Projetos de um forno elétrico de resistência

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Projetos de um forno elétrico de resistência"

Transcrição

1 Projtos d um forno létrico d rsistência A potência para um dtrminado forno dpnd do volum da câmara sua tmpratura, spssura condutividad térmica do isolamnto do tmpo para alcançar ssa tmpratura. Um método prático mprgado para dar uma stimativa dos quilowatts ncssários, aplicávis a fornos com tmpraturas d 100/1300 ºC. Para tmpraturas infriors a 900 ºC, os valors podm sr rduzidos d 0 a 30%. 1) Aplicando-s os multiplicadors W / litro ou / m 3, sobr o volum da câmara. Exmplo: Câmara d 60X60X60 cm 0,16 m 3 ou 16 litros. 0,16 x 53 11,5 16 x W. Potência do forno P (35, 4 ou 50 / m 3 ) V c + P p, ond V c Volum da câmara m m 3. Pp Prdas do isolamnto m. O índic 35 dv sr aplicado m fornos até 900 ºC, 4 m 100 ºC 50 m 1300 ºC. A tabla a sguir é rsultant d lvantamnto d fornos d 100 / 1300 ºC manufaturados no mrcado nort-amricano, comparando os volums dos fornos com suas rspctivas faixas d potência. Dados d rfrência d fornos fabricados m USA para comparar com os cálculos. Tabla 1 Volum da câmara (litros) Volum da câmara (litros) 8 1, , 56 4,6 5,5 7 9, 14,4 85 5,0 5, ,8 30, , ,0 34,5 14 7,8 14, Dados d fornos fabricados no mrcado nacional. Tabla Volum da câmara (litros) 900ºC 100ºC 1300ºC 10 1,,0 1,8 3,0,4 3, 0,0,5 3,0 3,6 3,6 4,0 40 3,0 3,3 4,0 5,5 5,5 6,0 70 4,5 5,0 6,0 7,0 7,5 8, ,0 6,0 7,0 7,5 7,5 10, ,0 8,5 9,0 10,0 10,0 15, ,0 15,0 13,0 16,0,0 5, ,0 30,0 4,0 6,0 5,0 35,0

2 Exmplo Forno d 850 ºC Ncssidad d quimar vasos d porclana com crca d 5 cm d diâmtro 58 cm d altura. Placas d fibra crâmica possum as dimnsõs 610 x 10 mm as placas d silicato d cálcio 305 x 914 mm, ambas mprgadas na construção dos fornos, stablcr as dimnsõs da câmara não só para podr contr os vasos, mas também para aprovitar ao máximo as dimnsõs das placas, dando uma margm d spaço para fixação das rsistências m duas latrais. Foram utilizadas placas d class d tmpratura d 160 ºC, qu aprsntam baixa rtração linar m 850 ºC (0,4% - placas LD). Dssa forma o volum da câmara ficou com 610 x 305 x 386 mm. Ára total intrna A i [0,61 (0,305+ 0,386)] + (0,386 x 0,305) A i 0, ,35 1,078 m. P p Prdas d calor através das pards planas W / m Pp A 1 m1 k 1 (T T ) f A k A k m m3 3 W (4.) A primira camada (fac qunt), srá constituída d fibra crâmica as dmais d silicato d cálcio, srão utilizadas placas d uma polgada (,54 cm) d spssura. Considrando qu a condutividad térmica das placas d fibra crâmica é próxima das placas d silicato d cálcio, podmos tratar as várias camadas isolants como uma única camada, assim, da A quação (4.), obtém-s: m(t T ) P f 4 p k Uma vz dtrminada as dimnsõs da câmara sua ára intrna, a ára xtrna pod sr obtida da quação: A A i + 8(h+a+b+3), ond A - Ára xtrna do forno m. A i Ára intrna da câmara m. h altura intrna da câmara m. a largura intrna da câmara m. b profundidad intrna da câmara m. E spssura do isolamnto do forno m. Isolamnto d 5 placas isolants d 1 polgada d spssura, assim:,54 x 5 1,7 cm 0,17 m Uma vz qu h 0,61m, a 0,305m, b 0,386 m, A i 1, 078 m.

3 A 1,078+ 8x 0,17 (0,61 + 0, , x 0,17) 1, ,016 (1,301+0,381) A 1, ,709 A,79 m. Da fórmula A m A i A 1,078x,79 1,734 m. A m / 1,734 0,17 13,65 Admitamos qu T 4 sja 60 ºC, nss caso a tmpratura média do isolamnto srá: T m ( ) 455 ºC, assim do gráfico 1, k 0,11. Am(T T ) P f 4 p k, logo Pp 13,65 (850 60) 0, W Pp / Am , W / m Consultando a tabla 3, vmos qu, para ss último valor, o rvstimnto xtrno do forno ating aproximadamnt 80 ºC. Assim, rcalculando as prdas: Pp 13,65 (850 80) 0, W Com ssa spssura o rvstimnto xtrno vai atingir 80 ºC, para alguns projtistas o valor dvria sr mantido próximo d 60 ºC para fornos até ºC não ultrapassar 100 ºC para fornos até 1300 ºC. A norma d sgurança IEC 335 prscrv para aparlhos ltrotérmicos qu a tmpratura da junção, ntr o trminal a fiação xtrna, não dv ultrapassar 85 ºC. IEC, Intrnational Elctrotchnical Commission. Esss limits visam mantr o ambint nas vizinhanças dos fornos m nívis qu não prjudiqum os opradors, rduzam as prdas através do isolamnto aspctos d sgurança. Dtrminação da potência do forno Outro método para avaliar a potência do forno é o d aplicar um índic sobr o volum da câmara adicionar as prdas stimadas através do isolamnto térmico, ou sja: Potência do forno P (35, 4 ou 50 / m 3 ) V c + P p, ond V c Volum da câmara m m 3. Pp Prdas do isolamnto m. O índic 35 dv sr aplicado m fornos até 900 ºC, 4 m 100 ºC 50 m 1300 ºC.

4 Com as prdas através do isolamnto stimadas m 1156 W, considrando a xistência d outras prdas adicionais (não quantificadas), ainda, a ncssidad d rsrva d potncia para aqucimnto da carga, apliqumos st método: P 35 (0,386 X 0,305) 0,61 + 1,156 3,67. A fim d compnsar as prdas facilitar as conta scolhmos a sguint potncia: Potência: 4400 W. Dividida m dois conjuntos d rsistências d 00 W cada. Tnsão: 0 V. Matrial: Liga Kanthal A1 - F Cr Al. Tmpratura máxima do forno: 850 ºC. Fator d rsistividad a 850 ºC: 1,04, conform a tabla 7. Tabla 7 - Fators d rsistividad ºC C t 1,00 1,00 1,00 1,00 1,00 1,01 1,0 1,0 1,03 1,03 1,04 1,04 1,04 1,04 1,05 Adotarmos uma carga d suprfíci p,0 W / cm, para trmos um baixo gradint d tmpratura - rsistências / forno. Ac R 0 ( P V ) C p t ( 00 0 ) 1,04 x 5 cm / Ω. Consultando as tablas 4 5 vmos qu os fios qu mais s aproximam são os d 1,5 mm 15 B&S. Encontramos disponívl para pronta ntrga o fio 15 B&S, qu tm A c / R 0 51,9 cm / Ω, ntão: P V C ,04 519, t ( ) 51,9 p ( ) x p,0 W / cm. sndo ssa a carga d suprfíci ral. Comprimnto da rsistência P P 10π d l p l 10 d. p π l 00 4,15 m 10 1,45. π S utilizarmos tubo crâmico d 17 mm d diâmtro, o diâmtro intrno da spira dvrá sr 1 a 3 mm maior. Adotmos 19 mm, logo D 1,9 mm. Ess diâmtro stá ligiramnt acima do valor rcomndado D 10 14d, porém no forno qu confccionamos não aprsntou qualqur inconvnint. - Númro d spiras

5 1000.l N π (D d), l m mtros D, d m mm. 4,15 x 1000 N 376 spiras π (1,9 1,45) Comprimnto da spiral com as spiras ncostadas 376 x 1,45 545, mm 54,5 cm. S utilizarmos um passo s / d 3, trmos o comprimnto da spiral já com as spiras afastadas 54,5 x 3 163,5 cm. Númro d tubos crâmicos. Utilizamos tubos crâmicos d 5 cm, compatívl com as dimnsõs da câmara. Como nas xtrmidads dos tubos srão utilizados apoios d fixação, crca d 5 cm d cada tubo não podrão contr spiras, assim cada tubo irá dispor d 0 cm d comprimnto livr para suport da spiral. Assim irmos ncssitar d 163,5 0 8,17 ou 8 tubos o passo ral srá s / d 8 x 0 54,5,93, ou s,93 x 1,45 4,5. Tabla 3 Prdas totais por rvstimntos mtálicos pintados ε 0,9 T a 7 ºC Tmpratura C Prdas W / m Tmpratura C Prdas W / m Tmpratura C Prdas W / m O gráfico abaixo é rsultant da quação: k 0,97 X 10-3 (x + 4,156) + 0,05717, com x T m / 50. Os valors das condutividads podm sr obtidos do gráfico com alguma margm d rro ou da quação. Essa quação s rfr às placas d 160 ºC.

6 Gráfico 1 Condutividad térmica Placas da class d 160ºC. Tabla 4 Fios FCrAl I. Diâmtro Rsistência Pso cm / Ω mm Ω / m a 0 ºC g / m à 0 ºC 1,0 1,850 5,58 17,0 1,5 0,81 1,50 57,4 1,7 0,639 16,10 83,6,0 0,46,30 136,0,5 0,95 34,90 66,0 3,0 0,05 50,0 460,0 Tabla 5 Fios FCrAl I - originalmnt m unidads inglsas, convrtidas para unidads métricas. Diâmtro Diâmtro Rsistência Pso cm / Ω B&S mm Ω / m a 0 ºC g / m à 0 ºC 9,8956 0,0 46,75 413,4 11,3038 0,347 9,60 08,50 1,053 0,438 3,49 147, ,888 0,58 18,77 108, ,4503 0,878 11,73 51, ,036 1,76 5,84 18,7 Rfrências Bibliográficas Fornos Elétricos d Rsistências Toria Gral Edison Dantas Engnhiro Eltricista 1ª Edição Stmbro d 005 Fornos Elétricos Luigi di Stasi Hmus Editora 1981

Módulo II Resistores e Circuitos

Módulo II Resistores e Circuitos Módulo Claudia gina Campos d Carvalho Módulo sistors Circuitos sistência Elétrica () sistors: sistor é o condutor qu transforma nrgia létrica m calor. Como o rsistor é um condutor d létrons, xistm aquls

Leia mais

Critérios de falha PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL

Critérios de falha PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL A avaliação das tnsõs dformaçõs smpr é fita m função d crtas propridads do matrial. Entrtanto, não basta apnas calcular ssas grandzas.

Leia mais

ONDAS ELETROMAGNÉTICAS EM MEIOS CONDUTORES

ONDAS ELETROMAGNÉTICAS EM MEIOS CONDUTORES LTROMAGNTISMO II 3 ONDAS LTROMAGNÉTICAS M MIOS CONDUTORS A quação d onda dduida no capítulo antrior é para mios sm prdas ( = ). Vamos agora ncontrar a quação da onda m um mio qu aprsnta condutividad não

Leia mais

2ª série LISTA: Ensino Médio. Aluno(a): Questão 01 - (FUVEST SP)

2ª série LISTA: Ensino Médio. Aluno(a): Questão 01 - (FUVEST SP) Matmática Profssor: Marclo Honório LISTA: 04 2ª séri Ensino Médio Turma: A ( ) / B ( ) Aluno(a): Sgmnto tmático: GEOMETRIA ESPACIAL DIA: MÊS: 05 206 Pirâmids Cilindros Qustão 0 - (FUVEST SP) Três das arstas

Leia mais

Derivada Escola Naval

Derivada Escola Naval Drivada Escola Naval EN A drivada f () da função f () = l og é: l n (B) 0 l n (E) / l n EN S tm-s qu: f () = s s 0 s < < 0 s < I - f () só não é drivávl para =, = 0 = II - f () só não é contínua para =

Leia mais

a b TERMOLOGIA 1- Definição É o ramo da física que estuda os efeitos e as trocas de calor entre os corpos.

a b TERMOLOGIA 1- Definição É o ramo da física que estuda os efeitos e as trocas de calor entre os corpos. TERMOLOGI 1- Dfinição É o ramo da física qu studa os fitos as trocas d calor ntr os corpos. 2- Tmpratura É a mdida do grau d agitação d suas moléculas 8- Rlação ntr as scalas trmométricas Corpo Qunt Grand

Leia mais

Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T.

Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T. Pêndulo Simpls Um corpo suspnso por um fio, afastado da posição d quilíbrio sobr a linha vrtical qu passa plo ponto d suspnsão, abandonado, oscila. O corpo o fio formam o objto qu chamamos d pêndulo. Vamos

Leia mais

LISTA DE EXERCÍCIOS 4 GABARITO

LISTA DE EXERCÍCIOS 4 GABARITO LISTA DE EXERCÍCIOS 4 GABARITO 1) Uma sfra d massa 4000 g é abandonada d uma altura d 50 cm num local g = 10 m/s². Calcular a vlocidad do corpo ao atingir o solo. Dsprz os fitos do ar. mas, como o corpo

Leia mais

3. Geometria Analítica Plana

3. Geometria Analítica Plana MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS DEPARTAMENTO DE MATEMÁTICA E ESTATÍSITICA APOSTILA DE GEOMETRIA ANALÍTICA PLANA PROF VINICIUS 3 Gomtria Analítica Plana 31 Vtors no plano Intuitivamnt,

Leia mais

Seja f uma função r.v.r. de domínio D e seja a R um ponto de acumulação de

Seja f uma função r.v.r. de domínio D e seja a R um ponto de acumulação de p-p8 : Continuidad d funçõs rais d variávl ral. Lr atntamnt. Dominar os concitos. Fazr rcícios. Função contínua, prolongávl por continuidad, dscontínua. Classificação d dscontinuidads. Continuidad num

Leia mais

4.1 Método das Aproximações Sucessivas ou Método de Iteração Linear (MIL)

4.1 Método das Aproximações Sucessivas ou Método de Iteração Linear (MIL) 4. Método das Aproimaçõs Sucssivas ou Método d Itração Linar MIL O método da itração linar é um procsso itrativo qu aprsnta vantagns dsvantagns m rlação ao método da bisscção. Sja uma função f contínua

Leia mais

Olimpíada Brasileira de Física a Fase. Prova para alunos de 3 o ano

Olimpíada Brasileira de Física a Fase. Prova para alunos de 3 o ano Olimpíada Brasilira d Física 00 1 a Fas Proa para alunos d o ano Lia atntamnt as instruçõs abaixo ants d iniciar a proa: 1 Esta proa dstina-s xclusiamnt a alunos d o ano. A proa contm int qustõs. Cada

Leia mais

3 Modelagem de motores de passo

3 Modelagem de motores de passo 31 3 odlagm d motors d passo Nst capítulo é studado um modlo d motor d passo híbrido. O modlo dsnolido é implmntado no ambint computacional Simulink/TL. Est modlo pod sr utilizado m motors d imã prmannt,

Leia mais

FILTROS. Assim, para a frequência de corte ω c temos que quando g=1/2 ( )= 1 2 ( ) = 1 2 ( ) e quando = 1 2

FILTROS. Assim, para a frequência de corte ω c temos que quando g=1/2 ( )= 1 2 ( ) = 1 2 ( ) e quando = 1 2 FILTROS Como tmos visto, quando tmos lmntos rativos nos circuitos, as tnsõs sobr os lmntos d um circuitos m CA são dpndnts da frquência. Est comportamnto m circuitos montados como divisors d tnsão prmit

Leia mais

ESTUDO DA TRANSMISSÃO DE CALOR RADIANTE E CONVECTIVO EM CILINDROS CONCÊNTRICOS PELOS MÉTODOS DE MONTE CARLO E RESÍDUOS PONDERADOS.

ESTUDO DA TRANSMISSÃO DE CALOR RADIANTE E CONVECTIVO EM CILINDROS CONCÊNTRICOS PELOS MÉTODOS DE MONTE CARLO E RESÍDUOS PONDERADOS. ESTUDO DA TRANSMISSÃO DE CALOR RADIANTE E CONVECTIVO EM CILINDROS CONCÊNTRICOS PELOS MÉTODOS DE MONTE CARLO E RESÍDUOS PONDERADOS. Carlos Albrto d Almida Villa Univrsidad Estadual d Campinas - UNICAMP

Leia mais

Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita:

Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita: Máquinas Térmicas Para qu um dado sistma raliz um procsso cíclico no qual rtira crta quantidad d nrgia, por calor, d um rsrvatório térmico cd, por trabalho, outra quantidad d nrgia à vizinhança, são ncssários

Leia mais

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2 Eam Nacional d 0 (. a fas) Prova Escrita d Matmática. o no d Escolaridad Prova 3/Vrsõs GRUPO I Itns Vrsão Vrsão. (C) (). () (C) 3. () (C). (D) (). (C) (). () () 7. () (D) 8. (C) (D) Justificaçõs:. P( )

Leia mais

Laboratório de Física

Laboratório de Física Laboratório d Física Exprimnto 01: Associação d Rsistors Disciplina: Laboratório d Física Exprimntal II Profssor: Turma: Data: / /20 Alunos (noms compltos m ordm alfabética): 1: 2: 3: 4: 5: 2/15 01 Associação

Leia mais

Calor Específico. Q t

Calor Específico. Q t Calor Espcífico O cocint da quantidad d nrgia () forncida por calor a um corpo plo corrspondnt acréscimo d tmpratura ( t) é chamado capacidad térmica dst corpo: C t Para caractrizar não o corpo, mas a

Leia mais

ANÁLISE DIMENSIONAL E SEMELHANÇA. Determinação dos parâmetros

ANÁLISE DIMENSIONAL E SEMELHANÇA. Determinação dos parâmetros ANÁLISE IMENSIONAL E SEMELHANÇA trminação dos parâmtros Procdimnto: d Buckingham 1. Listar todas as grandzas nvolvidas.. Escolhr o conjunto d grandzas fundamntais (básicas), x.: M, L, t, T. 3. Exprssar

Leia mais

VI - ANÁLISE CUSTO - VOLUME - RESULTADOS

VI - ANÁLISE CUSTO - VOLUME - RESULTADOS VI - ANÁLISE CUSTO - VOLUME - RESULTADOS 6.1 Introdução ao tma Exist todo o intrss na abordagm dst tma, pois prmit a rsolução d um conjunto d situaçõs qu s aprsntam rgularmnt na vida das organizaçõs. Estas

Leia mais

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P 26 a Aula 20065 AMIV 26 Exponncial d matrizs smlhants Proposição 26 S A SJS ntão Dmonstração Tmos A SJS A % SJS SJS SJ % S ond A, S J são matrizs n n ", (com dt S 0), # S $ S, dond ; A & SJ % S SJS SJ

Leia mais

A energia cinética de um corpo de massa m, que se desloca com velocidade de módulo v num dado referencial, é:

A energia cinética de um corpo de massa m, que se desloca com velocidade de módulo v num dado referencial, é: nrgia no MHS Para studar a nrgia mcânica do oscilador harmônico vamos tomar, como xmplo, o sistma corpo-mola. A nrgia cinética do sistma stá no corpo d massa m. A mola não tm nrgia cinética porqu é uma

Leia mais

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO INSTITUTO DE FÍSICA FÍSICA III (FIM230) /1 GABARITO DA PROVA FINAL UNIFICADA DATA: 03/07/2009

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO INSTITUTO DE FÍSICA FÍSICA III (FIM230) /1 GABARITO DA PROVA FINAL UNIFICADA DATA: 03/07/2009 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO INSTITUTO DE FÍSICA FÍSICA III (FIM230) - 2009/1 GABARITO DA PROVA FINAL UNIFICADA DATA: 03/07/2009 PROBLEMA 1 (Cilindros coaxiais) [ 2,5 ponto(s)] Um cilindro condutor

Leia mais

DIMENSIONAMENTO DE SISTEMA GEOTÉRMICO PARA CLIMATIZAÇÃO DE RESIDÊNCIAS EM CURITIBA

DIMENSIONAMENTO DE SISTEMA GEOTÉRMICO PARA CLIMATIZAÇÃO DE RESIDÊNCIAS EM CURITIBA DIMENSIONAMENO DE SISEMA GEOÉMICO PAA CLIMAIZAÇÃO DE ESIDÊNCIAS EM CUIIBA Débora osa Barbosa da Silva (); Alfrdo Iarozinski Nto (); () Dpartamnto d Construção Civil Univrsidad cnológica Fdral do Paraná,

Leia mais

AII. ANEXO II COEFICIENTE DE CONDUTIBILIDADE TÉRMICA IN-SITU

AII. ANEXO II COEFICIENTE DE CONDUTIBILIDADE TÉRMICA IN-SITU ANEXO II Coficint d Condutibilidad Térmica In-Situ AII. ANEXO II COEFICIENTE DE CONDUTIBILIDADE TÉRMICA IN-SITU AII.1. JUSTIFICAÇÃO O conhcimnto da rsistência térmica ral dos componnts da nvolvnt do difício

Leia mais

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hwltt-Packard MTRIZES ulas 0 a 06 Elson Rodrigus, Gabril Carvalho Paulo Luiz no 06 Sumário MTRIZES NOÇÃO DE MTRIZ REPRESENTÇÃO DE UM MTRIZ E SEUS ELEMENTOS EXERCÍCIO FUNDMENTL MTRIZES ESPECIIS IGULDDE

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adriano Pdrira Cattai apcattai@ahoocombr Univrsidad Fdral da Bahia UFBA, MAT A01, 006 3 Suprfíci Cilíndrica 31 Introdução Dfinição d Suprfíci Podmos obtr suprfícis não somnt por mio d uma quação do tipo

Leia mais

Prof. Antonio Carlos Santos. Aula 9: Transistor como amplificador

Prof. Antonio Carlos Santos. Aula 9: Transistor como amplificador IF-UFRJ lmntos d ltrônica Analógica Prof. Antonio Carlos Santos Mstrado Profissional m nsino d Física Aula 9: Transistor como amplificador st matrial foi basado m liros manuais xistnts na litratura (id

Leia mais

Comando e Sinalização Botões de Comando Ø 22mm HB2-E (Plástico)

Comando e Sinalização Botões de Comando Ø 22mm HB2-E (Plástico) Botõs d Comando Ø 22mm HB2-E (Plástico) Diâmtro d furação 22mm. Dsign modrno. Com ligação por parafuso. Conformidad IEC EN 60947-5 Crtificação CE Botõs d Comando Sinalização Ø 22mm HB2-E (Plástico) A linha

Leia mais

- Função Exponencial - MATEMÁTICA

- Função Exponencial - MATEMÁTICA Postado m 9 / 07 / - Função Eponncial - Aluno(a): TURMA: FUNÇÃO EXPONENCIAL. Como surgiu a função ponncial? a n a n, a R n N Hoj, a idia d s scrvr. ² ou.. ³ nos parc óbvia, mas a utilização d númros indo

Leia mais

guia rápido de configuração CFX-750 trimble Precisa 6m³

guia rápido de configuração CFX-750 trimble Precisa 6m³ guia rápido d configuração CFX-750 trimbl Prcisa 6m³ 1.1 1.2 1.3 1.4 1º passo Configurando o GPS L i g u o CF X 750 (s g u r 3 s g u n d o s) Aprt (cliqu) m GPS (GPS)Config G PS (Font Corrig. D GPS) Aprt

Leia mais

PRO POWER TOOLS Indústria e Manutenção Preçário 2016

PRO POWER TOOLS Indústria e Manutenção Preçário 2016 PRO POWER TOOLS Indústria Manutnção Prçário 2016 46 Lixadoras 47 Acabamntos d suprfíci d qualidad! A gama d lixadoras polidoras Atlas Copco PRO proporciona os mlhors acabamntos d suprfíci. Aplicaçõs Para

Leia mais

NR-35 TRABALHO EM ALTURA

NR-35 TRABALHO EM ALTURA Sgurança Saúd do Trabalho ao su alcanc! NR-35 TRABALHO EM ALTURA PREVENÇÃO Esta é a palavra do dia. TODOS OS DIAS! PRECAUÇÃO: Ato ou fito d prvnir ou d s prvnir; A ação d vitar ou diminuir os riscos através

Leia mais

Desse modo, sendo E a energia de ligação de um núcleo formado por Z prótons e (A Z) nêutrons, de massa M(Z,A), pode-se escrever: E 2

Desse modo, sendo E a energia de ligação de um núcleo formado por Z prótons e (A Z) nêutrons, de massa M(Z,A), pode-se escrever: E 2 Enrgia d Ligação Nuclar Dado um núclo qualqur, a nrgia librada quando da sua formação a partir dos sus prótons nêutrons sparados d uma distância infinita é o qu s chama d nrgia d ligação d tal núclo. Dito

Leia mais

Física 3. k = 1/4πε 0 = 9, N.m 2 /C Uma partícula, que se move em linha reta, está sujeita à aceleração a(t), cuja variação

Física 3. k = 1/4πε 0 = 9, N.m 2 /C Uma partícula, que se move em linha reta, está sujeita à aceleração a(t), cuja variação Física 3 Valors d algumas constants físicas clração da gravidad: 10 m/s 2 Dnsidad da água: 1,0 g/cm 3 Calor spcífico da água: 1,0 cal/g C Carga do létron: 1,6 x 10-19 C Vlocidad da luz no vácuo: 3,0 x

Leia mais

PRODUTOS GERDAU PARA PAREDES DE CONCRETO

PRODUTOS GERDAU PARA PAREDES DE CONCRETO PRODUTOS GERDAU PARA PAREDES DE CONCRETO SISTEMA CONSTRUTIVO PAREDES DE CONCRETO NBR60 PAREDES DE CONCRETO Sistma construtivo m qu as lajs as pards são moldadas m conjunto, formando um lmnto monolítico.

Leia mais

Função do 2 o Grau. Uma aplicação f der emr

Função do 2 o Grau. Uma aplicação f der emr UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA. Dfinição Uma aplicação f

Leia mais

Amplificador diferencial com transistor bipolar

Amplificador diferencial com transistor bipolar Amplificador difrncial com transistor bipolar - ntrodução O amplificador difrncial é um bloco funcional largamnt mprgado m circuitos analógicos intgrados, bm como nos circuitos digitais da família ECL.

Leia mais

FT44 Purgador de Bóia em Aço Carbono

FT44 Purgador de Bóia em Aço Carbono Página 1 d 5 BR Rv 00 Purgador d Bóia m Aço Carbono DN15, DN20 DN25 DN15 (mostrado na figura) DN40 DN50 DN50 (mostrado na figura) -C Dscrição O é um purgador d bóia com corpo produzido m Aço Carbono. Possui

Leia mais

III Integrais Múltiplos

III Integrais Múltiplos INTITUTO POLITÉCNICO DE TOMA Escola uprior d Tcnologia d Tomar Ára Intrdpartamntal d Matmática Anális Matmática II III Intgrais Múltiplos. Calcul o valor dos sguints intgrais: a) d d ; (ol. /) b) d d ;

Leia mais

Guias de ondas de seção transversal constante

Guias de ondas de seção transversal constante Guias d ondas d sção transvrsal constant Ants d considrarmos uma aplicação spcífica, suponhamos um tubo rto, oco infinito, fito d matrial condutor idal, com sção transvrsal constant. Vamos considrar qu

Leia mais

SISTEMA DE PONTO FLUTUANTE

SISTEMA DE PONTO FLUTUANTE Lógica Matmática Computacional - Sistma d Ponto Flutuant SISTEM DE PONTO FLUTUNTE s máquinas utilizam a sguint normalização para rprsntação dos númros: 1d dn * B ± 0d L ond 0 di (B 1), para i = 1,,, n,

Leia mais

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período Rsolução da Prova d Física Tórica Turma C2 d Engnharia Civil Príodo 2005. Problma : Qustõs Dados do problma: m = 500 kg ; v i = 4; 0 m=s ;! a = 5! g d = 2 m. Trabalho ralizado por uma força constant: W

Leia mais

UFJF ICE Departamento de Matemática Cálculo I Terceira Avaliação 03/12/2011 FILA A Aluno (a): Matrícula: Turma: x é: 4

UFJF ICE Departamento de Matemática Cálculo I Terceira Avaliação 03/12/2011 FILA A Aluno (a): Matrícula: Turma: x é: 4 UFJF ICE Dpartamnto d Matmática Cálculo I Trcira Avaliação 0/1/011 FILA A Aluno (a): Matrícula: Turma: Instruçõs Grais: 1- A prova pod sr fita a lápis, cto o quadro d rspostas das qustõs d múltipla scolha,

Leia mais

Edital de Seleção Programa de Pós-Graduação em Saúde Turma 2016/ 2 o Semestre

Edital de Seleção Programa de Pós-Graduação em Saúde Turma 2016/ 2 o Semestre Edital d Slção Programa d Pós-Graduação m Saúd Turma 2016/ 2 o Smstr O Colgiado do Programa d Pós-Graduação m Saúd (PPgSaúd), ára d concntração Saúd Brasilira, torna público qu starão abrtas as inscriçõs

Leia mais

Representação de Números no Computador e Erros

Representação de Números no Computador e Erros Rprsntação d Númros no Computador Erros Anális Numérica Patrícia Ribiro Artur igul Cruz Escola Suprior d Tcnologia Instituto Politécnico d Stúbal 2015/2016 1 1 vrsão 23 d Fvriro d 2017 Contúdo 1 Introdução...................................

Leia mais

Módulo III Capacitores

Módulo III Capacitores laudia gina ampos d arvalho Módulo apacitors apacitors: Dnomina-s condnsador ou capacitor ao conjunto d condutors dilétricos arrumados d tal manira qu s consiga armaznar a máxima quantidad d cargas létricas.

Leia mais

Circular Normativa. Assunto: Síndroma Respiratória Aguda - Plano de Contingência. Referenciação Hospitalar

Circular Normativa. Assunto: Síndroma Respiratória Aguda - Plano de Contingência. Referenciação Hospitalar Ministério da Saúd Dircção-Gral da Saúd Circular Normativa Assunto: Síndroma Rspiratória Aguda - Plano d Contingência. Rfrnciação Hospitalar Nº 7/DT Data: 6/5/2003 Para: Todos os Hospitais Cntros d Saúd

Leia mais

Estatística II. Aula 8. Prof. Patricia Maria Bortolon, D. Sc.

Estatística II. Aula 8. Prof. Patricia Maria Bortolon, D. Sc. Estatística II Aula 8 Pro. Patricia Maria Bortolon, D. Sc. Tsts Qui Quadrado Objtivos da Aula 8 Nsta aula, você aprndrá: Como quando utilizar o tst qui-quadrado para tablas d contingência Como utilizar

Leia mais

O teorema da função inversa para funções de várias variáveis reais a valores vetoriais

O teorema da função inversa para funções de várias variáveis reais a valores vetoriais Matmática O torma da função invrsa para funçõs d várias variávis rais a valors vtoriais Vivian Rodrigus Lal Psquisadora Prof Dr David Pirs Dias Orintador Rsumo Est artigo tm como objtivo aprsntar o Torma

Leia mais

ANÁLISE CUSTO - VOLUME - RESULTADOS

ANÁLISE CUSTO - VOLUME - RESULTADOS ANÁLISE CUSTO - VOLUME - RESULTADOS 1 Introdução ao tma Exist todo o intrss na abordagm dst tma, pois prmit a rsolução d um conjunto d situaçõs qu s aprsntam rgularmnt na vida das organizaçõs. Estas qustõs

Leia mais

Art. 2º As empresas têm o prazo de 180 (cento e oitenta) dias, a contar da data da publicação deste Regulamento, para se adequarem ao mesmo.

Art. 2º As empresas têm o prazo de 180 (cento e oitenta) dias, a contar da data da publicação deste Regulamento, para se adequarem ao mesmo. título: Portaria nº 27, d 13 d janiro d 1998 mnta não oficial: Aprova o Rgulamnto Técnico rfrnt à Informação Nutricional Complmntar (dclaraçõs rlacionadas ao contúdo d nutrints), constants do anxo dsta

Leia mais

Fenômenos de adsorção em interfaces sólido/solução. Fenômenos de adsorção em interfaces sólido/solução

Fenômenos de adsorção em interfaces sólido/solução. Fenômenos de adsorção em interfaces sólido/solução Fnômnos d adsorção m Construção modlagm d isotrmas d adsorção no quilíbrio químico Fnômnos d adsorção m Para procssos qu ocorrm no quilíbrio químico, podm-s obtr curvas d adsorção, ou isotrmas d adsorção,

Leia mais

Modelagem Matemática em Membranas Biológicas

Modelagem Matemática em Membranas Biológicas Modlagm Matmática m Mmbranas Biológicas Marco A. P. Cabral Dpto d Matmática Aplicada, UFRJ Ilha do Fundão, Rio d Janiro, RJ -mail : mcabral@labma.ufrj.br Nathan B. Viana Instituto d Física Laboratório

Leia mais

EXPRESSÕES LÓGICAS. 9.1 Lógica proposicional AULA 9

EXPRESSÕES LÓGICAS. 9.1 Lógica proposicional AULA 9 AULA 9 EXPRESSÕES LÓGICAS 9.1 Lógica proposicional Lógica é o studo do raciocínio 1. Em particular, utilizamos lógica quando dsjamos dtrminar s um dado raciocínio stá corrto. Nsta disciplina, introduzimos

Leia mais

perfis laminados e estruturais tubos

perfis laminados e estruturais tubos prfis laminados struturais tubos O prfil d confiança a mprsa A Prfipar atua há 36 anos no mrcado brasiliro stá ntr as maiors fabricants d tubos d aço d pquno diâmtro do país. Sua linha d produtos inclui

Leia mais

LISTA DE EXERCÍCIOS PARA ESTUDO LES0596 Economia Internacional - GABARITO

LISTA DE EXERCÍCIOS PARA ESTUDO LES0596 Economia Internacional - GABARITO LISTA DE EXERCÍCIOS PARA ESTUDO LES0596 Economia Intrnacional - GABARITO Profa. Sílvia Miranda Data: Novmbro/2015 1)O qu é uma Ára Montária Òtima vr psquisa 2) Expliqu o fito locomotiva aula sobr Ajusts

Leia mais

RI406 - Análise Macroeconômica

RI406 - Análise Macroeconômica Fdral Univrsity of Roraima, Brazil From th SlctdWorks of Elói Martins Snhoras Fall Novmbr 18, 2008 RI406 - Anális Macroconômica Eloi Martins Snhoras Availabl at: http://works.bprss.com/loi/54/ Anális Macroconômica

Leia mais

PORTARIA Nº 27, DE 13 DE JANEIRO DE 1998

PORTARIA Nº 27, DE 13 DE JANEIRO DE 1998 PORTARIA Nº 27, DE 13 DE JANEIRO DE 1998 A Scrtaria d Vigilância Sanitária, do Ministério da Saúd, no uso d suas atribuiçõs lgais, considrando a ncssidad d constant aprfiçoamnto das açõs d control sanitário

Leia mais

Prismas VOLUME DE SÓLIDOS GEOMETRICOS: CONTEÚDOS E EXERCÍCIOS

Prismas VOLUME DE SÓLIDOS GEOMETRICOS: CONTEÚDOS E EXERCÍCIOS SECRETARIA DE SEGURANÇA PÚBLICA/SECRETARIA DE EDUCAÇÃO POLÍCIA MILITAR DO ESTADO DE GOIÁS COMANDO DE ENSINO POLICIAL MILITAR COLÉGIO DA POLÍCIA MILITAR UNIDADE SARGENTO NADER ALVES DOS SANTOS SÉRIE: º

Leia mais

Resoluções dos exercícios propostos

Resoluções dos exercícios propostos da físca 3 Undad C Capítulo 15 Indução ltromagnétca soluçõs dos xrcícos propostos 1 P.368 D L v, vm: 0,5 0, 1 5 2 V P.369 D L v, vm: 15 6 1 20 3 4 V P.370 a) L v 1,5 0,40 2 1,2 V b) 1,2 2 0,6 Pla rgra

Leia mais

Campo elétrico. Antes de estudar o capítulo PARTE I

Campo elétrico. Antes de estudar o capítulo PARTE I PART I Unidad A 2 Capítulo Sçõs: 21 Concito d 22 d cargas puntiforms 2 uniform Ants d studar o capítulo Vja nsta tabla os tmas principais do capítulo marqu um X na coluna qu mlhor traduz o qu você pnsa

Leia mais

1) Determine o domínio das funções abaixo e represente-o graficamente: 1 1

1) Determine o domínio das funções abaixo e represente-o graficamente: 1 1 ) Dtrmin dmíni das funçõs abai rprsnt- graficamnt: z + z 4.ln( ) z ln z z arccs( ) f) z g) z ln + h) z ( ) ) Dtrmin dmíni, trac as curvas d nívl sbc gráfic das funçõs: f (, ) 9 + 4 f (, ) 6 f (, ) 6 f

Leia mais

CURSO de ENGENHARIA (MECÂNICA) VOLTA REDONDA - Gabarito

CURSO de ENGENHARIA (MECÂNICA) VOLTA REDONDA - Gabarito UNIVERSIDADE FEDERAL FLUMINENSE TRANSFERÊNCIA o smstr ltivo d 8 o smstr ltivo d 9 CURSO d ENGENHARIA MECÂNICA VOLTA REDONDA - Gabarito INSTRUÇÕES AO CANDIDATO Vriiqu s st cadrno contém: PROVA DE CONHECIMENTOS

Leia mais

2.2 Transformada de Fourier e Espectro Contínuo

2.2 Transformada de Fourier e Espectro Contínuo 2.2 Transformada d Fourir Espctro Contínuo Analisam-s a sguir, sinais não priódicos, concntrados ao longo d um curto intrvalo d tmpo. Dfinição: sinal stritamnt limitado no tmpo Dado um sinal não priódico

Leia mais

defi departamento de física

defi departamento de física dfi dpartamnto d físia Laboratórios d Físia www.dfi.isp.ipp.pt Cofiints d atrito státio inétio Instituto Suprior d Engnharia do Porto Dpartamnto d Físia Rua Dr. António Brnardino d Almida, 431 4200-072

Leia mais

LISTA DE EXERCÍCIOS PARA ESTUDO LES0596 Economia Internacional

LISTA DE EXERCÍCIOS PARA ESTUDO LES0596 Economia Internacional Profa. Sílvia Miranda Data: Novmbro/2015 LISTA DE EXERCÍCIOS PARA ESTUDO LES0596 Economia Intrnacional 1)O qu é uma Ára Montária Òtima 2) Expliqu o fito locomotiva. 3) (ANPEC, 2015) - Para avaliar as assrtivas

Leia mais

= 80s. Podemos agora calcular as distâncias percorridas em cada um dos intervalos e obtermos a distância entre as duas estações:

= 80s. Podemos agora calcular as distâncias percorridas em cada um dos intervalos e obtermos a distância entre as duas estações: Solução Comntada da Prova d Física 53 Um trm, após parar m uma stação, sor uma aclração, d acordo com o gráico da igura ao lado, até parar novamnt na próxima stação ssinal a altrnativa qu aprsnta os valors

Leia mais

REGULAMENTO TÉCNICO REFERENTE À INFORMAÇÃO NUTRICIONAL COMPLEMENTAR

REGULAMENTO TÉCNICO REFERENTE À INFORMAÇÃO NUTRICIONAL COMPLEMENTAR Portaria n º 27, d 13 d janiro d 1998 A Scrtária d Vigilância Sanitária, do Ministério da Saúd, no uso d suas atribuiçõs lgais, considrando a ncssidad d constant aprfiçoamnto das açõs d control sanitário

Leia mais

2 Mbps (2.048 kbps) Telepac/Sapo, Clixgest/Novis e TV Cabo; 512 kbps Cabovisão e OniTelecom. 128 kbps Telepac/Sapo, TV Cabo, Cabovisão e OniTelecom.

2 Mbps (2.048 kbps) Telepac/Sapo, Clixgest/Novis e TV Cabo; 512 kbps Cabovisão e OniTelecom. 128 kbps Telepac/Sapo, TV Cabo, Cabovisão e OniTelecom. 4 CONCLUSÕES Os Indicadors d Rndimnto avaliados nst studo, têm como objctivo a mdição d parâmtros numa situação d acsso a uma qualqur ára na Intrnt. A anális dsts indicadors, nomadamnt Vlocidads d Download

Leia mais

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}.

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}. Instituto Suprior Técnico Dpartamnto d Matmática Scção d Álgbra Anális ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR LOGARITMOS E INTEGRAÇÃO DE FUNÇÕES COMPLEXAS Logaritmos () Para cada um dos sguints conjuntos

Leia mais

Versão ratificada pela Entidade Reguladora para a Comunicação Social (Deliberação ERC/2016/206 (OUT-TV))

Versão ratificada pela Entidade Reguladora para a Comunicação Social (Deliberação ERC/2016/206 (OUT-TV)) Vrsão ratificada pla Entidad Rguladora para a Comunicação Social (Dlibração ERC/2016/206 (OUT-TV)) ACORDO DE AUTORREGULAÇÃO DEFINIÇÃO DE VALOR COMERCIAL SIGNIFICATIVO, PARA EFEITOS DA DISTINÇÃO ENTRE AJUDA

Leia mais

Matemática: Lista de exercícios 2º Ano do Ensino Médio Período: 1º Bimestre

Matemática: Lista de exercícios 2º Ano do Ensino Médio Período: 1º Bimestre Matmática: Lista d xrcícios 2º Ano do Ensino Médio Príodo: 1º Bimstr Qustão 1. Três amigos saíram juntos para comr no sábado no domingo. As tablas a sguir rsumm quantas garrafas d rfrigrant cada um consumiu

Leia mais

ENERGIA CONCEITO. Ciências Físico-Químicas 8º ano de escolaridade. Ano letivo 2013/2014 Docente: Marília Silva Soares 1. Energia

ENERGIA CONCEITO. Ciências Físico-Químicas 8º ano de escolaridade. Ano letivo 2013/2014 Docente: Marília Silva Soares 1. Energia Física química - 10.º Contúdos nrgia Objtio gral: Comprndr m qu condiçõs um sistma pod sr rprsntado plo su cntro d massa qu a sua nrgia como um todo rsulta do su moimnto (nrgia cinética) da intração com

Leia mais

Modelagem Matemática de Sistemas Elétricos. Analogias Eletromecânicas

Modelagem Matemática de Sistemas Elétricos. Analogias Eletromecânicas 08 Modlagm Matmática d Sistmas Elétricos nalogias Eltromcânicas INTODUÇÃO Os sistmas létricos são componnts ssnciais d muitos sistmas dinâmicos complxos Por xmplo, um controlador d um drivr d disco d um

Leia mais

COLÉGIO OBJETIVO JÚNIOR

COLÉGIO OBJETIVO JÚNIOR COLÉGIO OBJETIVO JÚNIOR NOME: N. o : DATA: / /01 FOLHETO DE MATEMÁTICA (V.C. E R.V.) 6. o ANO Est folhto é um rotiro d studo para você rcuprar o contúdo trabalhado m 01. Como l vai srvir d bas para você

Leia mais

(Texto relevante para efeitos do EEE)

(Texto relevante para efeitos do EEE) L 68/4 Jornal Oficial da União Europia 15.3.2016 REGULAMENTO DELEGADO (UE) 2016/364 DA COMISSÃO d 1 d julho d 2015 rlativo à classificação do dsmpnho m matéria d ração ao fogo dos produtos d construção,

Leia mais

Resolução comentada de Estatística - ICMS/RJ Prova Amarela

Resolução comentada de Estatística - ICMS/RJ Prova Amarela ICMS-RJ 007: prova d Estatística comntada Rsolução comntada d Estatística - ICMS/RJ - 007 - Prova Amarla 9. Uma amostra d 00 srvidors d uma rpartição aprsntou média salarial d R$.700,00 com uma disprsão

Leia mais

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O Prparar o Eam 05 Matmática A E X A M E 0.ª FASE, V E R S Ã O P R O P O S T A D E R E S O L U Ç Ã O. Tm-s qu P A P A P A GRUPO I ITENS DE ESCOLHA MÚLTIPLA 0, 0, 0,. Assim: P B A PB A 0,8 0,8 PB A 0,8 0,

Leia mais

Equilíbrio Térmico. é e o da liga é cuja relação com a escala Celsius está representada no gráfico.

Equilíbrio Térmico. é e o da liga é cuja relação com a escala Celsius está representada no gráfico. Equilíbrio Térmico 1. (Unsp 2014) Para tstar os conhcimntos d trmofísica d sus alunos, o profssor propõ um xrcício d calorimtria no qual são misturados 100 g d água líquida a 20 C com 200 g d uma liga

Leia mais

Inscrições através do site:e c o m e d u 3.wix.c o m / 3 e c o m e d u Informações: (42)

Inscrições através do site:e c o m e d u 3.wix.c o m / 3 e c o m e d u Informações: (42) Inscriçõs através do sit: c o m d u 3.wix.c o m / 3 c o m d u Informaçõs: 3com.du@gmail.com (42) 3220-6283 Dias 09 10 d stmbro d Ponta Grossa-PR srá sd d três grands vntos! CONCURSO LATINO-AMERICANO >>>>

Leia mais

Guião do Professor :: TEMA 2 1º Ciclo

Guião do Professor :: TEMA 2 1º Ciclo Guião do Profssor :: 1º Ciclo quipas! A roda dos alimntos ~ Guiao do Profssor Vamos fazr quipas! :: A roda dos alimntos quipas! Como xplorar o tma Slid 1 Aprsntam-s, no primiro slid d forma disprsa sm

Leia mais

, ou seja, 8, e 0 são os valores de x tais que x e, Página 120

, ou seja, 8, e 0 são os valores de x tais que x e, Página 120 Prparar o Eam 0 07 Matmática A Página 0. Como g é uma função contínua stritamnt crscnt no su domínio. Logo, o su contradomínio é g, g, ou sja, 8,, porqu: 8 g 8 g 8 8. D : 0, f Rsposta: C Cálculo Auiliar:

Leia mais

ASSUNTO: Contrato Simples (alunos dos 1º, 2º e 3º Ciclos do Ensino Básico e Ensino Secundário) e Contrato de Desenvolvimento (Pré-Escolar)

ASSUNTO: Contrato Simples (alunos dos 1º, 2º e 3º Ciclos do Ensino Básico e Ensino Secundário) e Contrato de Desenvolvimento (Pré-Escolar) ASSUNTO: Contrato Simpls (alunos dos 1º, Ciclos do Ensino Básico Ensino Scundário) Contrato d Dsnvolvimnto (Pré-Escolar) Ano Lctivo 2015/2016 Exmo. Sr. Encarrgado d Educação 1 D acordo com a Portaria nº

Leia mais

Desta maneira um relacionamento é mostrado em forma de um diagrama vetorial na Figura 1 (b). Ou poderia ser escrito matematicamente como:

Desta maneira um relacionamento é mostrado em forma de um diagrama vetorial na Figura 1 (b). Ou poderia ser escrito matematicamente como: ASSOCIAÇÃO EDUCACIONA DOM BOSCO FACUDADE DE ENGENHAIA DE ESENDE ENGENHAIA EÉICA EEÔNICA Disciplina: aboratório d Circuitos Elétricos Circuitos m Corrnt Altrnada EXPEIMENO 9 IMPEDÂNCIA DE CICUIOS SÉIE E

Leia mais

2 Arte Londrina 3. de abril ao dia 07 de julho de Divisão de Artes Plásticas Casa de Cultura UEL Londrina

2 Arte Londrina 3. de abril ao dia 07 de julho de Divisão de Artes Plásticas Casa de Cultura UEL Londrina 2 Art Londrina 3 d abril ao dia 07 d julho d 2014. Divisão d Arts Plásticas Casa d Cultura UEL Londrina 2.4 O dossiê digital dv contr m páginas squnciais numradas: a) Ficha d inscrição prnchida, assinada

Leia mais

Capítulo 4 Resposta em frequência

Capítulo 4 Resposta em frequência Capítulo 4 Rsposta m frquência 4. Noção do domínio da frquência 4.2 Séris d Fourir propridads 4.3 Rsposta m frquência dos SLITs 4.4 Anális da composição d sistmas através da rsposta m frquência 4.5 Transformadas

Leia mais

Lista 9: Integrais: Indefinidas e Definidas e Suas Aplicações

Lista 9: Integrais: Indefinidas e Definidas e Suas Aplicações GOVERNO FEDERAL MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO CÂMPUS JUAZEIRO/BA COLEG. DE ENG. ELÉTRICA PROF. PEDRO MACÁRIO DE MOURA MATEMÁTICA APLICADA À ADM 5. Lista 9: Intgrais:

Leia mais

Dinâmica Longitudinal do Veículo

Dinâmica Longitudinal do Veículo Dinâmica Longitudinal do Vículo 1. Introdução A dinâmica longitudinal do vículo aborda a aclração frnagm do vículo, movndo-s m linha rta. Srão aqui usados os sistmas d coordnadas indicados na figura 1.

Leia mais

CONTINUIDADE A idéia de uma Função Contínua

CONTINUIDADE A idéia de uma Função Contínua CONTINUIDADE A idéia d uma Função Contínua Grosso modo, uma função contínua é uma função qu não aprsnta intrrupção ou sja, uma função qu tm um gráfico qu pod sr dsnhado sm tirar o lápis do papl. Assim,

Leia mais

Enunciados equivalentes

Enunciados equivalentes Lógica para Ciência da Computação I Lógica Matmática Txto 6 Enunciados quivalnts Sumário 1 Equivalência d nunciados 2 1.1 Obsrvaçõs................................ 5 1.2 Exrcícios rsolvidos...........................

Leia mais

INSTITUTO FEDERAL DA BAHIA CAMPUS JEQUIÉ LISTA DE EXERCÍCIOS DE MATEMÁTICA ALUNO:

INSTITUTO FEDERAL DA BAHIA CAMPUS JEQUIÉ LISTA DE EXERCÍCIOS DE MATEMÁTICA ALUNO: INSTITUTO FEDERAL DA BAHIA CAMPUS JEQUIÉ LISTA DE EXERCÍCIOS DE MATEMÁTICA ALUNO: LISTA Ciclo trigonométrico, rdução d arcos, quaçõs trigonométricas - (UFJF MG) Escrvndo os númros rais x, y, w, z y, x,

Leia mais

ABNT NBA NORMA BRASILEIRA. Informação e documentação - Sumário - Apresentação T~CNICAS. lnformation and documentatíon - Contents físt - Presentatíon

ABNT NBA NORMA BRASILEIRA. Informação e documentação - Sumário - Apresentação T~CNICAS. lnformation and documentatíon - Contents físt - Presentatíon NORMA BRASILEIRA ABNT NBA 6027 Sgunda dição 11.12.2012 Válida a partir d 11.01.201 3 Informação documntação - Sumário - Aprsntação lnformation and documntatíon - Contnts físt - Prsntatíon ICS 01.140.20

Leia mais

SP 09/11/79 NT 048/79. Rotatória como Dispositivo de Redução de Acidentes. Arq.ª Nancy dos Reis Schneider

SP 09/11/79 NT 048/79. Rotatória como Dispositivo de Redução de Acidentes. Arq.ª Nancy dos Reis Schneider SP 09/11/79 NT 048/79 Rotatória como Dispositivo d Rdução d Acidnts Arq.ª Nancy dos Ris Schnidr Rsumo do Boltim "Accidnts at off-sid priority roundabouts with mini or small islands", Hilary Grn, TRRL Laboratory

Leia mais

Permeabilidade e Fluxo Unidimensional em solos

Permeabilidade e Fluxo Unidimensional em solos Prmabilidad Fluxo Unidimnsional m solos GEOTECNIA II AULA 0 Prof. MSc. Douglas M. A. Bittncourt prof.douglas.pucgo@gmail.com Prmabilidad Propridad do solo qu indica a facilidad com qu um fluido podrá passar

Leia mais

MANUAL DO PROPRIETÁRIO

MANUAL DO PROPRIETÁRIO Painl: Tcla liga/dsliga fotosnsor Ld indicação liga/dsliga fotosnsor Fotosnsor Tcla d control da modladora Escala d potência m fstop Conctor d xpansão RJ-12 Tcla d funçõs programávis Plug do cabo d sincronismo

Leia mais

FUNÇÃO REAL DE UMA VARIÁVEL REAL

FUNÇÃO REAL DE UMA VARIÁVEL REAL Hwltt-Packard FUNÇÃO REAL DE UMA VARIÁVEL REAL Aulas 01 a 05 Elson Rodrigus, Gabril Carvalho Paulo Luiz Ano: 2016 Sumário INTRODUÇÃO AO PLANO CARTESIANO 2 PRODUTO CARTESIANO 2 Númro d lmntos d 2 Rprsntaçõs

Leia mais

Fenômenos de adsorção em interfaces sólido/solução. Construção e modelagem de isotermas de adsorção no equilíbrio químico

Fenômenos de adsorção em interfaces sólido/solução. Construção e modelagem de isotermas de adsorção no equilíbrio químico Fnômnos d adsorção m intrfacs sólido/solução Construção modlagm d isotrmas d adsorção no uilíbrio químico Fnômnos d adsorção m intrfacs sólido/solução Para procssos qu ocorrm no uilíbrio químico, podm-s

Leia mais

Matemática Aplicada Geoprocessamento/Professor: Lourenço Gonçalves LISTA-1 (03/04/2009)

Matemática Aplicada Geoprocessamento/Professor: Lourenço Gonçalves LISTA-1 (03/04/2009) Matmática Aplicada Goprocssamnto/Profssor: Lournço Gonçalvs LISTA-1 (3/4/29) Exrcício-1 Considr as figuras abaixo rsponda o qu s pd. a) Qual a razão ntr as dimnsõs dos sus comprimntos? b) S o carro grand

Leia mais