Revisão, apêndice A Streeter: SISTEMAS DE FORÇAS, MOMENTOS, CENTROS DE GRAVIDADE

Tamanho: px
Começar a partir da página:

Download "Revisão, apêndice A Streeter: SISTEMAS DE FORÇAS, MOMENTOS, CENTROS DE GRAVIDADE"

Transcrição

1 UNVERSDDE FEDERL D BH ESCOL POLTÉCNC DEPRTMENTO DE ENGENHR QUÍMC ENG 008 Fenômenos de Transporte Profª Fátima Lopes FORÇS HDRÁULCS SOBRE SUPERFÍCES SUBMERSS Revisão, apêndice Streeter: SSTEMS DE FORÇS, MOMENTOS, CENTROS DE GRVDDE Dois sistemas de forças são equivalentes se apresentarem o mesmo valor para a soma das forças em qualquer direção e o mesmo valor para a soma de momentos em relação a qualquer eio. O mais simples sistema de forças equivalente é chamado resultante do sistema de forças. Quando o corpo livre está em repouso ou move-se segundo uma linha reta com velocidade uniforme, diz-se que ele está em equilíbrio. Pela segunda lei do movimento de Newton, já que não há aceleração do corpo livre, a soma dos componentes de todas as forças em qualquer direção deve ser nula, e a soma de todos os momentos em relação a qualquer eio deve ser zero. ação de um fluido sobre qualquer superfície pode ser substituída pelo sistema de forças resultante, que causa movimento eterno ou reação, igual ao provocado pelo sistema de forças distribuídas no fluido. Nessas condições o fluido pode ser considerado como tendo sido completamente removido, com a resultante atuando em seu lugar. O momento de uma área, volume, peso ou massa, poder ser determinado de uma maneira análoga à determinação dos momentos de uma força com respeito a um eio. MOMENTOS DE PRMER ORDEM O momento de uma área em relação ao eio, eprime-se por d, com a integração estendida a toda área. O momento de ª ordem é também chamado de momento estático. 06

2 UNVERSDDE FEDERL D BH ESCOL POLTÉCNC DEPRTMENTO DE ENGENHR QUÍMC ENG 008 Fenômenos de Transporte Profª Fátima Lopes Para determinar o momento em relação a um eio paralelo, por eemplo, k, a epressão torna-se ( k) d d k () a qual evidencia que eistirá sempre um eio paralelo k, em relação ao qual o momento vale zero. Esse eio é chamado central e é determinado igualando a zero a epressão () e tirando o valor de : ( k) d d k d d O outro eio central paralelo ao eio pode ser determinado: d O ponto de intersecção dos eios centrais é chamado centro de gravidade ou centróide da área. O momento de ª ordem é nulo em relação a qualquer eio passando pelo centro de gravidade (isto pode ser mostrado através de uma rotação de eios). Quando uma área tem um eio de simetria, tal eio será central, já que os momentos de elementos de área simetricamente situados de cada lado do eio são iguais em módulo e de sinais contrários. Quando a posição do centro de gravidade é conhecida, o momento de ª ordem em relação a qualquer eio pode ser obtido sem integração: z d h z c c O eio central de um triângulo, paralelo a um dos lados, situa-se a um terço da altura desde esse lado. 07

3 UNVERSDDE FEDERL D BH ESCOL POLTÉCNC DEPRTMENTO DE ENGENHR QUÍMC ENG 008 Fenômenos de Transporte Profª Fátima Lopes Tomando-se o momento de ª ordem de um volume υ em relação a um plano z, a distância até o seu centro de gravidade é analogamente determinada, d υ υ O centro de massa de um corpo é determinado pelo mesmo procedimento: dm elemento de massa M massa total do corpo m M υ Para finalidades práticas de engenharia, o centro de gravidade de um corpo coincide com o seu centro de massa. M d m MOMENTOS DE SEGUND ORDEM O momento de segunda ordem uma área em relação ao eio é: d (momento de inércia) Chama-se momento de inércia da área e é sempre positivo já que d é sempre considerado positivo. Fazendo a mudança de eio para um eio paralelo e passando pelo centro de gravidade C da área C ( ) d d d + d Uma vez que: d, d, d Então: ou C + C + O momento de inércia de uma área em relação a um eio qualquer é a soma do momento de inércia em relação a um eio paralelo passando pelo centro de gravidade com o produto da área pelo quadrado da distância entre os eios. 08

4 UNVERSDDE FEDERL D BH ESCOL POLTÉCNC DEPRTMENTO DE ENGENHR QUÍMC ENG 008 Fenômenos de Transporte Profª Fátima Lopes PRODUTO DE NÉRC O produto de inércia de uma área, também chamado de momento centrífugo, é epresso por: d, podendo ser positivo ou negativo. Escrevendo as epressões para o produto de inércia centrais paralelos aos eios e obtém-se: em relação aos eios ( ) ( ) d d d d + d Mas d e d Então: + ou + Quando um dos eios é um eio de simetria da área, o produto de inércia é nulo. 09

5 UNVERSDDE FEDERL D BH ESCOL POLTÉCNC DEPRTMENTO DE ENGENHR QUÍMC ENG 008 Fenômenos de Transporte Profª Fátima Lopes OBSERVÇÃO: Efeito de força de contato em um fluido confinado problema estático. Se a pressão eterna for eercida sobre uma parte do contorno de um fluido confinado, essa pressão, uma vez impedido o movimento do fluido, será transmitida através do fluido com a mesma intensidade. O equilíbrio eige que o aumento da pressão no elemento interno tenha correspondência com a pressão aplicada no contorno. Como o elemento pode ser escolhido de comprimento arbitrário e em qualquer posição deve ficar claro que uma pressão p desenvolvida sobre o contorno deve propagar-se pelo fluido. O princípio acima corresponde à ação do elevador hidráulico e do freio hidráulico. Uma pressão desenvolvida pelo pistão C é propagada pelo fluido F F B C B C as áreas Para uma mesma força B C F C, FB será tanto maior quanto maior for a relação entre 0

6 UNVERSDDE FEDERL D BH ESCOL POLTÉCNC DEPRTMENTO DE ENGENHR QUÍMC ENG 008 Fenômenos de Transporte Profª Fátima Lopes PRENS HDRÁULC Seja um tubo em U que apresenta áreas diferentes em cada ramo. O tubo é preenchido com líquido e colocado um pistão em cada um dos lados. plicando-se uma pequena força F no lado de menor área ( ) pode-se deslocar ou sustentar uma força bem maior (dependendo da relação entre as áreas) no lado de maior área ( ) Em (): Em (): F p p F p p F F Pela hidrostática: p p 3 p F F + + γ γ h h for a relação Se h 0 (os pistões estão no mesmo nível) F F Deste modo, para uma mesma força F, a força F será tanto maior quanto maior

7 UNVERSDDE FEDERL D BH ESCOL POLTÉCNC DEPRTMENTO DE ENGENHR QUÍMC ENG 008 Fenômenos de Transporte Profª Fátima Lopes FORÇS EM SUPERFÍCES PLNS distribuição das forças resultantes da ação do fluido, em uma superfície da área finita, pode ser substituída por uma força resultante conveniente, na medida em que estejamos interessados apenas nas reações eternas. Nesta parte será determinada a intensidade e a linha de ação (centro das pressões) da força resultante. Como o fluido é estático, não eistem tensões de cisalhamento, logo as forças que devem atuar são normais à superfície. s superfícies planas podem se apresentar: Horizontais nclinadas SUPERFÍCES HORZONTS Uma superfície plana horizontal, mergulhada em um fluido em repouso estará sujeita a um pressão constante. Consideremos a superfície contida no plano. s forças elementares p d aplicadas em cada d são paralelas e de mesmo sentido, de forma que a soma escalar das mesmas dará a intensidade da força resultante. Sua direção será a da normal a superfície e contra a mesma se p for positiva. intensidade da força resultante agindo em um dos lados da superfície será: F R p d p d F R p γ h

8 UNVERSDDE FEDERL D BH ESCOL POLTÉCNC DEPRTMENTO DE ENGENHR QUÍMC ENG 008 Fenômenos de Transporte Profª Fátima Lopes LNH DE ÇÃO linha de ação, ou seja, o ponto da área onde é nulo o momento das forças distribuídas, em relação a um eio qualquer que passa por este ponto. área: dotando o eio arbitrário, com C sendo o centro de gravidade ou centróide da O momento da resultante deverá ser igual ao do sistema de forças distribuídas em relação a um eio qualquer. Em relação ao eio, por eemplo, teremos: p ' p d onde ' a distância do eio à resul tan te Como p é constante p ' p ' d d onde é a distância do eio ao centro de gravidade ou centróide da área. Logo, em uma superfície horizontal sujeita à pressão estática de um fluido, a resultante passará pelo centro de gravidade da mesma. 3

9 UNVERSDDE FEDERL D BH ESCOL POLTÉCNC DEPRTMENTO DE ENGENHR QUÍMC ENG 008 Fenômenos de Transporte Profª Fátima Lopes SUPERFÍCES NCLNDS Na figura que se segue está representada uma superfície plana pelo seu traço B, o com uma inclinação θ em relação à horizontal. Eio? intersecção da superfície livre com o plano que contém a superfície em estudo Eio? pertence ao plano da superfície e tem origem em O na superfície livre. Deste modo o plano será o suporte da superfície inclinada. Objetivo: determinação da intensidade, direção e linha de ação da força resultante devido ao líquido, em um dos lados da superfície. dotando-se como elemento de área uma faia horizontal intensidade da força agindo sobre a mesma será, δ de largura δ δ F p δ γ h δ γ sen θ δ () Como todas as forças elementares são paralelas, a intensidade da força F, que age de um lado da superfície, poderá ser obtida por uma integração sobre toda a área. FR p d γ h d γ senθ d γ senθ γ h p pois d G () (do momento estático) sen θ h (pela figura), a 4

10 UNVERSDDE FEDERL D BH ESCOL POLTÉCNC DEPRTMENTO DE ENGENHR QUÍMC ENG 008 Fenômenos de Transporte Profª Fátima Lopes e p G γ h é a pressão no centróide da área. Logo, FR γ h ou FR p G Ou seja, a intensidade da força que age de um lado de uma superfície submersa num líquido é igual ao produto da área da superfície pela pressão que atua no seu centro de gravidade. Se p G for positiva, a força terá um sentido tal que a superfície seja comprimida e como todas as forças elementares são normais, a resultante também o será. CENTRO DS PRESSÕES linha de ação da força resultante passará por um ponto de coordenadas ( P, P ) chamado centro das pressões. Diferentemente do caso da superfície horizontal, o centro das pressões de uma superfície inclinada ao coincidirá com o seu centro de gravidade. Para determinar o centro das pressões é necessário igualar os momentos P FR e P FR da resultante aos momentos das forças distribuídas em relação aos eios e respectivamente, logo: F p d (3) P R F p d (4) P R sendo agora a área elementar igual a De onde: P P FR F p d p d δ δ R Em muitas aplicações estas equações serão resolvidas de forma mais conveniente por integração gráfica. Para áreas simples poderemos obter fórmulas gerais como segue: De () Então: p F R γ senθ γ senθ d γ senθ (5) 5

11 UNVERSDDE FEDERL D BH ESCOL POLTÉCNC DEPRTMENTO DE ENGENHR QUÍMC ENG 008 Fenômenos de Transporte Profª Fátima Lopes d (6) p Como Então: + (7) p + Quando um dos eios centrais ou for um eio de simetria da superfície, então anula-se e o centro das pressões estará sobre. Como poderá ser positivo ou negativo, o centro das pressões poderá se localizar em qualquer lado da linha. Para determinar p P : γ senθ d γ senθ d (8) p Pelo teorema dos momentos de inércia para eios paralelos: G + (9) Então, substituindo (9) em (8): ou G (0) p + p G G é sempre positivo, logo pressões localizar-se-á sempre abaio do centro de gravidade da superfície. P também o será de forma que o centro das 6

Disciplina : Mecânica dos fluidos I. Aula 5: Estática dos Fluidos

Disciplina : Mecânica dos fluidos I. Aula 5: Estática dos Fluidos Curso: Engenharia Mecânica Disciplina : Mecânica dos fluidos I ula 5: Estática dos Fluidos Prof. Evandro Rodrigo Dário, Dr. Eng. Estática dos Fluidos Sistemas Hidráulicos Os sistemas hidráulicos são caracterizados

Leia mais

Prof. MSc. David Roza José -

Prof. MSc. David Roza José - 1/22 2/22 Introdução Até o momento consideramos que a força de atração exercida pela terra num corpo rígido poderia ser representada por uma única força W, aplicada no centro de gravidade do corpo. O quê

Leia mais

Capítulo 2 Vetores. 1 Grandezas Escalares e Vetoriais

Capítulo 2 Vetores. 1 Grandezas Escalares e Vetoriais Capítulo 2 Vetores 1 Grandezas Escalares e Vetoriais Eistem dois tipos de grandezas: as escalares e as vetoriais. As grandezas escalares são aquelas que ficam definidas por apenas um número real, acompanhado

Leia mais

FORÇA SOBRE ÁREAS PLANAS

FORÇA SOBRE ÁREAS PLANAS FLUIDOSTÁTICA II FORÇA SOBRE ÁREAS PLANAS Centro de Gravidade (CG) CG constatações Se a figura possui eixo de simetria, o CG está contido neste eixo. Eixo de simetria Eixo de simetria Eixo de simetria

Leia mais

O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal.

O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal. CENTRÓIDES E MOMENTO DE INÉRCIA Centróide O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal. De uma maneira bem simples: centróide

Leia mais

Objetivos do estudo de superfície plana submersa - unidade 2:

Objetivos do estudo de superfície plana submersa - unidade 2: 122 Curso Básico de Mecânica dos Fluidos Objetivos do estudo de superfície plana submersa - unidade 2: Mencionar em que situações têm-se uma distribuição uniforme de pressões em uma superfície plana submersa;

Leia mais

Disciplina : Mecânica dos fluidos I. Aula 4: Estática dos Fluidos

Disciplina : Mecânica dos fluidos I. Aula 4: Estática dos Fluidos Curso: Engenharia Mecânica Disciplina : Mecânica dos fluidos I Aula 4: Estática dos Fluidos Prof. Evandro Rodrigo Dário, Dr. Eng. Estática dos Fluidos A pressão gerada no interior de um fluido estático

Leia mais

Borja ESTABILIDADE DAS CONSTRUÇÕES NOTAS DE AULA: - Prof. INSTITUTO FEDERAL DE EDUCAÇÃO CIÊNCIA e TECNOLOGIA DO RIO GRANDE DO NORTE

Borja ESTABILIDADE DAS CONSTRUÇÕES NOTAS DE AULA: - Prof. INSTITUTO FEDERAL DE EDUCAÇÃO CIÊNCIA e TECNOLOGIA DO RIO GRANDE DO NORTE INSTITUTO FEDERAL DE EDUCAÇÃO CIÊNCIA e TECNOLOGIA DO RIO GRANDE DO NORTE DIRETORIA ACADÊMICA DE CONSTRUÇÃO CIVIL TEC. EM CONSTR. DE EDIFICIOS EDIFICAÇÕES TÉCNICO SUBSEQUENTE ESTABILIDADE DAS CONSTRUÇÕES

Leia mais

HIDROSTÁTICA. Priscila Alves

HIDROSTÁTICA. Priscila Alves HIDROSTÁTICA Priscila Alves priscila@demar.eel.usp.br OBJETIVOS Exemplos a respeito da Lei de Newton para viscosidade. Variação da pressão em função da altura. Estática dos fluidos. Atividade de fixação.

Leia mais

Solução: F = m. a. 20 = 5. a. Logo. a = 20/5. a = 4 ALUNO (A): Nº MANHÃ TURMA 1 ENSINO MÉDIO 1ª ANO

Solução: F = m. a. 20 = 5. a. Logo. a = 20/5. a = 4 ALUNO (A): Nº MANHÃ TURMA 1 ENSINO MÉDIO 1ª ANO ª ANO Verifique se esta contém 0 QUESTÕES, numeradas de 0 a 0. Leia atentamente toda a antes de começar a resolver. Não deixe questões em branco. Não converse. Boa Sorte! NOTA DA ] O corpo indicado na

Leia mais

Capítulo 6 Transformação de tensão no plano

Capítulo 6 Transformação de tensão no plano Capítulo 6 Transformação de tensão no plano Resistência dos Materiais I SLIDES 06 Prof. MSc. Douglas M. A. Bittencourt prof.douglas.pucgo@gmail.com Objetivos do capítulo Transformar as componentes de tensão

Leia mais

ESTÁTICA DOS FLUIDOS. Pressão. Mecânica dos Fluidos Aula 3 Estática 15/01/2018. Prof. Édler Lins de Albuquerque

ESTÁTICA DOS FLUIDOS. Pressão. Mecânica dos Fluidos Aula 3 Estática 15/01/2018. Prof. Édler Lins de Albuquerque Mecânica dos Fluidos Aula 3 Estática Prof. Édler Lins de Albuquerque ESTÁTICA DOS FLUIDOS Pressão ESTÁTICA Estuda os esforços nos fluidos quando estes estão em reouso ou não eiste movimento relativo entre

Leia mais

CARACTERÍSTICAS GEOMETRICAS DE SUPERFICIES PLANAS

CARACTERÍSTICAS GEOMETRICAS DE SUPERFICIES PLANAS CARACTERÍSTCAS GEOMETRCAS DE SUPERFCES PLANAS 1 CENTRÓDES E BARCENTROS 1.1 ntrodução Freqüentemente consideramos a força peso dos corpos como cargas concentradas atuando num único ponto, quando na realidade

Leia mais

REVISAO GERAL. GRANDEZA ESCALAR É caracterizada por um número real. Como, por exemplo, o tempo, a massa, o volume, o comprimento, etc.

REVISAO GERAL. GRANDEZA ESCALAR É caracterizada por um número real. Como, por exemplo, o tempo, a massa, o volume, o comprimento, etc. MECÂNICA APLICADA 5º Período de Engenharia Civil REVISAO GERAL GRANDEZA ESCALAR É caracterizada por um número real. Como, por exemplo, o tempo, a massa, o volume, o comprimento, etc. GRANDEZA VETORIAL

Leia mais

MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA

MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA Nona E 2 Estática CAPÍTULO MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA Ferdinand P. Beer E. Russell Johnston, Jr. Notas de Aula: J. Walt Oler Teas Tech Universit das Partículas Conteúdo Introdução Resultante

Leia mais

Capítulo 2 Pressão da água e forças de pressão

Capítulo 2 Pressão da água e forças de pressão Capítulo 2 Pressão da água e forças de pressão slide 1 Pressão absoluta e pressão manométrica Uma superfície de água em contato com a atmosfera terrestre está sujeita à pressão atmosférica. Na água em

Leia mais

Física I Prova 1 6/09/2014

Física I Prova 1 6/09/2014 Nota Física I Prova 1 6/09/2014 NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 6 questões discursivas (que deverão ter respostas justificadas, desenvolvidas e demonstradas matematicamente) e 8

Leia mais

Flexão Vamos lembrar os diagramas de força cortante e momento fletor

Flexão Vamos lembrar os diagramas de força cortante e momento fletor Flexão Vamos lembrar os diagramas de força cortante e momento fletor Elementos longos e retos que suportam cargas perpendiculares a seu eixo longitudinal são denominados vigas. Vigas são classificadas

Leia mais

Nunca desista dos seus sonhos!!!

Nunca desista dos seus sonhos!!! Nunca desista dos seus sonhos!!! LOQ 4083 - enômenos de Transporte I T I 05 orça Hidrostática em Superfícies Submersas Prof. Lucrécio ábio dos Santos Departamento de Engenharia Química LOQ/EEL tenção:

Leia mais

Estática dos Fluidos. PMC 3230 Prof. Marcos Tadeu Pereira

Estática dos Fluidos. PMC 3230 Prof. Marcos Tadeu Pereira Estática dos Fluidos PMC 3230 Prof. Marcos Tadeu Pereira Estática dos fluidos Objeto: estudo dos fluidos em repouso Objetivo: Análise das pressões e sua variação e distribuição no interior do fluido e

Leia mais

O equilíbrio ESTÁTICO, quando o corpo permanece em repouso. O equilíbrio DINÂMICO, quando o corpo permanece em movimento retilíneo uniforme.

O equilíbrio ESTÁTICO, quando o corpo permanece em repouso. O equilíbrio DINÂMICO, quando o corpo permanece em movimento retilíneo uniforme. 1- OÇA: orça é uma grandeza vetorial (caracterizado por um módulo ou intensidade, uma direção e um sentido) capaz de produzir em um, uma deformação e /ou uma variação em sua velocidade vetorial. 1.1- LEIS

Leia mais

Mecânica Geral. Prof. Evandro Bittencourt (Dr.) Engenharia de Produção e Sistemas UDESC. 27 de fevereiro de 2008

Mecânica Geral. Prof. Evandro Bittencourt (Dr.) Engenharia de Produção e Sistemas UDESC. 27 de fevereiro de 2008 Mecânica Geral Prof Evandro Bittencourt (Dr) Engenharia de Produção e Sistemas UDESC 7 de fevereiro de 008 Sumário 1 Prof Evandro Bittencourt - Mecânica Geral - 007 1 Introdução 11 Princípios Fundamentais

Leia mais

Mecânica Técnica. Aula 14 Sistemas Equivalentes de Cargas Distribuídas. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica Técnica. Aula 14 Sistemas Equivalentes de Cargas Distribuídas. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues Aula 14 Sistemas Equivalentes de Cargas Distribuídas Tópicos Abordados Nesta Aula Sistemas Equivalentes de Cargas Distribuídas. Sistema de Cargas Distribuidas A intensidade da força resultante é equivalente

Leia mais

Mecânica Geral 17/02/2016. Resultante de Duas Forças

Mecânica Geral 17/02/2016. Resultante de Duas Forças Mecânica Geral Capítulo 2 Estática de Partículas Resultante de Duas Forças Força: ação de um corpo sobre outro; caracterizada por seu ponto de aplicação, sua intensidade, sua direção, e seu sentido. Evidênciaseperimentaismostramque

Leia mais

Capítulo X Parte I Momentos de Inércia

Capítulo X Parte I Momentos de Inércia Universidade Federal Fluminense - UFF Escola de Engenharia de Volta Redonda EEMVR Departamento de Ciências Eatas Capítulo X Parte Momentos de nércia Profa. Salete Souza de Oliveira Home: http://www.professores.uff.br/salete

Leia mais

Teoria Clássica das Placas

Teoria Clássica das Placas Universidade Federal do Ceará Centro de Tecnologia Departamento de Engenharia Estrutural e Construção Civil Fleão de Placas ANÁLISE DE ESTRUTURAS I PROF. EVANDRO PARENTE JUNIOR (UFC) PROF. ANTÔNIO MACÁRIO

Leia mais

= 36 = (m/s) = 10m/s. 2) Sendo o movimento uniformemente variado, vem: V = V 0 0 = 10 4,0. T T = 2,5s

= 36 = (m/s) = 10m/s. 2) Sendo o movimento uniformemente variado, vem: V = V 0 0 = 10 4,0. T T = 2,5s 11 FÍSICA Um veículo está rodando à velocidade de 36 km/h numa estrada reta e horizontal, quando o motorista aciona o freio. Supondo que a velocidade do veículo se reduz uniformemente à razão de 4 m/s

Leia mais

Física 2 - Aula 3. frof. Afonso Henriques Silva Leite. 1 de setembro de Nesta aula, serão apresentados os seguintes conceitos:

Física 2 - Aula 3. frof. Afonso Henriques Silva Leite. 1 de setembro de Nesta aula, serão apresentados os seguintes conceitos: Física 2 - Aula 3. frof. Afonso Henriques Silva Leite 1 de setembro de 2016 1 Plano da aula. Nesta aula, serão apresentados os seguintes conceitos: Determinação do torque pelos métodos da decomposição

Leia mais

SOLICITAÇÕES COMBINADAS (FLEXÃO COMPOSTA)

SOLICITAÇÕES COMBINADAS (FLEXÃO COMPOSTA) Versão 2009 (FLEXÃO COMPOSTA) As chamadas Solicitações Simples são: a) Tração e Compressão (Solicitação Aial): age somente esforço normal N na seção b) Torção: age somente momento torsor T na seção c)

Leia mais

10- Momentos de Inércia

10- Momentos de Inércia 1 10- Momentos de Inércia Momento de inércia de área: medida da resistência à flexão de uma viga. Momento de inércia de massa: medida da inércia (resistência) ao movimento de rotação de um corpo sólido.

Leia mais

1ªAula do Cap. 07 Energia Cinética e Trabalho

1ªAula do Cap. 07 Energia Cinética e Trabalho ªAula do Cap. 07 Energia Cinética e Trabalho Introdução Trabalho Mecânico e Produto Escalar Energia Cinética Teorema do Trabalho-Energia Cinética Trabalho Realizado por força variável (Integral) Referência:

Leia mais

RESISTÊNCIA DOS MATERIAIS

RESISTÊNCIA DOS MATERIAIS Terceira Edição CAPÍTULO RESISTÊNCIA DOS MATERIAIS Ferdinand P. Beer E. Russell Johnston, Jr. Análise de Tensões no Estado Plano Capítulo 6 Análise de Tensões no Estado Plano 6.1 Introdução 6. Estado Plano

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA II FLUIDOS. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA II FLUIDOS. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA II FLUIDOS Prof. Bruno Farias Fluidos Os fluidos desempenham um papel vital em muitos aspectos

Leia mais

onde: F : força exercida pelo cavalo. P: peso, força exercida pela terra. N: força exercida pelo plano inclinado (normal ao plano inclinado).

onde: F : força exercida pelo cavalo. P: peso, força exercida pela terra. N: força exercida pelo plano inclinado (normal ao plano inclinado). Prova de Conhecimentos Específicos 1 a QUESTÃO: (1,0 ponto) Um cavalo pua uma carroça para cima num plano inclinado, com velocidade constante. A força de atrito entre a carroça e o plano inclinado é desprezível.

Leia mais

Propriedades Geométricas de Seções Transversais

Propriedades Geométricas de Seções Transversais D-1 pêndice D Propriedades Geométricas de Seções Transversais D.1 Momento Estático Considere uma superfície plana de área e dois eixos ortogonais x e y de seu plano mostrados na Figura D.1. Seja d um elemento

Leia mais

1 Introdução 3. 2 Estática de partículas Corpos rígidos: sistemas equivalentes SUMÁRIO. de forças 67. xiii

1 Introdução 3. 2 Estática de partículas Corpos rígidos: sistemas equivalentes SUMÁRIO. de forças 67. xiii SUMÁRIO 1 Introdução 3 1.1 O que é a mecânica? 4 1.2 Conceitos e princípios fundamentais mecânica de corpos rígidos 4 1.3 Conceitos e princípios fundamentais mecânica de corpos deformáveis 7 1.4 Sistemas

Leia mais

Curso de Férias de IFVV (Etapa 3) INTEGRAIS DUPLAS

Curso de Férias de IFVV (Etapa 3) INTEGRAIS DUPLAS Curso de Férias de IFVV (Etapa ) INTEGAIS UPLAS VOLUMES E INTEGAIS UPLAS Objetivando resolver o problema de determinar áreas, chegamos à definição de integral definida. A idéia é aplicar procedimento semelhante

Leia mais

5 CISALHAMENTO SIMPLES

5 CISALHAMENTO SIMPLES 5 CISALHAMENTO SIMPLES Conforme visto anteriormente, sabe-se que um carregamento transversal aplicado em uma viga resulta em tensões normais e de cisalhamento em qualquer seção transversal dessa viga.

Leia mais

Resistência dos. Materiais. Capítulo 3. - Flexão

Resistência dos. Materiais. Capítulo 3. - Flexão Resistência dos Materiais - Flexão cetatos baseados nos livros: - Mechanics of Materials - Beer & Jonhson - Mecânica e Resistência dos Materiais V. Dias da Silva Índice Flexão Pura Flexão Simples Flexão

Leia mais

Objetivo: Determinar a equação da curva de deflexão e também encontrar deflexões em pontos específicos ao longo do eixo da viga.

Objetivo: Determinar a equação da curva de deflexão e também encontrar deflexões em pontos específicos ao longo do eixo da viga. - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Deflexão de Vigas Objetivo:

Leia mais

Curso de Engenharia Civil. Universidade Estadual de Maringá Centro de Tecnologia Departamento de Engenharia Civil CAPÍTULO 3: FLEXÃO

Curso de Engenharia Civil. Universidade Estadual de Maringá Centro de Tecnologia Departamento de Engenharia Civil CAPÍTULO 3: FLEXÃO Curso de Engenharia Civil Universidade Estadual de aringá Centro de Tecnologia Departamento de Engenharia Civil CÍTULO 3: FLEXÃO 3. Revisão de Esforços nternos étodo das Seção: 3. Revisão de Esforços nternos

Leia mais

Momentos de Inércia de Superfícies

Momentos de Inércia de Superfícies PUC Goiás Curso: Engenharia Civil Disciplina: Mecânica dos Sólidos Corpo Docente: Geisa Pires Turma:----------- Plano de Aula Data: ------/--------/---------- Leitura obrigatória Mecânica Vetorial para

Leia mais

Exercícios sobre Trigonometria

Exercícios sobre Trigonometria Universidade Federal Fluminense Campus do Valonguinho Instituto de Matemática e Estatística Departamento de Matemática Aplicada - GMA Prof Saponga uff Rua Mário Santos Braga s/n 400-40 Niterói, RJ Tels:

Leia mais

Leitura obrigatória Mecânica Vetorial para Engenheiros, 5ª edição revisada, Ferdinand P. Beer, E. Russell Johnston, Jr.

Leitura obrigatória Mecânica Vetorial para Engenheiros, 5ª edição revisada, Ferdinand P. Beer, E. Russell Johnston, Jr. PUC - Goiás Curso Arquitetura Disciplina Esforço nas Estruturas Corpo Docente Geisa Pires Turma----------- Plano de Aula Data ------/--------/---------- Leitura obrigatória Mecânica Vetorial para Engenheiros,

Leia mais

22/Fev/2018 Aula Queda livre 2.2 Movimento 2 e 3-D Vetor deslocamento Vetor velocidade Vetor aceleração

22/Fev/2018 Aula Queda livre 2.2 Movimento 2 e 3-D Vetor deslocamento Vetor velocidade Vetor aceleração 22/Fev/2018 Aula2 2.1 Queda livre 2.2 Movimento 2 e 3-D 2.2.1 Vetor deslocamento 2.2.2 Vetor velocidade 2.2.3 Vetor aceleração 2.3 Lançamento de projétil 2.3.1 Independência dos movimentos 2.3.2 Forma

Leia mais

Exemplos de aplicação das leis de Newton e Conservação da Energia

Exemplos de aplicação das leis de Newton e Conservação da Energia Exemplos de aplicação das leis de Newton e Conservação da Energia O Plano inclinado m N Vimos que a força resultante sobre o bloco é dada por. F r = mg sin α i Portanto, a aceleração experimentada pelo

Leia mais

LISTA DE EXERCÍCIOS. Questão 1. Responda as questões abaixo:

LISTA DE EXERCÍCIOS. Questão 1. Responda as questões abaixo: LISTA DE EXERCÍCIOS Questão 1. Responda as questões abaixo: 1. Que tipo de forças atuam nos fluidos estáticos. 2. Quando um elemento de fluido encontra-se em repouso. 3. Qual o significado de pressão.

Leia mais

CAPÍTULO 2 CÁLCULO VECTORIAL Grandezas escalares e vectoriais. Noção de Vector. As grandezas físicas podem ser escalares ou vectoriais.

CAPÍTULO 2 CÁLCULO VECTORIAL Grandezas escalares e vectoriais. Noção de Vector. As grandezas físicas podem ser escalares ou vectoriais. CAPÍTULO CÁLCULO VECTORIAL.1. Grandeas escalares e vectoriais. Noção de Vector. As grandeas físicas podem ser escalares ou vectoriais. As grandeas massa, comprimento, tempo ficam completamente definidas

Leia mais

Força de atrito e as leis de Newton. Isaac Newton

Força de atrito e as leis de Newton. Isaac Newton Força de atrito e as leis de Newton Isaac Newton o Causadas pelo movimento de um corpo em relação a outro ou em relação ao ambiente o Sempre apontam na direção contrária ao movimento (frenagem) o Força

Leia mais

Universidade São Judas Tadeu Faculdade de Tecnologia e Ciências Exatas Cursos de Engenharia

Universidade São Judas Tadeu Faculdade de Tecnologia e Ciências Exatas Cursos de Engenharia Universidade São Judas Tadeu Faculdade de Tecnologia e Ciências Eatas Cursos de Engenharia Laboratório de Física Centro de assa e Centro de Gravidade utor: Prof Luiz de Oliveira Xavier dm ( dm X( BNCD:

Leia mais

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial 178 Capítulo 10 Equação da reta e do plano no espaço 1. Equações paramétricas da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que

Leia mais

Universidade Federal do Rio de Janeiro Instituto de Física Prova Final (Noturno) Disciplina: Fisica III-A /1 Data: 05/07/2018 V 2B 2 R 2

Universidade Federal do Rio de Janeiro Instituto de Física Prova Final (Noturno) Disciplina: Fisica III-A /1 Data: 05/07/2018 V 2B 2 R 2 Universidade Federal do Rio de Janeiro Instituto de Física Prova Final (Noturno) Disciplina: Fisica III-A - 2018/1 Data: 05/07/2018 Seção 1 - Multipla escolha (12 0, 7 + 2 0, 8= 10 pontos) 1. (0, 7 ponto)uma

Leia mais

2 de novembro de 2009

2 de novembro de 2009 MECÂNICA - de novembro de 009 6 massa e Centróide de um Aplicações; Conceitos e definições; Determinação da localização. Aplicações Para projetar a estrutura de apoio de um tanque de água, é necessário

Leia mais

ENG1200 Mecânica Geral Semestre Lista de Exercícios 8 Centróides, Momentos de Inércia, Círculo de Mohr

ENG1200 Mecânica Geral Semestre Lista de Exercícios 8 Centróides, Momentos de Inércia, Círculo de Mohr ENG00 Mecânica Geral Semestre 201.2 Lista de Eercícios 8 Centróides, Momentos de nércia, Círculo de Mohr 1 Prova P201.1 (P) - De determinada área (figura) são conhecidos os valores do momento de inércia

Leia mais

ESTÁTICA DOS FLUIDOS

ESTÁTICA DOS FLUIDOS ESTÁTICA DOS FLUIDOS FENÔMENOS DE TRANSPORTE I Prof. Marcelo Henrique 1 DEFINIÇÃO DE FLUIDO Fluido é um material que se deforma continuamente quando submetido à ação de uma força tangencial (tensão de

Leia mais

Questão 1. Questão 2. Questão 3

Questão 1. Questão 2. Questão 3 Questões de Física para 1º ano e 2º ano Questão 1 Em um acidente, um carro de 1200 kg e velocidade de 162 Km/h chocou-se com um muro e gastou 0,3 s para parar. Marque a alternativa que indica a comparação

Leia mais

VETORES + O - vetor V 2 vetor posição do ponto P 2

VETORES + O - vetor V 2 vetor posição do ponto P 2 Objetivo VETORES Estudar propriedades de vetores e a obtenção de resultantes. Introdução Para localizar um ponto P em uma reta, três elementos são necessários: uma referência R, escolhida arbitrariamente,

Leia mais

MOVIMENTO ROTACIONAL E MOMENTO DE INÉRCIA

MOVIMENTO ROTACIONAL E MOMENTO DE INÉRCIA MOVIMENTO ROTACIONAL E MOMENTO DE INÉRCIA 1.0 Definições Posição angular: utiliza-se uma medida de ângulo a partir de uma direção de referência. É conveniente representar a posição da partícula com suas

Leia mais

Capitulo 7. Trabalho e energia. Que propriedade de um funny car determina se ele será o vencedor de uma drag race?

Capitulo 7. Trabalho e energia. Que propriedade de um funny car determina se ele será o vencedor de uma drag race? A ciência e a engenharia dos funny cars está tão avançada hoje em dia que a diferença entre a vitória e a derrota pode depender de intervalos de tempo menores que 1 ms. Que propriedade de um funny car

Leia mais

Módulo 1: Conteúdo programático Lei de Pascal. Estática dos Fluidos Lei de Pascal

Módulo 1: Conteúdo programático Lei de Pascal. Estática dos Fluidos Lei de Pascal Módulo 1: Conteúdo programático Lei de Pascal Bibliografia: Bunetti, F. Mecânica dos Fluidos, São Paulo, Prentice Hall, 007. Estática dos Fluidos Lei de Pascal Em Estática dos Fluidos, analisaremos o comportamento

Leia mais

28/Fev/2018 Aula Aplicações das leis de Newton do movimento 4.1 Força de atrito 4.2 Força de arrastamento Exemplos. 26/Fev/2018 Aula 3

28/Fev/2018 Aula Aplicações das leis de Newton do movimento 4.1 Força de atrito 4.2 Força de arrastamento Exemplos. 26/Fev/2018 Aula 3 26/Fev/2018 Aula 3 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos 3.2 Primeira lei (inércia) 3.2.1 Referenciais de inércia 3.3 Segunda lei (F=ma) 3.4 Terceira lei (reação) 3.4.1 Peso e peso

Leia mais

Mecânica. CINEMÁTICA: posição, velocidade e aceleração ESTÁTICA: equilíbrio DINÂMICA: causas do movimento

Mecânica. CINEMÁTICA: posição, velocidade e aceleração ESTÁTICA: equilíbrio DINÂMICA: causas do movimento Mecânica A teoria do movimento é denominada MECÂNICA CINEMÁTICA: posição, velocidade e aceleração ESTÁTICA: equilíbrio DINÂMICA: causas do movimento Estática É a parte da MECÂNICA que estuda o EQUILÍBRIO

Leia mais

FEP Física Geral e Experimental para Engenharia I

FEP Física Geral e Experimental para Engenharia I FEP195 - Física Geral e Experimental para Engenharia I Prova P3 - Gabarito 1. Três partículas de massa m estão presas em uma haste fina e rígida de massa desprezível e comprimento l. O conjunto assim formado

Leia mais

CAPÍTULO IV GEOMETRIA DAS MASSAS

CAPÍTULO IV GEOMETRIA DAS MASSAS CPÍTULO IV GEOMETRI DS MSSS I. SPECTOS GERIS pesar de não estar incluída dentro dos objetivos principais de Resistência dos Materiais, vamos estudar algumas grandezas características da geometria das massas

Leia mais

28/Fev/2018 Aula Aplicações das leis de Newton do movimento 4.1 Força de atrito 4.2 Força de arrastamento Exemplos.

28/Fev/2018 Aula Aplicações das leis de Newton do movimento 4.1 Força de atrito 4.2 Força de arrastamento Exemplos. 28/Fev/2018 Aula 4 4. Aplicações das leis de Newton do movimento 4.1 Força de atrito 4.2 Força de arrastamento Exemplos 5/Mar/2018 Aula 5 5.1 Movimento circular 5.1.1 Movimento circular uniforme 5.1.2

Leia mais

Isolando as forças, temos:

Isolando as forças, temos: FÍSICA I 2014.2 1 LEIS DE NEWTON a) Isolando as forças, temos: O coeficiente de atrito estático, é o coeficiente de atrito máximo que faz um corpo ficar parado. Ele cresce até chegar num ponto em que uma

Leia mais

Dinâmica aula 03 Força elástica e Peso aparente

Dinâmica aula 03 Força elástica e Peso aparente 1) (ifba) Na montagem eperimental abaio, os blocos A, B e C têm massas ma =,0 kg, mb = 3,0 kg e mc = 5,0 kg. Desprezam-se os atritos e a resistência do ar. Os fios e as polias são ideais e adote g = 10

Leia mais

Figura 9.1: Corpo que pode ser simplificado pelo estado plano de tensões (a), estado de tensões no interior do corpo (b).

Figura 9.1: Corpo que pode ser simplificado pelo estado plano de tensões (a), estado de tensões no interior do corpo (b). 9 ESTADO PLANO DE TENSÕES E DEFORMAÇÕES As tensões e deformações em um ponto, no interior de um corpo no espaço tridimensional referenciado por um sistema cartesiano de coordenadas, consistem de três componentes

Leia mais

Calcule a resistência equivalente do circuito a seguir:

Calcule a resistência equivalente do circuito a seguir: Questões para estudo 3º ano Questão 1 Calcule a resistência equivalente do circuito a seguir: Questão 2 Calcule a resistência equivalente do circuito a seguir: Questão 3 (F. E.EDSON DE QUEIROZ - CE) Dispõe-se

Leia mais

Bacharelado Engenharia Civil

Bacharelado Engenharia Civil Bacharelado Engenharia Civil Disciplina: Fenômenos de Transporte 5 Período Prof.a: Msd. Érica Muniz Aula 03 Teorema de Stevin O teorema de Stevin também é conhecido por teorema fundamental da hidrostática

Leia mais

SERVIÇO PÚBLICO FEDERAL Ministério da Educação

SERVIÇO PÚBLICO FEDERAL Ministério da Educação SERVIÇO PÚLICO FEDERL Ministério da Educação Universidade Federal do Rio Grande Universidade berta do rasil dministração acharelado Matemática para Ciências Sociais plicadas I Rodrigo arbosa Soares Curso

Leia mais

teóricos necessários para se calcular as tensões e as deformações em elementos estruturais de projetos mecânicos.

teóricos necessários para se calcular as tensões e as deformações em elementos estruturais de projetos mecânicos. EME311 Mecânica dos Sólidos Objetivo do Curso: ornecer ao aluno os fundamentos teóricos necessários para se calcular as tensões e as deformações em elementos estruturais de projetos mecânicos. 1-1 EME311

Leia mais

Halliday Fundamentos de Física Volume 2

Halliday Fundamentos de Física Volume 2 Halliday Fundamentos de Física Volume 2 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC Farmacêutica, LTC, Forense,

Leia mais

Exemplo. T 1 2g = -2a T 2 g = a. τ = I.α. T 1 T 2 g = - 3a a g = - 3a 4a = g a = g/4. τ = (T 1 T 2 )R. T 1 T 2 = Ma/2 T 1 T 2 = a.

Exemplo. T 1 2g = -2a T 2 g = a. τ = I.α. T 1 T 2 g = - 3a a g = - 3a 4a = g a = g/4. τ = (T 1 T 2 )R. T 1 T 2 = Ma/2 T 1 T 2 = a. Exercícios Petrobras 2008 eng. de petróleo Dois corpos de massa m 1 = 2 kg e m 2 = 1 kg estão fixados às pontas de uma corda com massa e elasticidade desprezíveis, a qual passa por uma polia presa ao

Leia mais

LISTA DE EXERCÍCIOS Nº 4

LISTA DE EXERCÍCIOS Nº 4 Estudante: Curso: Engenharia Civil Disciplina: Mecânica da Partícula Período Letivo: 2/2015 Semestre: 2º Docente: MSc. Demetrius dos Santos Leão RA: Sala/ Turma: LISTA DE EXERCÍCIOS Nº 4 Decomposição de

Leia mais

Questão 11. Questão 13. Questão 12. Resposta. Resposta. b) a intensidade da força de atrito entre os dois blocos.

Questão 11. Questão 13. Questão 12. Resposta. Resposta. b) a intensidade da força de atrito entre os dois blocos. Questão 11 Um veículo está rodando à velocidade de 36 km/h numa estrada reta e horizontal, quando o motorista aciona o freio. Supondo que a velocidade do veículo se reduz uniformemente à razão de 4 m/s

Leia mais

Instituto Politécnico de Tomar Escola Superior de Tecnologia de Tomar ÁREA INTERDEPARTAMENTAL DE FÍSICA

Instituto Politécnico de Tomar Escola Superior de Tecnologia de Tomar ÁREA INTERDEPARTAMENTAL DE FÍSICA Engenharia Civil Exercícios de Física de Física Ficha 8 Corpo Rígido Capítulo 6 Ano lectivo 010-011 Conhecimentos e capacidades a adquirir pelo aluno Aplicação das leis fundamentais da dinâmica. Aplicação

Leia mais

PUC-RIO CB-CTC. Não é permitido destacar folhas da prova

PUC-RIO CB-CTC. Não é permitido destacar folhas da prova PUC-RIO CB-CTC FIS05 P DE ELETROMAGNETISMO 5.03.4 terça-feira Nome : Assinatura: Matrícula: Turma: NÃO SERÃO ACEITAS RESPOSTAS SEM JUSTIFICATIVAS E CÁLCULOS EXPLÍCITOS. Não é permitido destacar folhas

Leia mais

ESTÁTICA DOS FLUIDOS FENÔMENOS DE TRANSPORTE I

ESTÁTICA DOS FLUIDOS FENÔMENOS DE TRANSPORTE I ESTÁTICA DOS FLUIDOS FENÔMENOS DE TRANSPORTE I Prof. Marcelo Henrique 1 DEFINIÇÃO DE FLUIDO Fluido é um material que se deforma continuamente quando submetido à ação de uma força tangencial (tensão de

Leia mais

A interação de um corpo com sua vizinhança é descrita em termos de. Uma força pode causar diferentes efeitos num corpo como, por exemplo:

A interação de um corpo com sua vizinhança é descrita em termos de. Uma força pode causar diferentes efeitos num corpo como, por exemplo: Forças A interação de um corpo com sua vizinhança é descrita em termos de uma FORÇA. Uma força pode causar diferentes efeitos num corpo como, por exemplo: a) imprimir movimento b) cessar um movimento c)

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO Prof. Bruno Farias Introdução Neste capítulo vamos aprender: Como descrever a rotação

Leia mais

Forças sobre o plano inclinado e Leis de Newton

Forças sobre o plano inclinado e Leis de Newton Forças sobre o plano inclinado e Leis de Newton à Força normal: sempre perpendicular ao plano (faz com ele um ângulo de 90 o ), é uma força de sustentação do objeto, exercida pela superfície = força de

Leia mais

LOQ Fenômenos de Transporte I

LOQ Fenômenos de Transporte I LOQ 4083 - enômenos de Transporte I T I 08 Equação da Quantidade de Movimento para um Volume de Controle Inercial Prof. Lucrécio ábio dos Santos Departamento de Engenharia Química LOQ/EEL tenção: Estas

Leia mais

1 - NOÇÕES DE HIDRÁULICA - Cont

1 - NOÇÕES DE HIDRÁULICA - Cont UNIVERSIDDE FEDERL DE GOIÁS ESCOL DE GRONOMI E ENGENHRI DE LIMENTOS SETOR DE ENGENHRI RURL Prof. dão Wagner Pêgo Evangelista 1 - NOÇÕES DE HIDRÁULIC - Cont 1.2 HIDROSTÁTIC 1.2.1 Conceitos de pressão e

Leia mais

FENÔMENOS OSCILATÓRIOS E TERMODINÂMICA AULA 5 FLUIDOS

FENÔMENOS OSCILATÓRIOS E TERMODINÂMICA AULA 5 FLUIDOS FENÔMENOS OSCILATÓRIOS E TERMODINÂMICA AULA 5 FLUIDOS PROF.: KAIO DUTRA O que é um Fluido um fluido ao contrário de um sólido, é uma substância que pode escoar, os fluidos assumem a forma dos recipientes

Leia mais

LOQ Fenômenos de Transporte I

LOQ Fenômenos de Transporte I LOQ 4083 - Fenômenos de Transporte I FT I 04 Pressão e Estática dos fluidos Prof. Lucrécio Fábio dos Santos Departamento de Engenharia Química LOQ/EEL Atenção: Estas notas destinam-se exclusivamente a

Leia mais

Capítulo 3 GEOMETRIA DE MASSAS 3.1 INTRODUÇÃO 3.2 CENTRO DE MASSA E CENTRO DE GRAVIDADE

Capítulo 3 GEOMETRIA DE MASSAS 3.1 INTRODUÇÃO 3.2 CENTRO DE MASSA E CENTRO DE GRAVIDADE Capítulo 3 EOMETR DE MSSS 3. NTRODUÇÃO Neste capítulo será feito o estudo de várias propriedades e características geométrico-mecânicas de linhas, superfícies e volumes, as quais constituirão uma ferramenta

Leia mais

PUC-Rio CIV 1111 Sistemas Estruturais na Arquitetura I

PUC-Rio CIV 1111 Sistemas Estruturais na Arquitetura I Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio CIV 1111 Sistemas Estruturais na Arquitetura I Profa. Elisa Sotelino Prof. Luiz Fernando Martha Propriedades de Seções Transversais Objetivos

Leia mais

DISCURSIVAS. Solução: (a) Com os eixos escolhidos conforme a figura, a altura instantânea da caixa a partir do instante t=0 em que começa a cair é

DISCURSIVAS. Solução: (a) Com os eixos escolhidos conforme a figura, a altura instantânea da caixa a partir do instante t=0 em que começa a cair é DISCURSIVAS 1. Um pequeno avião monomotor, à altitude de 500m, deixa cair uma caixa. No instante em que a caixa é largada, o avião voava a 60,0m/s inclinado de 30,0 0 acima da horizontal. (a) A caixa atinge

Leia mais

01- Sobre a energia mecânica e a conservação de energia, assinale o que for correto.

01- Sobre a energia mecânica e a conservação de energia, assinale o que for correto. PROFESSOR: EQUIPE DE FÍSICA BANCO DE QUESTÕES - FÍSICA - 9º ANO - ENSINO FUNDAMENTAL ============================================================================= 01- Sobre a energia mecânica e a conservação

Leia mais

UNIVERSIDADE DE SÃO PAULO ESCOLA SUPERIOR DE AGRICULTURA LUIZ DE QUEIROZ DEPARTAMENTO DE ENGENHARIA DE BIOSSISTEMAS AULA 3 ROTEIRO

UNIVERSIDADE DE SÃO PAULO ESCOLA SUPERIOR DE AGRICULTURA LUIZ DE QUEIROZ DEPARTAMENTO DE ENGENHARIA DE BIOSSISTEMAS AULA 3 ROTEIRO 1 UNIVERSIDADE DE SÃO PAULO ESCOLA SUPERIOR DE AGRICULTURA LUIZ DE QUEIROZ DEPARTAMENTO DE ENGENHARIA DE BIOSSISTEMAS LEB 047 HIDRÁULICA Prof. Fernando Campos Mendonça AULA 3 ROTEIRO Tópicos da aula 3:

Leia mais

Equilíbrio de uma Partícula Cap. 3 T CE T CD P B T DC =-T CD T DC -T CD

Equilíbrio de uma Partícula Cap. 3 T CE T CD P B T DC =-T CD T DC -T CD Eemplo. MEÂNIA - ESTÁTIA esenhar todos os diagramas de corpo livre possíveis para o problema mostrado na figura abaio, considerando todos os nomes de forças como vetores. Equilíbrio de uma Partícula ap.

Leia mais

QUESTÕES DISCURSIVAS

QUESTÕES DISCURSIVAS QUESTÕES DISCURSIVAS Questão 1. (3 pontos) Numa mesa horizontal sem atrito, dois corpos, de massas 2m e m, ambos com a mesma rapidez v, colidem no ponto O conforme a figura. A rapidez final do corpo de

Leia mais

Características Geométricas de Figuras Planas PROF. ESP. DIEGO FERREIRA

Características Geométricas de Figuras Planas PROF. ESP. DIEGO FERREIRA Características Geométricas de Figuras Planas PROF. ESP. DIEGO FERREIRA A Figura abaixo ilustra uma barra reta de seção transversal constante, chamada barra prismática. O lado da barra que contém o comprimento

Leia mais

FENÔMENOS DE TRANSPORTES AULA 4 ESTÁTICA DOS FLUIDOS

FENÔMENOS DE TRANSPORTES AULA 4 ESTÁTICA DOS FLUIDOS FENÔMENOS DE TRANSPORTES AULA 4 ESTÁTICA DOS FLUIDOS PROF.: KAIO DUTRA Estática dos Fluidos Existem dois tipos genéricos de forças que podem ser aplicados a um fluido: forças de campo (ou de ação a distância)

Leia mais

Física A Extensivo V. 4

Física A Extensivo V. 4 Extensivo V. 4 Exercícios 01) 01. Falso. F r = 0 MRU 0. Verdadeiro. 04. Verdadeiro. Aceleração centrípeta ou radial. 08. Falso. As forças são iguais em módulo. 16. Verdadeiro. 3. Falso. A ação nunca anula

Leia mais

4 Estática das estruturas espaciais 1

4 Estática das estruturas espaciais 1 35 4 Estática das estruturas espaciais 4. omponentes Retangulares de uma orça Espacial. Vamos discutir os problemas que envolvem as três dimensões do espaço. onsideremos uma força atuante na origem de

Leia mais

m R 45o vertical Segunda Chamada de Física I Assinatura:

m R 45o vertical Segunda Chamada de Física I Assinatura: Segunda Chamada de Física I - 016- NOME: Assinatura: DE Nota Q1 Nas questões em que for necessário, considere que: todos os fios e molas são ideais; os fios permanecem esticados durante todo o tempo; a

Leia mais

Curso Física 1. Aula - 9. Energia Cinética e Trabalho

Curso Física 1. Aula - 9. Energia Cinética e Trabalho Curso Física 1 Aula - 9 Energia Cinética e Trabalho Introdução à Energia Uma variedade de problemas podem ser resolvidos com as Leis de Newton e principios associados. Entretanto, alguns problemas que

Leia mais

Resistência dos Materiais

Resistência dos Materiais - Flexão Acetatos e imagens baseados nos livros: - Mechanics of Materials - Beer & Jonhson - Mecânica e Resistência dos Materiais V. Dias da Silva - Resistência dos Materiais, R.C. Hibbeler Índice Flexão

Leia mais