLUME - RESULTADOS VI - ANÁLISE CUSTO - VOLUME - RESULTADOS 6.1 Introdução ao tma Exist todo o intrss na abordagm dst tma, pois prmit a rsolução d um conjunto d situaçõs qu s aprsntam rgularmnt na vida das organizaçõs. Estas

Leia mais

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR A =

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR A = Instituto Suprior Técnico Dpartamnto d Matmática Scção d Álgbra Anális ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 4 EQUAÇÕES DIFERENCIAIS LINEARES Formas canónicas d Jordan () Para cada uma das matrizs A

Leia mais

INTRODUÇÃO À ESTATÍSTICA

INTRODUÇÃO À ESTATÍSTICA INTRODUÇÃO À ESTATÍSTICA ERRATA (capítulos 1 a 6 CAP 1 INTRODUÇÃO. DADOS ESTATÍSTICOS Bnto Murtira Carlos Silva Ribiro João Andrad Silva Carlos Pimnta Pág. 10 O xmplo 1.10 trmina a sguir ao quadro 1.7,

Leia mais

Representação de Números no Computador e Erros

Representação de Números no Computador e Erros Rprsntação d Númros no Computador Erros Anális Numérica Patrícia Ribiro Artur igul Cruz Escola Suprior d Tcnologia Instituto Politécnico d Stúbal 2015/2016 1 1 vrsão 23 d Fvriro d 2017 Contúdo 1 Introdução...................................

Leia mais

MULTI-LAYER PERCEPTRON

MULTI-LAYER PERCEPTRON MULTI-LAYER PERCEPTRON Rds d anas uma camada só rrsntam funçõs linarmnt sarávis Rds d múltilas camadas solucionam ssa rstrição O dsnvolvimnto do algoritmo Bac-Proagation foi um dos motivos ara o rssurgimnto

Leia mais

Apêndice Matemático. Se este resultado for inserido na expansão inicial (A1.2), resulta

Apêndice Matemático. Se este resultado for inserido na expansão inicial (A1.2), resulta A Séris Intgrais d Fourir Uma função priódica, d príodo 2, = + 2 pod sr xpandida m séri d Fourir no intrvalo <

Leia mais

{ : 0. Questões de resposta de escolha múltipla. Grupo I 1. ( ) D = x f x x D. Resposta: D. lim = 3, pode-se concluir que o

{ : 0. Questões de resposta de escolha múltipla. Grupo I 1. ( ) D = x f x x D. Resposta: D. lim = 3, pode-se concluir que o Grupo I Qustõs d rsposta d scolha múltipla { : 0 f }. ( ) D = f D g f ( ) 0 [, + [. Como f tm domínio \{ 5}, é contínua f ( ) gráfico d f não admit assimptotas vrticais. 5 Rsposta: D lim =, pod-s concluir

Leia mais

Hewlett-Packard MATRIZES. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard MATRIZES. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hwltt-Packard MTRIZES ulas 0 a 05 Elson Rodrigus, Gabril Carvalho Paulo Luiz Sumário MTRIZES NOÇÃO DE MTRIZ REPRESENTÇÃO DE UM MTRIZ E SEUS ELEMENTOS EXERCÍCIO FUNDMENTL MTRIZES ESPECIIS IGULDDE ENTRE

Leia mais

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hwltt-Packard MTRIZES ulas 0 a 06 Elson Rodrigus, Gabril Carvalho Paulo Luiz no 06 Sumário MTRIZES NOÇÃO DE MTRIZ REPRESENTÇÃO DE UM MTRIZ E SEUS ELEMENTOS EXERCÍCIO FUNDMENTL MTRIZES ESPECIIS IGULDDE

Leia mais

EXPRESSÕES LÓGICAS. 9.1 Lógica proposicional AULA 9

EXPRESSÕES LÓGICAS. 9.1 Lógica proposicional AULA 9 AULA 9 EXPRESSÕES LÓGICAS 9.1 Lógica proposicional Lógica é o studo do raciocínio 1. Em particular, utilizamos lógica quando dsjamos dtrminar s um dado raciocínio stá corrto. Nsta disciplina, introduzimos

Leia mais

Análise Matemática IV

Análise Matemática IV Anális Matmática IV Problmas para as Aulas Práticas Smana 7 1. Dtrmin a solução da quação difrncial d y d t = t2 + 3y 2 2ty, t > 0 qu vrifica a condição inicial y(1) = 1 indiqu o intrvalo máximo d dfinição

Leia mais

CAPÍTULO 12 REGRA DA CADEIA

CAPÍTULO 12 REGRA DA CADEIA CAPÍTULO 12 REGRA DA CADEIA 121 Introdução Em aulas passadas, aprndmos a rgra da cadia para o caso particular m qu s faz a composição ntr uma função scalar d várias variávis f uma função vtorial d uma

Leia mais

Projetos de um forno elétrico de resistência

Projetos de um forno elétrico de resistência Projtos d um forno létrico d rsistência A potência para um dtrminado forno dpnd do volum da câmara sua tmpratura, spssura condutividad térmica do isolamnto do tmpo para alcançar ssa tmpratura. Um método

Leia mais

2.3 - MODELO ELASTOPLASTICO UNIDIMENSIONAL

2.3 - MODELO ELASTOPLASTICO UNIDIMENSIONAL 3 - MODLO LASTOPLASTICO UNIDIMNSIONAL A anális d ças submtidas a tração comrssão uras rmit introduzir d orma simls as quaçõs d um modlo lastolástico O comortamnto lastolástico ica dscrito sciicando os

Leia mais

AULA Subespaço, Base e Dimensão Subespaço.

AULA Subespaço, Base e Dimensão Subespaço. Not bm: a litura dsts apontamntos não dispnsa d modo algum a litura atnta da bibliografia principal da cadira TÓPICOS Subspaço. ALA Chama-s a atnção para a importância do trabalho pssoal a ralizar plo

Leia mais

2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo

2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo Intgração Múltipla Prof. M.Sc. Armando Paulo da Silva UTFP Campus Cornélio Procópio )INTEGAIS DUPLAS: ESUMO Emplo Emplo Calcul 6 Calcul 6 dd dd O fato das intgrais rsolvidas nos mplos srm iguais Não é

Leia mais

Canguru Matemático sem Fronteiras 2018

Canguru Matemático sem Fronteiras 2018 Canguru Matmático sm Frontiras 2018 Catgoria: Mini-Escolar - nívl II Dstinatários: alunos do 3. o ano d scolaridad Nom: Turma: Duração: 1h 30min Canguru Matmático. Todos os diritos rsrvados. Est matrial

Leia mais

TÓPICOS. EDO de variáveis separadas. EDO de variáveis separáveis. EDO homogénea. 2. Equações Diferenciais de 1ª Ordem.

TÓPICOS. EDO de variáveis separadas. EDO de variáveis separáveis. EDO homogénea. 2. Equações Diferenciais de 1ª Ordem. ot bm a litura dsts apontamntos não dispnsa d modo algum a litura atnta da bibliograia principal da cadira Cama-s à atnção para a importância do trabalo pssoal a ralizar plo aluno rsolvndo os problmas

Leia mais

a) (0.2 v) Justifique que a sucessão é uma progressão aritmética e indique o valor da razão.

a) (0.2 v) Justifique que a sucessão é uma progressão aritmética e indique o valor da razão. MatPrp / Matmática Prparatória () unidad tra curricular / E-Fólio B 8 dzmbro a janiro Critérios d corrção orintaçõs d rsposta Qustão ( val) Considr a sucssão d númros rais dfinida por a) ( v) Justifiqu

Leia mais

ANÁLISE MATEMÁTICA IV A =

ANÁLISE MATEMÁTICA IV A = Instituto uprior Técnico Dpartamnto d Matmática cção d Álgbra Anális ANÁLIE MATEMÁTICA IV FICHA 5 ITEMA DE EQUAÇÕE LINEARE E EQUAÇÕE DE ORDEM UPERIOR À PRIMEIRA () Considr a matriz A 3 3 (a) Quais são

Leia mais

ONDAS ELETROMAGNÉTICAS EM MEIOS CONDUTORES

ONDAS ELETROMAGNÉTICAS EM MEIOS CONDUTORES LTROMAGNTISMO II 3 ONDAS LTROMAGNÉTICAS M MIOS CONDUTORS A quação d onda dduida no capítulo antrior é para mios sm prdas ( = ). Vamos agora ncontrar a quação da onda m um mio qu aprsnta condutividad não

Leia mais

18-04-2015. Sumário. Campo e potencial elétrico. Conceito de campo

18-04-2015. Sumário. Campo e potencial elétrico. Conceito de campo Sumário Unidad II Eltricidad Magntismo 1- - Noção d campo létrico. - Campo létrico criado por uma carga pontual stacionária. - Linhas d campo. APSA 21 Campo létrico. Campo létrico uniform. Concito d campo

Leia mais

1.1 O Círculo Trigonométrico

1.1 O Círculo Trigonométrico Elmntos d Cálculo I - 06/ - Drivada das Funçõs Trigonométricas Logarítmicas Prof Carlos Albrto S Soars Funçõs Trigonométricas. O Círculo Trigonométrico Considrmos no plano a cirncunfrência d quação + =,

Leia mais

Geometria Analítica - Aula

Geometria Analítica - Aula Gomtria Analítica - Aula 0 60 K. Frnsl - J. Dlgado Aula 1 1. Rotação dos ixos coordnados Sja OXY um sistma d ixos ortogonais no plano sja O X Y o sistma d ixos obtido girando os ixos OX OY d um ângulo

Leia mais

Exame de Matemática Página 1 de 6. obtém-se: 2 C.

Exame de Matemática Página 1 de 6. obtém-se: 2 C. Eam d Matmática -7 Página d 6. Simplificando a prssão 9 ( ) 6 obtém-s: 6.. O raio r = m d uma circunfrência foi aumntado m 5%. Qual foi o aumnto prcntual da ára da sgunda circunfrência m comparação com

Leia mais

EXERCÍCIO: BRECHA ALEATÓRIA

EXERCÍCIO: BRECHA ALEATÓRIA EXERCÍCIO: BRECHA ALEATÓRIA Considr uma manobra qu tm d sr fita nas brchas ntr passagns d vículos do fluxo principal rqur uma brcha mínima d 6 sgundos para qu o motorista possa xcutá-la Uma contagm d tráfgo

Leia mais

5.10 EXERCÍCIO pg. 215

5.10 EXERCÍCIO pg. 215 EXERCÍCIO pg Em cada um dos sguints casos, vriicar s o Torma do Valor Médio s aplica Em caso airmativo, achar um númro c m (a, b, tal qu (c ( a - ( a b - a a ( ; a,b A unção ( é contínua m [,] A unção

Leia mais

RI406 - Análise Macroeconômica

RI406 - Análise Macroeconômica Fdral Univrsity of Roraima, Brazil From th SlctdWorks of Elói Martins Snhoras Fall Novmbr 18, 2008 RI406 - Anális Macroconômica Eloi Martins Snhoras Availabl at: http://works.bprss.com/loi/54/ Anális Macroconômica

Leia mais

R é o conjunto dos reais; f : A B, significa que f é definida no conjunto A (domínio - domain) e assume valores em B (contradomínio range).

R é o conjunto dos reais; f : A B, significa que f é definida no conjunto A (domínio - domain) e assume valores em B (contradomínio range). f : A B, significa qu f é dfinida no conjunto A (domínio - domain) assum valors m B (contradomínio rang). R é o conjunto dos rais; R n é o conjunto dos vtors n-dimnsionais rais; Os vtors m R n são colunas

Leia mais

Canguru Matemático sem Fronteiras 2018

Canguru Matemático sem Fronteiras 2018 Canguru Matmático sm Frontiras 2018 Catgoria: Mini-Escolar - nívl II Dstinatários: alunos do 3. o ano d scolaridad Nom: Turma: Duração: 1h 30min Não pods usar calculadora. Em cada qustão dvs assinalar

Leia mais

ENSAIO EDOMÉTRICO. 1. Objectivo

ENSAIO EDOMÉTRICO. 1. Objectivo ENSAIO EDOMÉTRIO 1. Objctio É d conhcimnto gral qu qualqur matrial sujito a uma dtrminada solicitação s dforma no sntido d suortar ssa solicitação. Isto é, nnhum matrial od suortar uma solicitação sm s

Leia mais

Classificação ( ) ( )

Classificação ( ) ( ) Objtios MECÂNIC - DINÂMIC Dinâmica d um Ponto Matrial: Impulso Quantidad d Moimnto Cap. 5 Dsnolr o princípio do impulso quantidad d moimnto. Estudar a consração da quantidad d moimnto para pontos matriais.

Leia mais

Estatística Multivariada Normal Multivariada Função densidade conjunta e contorno de probabilidade

Estatística Multivariada Normal Multivariada Função densidade conjunta e contorno de probabilidade Estatístca ultvarada Normal ultvarada Função dnsdad conjunta contorno d robabldad Prof. José Francsco orra Pssanha rofssorjfm@hotmal.com Dstrbução normal unvarada Sja uma varávl alatóra normalmnt dstrbuída

Leia mais

Resoluções dos exercícios propostos

Resoluções dos exercícios propostos da física P.3 Situação inicial: θ 7 C 7 73 4 K; º Situação final: θ 37 C 37 73 6 K 6 5 º 4 5 5 º P.33 a) Analisando os dados da tabla, concluímos qu a rlação ntr os alors do olum ( ) os corrsondnts alors

Leia mais

Escola Politécnica da Universidade de São Paulo. Departamento de Engenharia de Estruturas e Fundações

Escola Politécnica da Universidade de São Paulo. Departamento de Engenharia de Estruturas e Fundações Escola Politécnica da Univrsidad d São Paulo Dpartamnto d Engnharia d Estruturas Fundaçõs Laboratório d Estruturas Matriais Estruturais Extnsomtria létrica III Notas d aula Dr. Pdro Afonso d Olivira Almida

Leia mais

Cálculo Diferencial e Integral II

Cálculo Diferencial e Integral II Cálculo Difrncial Intgral II Lista 7 - Rsumo a Toria A Rgra a Caia No stuo funçõs uma variávl usamos a Rgra a Caia para calcular a rivaa uma função composta Nst caso sno w f uma função ifrnciávl sno g

Leia mais

4 Modelo Elastoplástico UBCSand

4 Modelo Elastoplástico UBCSand 53 4 Modlo Elastolástico UCSand 4.1. Introdução O odlo UCSand oi dsnvolvido lo rossor tr M. yrn na Univrsidad da ritish Colubia, Vancouvr, Canadá (yrn t al., 1995; aty & yrn; 1998; yrn t al., 004a), sndo

Leia mais

Função Exponencial: Conforme já vimos, o candidato natural à função exponencial complexa é dado pela função. f z x iy f z e cos y ie sen y.

Função Exponencial: Conforme já vimos, o candidato natural à função exponencial complexa é dado pela função. f z x iy f z e cos y ie sen y. Funçõs Elmntars Função Exponncial: Conform já vimos, o candidato natural à função xponncial complxa é dado pla função Uma v qu : : ( ) x x f x i f cos i sn x f, x. E uma gnraliação para sr útil dv prsrvar

Leia mais

3. Geometria Analítica Plana

3. Geometria Analítica Plana MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS DEPARTAMENTO DE MATEMÁTICA E ESTATÍSITICA APOSTILA DE GEOMETRIA ANALÍTICA PLANA PROF VINICIUS 3 Gomtria Analítica Plana 31 Vtors no plano Intuitivamnt,

Leia mais

Resoluções de Exercícios

Resoluções de Exercícios Rsoluçõs d Exrcícios MATEMÁTICA II Conhc Capítulo 07 Funçõs Equaçõs Exponnciais; Funçõs Equaçõs Logarítmicas 01 A) log 2 16 = log 2 2 4 = 4 log 2 2 = 4 B) 64 = 2 6 = 2 6 = 6 log 2 2 = 4 C) 0,125 = = 2

Leia mais

v 4 v 6 v 5 b) Como são os corte de arestas de uma árvore?

v 4 v 6 v 5 b) Como são os corte de arestas de uma árvore? 12 - Conjuntos d Cort o studarmos árors gradoras, nós stáamos intrssados m um tipo spcial d subgrafo d um grafo conxo: um subgrafo qu mantiss todos os értics do grafo intrligados. Nst tópico, nós stamos

Leia mais

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA LIMITES E DERIVADAS MAT B Prof a Graça Luzia

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA LIMITES E DERIVADAS MAT B Prof a Graça Luzia INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA LIMITES E DERIVADAS MAT B - 008. Prof a Graça Luzia A LISTA DE EXERCÍCIOS ) Usando a dfinição, vrifiqu s as funçõs a sguir são drivávis m 0 m

Leia mais

ESTIMAÇÃO DO TEMPO DE PRATELEIRA DE UM PRODUTO PERECÍVEL A PARTIR DE DADOS DE INSPEÇÃO

ESTIMAÇÃO DO TEMPO DE PRATELEIRA DE UM PRODUTO PERECÍVEL A PARTIR DE DADOS DE INSPEÇÃO ESTIMAÇÃO DO TEMPO DE PRATELEIRA DE UM PRODUTO PERECÍVEL A PARTIR DE DADOS DE INSPEÇÃO CLÁUDIO JOSÉ MONTENEGRO DE ALBUQUERQUE Dartamnto d Engnharia d Produção UFPE JACIRA GUIRO CARVALHO DA ROCHA Dartamnto

Leia mais

Modelos Determinísticos

Modelos Determinísticos Molos Dtrminísticos osição Instantâna; Pnúria não rmitia. (Em toas as situaçõs assum-s qu a rocura é trminística constant valor, qu não xistm scontos quantia. Nst caso assum-s qu a quantia ncomna é rcbia

Leia mais

Estatística Multivariada

Estatística Multivariada Estatística Mutivariada . Introdução A statística mutivariada comrnd um conjunto d técnicas qu anaisam simutanamnt um conjunto d variávis qu caractrizam os objtos ou indivíduos d uma amostra. Usuamnt as

Leia mais

Matemática IME-2007/ a QUESTÃO. 2 a QUESTÃO COMENTA

Matemática IME-2007/ a QUESTÃO. 2 a QUESTÃO COMENTA Matmática a QUESTÃO IME-007/008 Considrando qu podmos tr csto sm bola, o númro d maniras d distribuir as bolas nos três cstos é igual ao númro d soluçõs intiras não-ngativas da quação: x + y + z = n, na

Leia mais

Instituto Federal Goiano

Instituto Federal Goiano planjamnto Anális d Exprimntos Instituto Fdral Goiano planjamnto Anális d 1 planjamnto 2 Anális d 3 4 5 6 7 Contúdo 8 Parclas subdivididas (split plot) planjamnto Anális d É um dlinamnto xprimntal? Parclas

Leia mais

Prof. Antonio Carlos Santos. Aula 9: Transistor como amplificador

Prof. Antonio Carlos Santos. Aula 9: Transistor como amplificador IF-UFRJ lmntos d ltrônica Analógica Prof. Antonio Carlos Santos Mstrado Profissional m nsino d Física Aula 9: Transistor como amplificador st matrial foi basado m liros manuais xistnts na litratura (id

Leia mais