Universidade São Judas Tadeu Faculdade de Tecnologia e Ciências Exatas Cursos de Engenharia

Tamanho: px
Começar a partir da página:

Download "Universidade São Judas Tadeu Faculdade de Tecnologia e Ciências Exatas Cursos de Engenharia"

Transcrição

1 Universidade São Judas Tadeu Faculdade de Tecnologia e Ciências Eatas Cursos de Engenharia Laboratório de Física Centro de assa e Centro de Gravidade utor: Prof Luiz de Oliveira Xavier dm ( dm X( BNCD: TUR: Data: luno R -

2 GRUPO: NOT: Centro de assa e Centro de Gravidade Introdução: O Centro de assa (C é um conceito muito útil no estudo da quantidade de movimento (ou momento p de um objeto o estudar um sistema de partículas sabemos que quando as forças eternas ao sistema não eistem ou quando a soma das forças eternas é nula, F et, a quantidade de movimento do C do sistema será preservada e permanecerá constante, esmo que eistam forças internas, ou seja, forças de interação entre as partículas, o momento do C permanecerá constante Podemos eemplificar pedindo que você imagine o sistema solar Se considerarmos que ele encontra-se isolado, longe o suficiente da estrela mais próima de forma a desprezar as forças gravitacionais eternas, a quantidade de movimento (ou momento do C do sistema solar permanecerá constante Se o C do sistema solar estiver parado, ele permanecerá parado ou se estiver com alguma velocidade, no caso V C, ela permanecerá constante O C do sistema obedecerá à a lei e permanecerá em inércia de movimento s forças gravitacionais entre o sol e os planetas são forças de interação que obedecem à a lei São forças internas ao sistema solar e anulam-se mutuamente por ação e reação as onde ficaria o C e qual seria a sua massa? Precisamos apenas encontrar a localização do C massa a ser considerada é apenas toda a massa do sistema Para o sistema solar, o valor escalar da quantidade de movimento associado ao seu C (ou momento p C poderia ser calculado por p C V C, onde é toda a massa do sistema solar as onde ficaria então o C afinal? Bem, a massa do Sol é cerca de,86% da massa de todo o sistema solar! Com esta informação é fácil imaginar porque o C do sistema solar fica praticamente no centro do Sol atematicamente, o cálculo que leva ao conhecimento das coordenados do C do sistema leva em conta a massa e a coordenada de cada partícula s coordenadas do C são obtidas por uma média ponderada entre as coordenadas das partículas Os pesos para a ponderação da média são as massas de cada partícula Para um sistema de três partículas, por eemplo, teremos para as coordenadas, e z do C do sistema: ( m + m + m, ( m + m + m e z ( zm + zm + zm, onde a massa total do sistema é a soma da massa das três partículas: m + m + m Para um objeto com distribuição contínua de massa, devemos calcular a massa total por meio da densidade e a soma discreta acima assume uma forma integral: dm, dm e z zdm, onde a massa total será dm Não fique surpreso! O símbolo é um S e significa Soma e a componente dm representa uma quantidade de massa, entenda como m, porém infinitamente menor Na maioria dos objetos a força peso muitas vezes está presente O peso está aplicado a cada partícula pertencente ao objeto O Centro de Gravidade ( é a coordenada onde podemos considerar aplicada toda a força peso do corpo Se a aceleração da gravidade g for constante em todos os pontos do objeto, então o coincidirá com o C Para o eemplo anterior das três partículas considere que cada partícula está sujeita a uma aceleração da gravidade diferente Então teremos que calcular as coordenadas do como uma média ponderada onde o peso de cada partícula será o próprio peso para a ponderação da média: ( m g + m g + mg ( p + p + p P m g + m g + m g ( Se a gravidade é a mesma em todos os pontos, g g g g, então é fácil perceber que ssim, as coordenadas do coincidirão com as coordenadas do C aceleração da gravidade muda muito pouco com a altitude e, portanto podemos considerar na prática o C O edifício Petronas Towers na alásia possui 45 m de altura gravidade muda somente,4% entre o valor na base e o valor no topo do edifício ssim, o Centro de Gravidade das Torres está somente abaio do Centro de assa! rranjo eperimental: Neste eperimento você determinará teoricamente o C de dois objetos planos regulares Determinará também o destes objetos por um método prático Um cálculo simples de integral também será utilizado para determinar o C de um destes objetos Você utilizará cartolina para produzir os objetos étodo teórico: determinação teórica do C levará em conta a simetria dos objetos Você deverá considerar principalmente que a distribuição de massa é homogênea (a massa está distribuída por igual em toda a superfície do objeto De um dos lados da cartolina você usará um procedimento teórico para encontrar o centro

3 geométrico do objeto Em um retângulo, por eemplo, este centro é obtido pelo cruzamento das diagonais simplesmente Em um triângulo, ele é obtido pelo cruzamento das linhas medianas que são as linhas que unem o vértice à metade do lado oposto conforme é mostrado na figura abaio Em um objeto composto por polígonos regulares conforme a letra U na figura, o C pode até ficar fora do objeto! Observe que na construção geométrica do C da letra U na Figura, o objeto foi dividido em três retângulos, todos com a mesma massa e o centro de massa de cada retângulo forma um triângulo que fornecerá o C do objeto pelo cruzamento das medianas C C C C C Figura - No caso do triângulo, o C é obtido pelo cruzamento das três linhas medianas Figura Centro de massa da letra U O objeto é dividido em tres retângulos com massas iguais étodo prático: pós determinar o Centro Geométrico dos objetos de massa homogênea, o que corresponde ao Centro de assa (C, você utilizará o auílio da gravidade local para determinar o Centro de Gravidade ( dos objetos Você utilizará um método prático conhecido como o método do fio de prumo No local do laboratório podemos considerar que a gravidade g é constante e, portanto os resultados práticos para o devem coincidir com os resultados teóricos do C O método prático consiste em espetar o objeto plano feito de cartolina em uma agulha Permita que o furo seja adequado para que o objeto possa girar em torno da agulha livremente, sem atrito Fure em um ponto próimo à borda e gire o objeto para que ele realize algumas voltas em torno do eio da agulha livremente Ótimo! ssim que ele parar de oscilar amarre na agulha, o fio de linha que possui uma massa na outra etremidade Este fio é também conhecido como fio de prumo O fio de prumo passará pelo Centro de Gravidade do objeto gora faça uma marca na cartolina na etremidade oposta ao furo, por onde passa o fio de prumo Observe a sequência na Figura a seguir Figura étodo prático para determinar o com o uso de um fio de prumo Retire o objeto da agulha e trace uma linha do furo até a marca feita do lado oposto Esta linha passa pelo Centro de Gravidade do objeto Repita o processo para mais dois furos em outras etremidades e trace mais duas linhas s três linhas se cruzarão no eperimental ou definirão um pequeno triângulo que conterá o e, portanto, conterá também o C Fure com a agulha o ponto encontrado eperimentalmente para o Se o seu ensaio for de boa qualidade, o deverá coincidir com o C encontrado geometricamente do outro lado da cartolina Pendure o objeto por este furo e ele deverá permanecer em equilíbrio estático (o que implica não haver oscilações em torno do eio da agulha aterial: Cartolina, tesoura, régua, fio de prumo com massa, agulha no suporte 4 Procedimento: Recorte na cartolina dois objetos conforme os esquemas em cada sistema de coordenadas das Figuras e 4 abaio Encontre o C teórico e o prático 4 Objeto : Recorte um triângulo semelhante ao famoso Triângulo Retângulo,4,5, porém com os dois catetos de tamanho e conforme o desenho abaio s coordenadas do C (, deverão ser encontradas numericamente conforme a orientação do sistema de coordenadas (, da Figura 4 abaio

4 ( Preencha a Tabela com as coordenadas obtidas para o C pelo método teórico (cruzamento das medianas e para o pelo método prático (agulha e fio de prumo Figura 4 Triângulo retângulo e o sistema de coordenadas (, X( (6 TBEL : Coordenadas do C e do do triângulo retângulo C étodo Teórico ( étodo Prático ( 4 Objeto : Para este ensaio recorte a letra U observada anteriormente na Figura, porém com o tamanho e o formato mostrados no sistema de coordenadas abaio: ( Preencha a Tabela com as coordenadas obtidas para o C pelo método teórico (geométrico e para o pelo método prático (agulha e fio de prumo 6 X( (6 TBEL : Coordenadas do C e do do objeto (Letra U C étodo Teórico ( étodo Prático ( Figura 5 - Sistema de coordenadas e as dimensões do objeto (Letra UOs retângulos têm áreas iguais GRPEIE NO RELTÓRIO OS DOIS OBJETOS RECORTDOS N CRTOLIN CO OS TRÇDOS GEOÉTRICOS FEITOS PR OBTER O C TEÓRICO DE U LDO D CRTOLIN E O TRÇDO EXPERIENTL PR OBTER O PRÁTICO CO O FIO DE PRUO E GULH DO OUTRO LDO D CRTOLIN INDIQUE OS PONTOS PR O C E PR O 4 Cálculo do C utilizando a integral: Para o triângulo da Figura 4 você determinará o C também por meio do cálculo integral Nesta técnica desenvolvida por Isaac Newton, o triângulo pode ser dividido em vários retângulos verticais estreitos onde em cada um, o C é encontrado pelo cruzamento das diagonais Como o triângulo é muito estreito, a coordenada é a coordenada do C coordenada do C fica na metade da altura de cada retângulo Observe o desenho da Figura 6 a seguir: ( X( Figura 6 Divisão da área do triângulo em retângulos estreitos para a soma integral densidade de massa do papel é uma constante σ ssim, a porção m de massa para cada retângulo é: m σ, (massa(gramasσ (gramas/ ( massa total é a soma da massa de todos os retângulos m σ σ, sendo a área do retângulo, dada pelo lado vezes a base,, onde é a largura estreita do retângulo forma integral é escrita quando é infinitamente pequeno: σ d, (substituindo por e por d coordenada na integral é substituída pela equação da reta que define 4 o triângulo: ( o que fornece: σ d

5 Para um número N de retângulos calculamos o C pela soma ponderada de todos: ( m + m + + N mn e ( m + m + + N mn densidade σ é constante aparecendo no numerador e no denominador cancelando-se mutuamente O cálculo fica apenas em função das áreas: ( a + a + + N an e ( a + a + + N an Observe que o eio fornece retângulos desde a origem até a coordenada Soma dos retângulos dá a massa do triângulo σ e comparando-se esta equação com a última equação no final do quadro da Figura 6 acima, a área do triângulo fica: d O cálculo da integral foi: d, de inicial até fina l Ora, pode parecer complicado, mas todos nós sabíamos desde o início que a área do triângulo era a base vezes a altura dividida por : ( X / 54 Isso funciona! gora observe o desenvolvimento para o cálculo das integrais na Tabela a seguir e realize a conta da última linha da tabela para as coordenadas do C: ( TBEL : Cálculo das coordenadas do C para o triângulo utilizando a integral σ dm σ d d σ σ σ dm d d σ σ σ 4 4 d; para 4 d; para 4 d 4 d Final Inicial 54 4 Final Inicial ( O cálculo acima confirma o seu resultado anterior para o triângulo? ( SI ( NÃO Referência: Coleção de Eercícios de Física Prof Luiz de Oliveira Xavier Editora Universidade São Judas

Mecânica Técnica. Aula 14 Sistemas Equivalentes de Cargas Distribuídas. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica Técnica. Aula 14 Sistemas Equivalentes de Cargas Distribuídas. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues Aula 14 Sistemas Equivalentes de Cargas Distribuídas Tópicos Abordados Nesta Aula Sistemas Equivalentes de Cargas Distribuídas. Sistema de Cargas Distribuidas A intensidade da força resultante é equivalente

Leia mais

Revisão, apêndice A Streeter: SISTEMAS DE FORÇAS, MOMENTOS, CENTROS DE GRAVIDADE

Revisão, apêndice A Streeter: SISTEMAS DE FORÇAS, MOMENTOS, CENTROS DE GRAVIDADE UNVERSDDE FEDERL D BH ESCOL POLTÉCNC DEPRTMENTO DE ENGENHR QUÍMC ENG 008 Fenômenos de Transporte Profª Fátima Lopes FORÇS HDRÁULCS SOBRE SUPERFÍCES SUBMERSS Revisão, apêndice Streeter: SSTEMS DE FORÇS,

Leia mais

Figura 1. Duas partículas de diferentes massas perfeitamente apoiadas pelo bastão = (1)

Figura 1. Duas partículas de diferentes massas perfeitamente apoiadas pelo bastão = (1) PRÁTICA 13: CENTRO DE MASSA Centro de massa (ou centro de gravidade) de um objeto pode ser definido como o ponto em que ele pode ser equilibrado horizontalmente. Seu significado físico tem muita utilidade

Leia mais

Capítulo 2 Vetores. 1 Grandezas Escalares e Vetoriais

Capítulo 2 Vetores. 1 Grandezas Escalares e Vetoriais Capítulo 2 Vetores 1 Grandezas Escalares e Vetoriais Eistem dois tipos de grandezas: as escalares e as vetoriais. As grandezas escalares são aquelas que ficam definidas por apenas um número real, acompanhado

Leia mais

O mercado se manteve equilibrado. O malabarista perdeu o equilíbrio e caiu. Minha vida anda meio desequilibrada.

O mercado se manteve equilibrado. O malabarista perdeu o equilíbrio e caiu. Minha vida anda meio desequilibrada. 1) PROBLEMATIZAÇÃO: Exercício ajuda a recuperar equilíbrio do corpo Pessoas que sofrem constantemente com tonturas ou vertigens, sintomas típicos de alguma disfunção do sistema vestibular - como a labirintite,

Leia mais

CADERNO DE EXERCÍCIOS 1C

CADERNO DE EXERCÍCIOS 1C CADERNO DE EXERCÍCIOS C Ensino Médio Ciências da Natureza I Questão Conteúdo Habilidade da Matriz da EJA/FB Força resultante H2 2ª lei de Newton 2 Análise de gráfico H Aceleração da gravidade Área de figuras

Leia mais

FEP Física Geral e Experimental para Engenharia I

FEP Física Geral e Experimental para Engenharia I FEP2195 - Física Geral e Experimental para Engenharia I Prova P1-10/04/2008 - Gabarito 1. A luz amarela de um sinal de transito em um cruzamento fica ligada durante 3 segundos. A largura do cruzamento

Leia mais

Forças sobre o plano inclinado e Leis de Newton

Forças sobre o plano inclinado e Leis de Newton Forças sobre o plano inclinado e Leis de Newton à Força normal: sempre perpendicular ao plano (faz com ele um ângulo de 90 o ), é uma força de sustentação do objeto, exercida pela superfície = força de

Leia mais

EXERCÍCIOS DE RECUPERAÇÃO DE MATEMÁTICA

EXERCÍCIOS DE RECUPERAÇÃO DE MATEMÁTICA OLÉGIO FRNO-RSILEIRO NOME: N : TURM: PROFESSOR(): NO: 9ª DT: / 07 / 014 EXERÍIOS DE REUPERÇÃO DE MTEMÁTI 1) alcule: a) 7 7 b) 1 + 1 1 ) alcule: 1 1 a). 8. 8 b) ) alcule: a) 1 7 1 ( ) 64 9 1 b) 0 4) Resolva

Leia mais

VETORES + O - vetor V 2 vetor posição do ponto P 2

VETORES + O - vetor V 2 vetor posição do ponto P 2 Objetivo VETORES Estudar propriedades de vetores e a obtenção de resultantes. Introdução Para localizar um ponto P em uma reta, três elementos são necessários: uma referência R, escolhida arbitrariamente,

Leia mais

1.(UFB - adaptado) Determine a intensidade da Força Resultante necessária para manter um trem de 5 toneladas com velocidade constante de 5 m/s.

1.(UFB - adaptado) Determine a intensidade da Força Resultante necessária para manter um trem de 5 toneladas com velocidade constante de 5 m/s. 1.(UFB - adaptado) Determine a intensidade da Força Resultante necessária para manter um trem de 5 toneladas com velocidade constante de 5 m/s. 2. -(PUC-RJ - adaptado) Considere as seguintes afirmações

Leia mais

Qual é a posição do Centro de Massa de um corpo de material homogêneo que possui um eixo de simetria

Qual é a posição do Centro de Massa de um corpo de material homogêneo que possui um eixo de simetria Valter B. Dantas Imagem e texto protegida por direitos autorais. Copia proibida. Geometria das Massas Centro de Massa de um Sistema Contínuo de Partículas Qual é a posição do Centro de Massa de um corpo

Leia mais

RESISTÊNCIA DOS MATERIAIS II MOMENTO ESTÁTICO

RESISTÊNCIA DOS MATERIAIS II MOMENTO ESTÁTICO RESISTÊNCIA DOS MATERIAIS II MOMENTO ESTÁTICO Prof. Dr. Daniel Caetano 2018-2 Objetivos Conhecer a influência da forma na Resistência dos Materiais Compreender o conceito de Momento Estático Calcular Momento

Leia mais

Experiências com o baricentro

Experiências com o baricentro ARTEFATOS Experiências com o baricentro Deborah Raphael IME - USP No acervo da Matemateca do Instituto de Matemática e Estatística da USP, temos várias peças que exploram o centro de massa, do ponto de

Leia mais

MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA

MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA Nona E 2 Estática CAPÍTULO MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA Ferdinand P. Beer E. Russell Johnston, Jr. Notas de Aula: J. Walt Oler Teas Tech Universit das Partículas Conteúdo Introdução Resultante

Leia mais

RESISTÊNCIA DOS MATERIAIS II MOMENTO ESTÁTICO

RESISTÊNCIA DOS MATERIAIS II MOMENTO ESTÁTICO RESISTÊNCIA DOS MATERIAIS II MOMENTO ESTÁTICO Prof. Dr. Daniel Caetano 2014-2 Objetivos Conhecer a influência da forma na Resistência dos Materiais Compreender o conceito de Momento Estático Calcular Momento

Leia mais

UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática Mestrado em Ensino de Matemática

UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática  Mestrado em Ensino de Matemática UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática www.pg.im.ufrj.br/pemat Mestrado em Ensino de Matemática Seleção 0 Etapa Questão. Considere f : [, ] R a função cujo gráfico

Leia mais

Matemática B Semi-Extensivo V. 3

Matemática B Semi-Extensivo V. 3 GRITO Matemática Semi-Etensivo V. (, e (, M, Então: M = M = M = M = Eercícios D Substituindo em I, temos: = =. = = Então, = ( = 8 M(, (, (, M = M = 8 M = M = D Sabendo que o eio é o da abcissa e que o

Leia mais

Tipos de forças fundamentais na Natureza

Tipos de forças fundamentais na Natureza Tipos de Forças Tipos de forças fundamentais na Natureza Existem quatro tipos de interações/forças fundamentais na Natureza que atuam entre partículas a uma certa distância umas das outras: Gravitacional

Leia mais

As leis de Newton e suas aplicações

As leis de Newton e suas aplicações INSTITUTO FEDERAL DE EDUCAÇÃO CIÊNCIA E TECNOLOGIA PARAÍBA Campus Princesa Isabel As leis de Newton e suas aplicações Disciplina: Física Professor: Carlos Alberto Objetivos de aprendizagem Ao estudar este

Leia mais

MECÂNICA GERAL VETORES POSIÇÃO E FORÇA

MECÂNICA GERAL VETORES POSIÇÃO E FORÇA MECÂNICA GERAL VETORES POSIÇÃO E FORÇA Prof. Dr. Daniel Caetano 2019-1 Objetivos Recordar o conceito de vetor posição Recordar o conceito de vetor força Recordar as operações vetoriais no plano Atividade

Leia mais

Capítulo 3 - Geometria Analítica

Capítulo 3 - Geometria Analítica 1. Gráficos de Equações Capítulo 3 - Geometria Analítica Conceito:O gráfico de uma equação é o conjunto de todos os pontos e somente estes pontos, cujas coordenadas satisfazem a equação. Assim, o gráfico

Leia mais

RESISTÊNCIA DOS MATERIAIS II MOMENTO ESTÁTICO

RESISTÊNCIA DOS MATERIAIS II MOMENTO ESTÁTICO RESISTÊNCIA DOS MATERIAIS II MOMENTO ESTÁTICO Prof. Dr. Daniel Caetano 2014-1 Objetivos Conhecer a influência da forma na Resistência dos Materiais Compreender o conceito de Momento Estático Calcular Momento

Leia mais

Cap. 7 - Momento Linear e Impulso

Cap. 7 - Momento Linear e Impulso Universidade Federal do Rio de Janeiro Instituto de Física Física I IGM1 2014/1 Cap. 7 - Momento Linear e Impulso Prof. Elvis Soares Consideremos o seguinte problema: ao atirar um projétil de um canhão

Leia mais

Resistência dos Materiais

Resistência dos Materiais Resistência dos Materiais Prof. Antonio Dias Antonio Dias / Resistência dos Materiais / Cap.05 1 Objetivos deste capítulo Desenvolver as equações de equilíbrio para um corpo rígido. Introduzir o conceito

Leia mais

ENG1200 Mecânica Geral Semestre Lista de Exercícios 5 - Força Cortante e Momento Fletor em Vigas

ENG1200 Mecânica Geral Semestre Lista de Exercícios 5 - Força Cortante e Momento Fletor em Vigas ENG1200 Mecânica Geral Semestre 2013.2 Lista de Eercícios 5 - Força Cortante e Momento Fletor em Vigas Questão 1 Prova P2 2013.1 Calcular as reações de apoio, determinar as epressões matemáticas e traçar

Leia mais

1 Cônicas Não Degeneradas

1 Cônicas Não Degeneradas Seções Cônicas Reginaldo J. Santos Departamento de Matemática-ICE Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi regi@mat.ufmg.br 11 de dezembro de 2001 Estudaremos as (seções) cônicas,

Leia mais

PROFESSOR: JARBAS 4 2 5

PROFESSOR: JARBAS 4 2 5 PROFESSOR: JARBAS Função do 2.º grau Chama-se função quadrática ou função polinomial do 2.º grau, qualquer função f de R em R dada por uma lei da forma f() = a 2 + b + c onde a, b e c são números reais

Leia mais

Prova 1/3. Nome: Assinatura: Matrícula UFES: Semestre: 2013/2 Curso: Física (B e L) Turmas: 01 e 02 Data: 11/11/2013 GABARITO

Prova 1/3. Nome: Assinatura: Matrícula UFES: Semestre: 2013/2 Curso: Física (B e L) Turmas: 01 e 02 Data: 11/11/2013 GABARITO Universidade Federal do Espírito Santo Centro de Ciências Eatas Departamento de Física FIS09066 Física Prof. Anderson Coser Gaudio Prova /3 Nome: Assinatura: Matrícula UFES: Semestre: 03/ Curso: Física

Leia mais

Descobrindo medidas desconhecidas (III)

Descobrindo medidas desconhecidas (III) A UU L AL A Descobrindo medidas desconhecidas (III) Já dissemos que a necessidade de descobrir medidas desconhecidas é uma das atividades mais comuns na área da Mecânica. Por isso, torneiros, fresadores,

Leia mais

Matemática B Extensivo V. 7

Matemática B Extensivo V. 7 GRITO Matemática Etensivo V. 7 Eercícios ) D ) D ) I. Falso. O diâmetro é dado por. r. cm. II. Verdadeiro. o volume é dado por π. r² π. ² π cm² III. Verdadeiro. (, ) (, ) e assim, ( )² + ( )² r² fica ²

Leia mais

onde: F : força exercida pelo cavalo. P: peso, força exercida pela terra. N: força exercida pelo plano inclinado (normal ao plano inclinado).

onde: F : força exercida pelo cavalo. P: peso, força exercida pela terra. N: força exercida pelo plano inclinado (normal ao plano inclinado). Prova de Conhecimentos Específicos 1 a QUESTÃO: (1,0 ponto) Um cavalo pua uma carroça para cima num plano inclinado, com velocidade constante. A força de atrito entre a carroça e o plano inclinado é desprezível.

Leia mais

REVISAO GERAL. GRANDEZA ESCALAR É caracterizada por um número real. Como, por exemplo, o tempo, a massa, o volume, o comprimento, etc.

REVISAO GERAL. GRANDEZA ESCALAR É caracterizada por um número real. Como, por exemplo, o tempo, a massa, o volume, o comprimento, etc. MECÂNICA APLICADA 5º Período de Engenharia Civil REVISAO GERAL GRANDEZA ESCALAR É caracterizada por um número real. Como, por exemplo, o tempo, a massa, o volume, o comprimento, etc. GRANDEZA VETORIAL

Leia mais

GUIA DE REVISÃO DO 4º BIMESTRE 1º ANO DO ENSINO MÉDIO / 2013 Semana de 11/11 a 22/11. Para: 21/11

GUIA DE REVISÃO DO 4º BIMESTRE 1º ANO DO ENSINO MÉDIO / 2013 Semana de 11/11 a 22/11. Para: 21/11 GUIA DE REVISÃO DO 4º BIMESTRE 1º ANO DO ENSINO MÉDIO / 2013 Semana de 11/11 a 22/11 Literatura Tema: Romantismo Para casa: Resolução dos exercícios das páginas 254, 255, 256, 257 e 258. Para 22/11, 6ª

Leia mais

O equilíbrio ESTÁTICO, quando o corpo permanece em repouso. O equilíbrio DINÂMICO, quando o corpo permanece em movimento retilíneo uniforme.

O equilíbrio ESTÁTICO, quando o corpo permanece em repouso. O equilíbrio DINÂMICO, quando o corpo permanece em movimento retilíneo uniforme. 1- OÇA: orça é uma grandeza vetorial (caracterizado por um módulo ou intensidade, uma direção e um sentido) capaz de produzir em um, uma deformação e /ou uma variação em sua velocidade vetorial. 1.1- LEIS

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS PONTIÍIA UNIVSIDAD ATÓLIA D GOIÁS DPATAMNTO D MATMÁTIA ÍSIA Professores: dson Vaz e enato Medeiros XÍIOS NOTA D AULA I Goiânia - X Í I O S. O esuema abaio mostra três cargas puntiformes fias, no vácuo.

Leia mais

Professor Victor M Lima. Enem Ciências da natureza e suas tecnologias Física Aula 5

Professor Victor M Lima. Enem Ciências da natureza e suas tecnologias Física Aula 5 Professor Victor M Lima Enem Ciências da natureza e suas tecnologias Física Aula 5 Newton As Leis de Newton 1 Lei ( Princípio da Inércia ) Galileu Kepler Todo corpo que esteja em repouso ou em movimento

Leia mais

Interação entre corpos

Interação entre corpos 2.1. Forças Interação entre corpos Dois jogadores interagem fisicamente entre si, exercendo, reciprocamente, forças um sobre o outro, isto é, o jogador da esquerda exerce uma força sobre o jogador da direita

Leia mais

A partir dessas definições, podemos afirmar que se a força resultante F R 3 SEGUNDA LEI DE NEWTON: PRINCÍPIO FUNDAMENTAL DA DINÂMICA

A partir dessas definições, podemos afirmar que se a força resultante F R 3 SEGUNDA LEI DE NEWTON: PRINCÍPIO FUNDAMENTAL DA DINÂMICA 1 INTRODUÇÃO À Quando falamos de Cinemática, nosso interesse é em entender os movimentos, mas sem levar em conta a causa, lembra? Bom, agora é a hora de falarmos sobre as causas, ou seja, a relação entre

Leia mais

Faculdade de Tecnologia de Mogi Mirim Arthur de Azevedo EXPERIMENTO 6

Faculdade de Tecnologia de Mogi Mirim Arthur de Azevedo EXPERIMENTO 6 Faculdade de Tecnologia de Mogi Mirim Arthur de Azevedo Roteiro para prática experimental EXPERIMENTO 6 Condições de equilíbrio estático utilizando o plano inclinado por fuso Disciplina: Física Experimental

Leia mais

Física 2 - Aula 3. frof. Afonso Henriques Silva Leite. 1 de setembro de Nesta aula, serão apresentados os seguintes conceitos:

Física 2 - Aula 3. frof. Afonso Henriques Silva Leite. 1 de setembro de Nesta aula, serão apresentados os seguintes conceitos: Física 2 - Aula 3. frof. Afonso Henriques Silva Leite 1 de setembro de 2016 1 Plano da aula. Nesta aula, serão apresentados os seguintes conceitos: Determinação do torque pelos métodos da decomposição

Leia mais

Ismael Rodrigues Silva Física-Matemática - UFSC.

Ismael Rodrigues Silva Física-Matemática - UFSC. Ismael Rodrigues Silva Física-Matemática - UFSC www.ismaelfisica.wordpress.com Máquinas Simples(ver arquivo) Revisão... ForçadeAtrito... AlgunsSistemasMecânicos... SistemasMecânicos... Máquinas Simples:

Leia mais

Departamento de Física - ICE/UFJF Laboratório de Física II Pêndulos

Departamento de Física - ICE/UFJF Laboratório de Física II Pêndulos Pêndulos Pêndulo 1 Pêndulo Simples e Pêndulo Físico 1 Objetivos Gerais: Determinar experimentalmente o período de oscilação de um pêndulo físico e de um pêndulo simples; Determinar experimentalmente o

Leia mais

5 TRAÇADO DE DIAGRAMAS DE SOLICITAÇÕES INTERNAS

5 TRAÇADO DE DIAGRAMAS DE SOLICITAÇÕES INTERNAS 16 TRÇDO DE DIGRS DE SOLIITÇÕES INTERNS seguir, se verá duas abordagens diferentes para se traçar os diagramas de solicitações internas em estruturas: de forma analítica, i.e., determinando-se funções

Leia mais

Isostática 3. Equilíbrio de Corpos Rígidos

Isostática 3. Equilíbrio de Corpos Rígidos Isostática 3. Equilíbrio de Corpos Rígidos Rogério de Oliveira Rodrigues 3.1. Conceito de Deslocamento Deslocamento é definido como a variação de posição de um corpo, ou parte dele, dentro de uma determinada

Leia mais

LTDA APES PROF. RANILDO LOPES SITE:

LTDA APES PROF. RANILDO LOPES SITE: Matemática Aplicada - https://ranildolopes.wordpress.com/ - Prof. Ranildo Lopes - FACET 1 Faculdade de Ciências e Tecnologia de Teresina Associação Piauiense de Ensino Superior LTDA APES PROF. RANILDO

Leia mais

1 Geometria Analítica Plana

1 Geometria Analítica Plana UNIVERSIDADE ESTADUAL DO PARANÁ CAMPUS DE CAMPO MOURÃO Curso: Matemática, 1º ano Disciplina: Geometria Analítica e Álgebra Linear Professora: Gislaine Aparecida Periçaro 1 Geometria Analítica Plana A Geometria

Leia mais

y ds, onde ds é uma quantidade infinitesimal (muito pequena) da curva C. A curva C é chamada o

y ds, onde ds é uma quantidade infinitesimal (muito pequena) da curva C. A curva C é chamada o Integral de Linha As integrais de linha podem ser encontradas em inúmeras aplicações nas iências Eatas, como por eemplo, no cálculo do trabalho realizado por uma força variável sobre uma partícula, movendo-a

Leia mais

Borja ESTABILIDADE DAS CONSTRUÇÕES NOTAS DE AULA: - Prof. INSTITUTO FEDERAL DE EDUCAÇÃO CIÊNCIA e TECNOLOGIA DO RIO GRANDE DO NORTE

Borja ESTABILIDADE DAS CONSTRUÇÕES NOTAS DE AULA: - Prof. INSTITUTO FEDERAL DE EDUCAÇÃO CIÊNCIA e TECNOLOGIA DO RIO GRANDE DO NORTE INSTITUTO FEDERAL DE EDUCAÇÃO CIÊNCIA e TECNOLOGIA DO RIO GRANDE DO NORTE DIRETORIA ACADÊMICA DE CONSTRUÇÃO CIVIL TEC. EM CONSTR. DE EDIFICIOS EDIFICAÇÕES TÉCNICO SUBSEQUENTE ESTABILIDADE DAS CONSTRUÇÕES

Leia mais

Desenho Técnico. Desenho Mecânico. Eng. Agr. Prof. Dr. Cristiano Zerbato

Desenho Técnico. Desenho Mecânico. Eng. Agr. Prof. Dr. Cristiano Zerbato Desenho Técnico Desenho Mecânico Eng. Agr. Prof. Dr. Cristiano Zerbato Introdução O desenho, para transmitir o comprimento, largura e altura, precisa recorrer a um modo especial de representação gráfica:

Leia mais

Mecânica Geral. Prof. Evandro Bittencourt (Dr.) Engenharia de Produção e Sistemas UDESC. 27 de fevereiro de 2008

Mecânica Geral. Prof. Evandro Bittencourt (Dr.) Engenharia de Produção e Sistemas UDESC. 27 de fevereiro de 2008 Mecânica Geral Prof Evandro Bittencourt (Dr) Engenharia de Produção e Sistemas UDESC 7 de fevereiro de 008 Sumário 1 Prof Evandro Bittencourt - Mecânica Geral - 007 1 Introdução 11 Princípios Fundamentais

Leia mais

FÍSICA EXPERIMENTAL III TEORIA DE ERROS

FÍSICA EXPERIMENTAL III TEORIA DE ERROS FÍSICA EXPERIMENTAL III José Fernando Fragalli Departamento de Física Udesc/Joinville TEORIA DE ERROS A Ciência está escrita neste grande livro colocado sempre diante dos nossos olhos o Universo mas não

Leia mais

Cálculo - James Stewart - 7 Edição - Volume 1

Cálculo - James Stewart - 7 Edição - Volume 1 Cálculo - James Stewart - 7 Edição - Volume. Eercícios. Eplique com suas palavras o significado da equação É possível que a equação anterior seja verdadeira, mas que f? Eplique.. Eplique o que significa

Leia mais

CADERNO DE EXERCÍCIOS 1D

CADERNO DE EXERCÍCIOS 1D CADERNO DE EXERCÍCIOS 1D Ensino Médio Ciências da Natureza I Questão Conteúdo 1 Teorema de Pitágoras Área de círculo Equação do º grau Área de círculo Habilidade da Matriz da EJA/FB H16 H1 H 3 Aceleração

Leia mais

Exercícios sobre Trigonometria

Exercícios sobre Trigonometria Universidade Federal Fluminense Campus do Valonguinho Instituto de Matemática e Estatística Departamento de Matemática Aplicada - GMA Prof Saponga uff Rua Mário Santos Braga s/n 400-40 Niterói, RJ Tels:

Leia mais

Lista 9 : Dinâmica Rotacional

Lista 9 : Dinâmica Rotacional Lista 9 : Dinâmica Rotacional NOME: Matrícula: Turma: Prof. : Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção. iii. Responder

Leia mais

Prof. MSc. David Roza José -

Prof. MSc. David Roza José - 1/22 2/22 Introdução Até o momento consideramos que a força de atração exercida pela terra num corpo rígido poderia ser representada por uma única força W, aplicada no centro de gravidade do corpo. O quê

Leia mais

Noções Básicas de Física Arquitectura Paisagística LEI DE HOOKE (1)

Noções Básicas de Física Arquitectura Paisagística LEI DE HOOKE (1) LEI DE HOOKE INTRODUÇÃO A Figura 1 mostra uma mola de comprimento l 0, suspensa por uma das suas extremidades. Quando penduramos na outra extremidade da mola um corpo de massa m, a mola passa a ter um

Leia mais

RESISTÊNCIA DOS MATERIAIS II MOMENTO ESTÁTICO

RESISTÊNCIA DOS MATERIAIS II MOMENTO ESTÁTICO RESISTÊNCIA DOS MATERIAIS II MOMENTO ESTÁTICO Prof. Dr. Daniel Caetano 2018-1 Objetivos Conhecer a influência da forma na Resistência dos Materiais Compreender o conceito de Momento Estático Calcular Momento

Leia mais

Experiência 3 - Pêndulo

Experiência 3 - Pêndulo Roteiro de Física Experimental II 13 Experiência 3 - Pêndulo 1 - OBJEIVO O objetivo desta aula é discutir o movimento harmônico de um pêndulo físico e realizar um experimento sobre o mesmo Através de medidas

Leia mais

Mecânica Geral 17/02/2016. Resultante de Duas Forças

Mecânica Geral 17/02/2016. Resultante de Duas Forças Mecânica Geral Capítulo 2 Estática de Partículas Resultante de Duas Forças Força: ação de um corpo sobre outro; caracterizada por seu ponto de aplicação, sua intensidade, sua direção, e seu sentido. Evidênciaseperimentaismostramque

Leia mais

Isolando as forças, temos:

Isolando as forças, temos: FÍSICA I 2014.2 1 LEIS DE NEWTON a) Isolando as forças, temos: O coeficiente de atrito estático, é o coeficiente de atrito máximo que faz um corpo ficar parado. Ele cresce até chegar num ponto em que uma

Leia mais

MAT Cálculo I - POLI a Lista de Exercícios

MAT Cálculo I - POLI a Lista de Exercícios MAT 453 - Cálculo I - POLI - 003 a Lista de Eercícios. Calcule a derivada indicada em cada caso: a) y se y = ; b) y se y = ( ) d ; c) ; d + ( d) d d 3 + ); e) d500 3 d 500 (3 3 79 + 4).. Calcule dy por

Leia mais

Semana 5 Zeros das Funções_2ª parte

Semana 5 Zeros das Funções_2ª parte 1 CÁLCULO NUMÉRICO Semana 5 Zeros das Funções_2ª parte Professor Luciano Nóbrega UNIDADE 1 2 LOCALIZAÇÃO DAS RAÍZES PELO MÉTODO GRÁFICO Vejamos dois procedimentos gráficos que podem ser utilizados para

Leia mais

t RESOLUÇÃO COMECE DO BÁSICO = 0,1 cm/min . Para as frequências temos: v v 2 f r 2 f r f 1,5 r f r f 1,5 f.

t RESOLUÇÃO COMECE DO BÁSICO = 0,1 cm/min . Para as frequências temos: v v 2 f r 2 f r f 1,5 r f r f 1,5 f. t ESOLUÇÃO COMECE DO ÁSICO [] Dados: n = 4; t = s. Substituindo esses valores na fórmula dada: 4 (360 ) = 70 /s. [D] Dados: = 3,14 e raio da Terra: T = 6.000 km. O período de rotação da Terra é T = 4 h.

Leia mais

Universidade de São Paulo

Universidade de São Paulo Universidade de São Paulo Uma volta no carrossel Instituto de Física da USP Física I para a Escola Politécnica 2016 Uma criança de 25 kg, em um playground, corre com uma velocidade escalar inicial de 2,

Leia mais

MATEMÁTICA A - 11o Ano. Propostas de resolução

MATEMÁTICA A - 11o Ano. Propostas de resolução MATEMÁTICA A - o Ano Funções racionais Propostas de resolução Eercícios de eames e testes intermédios. Como o conjunto solução da condição f 0 é o conjunto das abcissas dos pontos do gráfico da função

Leia mais

Exemplo Aplicando a proporcionalidade existente no Teorema de Tales, determine o valor dos segmentos AB e BC na ilustração a seguir:

Exemplo Aplicando a proporcionalidade existente no Teorema de Tales, determine o valor dos segmentos AB e BC na ilustração a seguir: GEOMETRIA PLANA TEOREMA DE TALES O Teorema de Tales pode ser determinado pela seguinte lei de correspondência: Se duas retas transversais são cortadas por um feixe de retas paralelas, então a razão entre

Leia mais

O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal.

O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal. CENTRÓIDES E MOMENTO DE INÉRCIA Centróide O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal. De uma maneira bem simples: centróide

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ano Versão Nome: N.º Turma: Apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando,

Leia mais

1 Partícula em queda sob ação de forças resistivas

1 Partícula em queda sob ação de forças resistivas 04.07-4320195 - Física Geral para Engenharia I - Prova substitutiva Você tem até 120 minutos para fazer esta prova. Resolva os exercícios de maneira organizada. Cada exercício vale 2.5 pontos. Bom trabalho.

Leia mais

Equilíbrio de uma Partícula Cap. 3 T CE T CD P B T DC =-T CD T DC -T CD

Equilíbrio de uma Partícula Cap. 3 T CE T CD P B T DC =-T CD T DC -T CD Eemplo. MEÂNIA - ESTÁTIA esenhar todos os diagramas de corpo livre possíveis para o problema mostrado na figura abaio, considerando todos os nomes de forças como vetores. Equilíbrio de uma Partícula ap.

Leia mais

2 a Lista de Exercícios de MAT2457 Escola Politécnica 1 o semestre de 2014

2 a Lista de Exercícios de MAT2457 Escola Politécnica 1 o semestre de 2014 a Lista de Eercícios de MAT4 Escola Politécnica o semestre de 4. Determine u tal que u = e u é ortogonal a v = (,, ) e a w = (, 4, 6). Dos u s encontrados, qual é o que forma um ângulo agudo com o vetor

Leia mais

Capítulo 4 - Derivadas

Capítulo 4 - Derivadas Capítulo 4 - Derivadas 1. Problemas Relacionados com Derivadas Problema I: Coeficiente Angular de Reta tangente. Problema II: Taxas de variação. Problema I) Coeficiente Angular de Reta tangente I.1) Inclinação

Leia mais

Á lgebra para intermedia rios Ma ximos, mí nimos e outras ideias u teis

Á lgebra para intermedia rios Ma ximos, mí nimos e outras ideias u teis Á lgebra para intermedia rios Ma imos, mí nimos e outras ideias u teis 0) O que veremos na aula de hoje? Máimos e mínimos em funções do º grau Máimos e mínimos por trigonometria Máimos e mínimos por MA

Leia mais

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução MTEMÁTI - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. omo a reta T P é tangente à circunferência no ponto T é perpendicular ao

Leia mais

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução MTEMÁTI - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. omo a base do prisma é um quadrado, os lados adjacentes são perpendiculares,

Leia mais

Ismael Rodrigues Silva Física-Matemática - UFSC.

Ismael Rodrigues Silva Física-Matemática - UFSC. Ismael Rodrigues Silva Física-Matemática - UFSC www.ismaelfisica.wordpress.com RevisãodeVetores... PrimeiraLeideNewton... EquilíbriodeTranslação... TerceiraLeideNewton... As grandezas vetoriais são caracterizadas

Leia mais

Limites, derivadas e máximos e mínimos

Limites, derivadas e máximos e mínimos Limites, derivadas e máimos e mínimos Psicologia eperimental Definição lim a f ( ) b Eemplo: Seja f()=5-3. Mostre que o limite de f() quando tende a 1 é igual a 2. Propriedades dos Limites Se L, M, a,

Leia mais

Leis de Newton da Mecânica. Prof. Marco Simões

Leis de Newton da Mecânica. Prof. Marco Simões Leis de Newton da Mecânica Prof. Marco Simões Leis de Newton Primeira: se a resultante das forças que agem em um corpo for nula, este corpo permanecerá parado ou com velocidade constante. Segunda: se a

Leia mais

Princípios Físicos do Controle Ambiental

Princípios Físicos do Controle Ambiental Princípios Físicos do Controle Ambiental Capítulo 02 Conceitos Básicos Sobre Mecânica Técnico em Controle Ambiental 18/05/2017 Prof. Márcio T. de Castro Parte I 2 Mecânica Mecânica: ramo da física dedicado

Leia mais

Prova de Conhecimentos Específicos 1 a QUESTÃO: (2,0 pontos)

Prova de Conhecimentos Específicos 1 a QUESTÃO: (2,0 pontos) Prova de Conhecimentos Específicos 1 a QUESTÃO: (,0 pontos) Considere a função f definida por f()= + 1. Determine: a) o domínio da função. b) os intervalos onde o gráfico de f é crescente e onde é decrescente.

Leia mais

Volume de um gás em um pistão

Volume de um gás em um pistão Universidade de Brasília Departamento de Matemática Cálculo Volume de um gás em um pistão Suponha que um gás é mantido a uma temperatura constante em um pistão. À medida que o pistão é comprimido, o volume

Leia mais

RESISTÊNCIA DOS MATERIAIS

RESISTÊNCIA DOS MATERIAIS Terceira Edição CAPÍTULO RESISTÊNCIA DOS MATERIAIS Ferdinand P. Beer E. Russell Johnston, Jr. Análise de Tensões no Estado Plano Capítulo 6 Análise de Tensões no Estado Plano 6.1 Introdução 6. Estado Plano

Leia mais

Material Teórico - Módulo Função Quadrática. Funcão Quadrática: Exercícios. Primeiro Ano do Ensino Médio

Material Teórico - Módulo Função Quadrática. Funcão Quadrática: Exercícios. Primeiro Ano do Ensino Médio Material Teórico - Módulo Função Quadrática Funcão Quadrática: Eercícios Primeiro Ano do Ensino Médio Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio Caminha M. Neto 1 Eercícios f() Eemplo

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano.

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano. CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 5 Zeros reais de funções Parte 2 Voltando ao eemplo da aula anterior, vemos que o ponto médio da primeira iteração 1 = 2,5

Leia mais

Apresentação: Movimento unidimensional

Apresentação: Movimento unidimensional Apresentação: Movimento unidimensional INTRODUÇÃO Um objeto em movimento uniformemente acelerado, ou seja, com aceleração constante, é um importante caso da cinemática. O exemplo mais comum desse tipo

Leia mais

Lista 12: Rotação de corpos rígidos

Lista 12: Rotação de corpos rígidos Lista 12: Rotação de Corpos Rígidos Importante: i. Ler os enunciados com atenção. ii. Responder a questão de forma organizada, mostrando o seu raciocínio de forma coerente. iii. Siga a estratégia para

Leia mais

Estudar mudança no valor de funções na vizinhança de pontos.

Estudar mudança no valor de funções na vizinhança de pontos. Universidade Federal de Alagoas Faculdade de Arquitetura e Urbanismo Curso de Arquitetura e Urbanismo Disciplina: Fundamentos para a Análise Estrutural Código: AURB006 Turma: A Período Letivo: 007- Professor:

Leia mais

MATEMÁTICA A - 10o Ano Geometria Propostas de resolução

MATEMÁTICA A - 10o Ano Geometria Propostas de resolução MATEMÁTIA A - 10o Ano Geometria Propostas de resolução Eercícios de eames e testes intermédios 1. omo os pontos A, B e têm abcissa 1, todos pertencem ao plano de equação = 1. Assim a secção produida no

Leia mais

XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO

XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (Ensino Médio) GABARITO GABARITO NÍVEL ) D 6) C ) D 6) C ) B ) A 7) B ) B 7) B ) C ) D 8) C ) E 8) B ) B 4) D 9) E 4) D 9) C 4) D ) D 0) A ou

Leia mais

LOQ Fenômenos de Transporte I

LOQ Fenômenos de Transporte I LOQ 4083 - enômenos de Transporte I T I 08 Equação da Quantidade de Movimento para um Volume de Controle Inercial Prof. Lucrécio ábio dos Santos Departamento de Engenharia Química LOQ/EEL tenção: Estas

Leia mais

2009 1ª. Fase Prova para alunos do 9º. Ano LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO:

2009 1ª. Fase Prova para alunos do 9º. Ano LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO: 2009 1ª. Fase Prova para alunos do 9º. Ano LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO: 01) Esta prova destina-se exclusivamente a alunos do 9º. ano. Ela contém vinte questões. 02) Cada questão contém cinco

Leia mais

Utilizando a Geometria analítica para fazer desenhos no GrafEq

Utilizando a Geometria analítica para fazer desenhos no GrafEq Utilizando a Geometria analítica para fazer desenhos no GrafEq O problema é traçar estes 3 objetos no GrafEq, representado pela figura abaio, par tanto vamos iniciar traçando o quadrilátero vermelho. Primeiramente

Leia mais

Prova da UFRGS

Prova da UFRGS Prova da UFRGS - 2013 01. Um adulto humano saudável abriga cerca de 100 bilhões de bactérias, somente em seu trato digestivo. Esse número de bactérias pode ser escrito como a) 10 9. b) 10 10. c) 10 11.

Leia mais

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE.1 INTRODUÇÃO Admita que, de um lote de 10 peças, 3 das quais são defeituosas, peças são etraídas ao acaso, juntas (ou uma a uma, sem reposição). Estamos

Leia mais

SOLUÇÃO. OBSERVAÇÕES: 01 Prova SEM consulta. 02 A prova PODE ser feita a lápis. 03 PROIBIDO o uso de calculadoras e similares. 04 Duração: 2 HORAS.

SOLUÇÃO. OBSERVAÇÕES: 01 Prova SEM consulta. 02 A prova PODE ser feita a lápis. 03 PROIBIDO o uso de calculadoras e similares. 04 Duração: 2 HORAS. UNVERSDDE FEDERL DE TJUÁ ÁLULO 1 e PROV DE TRNSFERÊN NTERN, EXTERN E PR PORTDOR DE DPLOM DE URSO SUPEROR 1/1/1 NDDTO: URSO PRETENDDO: OSERVÇÕES: 1 Prova SEM consulta prova PODE ser feita a lápis PRODO

Leia mais

1. Nos exercícios abaixo, ache as assíntotas horizontais e verticais do gráfico de cada. 2 x (x + 2) 2

1. Nos exercícios abaixo, ache as assíntotas horizontais e verticais do gráfico de cada. 2 x (x + 2) 2 Universidade de São Paulo Escola Superior de Agricultura Luiz de Queiroz Departamento de Ciências Eatas LCE 066 - Cálculo e Matemática aplicados às ciências dos aentos Eercícios Limites: assíntotas e continuidade.

Leia mais

1 CENTRO DE MASSA. da garrafa se concentra ali e que a força P que a garrafa sofre está concentrada sobre esse ponto.

1 CENTRO DE MASSA. da garrafa se concentra ali e que a força P que a garrafa sofre está concentrada sobre esse ponto. ENGENHARIA 1 CENTRO DE MASSA Quando estudamos partículas, tratamos de objetos bem simples, como por exemplo uma bola. No futebol, quando o goleiro chuta a bola em direção ao centro do campo, podemos enxergar

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adriano Pedreira Cattai apcattai@ahoo.com.br Universidade Federal da Bahia UFBA, MAT A01, 006. 1. Discussão da equação de uma superfície. Construção de uma superfície 1.1 Introdução Definição de Superfície

Leia mais