REVISAO GERAL. GRANDEZA ESCALAR É caracterizada por um número real. Como, por exemplo, o tempo, a massa, o volume, o comprimento, etc.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "REVISAO GERAL. GRANDEZA ESCALAR É caracterizada por um número real. Como, por exemplo, o tempo, a massa, o volume, o comprimento, etc."

Transcrição

1 MECÂNICA APLICADA 5º Período de Engenharia Civil REVISAO GERAL GRANDEZA ESCALAR É caracterizada por um número real. Como, por exemplo, o tempo, a massa, o volume, o comprimento, etc. GRANDEZA VETORIAL Uma grandeza vetorial é caracterizada pela dependência de três elementos fundamentais, ou seja, representa um ente matemático que possui intensidade, direção e sentido. Em problemas de estática é muito comum a utilização de grandezas vetoriais como posição, força e momento. A posição de um ponto no espaço em relação a outro ponto caracteriza uma grandeza vetorial. Para descrever a posição de uma cidade A em relação à outra cidade B, é insuficiente dizer que ambas estão separadas por uma distância de 100 km, para se caracterizar um vetor, deve-se dizer, por exemplo, que a cidade B se encontra 100 km a oeste da cidade A. A força também é caracterizada como uma grandeza vetorial, pois quando se empurra uma peça de móvel através do chão aplica-se na mesma uma força com intensidade suficiente para mover o móvel e com a direção desejada para o movimento. REPRESENTAÇÃO DE UMA GRANDEZA VETORIAL Uma grandeza vetorial pode ser representada graficamente por uma seta, que é utilizada para definir seu módulo, sua direção e seu sentido. Graficamente o módulo de um vetor é representado pelo comprimento da seta, a direção é definida através do ângulo formado entre um eixo de referência e a linha de ação da seta e o sentido é indicado pela extremidade da seta. A figura mostra a representação gráfica de dois vetores força atuando ao longo dos cabos de fixação de um poste, o ponto O é chamado de origem do vetor e o ponto P representa sua extremidade ou ponta.

2 LEI DOS SENOS Dado um triângulo ABC e seus ângulos internos a, b e g, a lei dos senos é definida da seguinte forma: Em todo triângulo, as medidas dos seus lados são proporcionais. LEI DOS COSSSENOS A partir do mesmo triângulo ABC e seus ângulos internos a, b e g, a lei dos cossenos é definida do seguinte modo: Num triângulo, o quadrado da medida de um lado é igual à soma dos quadrados das medidas dos outros dois, menos o dobro do produto das medidas desses dois lados pelo cosseno do ângulo oposto ao primeiro lado.

3 SOMA VETORIAL REGRA DO PARALELOGRAMO O Cálculo da força resultante pode ser obtido através da soma vetorial com a aplicação da regra do paralelogramo.

4 EXEMPLO 01) O parafuso mostrado na figura está sujeito a duas forças F1 e F2. Determine o módulo e a direção da força resultante. SOLUÇÃO

5 EXEMPLO 02) Duas lanchas rebocam um barco de passageiros que se encontra com problemas em seus motores. Sabendo-se que a força resultante é igual a 30KN. Encontre suas componentes nas direções AC e BC. SOLUÇÃO

6 EXERCICIOS PROPOSTOS 1) O elo da figura está submetido às forças F1 e F2, determine a intensidade e a orientação da força resultante. SOLUÇÃO

7 2) A chapa está submetida a duas forças Fa e Fb. Se ϴ=60º, determine a intensidade da força resultante e sua intensidade em relação ao eixo horizontal. SOLUÇÃO

8 3) Duas forças são aplicadas a fim de remover a estaca mostrada. Determine o ângulo ϴ e o valor da força F de modo que a força resultante seja orientada verticalmente para cima no eixo y e tenha uma intensidade de 750N. SOLUÇÃO

9 4) A caminhonete mostrada é rebocada por duas cordas. Determine os valores de Fa e Fb de modo a produzir uma força resultante de 950N orientada no eixo X positivo, considerando ϴ=50º. SOLUÇÃO

10 5) O parafuso tipo gancho mostrado na figura está sujeito a duas forças F1 e F2. Determine o módulo e a direção da força resultante. SOLUÇÃO

11 6) A tora de madeira é rebocada pelos dois tratores mostrados, sabendo que se a força resultante é igual a 10KN e está orientada ao longo do eixo x positivo. Determine a intensidade das forças Fa e Fb, considerando ϴ=15º. SOLUÇÃO

12 7) O gancho da figura está submetido às forças F1 e F2, determine a intensidade e a orientação da força resultante. SOLUÇÃO

13 8) Determine o ângulo θ e a intensidade de Fb de modo que a resultante das forças seja orientada ao longo do eixo y positivo e tenha intensidade de 1500N. SOLUÇÃO

14 9) Três forças atuam sobre o suporte mostrado. Determine o ângulo θ e a intensidade de F1 de modo que a resultante das forças seja orientada ao longo do eixo x positivo e tenha intensidade de 1kN. SOLUÇÃO

15 10) Determine o ângulo θ e a intensidade de F1 de modo que a resultante das forças seja orientada ao longo do eixo y positivo e tenha intensidade de 800N. SOLUÇÃO

16 PRINCÍPIOS DA ESTÁTICA 1º A ação de um sistema de forças não se altera se a ele acrescentarmos, ou dele subtrairmos, um sistema equilibrado de forças. 2º A condição necessária e suficiente para que duas forças constituem um sistema equilibrado é que elas sejam colineares, tenham o mesmo módulo e sentidos contrários. 3º A ação de duas forças aplicadas num mesmo ponto é equivalente à ação de uma força única, aplicada nesse ponto, representada pela diagonal do paralelogramo formado pelos vetores representativos daquelas duas forças. 4º A ação de um corpo sobre outro corresponde sempre uma reação igual e contrária, deste corpo sobre o primeiro.

17 CONSEQUENCIAS IMEDIATAS DOS PRINCIPIOS DA ESTÁTICA No estudo do equilíbrio dos corpos rígidos, podem supor-se as forças aplicadas em qualquer ponto das respectivas linhas de ação. Porem quando os problemas envolvem os esforços internos ou deformações de um corpo, os mesmos podem sofrer uma compressão ou tração. MOMENTO DE UMA FORÇA O momento de uma força em relação a um ponto ou a um eixo, fornece uma medida da tendência dessa força provocar a rotação de um corpo em torno do ponto ou do eixo. Momento é uma grandeza vetorial, possui intensidade direção e sentido. É determinado através da equação:

18 M = F x d onde, M= momento F= força d= distância. Rotação no sentido horário Momento negativo Rotação no sentido anti-horário Momento positivo MOMENTO DE UM BINÁRIO Um binário é definido como duas forças paralelas de mesma intensidade, sentidos opostos e separadas por um distância d. O efeito de um binário é proporcionar rotação ou tendência de rotação em um determinado sentido. A soma das componentes das duas forças em qualquer direção é zero. Entretanto, a soma dos momentos das duas forças em relação a um dado ponto não é zero. Pois as forças tendem a girar o corpo. EXEMPLO 01) Determine o momento da força em relação ao ponto O.

19 SOLUÇÃO EXEMPLO 02) Determine o momento da força em relação ao ponto O. SOLUÇÃO EXEMPLO 03) Determine os momentos da força de 800N em relação aos pontos A, B, C e D..

20 SOLUÇÃO EXEMPLO 04) Determine o momento das forças que atuam na estrutura mostrada

21 em relação ao ponto A. SOLUÇÃO VARIAÇÃO DO MOMENTO DE UM SISTEMA COM CENTRO DE REDUÇÃO

22 Admita-se que um dado sistema de forças se reduz no ponto B à resultante R e o momento Mb. Pode-se transportar essa força R para um outro ponto A, desde que se considere o seu momento de transporte (R x d) do ponto B para o ponto A. Nessas condições o sistema é equivalente ao sistema inicial. Portanto o Ma é o momento do sistema dado, em relação ao ponto a, pode-se escrever: Ma = Mb + R x d EXEMPLO 01) Substitua as três forças mostradas na figura por uma força resultante e um momento equivalente em relação ao ponto O. SOLUÇÃO

23 EXEMPLO 02) Uma força vertical de 100 N é aplicada na extremidade de uma alavanca que está fixa em O. Determine: a) O momento da força de 100 N em relação ao ponto O; b) A intensidade da força horizontal aplicada em A que produz o mesmo momento em relação ao ponto O; c) A menor força em A que produz o mesmo momento em relação ao ponto O; d) A que distância do eixo deverá estar uma força vertical de 240 N de modo a produzir o mesmo momento em relação ao ponto O, e) Se alguma das forças obtidas nas alíneas b) c) e d) são equivalentes à força original. SOLUÇÃO

24

25 CARGAS DISTRIBUÍDAS Até o presente momento consideramos em nossas aulas apenas forças concentradas, isto é, que atuam em um único ponto do corpo. Na realidade, a ação de uma força é sempre distribuída continuamente, quer por um volume, quer sobre uma superfície. Dessa forma a ação de infinitas resultantes atuando em todas as partículas de um corpo ou em todos os pontos da superfície de contato entre dois corpos. A força concentrada é apenas uma abstração, e pode ser considerada como a resultante de um sistema contínuo de esforços elementares. A substituição desse sistema contínuo pela sua resultante isto é, hipótese de força concentrada é um procedimento somente valido nos problemas de estática dos corpos rígidos. Não obstante, quando uma força se distribui sobre uma superfície de dimensões muito pequenas, pode-se, muitas vezes, admitir essa superfície reduzida a um ponto, mesmo na estática dos corpos deformáveis, por ser desprezível o erro introduzido nos resultados. Os três tipos mais utilizados de cargas distribuídas são: Retangular Triangular Trapezoidal

26 EXEMPLO 01) Calcular o valor da resultante da carga uniformemente distribuída representada abaixo:

27 EXEMPLO 02) Calcular o valor da resultante da carga triangular distribuída representada abaixo: EXEMPLO 03) Calcular o valor da resultante da carga trapezoidal distribuída representada abaixo:

28 MOMENTO DE UMA CARGA DISTRIBUÍDA O momento de uma carga distribuída representa a soma de todos os momentos das forças elementares, em relação a um ponto qualquer, pode ser obtido com teoremas desde que se conheçam a resultante e o eixo central do sistema. EXEMPLO 01) Calcular o momento em relação aos pontos A e B e C, da carga distribuída da figura abaixo:

29 EXEMPLO 02) Calcular o momento em relação ao ponto D da carga distribuída da figura: EXEMPLO 03) Calcular o momento em relação aos pontos A e B e C, da carga distribuída triangular da figura abaixo: FÓRMULA MOMENTO MOMENTO DE UM PONTO FORA DA CARGA Ma = P x L/2 x 2L/3 Mc = P x L/2 (L/3 + a) Mb = P x L/2 x L/3 Mc = P x L/2 (2L/3 + a)

30 EXEMPLO 04) Calcular o momento em relação aos pontos A, B e C da carga distribuída Trapezoidal da figura abaixo:

31 EQUILIBRIOS DOS SISTEMAS DE FORÇAS Condições gerais de equilíbrio. Para que um sistema de forças coplanares seja equilibrado, é necessário e suficiente que sejam satisfeitas de acordo com as seguintes condições: 1. As somas das projeções de todas as forças do sistema, sobre dois eixos quaisquer, Ox e Ou, no plano das forças, devem ser nulas. 2. A soma dos momentos de todas as forças do sistema em relação a um ponto arbitrário, A, do seu plano, deve ser nula. Essas condições se indicam com as seguintes equações simbólicas: Fx = 0 Fy = 0 Ma = 0 As duas primeiras condições são necessárias para que a resultante do sistema seja nula; a terceira é necessária para que o sistema não seja redutível a um binário. Essas condições são também suficientes, pois, satisfeitas as duas primeiras, o momento do sistema será, o mesmo em relação a qualquer ponto. As três equações são de grande importância para a mecânica aplicada, sendo chamadas de equações algébricas redundantes. APOIOS São elementos que restringem os movimentos das estruturas e podem ser classificados em:

32

33 EXEMPLO 01) Determine as reações nos apoios A e B da viga ilustrada abaixo. SOLUÇÃO EXERCICIOS PROPOSTOS 1) Determine as reações nos apoios, sabendo que F = 15 KN e a=1,2m; b=3,5m; c=2,4m e d=1,6m:

34 SOLUÇÃO 2) Determine as reações no apoio A. SOLUÇÃO

35 3) Determine as reações nos apoios. SOLUÇÃO

36 4) Substitua as cargas atuantes na viga por uma única força resultante e um momento equivalente no ponto A. SOLUÇÃO

37 5) Substitua as cargas atuantes na viga por uma única força resultante. Especifique onde a força atua, tomando como referência o ponto B. SOLUÇÃO

38 CENTRO DE GRAVIDADE; CENTRÓÍDE E BARICENTRO CENTRO DE GRAVIADADE Um corpo é composto de uma série infinita de partículas de tamanho diferenciado, e assim, se o corpo estiver localizado dentro de um campo gravitacional, então cada uma das partículas terá um peso dw. Esses pesos formarão um sistema de forças aproximadamente paralelas, e a resultante desse sistema é o peso total do corpo, que passa por um único ponto chamado centro de gravidade, G. Equações para localização do centro de gravidade G em relação aos eixos x, y, e z tornam-se: = = = CENTRO DE MASSA DE UM CORPO Para estudar a resposta dinâmica ou movimento acelerado de um corpo, é importante localizar o centro de massa Cm do corpo. Essa localização pode ser determinada substituindo-se dw = g x dm,nas equações anteriores. Como g é constante, ele é cancelado e, portanto, temos as seguintes equações para o centro de massa. = = =

39 CENTRÓIDE DE UM VOLUME Se um corpo é feito de um material homogêneo, então sua densidade ρ (rho) será constante. Portanto um elemento diferencial de volume dv tem uma massa dm = ρ x dv. Substituindo essa massa nas equações do centro de massa e cancelando ρ, obtemos as fórmulas que localizam o centróide C ou o centro geométrico do corpo; conforme as equações abaixo: = = = CENTRÓIDE DE UMA ÁREA Se uma área se encontra no plano xy e estiver contornada pela curva y = f(x), então seu centróide estará nesse plano xy e pode ser determinado a partir de integrais semelhantes às equações do volume: = = Essas integrais podem ser avaliadas realizando-se uma integração simples se usarmos uma faixa retangular para o elemento de área diferencial CENTRÓIDE DE UMA LINHA Se um segmento de linha (ou barra) estiver dentro do plano xy e puder ser descrito por uma curva fina y = f(x), então seu centróide é determinado a partir de: = =

40 O centróide representa o centro geométrico de um corpo. Esse ponto coincide com o centro de gravidade somente se o material que compõe o corpo for uniforme ou homogêneo. As fórmulas usadas para localizar o centro de gravidade ou o centróide simplesmente representam um equilíbrio entre a soma dos momentos de todas as partes do sistema e o momento da ``resultante para o sistema. Em alguns casos, o centróide está localizado em um ponto que não está sobre o objeto, como no caso de um anel, onde o centróide está no seu centro. Além disso, esse ponto estará sobre qualquer eixo de simetria para o corpo.

41 FORMULÁRIO

42 EXEMPLO 01) A figura mostrada no quadro é feita de um pedaço de arame fino e homogêneo. Determine a localização do centro de gravidade.

43 EXEMPLO 02) Uma barra semicircular uniforme de peso W e raio r é ligada a um pino em A e repousa sobre uma superfície sem atrito em B. Determine as reações em A e B.

44 EXEMPLO 03) Numa chapa quadrada ABCD, homogênea e de lado a = 24 cm faz um corte também quadrado EFGH, de lado b = 12 cm. Determine a distância do centro de massa da chapa cortada à linha de base AD.

45 EXERCÍCIOS PROPOSTOS Determinar o centro de massa das figuras abaixo: A) SOLUÇÃO

46 B)

47 C)

48 D) E)

49 F)

50 G)

51 H)

52 2) Determine a força aplicada no cabo AB.

53 3) Determine o centroide da figura abaixo. Considere o eixo xy indicado na figura. A)

54 B)

55 4) Determinar a força aplicada na haste BC da figura abaixo.

56 MOMENTO DE INERCIA DE AREA O momento de inércia de área representa o segundo momento de área em relação a um eixo. Normalmente ele é usado em fórmulas relacionadas à força e estabilidade de membros estruturais ou elementos mecânicos. Se a forma da área for irregular, mas puder ser descrita matematicamente, então um elemento diferencial precisa ser relacionado e a integração sobre a área total deve ser realizada para determinar o momento de inércia. Ix = ʃª y² da Iy = ʃª x² da TEOREMA DOS EIXOS PARALELOS Se o momento de inércia para uma área for conhecido em relação a um eixo Centroidal, então seu momento de inércia em relação a um eixo paralelo pode ser determinado pelo teorema dos eixos paralelos. _ I = I + Ad²

57 Fórmulas para as figuras mais usadas. Ix = 1 x b x h³ Iy = 1 x b³ x h IX = 1 x b x h³ 36

58 EXEMPLO 01) Determine o momento de inércia em relação aos eixos centroidais x e y.

59 EXERCICIOS PROPOSTOS 1) Determine os momentos de inércia em relação aos eixos centroidais X e Y da peça mostrada na figura abaixo: 2) determine o centro de massa da figura:

60 TRELIÇAS Treliça é uma estrutura de elementos delgados ligados entre si pelas extremidades. Treliças planas são aquelas se distribuem em um plano e geralmente são utilizadas em estruturas de telhados e pontes. Os elementos de uma treliça atuam como barras de duas forças. Se uma força tende a alongar o elemento, é chamada de força de tração. Se uma força tende a encurtar o elemento, é chamada de força de compressão. MÉTODO DOS NÓS Quando calculamos os esforços, admitimos que as forças saem dos nós e nos próximos nós usamos os resultados das forças do nó anterior fazendo a troca de sinais. Importante lembrar que somente os jogos de sinais deverão ser feitos nas equações dos nós, pois as forças das reações horizontais e verticais devem ser inseridas na equação considerando-se exclusivamente os sinais que possuem, ou seja, não fazer jogo de sinais para tais reações. EXEMPLO 01) Calcular as forças normais N nas barras da viga sobre dois apoios em treliça representada na figura abaixo:

61

62 EXERCICIOS PROPOSTOS 1) Calcule as reações de apoio e as forças normais nas barras através do Método dos Nós nas figuras abaixo: A)

63

64 B)

65

66 C)

67

68 D)

69

70 E)

71

Mecânica Técnica. Aula 2 Lei dos Senos e Lei dos Cossenos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica Técnica. Aula 2 Lei dos Senos e Lei dos Cossenos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues Aula 2 Lei dos Senos e Lei dos Cossenos Tópicos Abordados Nesta Aula Cálculo de Força Resultante. Operações Vetoriais. Lei dos Senos. Lei dos Cossenos. Grandezas Escalares Uma grandeza escalar é caracterizada

Leia mais

O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal.

O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal. CENTRÓIDES E MOMENTO DE INÉRCIA Centróide O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal. De uma maneira bem simples: centróide

Leia mais

RELAÇÕES TRIGONOMÈTRICAS

RELAÇÕES TRIGONOMÈTRICAS TÉCNICO EM EDIFICAÇÕES MÓDULO 01 RELAÇÕES TRIGONOMÈTRICAS NOTAS DE AULA: - Prof. Borja 2016.2 MÓDULO 1 Relações Trigonométricas OBJETIVOS Ao final deste módulo o aluno deverá ser capaz de: resolver problemas

Leia mais

Mecânica Geral. Prof. Evandro Bittencourt (Dr.) Engenharia de Produção e Sistemas UDESC. 27 de fevereiro de 2008

Mecânica Geral. Prof. Evandro Bittencourt (Dr.) Engenharia de Produção e Sistemas UDESC. 27 de fevereiro de 2008 Mecânica Geral Prof Evandro Bittencourt (Dr) Engenharia de Produção e Sistemas UDESC 7 de fevereiro de 008 Sumário 1 Prof Evandro Bittencourt - Mecânica Geral - 007 1 Introdução 11 Princípios Fundamentais

Leia mais

Mecânica Geral 1 Rotação de corpos rígidos Prof. Dr. Cláudio Sérgio Sartori.

Mecânica Geral 1 Rotação de corpos rígidos Prof. Dr. Cláudio Sérgio Sartori. Bibliografia Básica: BEER, F. P.; JOHNSTON JUNIOR, E. R. Mecânica vetorial para engenheiros: cinemática e dinâmica 5ª ed. 2v. São Paulo: Makron, 1994. HIBBELER, R. C. Dinâmica: Mecânica para Engenharia.

Leia mais

I Unidade I Lista de Exercícios https://sites.google.com/site/professorcelsohenrique/home/mecanica-geral

I Unidade I Lista de Exercícios https://sites.google.com/site/professorcelsohenrique/home/mecanica-geral FAMEC Faculdade Metropolitana de Camaçari Engenharia Ambiental / Engenharia de Controle e Automação / Eng Produção enharia de Disciplina: Mecânica Geral I Unidade Docente: Celso Henrique I Lista de Exercícios

Leia mais

Vetores. Grandeza Escalar precisa somente de um número e sua unidade.

Vetores. Grandeza Escalar precisa somente de um número e sua unidade. Vetores Grandeza Escalar precisa somente de um número e sua unidade. Grandeza Vetorial precisa de módulo, direção e sentido para ficar perfeitamente representado. VETOR É o ente matemático que nos ajuda

Leia mais

Leitura obrigatória Mecânica Vetorial para Engenheiros, 5ª edição revisada, Ferdinand P. Beer, E. Russell Johnston, Jr.

Leitura obrigatória Mecânica Vetorial para Engenheiros, 5ª edição revisada, Ferdinand P. Beer, E. Russell Johnston, Jr. PUC - Goiás Curso: Engenharia Civil Disciplina: Mecânica Vetorial Corpo Docente: Geisa Pires Turma:----------- Plano de Aula Data: ------/--------/---------- Leitura obrigatória Mecânica Vetorial para

Leia mais

Vetores. É tudo aquilo que pode ser medido em um fenômeno físico. Serve para entendermos como funciona e porque ocorre qualquer fenômeno físico.

Vetores. É tudo aquilo que pode ser medido em um fenômeno físico. Serve para entendermos como funciona e porque ocorre qualquer fenômeno físico. Grandezas Vetores É tudo aquilo que pode ser medido em um fenômeno físico. Serve para entendermos como funciona e porque ocorre qualquer fenômeno físico. GRANDEZA ESCALAR São aquelas medidas que precisam

Leia mais

Mecânica Un.2. Momento em relação a um Ponto. Créditos: Professor Leandro

Mecânica Un.2. Momento em relação a um Ponto. Créditos: Professor Leandro Mecânica Un.2 Momento em relação a um Ponto Créditos: Professor Leandro Equilíbrio Equilíbrio Para que uma partícula esteja em equilíbrio, basta que a o resultante das forças aplicadas seja igual a zero.

Leia mais

Lista de Exercícios - Aula 08 Equilíbrio de um Corpo Rígido Capítulo R. C. Hibbeler

Lista de Exercícios - Aula 08 Equilíbrio de um Corpo Rígido Capítulo R. C. Hibbeler Lista de Exercícios - Aula 08 Equilíbrio de um Corpo Rígido Capítulo R. C. Hibbeler A primeira condição para que um corpo rígido esteja em equilíbrio é que a somatória das forças que agem sobre o corpo

Leia mais

Momentos de Inércia de Superfícies

Momentos de Inércia de Superfícies PUC Goiás Curso: Engenharia Civil Disciplina: Mecânica dos Sólidos Corpo Docente: Geisa Pires Turma:----------- Plano de Aula Data: ------/--------/---------- Leitura obrigatória Mecânica Vetorial para

Leia mais

Figura 9.1: Corpo que pode ser simplificado pelo estado plano de tensões (a), estado de tensões no interior do corpo (b).

Figura 9.1: Corpo que pode ser simplificado pelo estado plano de tensões (a), estado de tensões no interior do corpo (b). 9 ESTADO PLANO DE TENSÕES E DEFORMAÇÕES As tensões e deformações em um ponto, no interior de um corpo no espaço tridimensional referenciado por um sistema cartesiano de coordenadas, consistem de três componentes

Leia mais

Tipos de forças fundamentais na Natureza

Tipos de forças fundamentais na Natureza Tipos de Forças Tipos de forças fundamentais na Natureza Existem quatro tipos de interações/forças fundamentais na Natureza que atuam entre partículas a uma certa distância umas das outras: Gravitacional

Leia mais

Disciplina: Sistemas Estruturais Assunto: Principios da Estática e da Mecânica Prof. Ederaldo Azevedo Aula 2 e-mail: ederaldoazevedo@yahoo.com.br 2. PRINCIPIOS BÁSICOS DA ESTÁTICA E DA MECÂNICA A ciência

Leia mais

efeito: movimento P = m. g

efeito: movimento P = m. g CAPÍTULO I 1 REVISÃO DE MECÂNICA GERAL CONCEITOS BÁSICOS I. FORÇA A. Conceito: Força é toda a grandeza capaz de provocar movimento, alterar o estado de movimento ou provocar deformação em um corpo. É uma

Leia mais

FIS-14 Lista-02 Agosto/2012

FIS-14 Lista-02 Agosto/2012 FIS-14 Lista-02 Agosto/2012 1. Substitua o sistema de forças que age sobre a viga por uma força e um momento de binário equivalente no ponto B. 2. Substitua o sistema de forças por uma força e um momento

Leia mais

Tensão. Introdução. Introdução

Tensão. Introdução. Introdução Capítulo 1: Tensão Adaptado pela prof. Dra. Danielle Bond Introdução A resistência dos materiais é um ramo da mecânica que estuda as relações entre as cargas externas aplicadas a um corpo deformável e

Leia mais

Universidade Federal de Pelotas Centro de Engenharias Curso de Engenharia Civil Introdução aos Sistemas Estruturais Prof.

Universidade Federal de Pelotas Centro de Engenharias Curso de Engenharia Civil Introdução aos Sistemas Estruturais Prof. Universidade Federal de Pelotas Centro de Engenharias Curso de Engenharia Civil Introdução aos Sistemas Estruturais Prof. Estela Garcez 1. a soma vetorial das forças que atuam sobre o corpo deve

Leia mais

ENG1200 Mecânica Geral Lista de Exercícios 1 Equilíbrio da Partícula

ENG1200 Mecânica Geral Lista de Exercícios 1 Equilíbrio da Partícula ENG1200 Mecânica Geral 2013.2 Lista de Exercícios 1 Equilíbrio da Partícula Questão 1 - Prova P1 2013.1 Determine o máximo valor da força P que pode ser aplicada na estrutura abaixo, sabendo que no tripé

Leia mais

Prof. Michel Sadalla Filho

Prof. Michel Sadalla Filho MECÂNICA APLICADA Prof. Michel Sadalla Filho CONCEITOS FUNDAMENTAIS ( 2 ): SISTEMAS UNIDADES + GRANDEZAS ESCALARES E VETORIAIS... Referência HIBBELER, R. C. Mecânica Estática. 10 ed. São Paulo: Pearson

Leia mais

RESISTÊNCIA DOS MATERIAIS CONTROLE DE QUALIDADE INDUSTRIAL Aula 01 INTRODUÇÃO

RESISTÊNCIA DOS MATERIAIS CONTROLE DE QUALIDADE INDUSTRIAL Aula 01 INTRODUÇÃO CONTROLE DE QUALIDADE INDUSTRIAL A resistência dos materiais é um assunto bastante antigo. Os cientistas da antiga Grécia já tinham o conhecimento do fundamento da estática, porém poucos sabiam do problema

Leia mais

Irineu dos Santos Yassuda

Irineu dos Santos Yassuda MECÂNICA TÉCNICA 2 Curso: Técnico em Automação Industrial Irineu dos Santos Yassuda Revisão de Matemática Conceito de Momento de uma Força O momento de uma força em relação a um ponto ou eixo fornece uma

Leia mais

Estática. Vista da estrutura da ponte Golden Gate, São Francisco, Califórnia (EUA).

Estática. Vista da estrutura da ponte Golden Gate, São Francisco, Califórnia (EUA). Estática Todo o nosso estudo até agora foi dedicado quase que exclusivamente ao movimento. Passamos da Cinemática - descrição matemática dos movimentos - à Dinâmica, em que essa descrição se aprofunda

Leia mais

CAPÍTULO I REVISÃO DE MECÂNICA GERAL CONCEITOS BÁSICOS

CAPÍTULO I REVISÃO DE MECÂNICA GERAL CONCEITOS BÁSICOS CAPÍTULO I REVISÃO DE MECÂNICA GERAL CONCEITOS BÁSICOS I. FORÇA A. CONCEITO: Força é toda a grandeza capaz de provocar movimento, alterar o estado de movimento ou provocar deformação em um corpo. É uma

Leia mais

Capítulo 11 Rotações e Momento Angular

Capítulo 11 Rotações e Momento Angular Capítulo 11 Rotações e Momento Angular Corpo Rígido Um corpo rígido é um corpo ideal indeformável de tal forma que a distância entre 2 pontos quaisquer do corpo não muda nunca. Um corpo rígido pode realizar

Leia mais

Lista11: Equilíbrio de Corpos Rígidos

Lista11: Equilíbrio de Corpos Rígidos Lista 11: Equilíbrio dos Corpos Rígidos NOME: Matrícula: Turma: Prof. : Importante: i. Nas cinco páginas seguintes contém problemas para serem resolvidos e entregues. ii. Ler os enunciados com atenção.

Leia mais

FORÇA TICA FORÇA A RESULTANTE

FORÇA TICA FORÇA A RESULTANTE ESTÁTIC TIC Estuda a causa dos movimentos, sem se preocupar com os movimentos. FORÇ gente capaz de produzir variações no estado de movimento de um corpo e ou produzir deformações neste corpo. É uma grandeza

Leia mais

Instituto Politécnico de Tomar Escola Superior de Tecnologia de Tomar ÁREA INTERDEPARTAMENTAL DE FÍSICA

Instituto Politécnico de Tomar Escola Superior de Tecnologia de Tomar ÁREA INTERDEPARTAMENTAL DE FÍSICA Engenharia Civil Exercícios de Física de Física Ficha 8 Corpo Rígido Capítulo 6 Ano lectivo 010-011 Conhecimentos e capacidades a adquirir pelo aluno Aplicação das leis fundamentais da dinâmica. Aplicação

Leia mais

VETORES. DEFINIÇÃO DE GRANDEZA É tudo aquilo que pode ser medido Exemplos: Comprimento Aceleração Força Velocidade

VETORES. DEFINIÇÃO DE GRANDEZA É tudo aquilo que pode ser medido Exemplos: Comprimento Aceleração Força Velocidade 1 DEFINIÇÃO DE GRANDEZA É tudo aquilo que pode ser medido Exemplos: Comprimento Aceleração Força Velocidade GRANDEZAS ESCALARES São grandezas que se caracterizam apenas por um valor acompanhado uma unidade

Leia mais

CAPÍTULO IV GEOMETRIA DAS MASSAS

CAPÍTULO IV GEOMETRIA DAS MASSAS CPÍTULO IV GEOMETRI DS MSSS I. SPECTOS GERIS pesar de não estar incluída dentro dos objetivos principais de Resistência dos Materiais, vamos estudar algumas grandezas características da geometria das massas

Leia mais

Cap.12: Rotação de um Corpo Rígido

Cap.12: Rotação de um Corpo Rígido Cap.12: Rotação de um Corpo Rígido Do professor para o aluno ajudando na avaliação de compreensão do capítulo. Fundamental que o aluno tenha lido o capítulo. Introdução: Produto vetorial Ilustração da

Leia mais

ENGENHARIA CIVIL. Prof. Msc. HELBER HOLLAND

ENGENHARIA CIVIL. Prof. Msc. HELBER HOLLAND ENGENHARIA CIVIL REVISÃO TRELIÇAS Reações em Estruturas Prof. Msc. HELBER HOLLAND As treliças são um tipo de estrutura usado em engenharia normalmente em projetos de pontes e edifícios. Uma treliça é uma

Leia mais

Professor: José Junio Lopes

Professor: José Junio Lopes Lista de Exercício Aula 3 TENSÃO E DEFORMAÇÃO A - DEFORMAÇÃO NORMAL 1 - Ex 2.3. - A barra rígida é sustentada por um pino em A e pelos cabos BD e CE. Se a carga P aplicada à viga provocar um deslocamento

Leia mais

ESTÁTICA DOS SÓLIDOS

ESTÁTICA DOS SÓLIDOS Postulados: (Nóbrega, 1980) ESTÁTICA DOS SÓLIDOS 1. Se nenhuma força for aplicada a um sólido em equilíbrio, ele permanece em equilíbrio. 2. Aplicando uma única força a um sólido isolado em equilíbrio,

Leia mais

Rígidos MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA. Nona Edição CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr.

Rígidos MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA. Nona Edição CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr. Nona E 4 Equilíbrio CAPÍTULO MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA Ferdinand P. Beer E. Russell Johnston, Jr. Notas de Aula: J. Walt Oler Texas Tech University de Corpos Rígidos 2010 The McGraw-Hill

Leia mais

APÊNDICE I Alguns procedimentos de obtenção do centro de gravidade de. figuras planas

APÊNDICE I Alguns procedimentos de obtenção do centro de gravidade de. figuras planas 245 APÊNDICE I Alguns procedimentos de obtenção do centro de gravidade de figuras planas 1. Demonstração da localização do centro de gravidade de um paralelogramo por Arquimedes (287-212 a.c) Arquimedes

Leia mais

FÍSICA B ª SÉRIE EXERCÍCIOS COMPLEMENTARES ALUNO

FÍSICA B ª SÉRIE EXERCÍCIOS COMPLEMENTARES ALUNO EXERCÍCIOS COMPLEMENTARES ALUNO TURMA: FÍSICA B - 2012 1ª SÉRIE DATA: / / 1) Analise as afirmativas abaixo sobre o conceito de grandezas escalares e vetoriais. I Uma grandeza é chamada de escalar quando

Leia mais

Fís. Leonardo Gomes (Caio Rodrigues)

Fís. Leonardo Gomes (Caio Rodrigues) Semana 15 Leonardo Gomes (Caio Rodrigues) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. Equilíbrio de

Leia mais

UNIVERSIDADE CATÓLICA DE GOIÁS

UNIVERSIDADE CATÓLICA DE GOIÁS 01 NOTA DE AULA 0 UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA Disciplina: FÍSICA GERAL E EXPERIMENTAL I (MAF 01) Coordenador: PROF. EDSON VAZ CAPÍTULOS: 05 e 06 CAPÍTULO 5 FORÇA

Leia mais

Exercícios Aulas Práticas 2004/2005

Exercícios Aulas Práticas 2004/2005 Exercícios Aulas Práticas 2004/2005 Manuel Teixeira Brás César Mário Nuno Moreira Matos Valente 1/17 2/17 Tema: Corpos Rígidos: Sistemas Equivalentes de Forças 7 - Uma força de 150 N é aplicada à alavanca

Leia mais

2010The McGraw-Hill Companies, Inc. All rights reserved. Prof.: Anastácio Pinto Gonçalves Filho

2010The McGraw-Hill Companies, Inc. All rights reserved. Prof.: Anastácio Pinto Gonçalves Filho Prof.: Anastácio Pinto Gonçalves Filho Introdução Para um corpo rígido em equilíbrio estático, as forças e momentos externos estão balenceadas e não impõem movimento de translação ou de rotação ao corpo.

Leia mais

O pêndulo simples é constituído por uma partícula de massa

O pêndulo simples é constituído por uma partícula de massa AULA 42 APLICAÇÕES DO MOVIMENTO HARMÔNICO SIMPLES OBJETIVOS: APLICAR A TEORIA DO MOVIMENTO HARMÔNICO SIMPLES A PÊNDULOS 42.1 PÊNDULO SIMPLES: O pêndulo simples é constituído por uma partícula de massa

Leia mais

MECÂNICA - MAC Prof a Michèle Farage. 14 de março de Programa Princípios Gerais Forças, vetores e operações vetoriais

MECÂNICA - MAC Prof a Michèle Farage. 14 de março de Programa Princípios Gerais Forças, vetores e operações vetoriais MECÂNICA - MAC010-01 Prof a Michèle Farage 14 de março de 2011 Programa Princípios Gerais Forças, vetores e operações vetoriais Programa 1. Introdução: conceitos e definições básicos da Mecânica, sistemas

Leia mais

Equilíbrio de uma Partícula Cap. 3 T CE T CD P B T DC =-T CD T DC -T CD

Equilíbrio de uma Partícula Cap. 3 T CE T CD P B T DC =-T CD T DC -T CD Eemplo. MEÂNIA - ESTÁTIA esenhar todos os diagramas de corpo livre possíveis para o problema mostrado na figura abaio, considerando todos os nomes de forças como vetores. Equilíbrio de uma Partícula ap.

Leia mais

Grandeza Vetorial. Curso de Engenharia Civil Física Geral e Experimental I. Considerações. Vetores- Unidade 2 Prof.a : Msd Érica Muniz 1 período

Grandeza Vetorial. Curso de Engenharia Civil Física Geral e Experimental I. Considerações. Vetores- Unidade 2 Prof.a : Msd Érica Muniz 1 período Curso de Engenharia Civil Física Geral e Experimental I Vetores- Unidade 2 Prof.a : Msd Érica Muniz 1 período Grandeza Vetorial Algumas vezes necessitamos mais que um número e uma unidade para representar

Leia mais

Parte 2 - PF de Física I NOME: DRE Teste 1

Parte 2 - PF de Física I NOME: DRE Teste 1 Parte 2 - PF de Física I - 2017-1 NOME: DRE Teste 1 Nota Q1 Questão 1 - [2,5 ponto] Um astronauta está ligado a uma nave no espaço através de uma corda de 120 m de comprimento, que está completamente estendida

Leia mais

Mecânica Vetorial Para Engenheiros: Estática

Mecânica Vetorial Para Engenheiros: Estática AULA 12 Prof.: Anastácio Pinto Gonçalves ilho Introdução Para problemas que tratam do equilíbrio de estruturas feitas de várias partes unidas, as forças internas, assim como as forças externas devem ser

Leia mais

Carga axial. Princípio de Saint-Venant

Carga axial. Princípio de Saint-Venant Carga axial Princípio de Saint-Venant O princípio Saint-Venant afirma que a tensão e deformação localizadas nas regiões de aplicação de carga ou nos apoios tendem a nivelar-se a uma distância suficientemente

Leia mais

Desprezando todo tipo de atrito, se as esferas forem soltas em um mesmo instante, é CORRETO afirmar que:

Desprezando todo tipo de atrito, se as esferas forem soltas em um mesmo instante, é CORRETO afirmar que: 6 GAB. 1 1 o DIA PASES 1 a ETAPA TRIÊNIO 005-007 FÍSICA QUESTÕES DE 11 A 0 11. Três esferas pequenas de massas e raios iguais encontram-se em repouso a uma altura (h) nas extremidades de três trilhos (I,

Leia mais

Estruturas. Treliças planas. Treliça Simples O elemento básico de uma treliça plana é o triangulo. Três barras unidas por pinos em suas extremidades.

Estruturas. Treliças planas. Treliça Simples O elemento básico de uma treliça plana é o triangulo. Três barras unidas por pinos em suas extremidades. TRELIÇAS Estruturas Como já é sabido o equilíbrio de um único corpo rígido ou de um sistema de elementos conectados, tratado como um único corpo rígido. Inicialmente desenhamos um diagrama de corpo livre

Leia mais

ENG1200 Mecânica Geral Semestre Lista de Exercícios 6 Corpos Submersos

ENG1200 Mecânica Geral Semestre Lista de Exercícios 6 Corpos Submersos ENG1200 Mecânica Geral Semestre 2013.2 Lista de Exercícios 6 Corpos Submersos 1 Prova P3 2013.1 - O corpo submerso da figura abaixo tem 1m de comprimento perpendicularmente ao plano do papel e é formado

Leia mais

Mecânica Vetorial Para Engenheiros: Estática

Mecânica Vetorial Para Engenheiros: Estática Prof.: Anastácio Pinto Gonçalves ilho Definição de Uma Treliça Uma treliça consiste em elementos retos unidos por nós. Nenhum elemento é contínuo através de um nó. A maioria das estruturas reais é feita

Leia mais

Carga axial. Princípio de Saint-Venant. Princípio de Saint-Venant

Carga axial. Princípio de Saint-Venant. Princípio de Saint-Venant Capítulo 4: Carga axial Adaptado pela prof. Dra. Danielle Bond Princípio de Saint-Venant Anteriormente desenvolvemos os conceitos de: Tensão (um meio para medir a distribuição de força no interior de um

Leia mais

2 Igualdade e Operações com pares ordenados. 1 Conjunto R 2. 3 Vetores. 2.1 Igualdade. 1.2 Coordenadas Cartesianas no Plano

2 Igualdade e Operações com pares ordenados. 1 Conjunto R 2. 3 Vetores. 2.1 Igualdade. 1.2 Coordenadas Cartesianas no Plano 1 Conjunto R 1.1 Definição VETORES NO PLANO Representamos por R o conjunto de todos os pares ordenados de números reais, ou seja: R = {(x, y) x R y R} 1. Coordenadas Cartesianas no Plano Em um plano α,

Leia mais

Revisão, apêndice A Streeter: SISTEMAS DE FORÇAS, MOMENTOS, CENTROS DE GRAVIDADE

Revisão, apêndice A Streeter: SISTEMAS DE FORÇAS, MOMENTOS, CENTROS DE GRAVIDADE UNVERSDDE FEDERL D BH ESCOL POLTÉCNC DEPRTMENTO DE ENGENHR QUÍMC ENG 008 Fenômenos de Transporte Profª Fátima Lopes FORÇS HDRÁULCS SOBRE SUPERFÍCES SUBMERSS Revisão, apêndice Streeter: SSTEMS DE FORÇS,

Leia mais

LISTA DE EXERCÍCIOS 1

LISTA DE EXERCÍCIOS 1 LISTA DE EXERCÍCIOS 1 Nome Data Nota: 1. Não serão aceitos exercícios escritos a lápis. 2. Não serão aceitos exercícios em mais de uma folha que não estejam grampeados. 3. Data de entrega 01/04/2015. Não

Leia mais

LEIS DE NEWTON. - Força é um agente físico capaz de deformar um corpo ou alterar a sua velocidade vetorial ou as duas coisas simultaneamente.

LEIS DE NEWTON. - Força é um agente físico capaz de deformar um corpo ou alterar a sua velocidade vetorial ou as duas coisas simultaneamente. AULA 05 LEIS DE EWTO 1- ITRODUÇÃO o estudo da Dinâmica nos preocuparemos com as causas e com as leis da natureza que explicam os movimentos dos corpos. Este estudo está apoiado em três leis elaboradas

Leia mais

Lista 12: Rotação de corpos rígidos

Lista 12: Rotação de corpos rígidos Lista 12: Rotação de Corpos Rígidos Importante: i. Ler os enunciados com atenção. ii. Responder a questão de forma organizada, mostrando o seu raciocínio de forma coerente. iii. iv. Siga a estratégia para

Leia mais

Física B - Aula 3 Grandezas Escalares e Vetoriais

Física B - Aula 3 Grandezas Escalares e Vetoriais Física B - Aula 3 Grandezas Escalares e Vetoriais Na Física tratamos de dois tipos principais de grandezas: as grandezas escalares e grandezas vetoriais. Grandezas Escalares A grandeza escalar é aquela

Leia mais

Vetores. 2. (G1 - ifpe 2012) Qual o cosseno do ângulo formado pelos vetores A 4. i 3. j e

Vetores. 2. (G1 - ifpe 2012) Qual o cosseno do ângulo formado pelos vetores A 4. i 3. j e Vetores 1. (Uece 2014) Duas únicas forças, uma de 3 N e outra de 4 N, atuam sobre uma massa puntiforme. Sobre o módulo da aceleração dessa massa, é correto afirmar-se que a) é o menor possível se os dois

Leia mais

Professor: José Junio Lopes. Lista de Exercícios - Aula 1a Revisão Equilíbrio de um Corpo Rígido Reação de Apoio

Professor: José Junio Lopes. Lista de Exercícios - Aula 1a Revisão Equilíbrio de um Corpo Rígido Reação de Apoio Lista de Exercícios - Aula 1a Revisão Equilíbrio de um Corpo Rígido Reação de Apoio A primeira condição para que um corpo rígido esteja em equilíbrio é que a somatória das forças que agem sobre o corpo

Leia mais

Estática do ponto material e do corpo extenso

Estática do ponto material e do corpo extenso Estática do ponto material e do corpo extenso Estática do ponto material e do corpo extenso Estática é a área da Física que estuda as condições de equilíbrio do ponto material e do corpo extenso. Estática

Leia mais

Assunto: Treliças Prof. Ederaldo Azevedo Aula 4 e-mail: ederaldoazevedo@yahoo.com.br 5.1 Treliças Simples: A Treliça é uma estrutura composta de elementos esbeltos unidos uns aos outros por meio de rótulas

Leia mais

Bacharelado Engenharia Civil. Disciplina:Física Geral e Experimental I 1 período Prof.a: Msd. Érica Muniz

Bacharelado Engenharia Civil. Disciplina:Física Geral e Experimental I 1 período Prof.a: Msd. Érica Muniz Bacharelado Engenharia Civil Disciplina:Física Geral e Experimental I 1 período Prof.a: Msd. Érica Muniz Cálculo Vetorial Grandeza Vetorial Algumas vezes necessitamos mais que um número e uma unidade para

Leia mais

ROTEIRO: 1. Cap. 2 Plano Cartesiano; 2. Vetores.

ROTEIRO: 1. Cap. 2 Plano Cartesiano; 2. Vetores. ROTEIRO: 1. Cap. 2 Plano Cartesiano; 2. Vetores. Capítulo 2 Plano Cartesiano / Vetores: Plano Cartesiano Foi criado pelo matemático René Descartes, associando a geometria à álgebra. Desse modo, ele pôde

Leia mais

UC: STC 6 Núcleo Gerador: URBANISMO E MOBILIDADES Tema: Construção e Arquitectura Domínio de Ref.ª:RA1 Área: Ciência

UC: STC 6 Núcleo Gerador: URBANISMO E MOBILIDADES Tema: Construção e Arquitectura Domínio de Ref.ª:RA1 Área: Ciência UC: STC 6 Núcleo Gerador: URBANISMO E MOBILIDADES Tema: Construção e Arquitectura Domínio de Ref.ª:RA1 Área: Ciência Sumário: Betão armado armadura aplicações Equilíbrio estático de um ponto material Momento

Leia mais

Resistência dos Materiais

Resistência dos Materiais Aula 2 Tensão Normal Média e Tensão de Cisalhamento Média Tópicos Abordados Nesta Aula Definição de Tensão. Tensão Normal Média. Tensão de Cisalhamento Média. Conceito de Tensão Representa a intensidade

Leia mais

MOVIMENTO ROTACIONAL E MOMENTO DE INÉRCIA

MOVIMENTO ROTACIONAL E MOMENTO DE INÉRCIA MOVIMENTO ROTACIONAL E MOMENTO DE INÉRCIA 1.0 Definições Posição angular: utiliza-se uma medida de ângulo a partir de uma direção de referência. É conveniente representar a posição da partícula com suas

Leia mais

Lista 5 Leis de Newton

Lista 5 Leis de Newton Sigla: Disciplina: Curso: FISAG Física Aplicada a Agronomia Agronomia Lista 5 Leis de Newton 01) Um corpo de massa m sofre ação de duas forças F1 e F2, como mostra a figura. Se m = 5,2 kg, F1 = 3,7 N e

Leia mais

Introdução cargas externas cargas internas deformações estabilidade

Introdução cargas externas cargas internas deformações estabilidade TENSÃO Introdução A mecânica dos sólidos estuda as relações entre as cargas externas aplicadas a um corpo deformável e a intensidade das cargas internas que agem no interior do corpo. Esse assunto também

Leia mais

Resistência dos. Materiais. Capítulo 3. - Flexão

Resistência dos. Materiais. Capítulo 3. - Flexão Resistência dos Materiais - Flexão cetatos baseados nos livros: - Mechanics of Materials - Beer & Jonhson - Mecânica e Resistência dos Materiais V. Dias da Silva Índice Flexão Pura Flexão Simples Flexão

Leia mais

CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES 2015 / 2016

CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES 2015 / 2016 CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES 2015 / 2016 1 a QUESTÃO Valor: 1,0 Um copo está sobre uma mesa com a boca voltada para cima. Um explosivo no estado sólido

Leia mais

PROBLEMAS DE PROVA. EXERCÍCIOS DA 3 a. ÁREA. UFRGS - ESCOLA DE ENGENHARIA ENG Mecânica. Atualizada em 11/11/2008

PROBLEMAS DE PROVA. EXERCÍCIOS DA 3 a. ÁREA. UFRGS - ESCOLA DE ENGENHARIA ENG Mecânica. Atualizada em 11/11/2008 UFRS - ESOL E ENENHRI EN 01156 - Mecânica epartamento de Engenharia ivil tualizada em 11/11/2008 EXERÍIOS 3 a. ÁRE Prof. Inácio envegnu Morsch PROLEMS E PROV 1) alcule para o instante representado na figura

Leia mais

LISTA DE EXERCÍCIOS ÁREA 1. Disciplina: Mecânica dos Sólidos MECSOL34 Semestre: 2016/02

LISTA DE EXERCÍCIOS ÁREA 1. Disciplina: Mecânica dos Sólidos MECSOL34 Semestre: 2016/02 LISTA DE EXERCÍCIOS ÁREA 1 Disciplina: Mecânica dos Sólidos MECSOL34 Semestre: 2016/02 Prof: Diego R. Alba 1. O macaco AB é usado para corrigir a viga defletida DE conforme a figura. Se a força compressiva

Leia mais

Sala de Estudos FÍSICA - Lucas 2 trimestre Ensino Médio 3º ano classe: Prof.LUCAS Nome: nº Sala de Estudos Força Elástica e Trabalho Mecânico

Sala de Estudos FÍSICA - Lucas 2 trimestre Ensino Médio 3º ano classe: Prof.LUCAS Nome: nº Sala de Estudos Força Elástica e Trabalho Mecânico Sala de Estudos FÍSICA - Lucas 2 trimestre Ensino Médio 3º ano classe: Prof.LUCAS Nome: nº Sala de Estudos Força Elástica e Trabalho Mecânico 1. (Uern 2013) A tabela apresenta a força elástica e a deformação

Leia mais

Força elétrica e Campo Elétrico

Força elétrica e Campo Elétrico Força elétrica e Campo Elétrico 1 Antes de Física III, um pouco de Física I... Massas e Campo Gravitacional 2 Força Gravitacional: Força radial agindo entre duas massas, m 1 e m 2. : vetor unitário (versor)

Leia mais

Halliday & Resnick Fundamentos de Física

Halliday & Resnick Fundamentos de Física Halliday & Resnick Fundamentos de Física Mecânica Volume 1 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC Farmacêutica,

Leia mais

LISTA DE EXERCÍCIOS MECÂNICA DOS SÓLIDOS I

LISTA DE EXERCÍCIOS MECÂNICA DOS SÓLIDOS I LISTA DE EXERCÍCIOS MECÂNICA DOS SÓLIDOS I A - Tensão Normal Média 1. Ex. 1.40. O bloco de concreto tem as dimensões mostradas na figura. Se o material falhar quando a tensão normal média atingir 0,840

Leia mais

Lista de Exercícios-PRA - Estática R. C. Hibbeler I - Adição de forças vetoriais

Lista de Exercícios-PRA - Estática R. C. Hibbeler I - Adição de forças vetoriais Lista de Exercícios-PRA - Estática R. C. Hibbeler I - Adição de forças vetoriais Forças são grandezas vetoriais, portanto são manipuladas através das regras da geometria analítica. Duas leis são válidas

Leia mais

MECÂNICA - CINEMÁTICA

MECÂNICA - CINEMÁTICA MECÂNICA - CINEMÁTICA Cinemática CONCEITOS FUNDAMENTAIS 1. REFERENCIAL É um corpo ou um conjunto de corpos que usamos para estabelecer a posição de outros corpos. MOVIMENTO A posição de um corpo varia,

Leia mais

MECÂNICA GERAL 3º e 4º CICLO (ENGENHARIA MECÂNICA E DE PRODUÇÃO) Profa. Ms. Grace Kelly Quarteiro Ganharul

MECÂNICA GERAL 3º e 4º CICLO (ENGENHARIA MECÂNICA E DE PRODUÇÃO) Profa. Ms. Grace Kelly Quarteiro Ganharul MECÂNICA GERAL 3º e 4º CICLO (ENGENHARIA MECÂNICA E DE PRODUÇÃO) Profa. Ms. Grace Kelly Quarteiro Ganharul grace.ganharul@aedu.com Graduação em Engenharia Mecânica e Engenharia de Produção Disciplina:

Leia mais

Mecânica Técnica. Aula 14 Sistemas Equivalentes de Cargas Distribuídas. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica Técnica. Aula 14 Sistemas Equivalentes de Cargas Distribuídas. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues Aula 14 Sistemas Equivalentes de Cargas Distribuídas Tópicos Abordados Nesta Aula Sistemas Equivalentes de Cargas Distribuídas. Sistema de Cargas Distribuidas A intensidade da força resultante é equivalente

Leia mais

Questão 1. Questão 2. Questão 3

Questão 1. Questão 2. Questão 3 Questões de Física para 1º ano e 2º ano Questão 1 Em um acidente, um carro de 1200 kg e velocidade de 162 Km/h chocou-se com um muro e gastou 0,3 s para parar. Marque a alternativa que indica a comparação

Leia mais

Fís. Semana. Leonardo Gomes (Guilherme Brigagão)

Fís. Semana. Leonardo Gomes (Guilherme Brigagão) Semana 8 Leonardo Gomes (Guilherme Brigagão) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. CRONOGRAMA

Leia mais

LISTA UERJ 3 LEIS DE NEWTON

LISTA UERJ 3 LEIS DE NEWTON 1. (Uerj 2008) A figura a seguir representa um sistema composto por uma roldana com eixo fixo e três roldanas móveis, no qual um corpo R é mantido em equilíbrio pela aplicação de uma força F, de uma determinada

Leia mais

Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica. ENG1705 Dinâmica de Corpos Rígidos.

Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica. ENG1705 Dinâmica de Corpos Rígidos. Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica ENG1705 Dinâmica de Corpos Rígidos (Período: 2016.1) Notas de Aula Capítulo 1: VETORES Ivan Menezes ivan@puc-rio.br

Leia mais

Lista 5: Trabalho e Energia

Lista 5: Trabalho e Energia Lista 5: Trabalho e Energia NOME: Matrícula: Turma: Prof. : Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção. iii. Responder a

Leia mais

Estática. Prof. Willyan Machado Giufrida. Estática

Estática. Prof. Willyan Machado Giufrida. Estática Estática Professor: Willyan Machado Giufrida Site: www.prof-willyan.webnode.com Email: Prof.willyan@feitep.edu.br Curriculo lattes: CV: http://lattes.cnpq.br/0565778602837400 Ementa: Morfologia das estruturas.

Leia mais

Aula 06 Introdução e Equilíbrio de um corpo deformável

Aula 06 Introdução e Equilíbrio de um corpo deformável Aula 06 Introdução e Equilíbrio de um corpo deformável Prof. Wanderson S. Paris, M.Eng. prof@cronosquality.com.br Resistência dos Materiais Definição: É um ramo da mecânica que estuda as relações entre

Leia mais

PROGRAD / COSEAC Padrão de Respostas Física Grupos 05 e 20

PROGRAD / COSEAC Padrão de Respostas Física Grupos 05 e 20 1 a QUESTÃO: Dois blocos estão em contato sobre uma mesa horizontal. Não há atrito entre os blocos e a mesa. Uma força horizontal é aplicada a um dos blocos, como mostra a figura. a) Qual é a aceleração

Leia mais

RESISTÊNCIA DOS MATERIAIS I Curso de Eletromecânica

RESISTÊNCIA DOS MATERIAIS I Curso de Eletromecânica Centro Federal de Educação Tecnológica de Santa Catarina CEFET/SC Unidade Araranguá RESISTÊNCIA DOS MATERIAIS I Curso de Eletromecânica Prof. Fernando H. Milanese, Dr. Eng. milanese@cefetsc.edu.br Conteúdo

Leia mais

M0 = F.d

M0 = F.d Marcio Varela M0 = F.d M = F.d M R = F.d Exemplo: Determine o momento da força em relação ao ponto 0 em cada caso ilustrado abaixo. Determine os momentos da força 800 N que atua sobre a estrutura na figura

Leia mais

MAC de outubro de 2009

MAC de outubro de 2009 MECÂNICA MAC010 21 de outubro de 2009 1 2 3 4 5. Equiĺıbrio de Corpos Rígidos 6. Treliças Treliças - estabilidade e estaticidade Na aula passada, vimos que a relação entre o número de barras (m), nós (j)

Leia mais

Coordenadas Cartesianas

Coordenadas Cartesianas 1 Coordenadas Cartesianas 1.1 O produto cartesiano Para compreender algumas notações utilizadas ao longo deste texto, é necessário entender o conceito de produto cartesiano, um produto entre conjuntos

Leia mais

Física I Prova 3 7/06/2014

Física I Prova 3 7/06/2014 Nota Física I Prova 3 7/06/2014 NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 2 questões discursivas (que deverão ter respostas justificadas, desenvolvidas e demonstradas matematicamente) e 12

Leia mais

Figura disponível em: <http://soumaisenem.com.br/fisica/conhecimentos-basicos-e-fundamentais/grandezas-escalares-egrandezas-vetoriais>.

Figura disponível em: <http://soumaisenem.com.br/fisica/conhecimentos-basicos-e-fundamentais/grandezas-escalares-egrandezas-vetoriais>. n. 7 VETORES vetor é um segmento orientado; são representações de forças, as quais incluem direção, sentido, intensidade e ponto de aplicação; o módulo, a direção e o sentido caracterizam um vetor: módulo

Leia mais

Universidade do Estado do Rio de Janeiro - Instituto de Física Lista de exercícios para a P2 - Física 1

Universidade do Estado do Rio de Janeiro - Instituto de Física Lista de exercícios para a P2 - Física 1 Universidade do Estado do Rio de Janeiro - Instituto de Física Lista de exercícios para a P2 - Física 1 1. Dois corpos A e B, de massa 16M e M, respectivamente, encontram-se no vácuo e estão separados

Leia mais

P 2 M a P 1. b V a V a V b. Na grelha engastada, as reações serão o momento torçor, o momento fletor e a reação vertical no engaste.

P 2 M a P 1. b V a V a V b. Na grelha engastada, as reações serão o momento torçor, o momento fletor e a reação vertical no engaste. Diagramas de esforços em grelhas planas Professora Elaine Toscano Capítulo 5 Diagramas de esforços em grelhas planas 5.1 Introdução Este capítulo será dedicado ao estudo das grelhas planas Chama-se grelha

Leia mais

Vetores no plano Cartesiano

Vetores no plano Cartesiano Vetores no plano Cartesiano 1) Definição de vetor Um vetor (geométrico) no plano R² é uma classe de objetos matemáticos (segmentos) com a mesma direção, mesmo sentido e mesmo módulo (intensidade). 1. A

Leia mais