REVISAO GERAL. GRANDEZA ESCALAR É caracterizada por um número real. Como, por exemplo, o tempo, a massa, o volume, o comprimento, etc.

Tamanho: px
Começar a partir da página:

Download "REVISAO GERAL. GRANDEZA ESCALAR É caracterizada por um número real. Como, por exemplo, o tempo, a massa, o volume, o comprimento, etc."

Transcrição

1 MECÂNICA APLICADA 5º Período de Engenharia Civil REVISAO GERAL GRANDEZA ESCALAR É caracterizada por um número real. Como, por exemplo, o tempo, a massa, o volume, o comprimento, etc. GRANDEZA VETORIAL Uma grandeza vetorial é caracterizada pela dependência de três elementos fundamentais, ou seja, representa um ente matemático que possui intensidade, direção e sentido. Em problemas de estática é muito comum a utilização de grandezas vetoriais como posição, força e momento. A posição de um ponto no espaço em relação a outro ponto caracteriza uma grandeza vetorial. Para descrever a posição de uma cidade A em relação à outra cidade B, é insuficiente dizer que ambas estão separadas por uma distância de 100 km, para se caracterizar um vetor, deve-se dizer, por exemplo, que a cidade B se encontra 100 km a oeste da cidade A. A força também é caracterizada como uma grandeza vetorial, pois quando se empurra uma peça de móvel através do chão aplica-se na mesma uma força com intensidade suficiente para mover o móvel e com a direção desejada para o movimento. REPRESENTAÇÃO DE UMA GRANDEZA VETORIAL Uma grandeza vetorial pode ser representada graficamente por uma seta, que é utilizada para definir seu módulo, sua direção e seu sentido. Graficamente o módulo de um vetor é representado pelo comprimento da seta, a direção é definida através do ângulo formado entre um eixo de referência e a linha de ação da seta e o sentido é indicado pela extremidade da seta. A figura mostra a representação gráfica de dois vetores força atuando ao longo dos cabos de fixação de um poste, o ponto O é chamado de origem do vetor e o ponto P representa sua extremidade ou ponta.

2 LEI DOS SENOS Dado um triângulo ABC e seus ângulos internos a, b e g, a lei dos senos é definida da seguinte forma: Em todo triângulo, as medidas dos seus lados são proporcionais. LEI DOS COSSSENOS A partir do mesmo triângulo ABC e seus ângulos internos a, b e g, a lei dos cossenos é definida do seguinte modo: Num triângulo, o quadrado da medida de um lado é igual à soma dos quadrados das medidas dos outros dois, menos o dobro do produto das medidas desses dois lados pelo cosseno do ângulo oposto ao primeiro lado.

3 SOMA VETORIAL REGRA DO PARALELOGRAMO O Cálculo da força resultante pode ser obtido através da soma vetorial com a aplicação da regra do paralelogramo.

4 EXEMPLO 01) O parafuso mostrado na figura está sujeito a duas forças F1 e F2. Determine o módulo e a direção da força resultante. SOLUÇÃO

5 EXEMPLO 02) Duas lanchas rebocam um barco de passageiros que se encontra com problemas em seus motores. Sabendo-se que a força resultante é igual a 30KN. Encontre suas componentes nas direções AC e BC. SOLUÇÃO

6 EXERCICIOS PROPOSTOS 1) O elo da figura está submetido às forças F1 e F2, determine a intensidade e a orientação da força resultante. SOLUÇÃO

7 2) A chapa está submetida a duas forças Fa e Fb. Se ϴ=60º, determine a intensidade da força resultante e sua intensidade em relação ao eixo horizontal. SOLUÇÃO

8 3) Duas forças são aplicadas a fim de remover a estaca mostrada. Determine o ângulo ϴ e o valor da força F de modo que a força resultante seja orientada verticalmente para cima no eixo y e tenha uma intensidade de 750N. SOLUÇÃO

9 4) A caminhonete mostrada é rebocada por duas cordas. Determine os valores de Fa e Fb de modo a produzir uma força resultante de 950N orientada no eixo X positivo, considerando ϴ=50º. SOLUÇÃO

10 5) O parafuso tipo gancho mostrado na figura está sujeito a duas forças F1 e F2. Determine o módulo e a direção da força resultante. SOLUÇÃO

11 6) A tora de madeira é rebocada pelos dois tratores mostrados, sabendo que se a força resultante é igual a 10KN e está orientada ao longo do eixo x positivo. Determine a intensidade das forças Fa e Fb, considerando ϴ=15º. SOLUÇÃO

12 7) O gancho da figura está submetido às forças F1 e F2, determine a intensidade e a orientação da força resultante. SOLUÇÃO

13 8) Determine o ângulo θ e a intensidade de Fb de modo que a resultante das forças seja orientada ao longo do eixo y positivo e tenha intensidade de 1500N. SOLUÇÃO

14 9) Três forças atuam sobre o suporte mostrado. Determine o ângulo θ e a intensidade de F1 de modo que a resultante das forças seja orientada ao longo do eixo x positivo e tenha intensidade de 1kN. SOLUÇÃO

15 10) Determine o ângulo θ e a intensidade de F1 de modo que a resultante das forças seja orientada ao longo do eixo y positivo e tenha intensidade de 800N. SOLUÇÃO

16 PRINCÍPIOS DA ESTÁTICA 1º A ação de um sistema de forças não se altera se a ele acrescentarmos, ou dele subtrairmos, um sistema equilibrado de forças. 2º A condição necessária e suficiente para que duas forças constituem um sistema equilibrado é que elas sejam colineares, tenham o mesmo módulo e sentidos contrários. 3º A ação de duas forças aplicadas num mesmo ponto é equivalente à ação de uma força única, aplicada nesse ponto, representada pela diagonal do paralelogramo formado pelos vetores representativos daquelas duas forças. 4º A ação de um corpo sobre outro corresponde sempre uma reação igual e contrária, deste corpo sobre o primeiro.

17 CONSEQUENCIAS IMEDIATAS DOS PRINCIPIOS DA ESTÁTICA No estudo do equilíbrio dos corpos rígidos, podem supor-se as forças aplicadas em qualquer ponto das respectivas linhas de ação. Porem quando os problemas envolvem os esforços internos ou deformações de um corpo, os mesmos podem sofrer uma compressão ou tração. MOMENTO DE UMA FORÇA O momento de uma força em relação a um ponto ou a um eixo, fornece uma medida da tendência dessa força provocar a rotação de um corpo em torno do ponto ou do eixo. Momento é uma grandeza vetorial, possui intensidade direção e sentido. É determinado através da equação:

18 M = F x d onde, M= momento F= força d= distância. Rotação no sentido horário Momento negativo Rotação no sentido anti-horário Momento positivo MOMENTO DE UM BINÁRIO Um binário é definido como duas forças paralelas de mesma intensidade, sentidos opostos e separadas por um distância d. O efeito de um binário é proporcionar rotação ou tendência de rotação em um determinado sentido. A soma das componentes das duas forças em qualquer direção é zero. Entretanto, a soma dos momentos das duas forças em relação a um dado ponto não é zero. Pois as forças tendem a girar o corpo. EXEMPLO 01) Determine o momento da força em relação ao ponto O.

19 SOLUÇÃO EXEMPLO 02) Determine o momento da força em relação ao ponto O. SOLUÇÃO EXEMPLO 03) Determine os momentos da força de 800N em relação aos pontos A, B, C e D..

20 SOLUÇÃO EXEMPLO 04) Determine o momento das forças que atuam na estrutura mostrada

21 em relação ao ponto A. SOLUÇÃO VARIAÇÃO DO MOMENTO DE UM SISTEMA COM CENTRO DE REDUÇÃO

22 Admita-se que um dado sistema de forças se reduz no ponto B à resultante R e o momento Mb. Pode-se transportar essa força R para um outro ponto A, desde que se considere o seu momento de transporte (R x d) do ponto B para o ponto A. Nessas condições o sistema é equivalente ao sistema inicial. Portanto o Ma é o momento do sistema dado, em relação ao ponto a, pode-se escrever: Ma = Mb + R x d EXEMPLO 01) Substitua as três forças mostradas na figura por uma força resultante e um momento equivalente em relação ao ponto O. SOLUÇÃO

23 EXEMPLO 02) Uma força vertical de 100 N é aplicada na extremidade de uma alavanca que está fixa em O. Determine: a) O momento da força de 100 N em relação ao ponto O; b) A intensidade da força horizontal aplicada em A que produz o mesmo momento em relação ao ponto O; c) A menor força em A que produz o mesmo momento em relação ao ponto O; d) A que distância do eixo deverá estar uma força vertical de 240 N de modo a produzir o mesmo momento em relação ao ponto O, e) Se alguma das forças obtidas nas alíneas b) c) e d) são equivalentes à força original. SOLUÇÃO

24

25 CARGAS DISTRIBUÍDAS Até o presente momento consideramos em nossas aulas apenas forças concentradas, isto é, que atuam em um único ponto do corpo. Na realidade, a ação de uma força é sempre distribuída continuamente, quer por um volume, quer sobre uma superfície. Dessa forma a ação de infinitas resultantes atuando em todas as partículas de um corpo ou em todos os pontos da superfície de contato entre dois corpos. A força concentrada é apenas uma abstração, e pode ser considerada como a resultante de um sistema contínuo de esforços elementares. A substituição desse sistema contínuo pela sua resultante isto é, hipótese de força concentrada é um procedimento somente valido nos problemas de estática dos corpos rígidos. Não obstante, quando uma força se distribui sobre uma superfície de dimensões muito pequenas, pode-se, muitas vezes, admitir essa superfície reduzida a um ponto, mesmo na estática dos corpos deformáveis, por ser desprezível o erro introduzido nos resultados. Os três tipos mais utilizados de cargas distribuídas são: Retangular Triangular Trapezoidal

26 EXEMPLO 01) Calcular o valor da resultante da carga uniformemente distribuída representada abaixo:

27 EXEMPLO 02) Calcular o valor da resultante da carga triangular distribuída representada abaixo: EXEMPLO 03) Calcular o valor da resultante da carga trapezoidal distribuída representada abaixo:

28 MOMENTO DE UMA CARGA DISTRIBUÍDA O momento de uma carga distribuída representa a soma de todos os momentos das forças elementares, em relação a um ponto qualquer, pode ser obtido com teoremas desde que se conheçam a resultante e o eixo central do sistema. EXEMPLO 01) Calcular o momento em relação aos pontos A e B e C, da carga distribuída da figura abaixo:

29 EXEMPLO 02) Calcular o momento em relação ao ponto D da carga distribuída da figura: EXEMPLO 03) Calcular o momento em relação aos pontos A e B e C, da carga distribuída triangular da figura abaixo: FÓRMULA MOMENTO MOMENTO DE UM PONTO FORA DA CARGA Ma = P x L/2 x 2L/3 Mc = P x L/2 (L/3 + a) Mb = P x L/2 x L/3 Mc = P x L/2 (2L/3 + a)

30 EXEMPLO 04) Calcular o momento em relação aos pontos A, B e C da carga distribuída Trapezoidal da figura abaixo:

31 EQUILIBRIOS DOS SISTEMAS DE FORÇAS Condições gerais de equilíbrio. Para que um sistema de forças coplanares seja equilibrado, é necessário e suficiente que sejam satisfeitas de acordo com as seguintes condições: 1. As somas das projeções de todas as forças do sistema, sobre dois eixos quaisquer, Ox e Ou, no plano das forças, devem ser nulas. 2. A soma dos momentos de todas as forças do sistema em relação a um ponto arbitrário, A, do seu plano, deve ser nula. Essas condições se indicam com as seguintes equações simbólicas: Fx = 0 Fy = 0 Ma = 0 As duas primeiras condições são necessárias para que a resultante do sistema seja nula; a terceira é necessária para que o sistema não seja redutível a um binário. Essas condições são também suficientes, pois, satisfeitas as duas primeiras, o momento do sistema será, o mesmo em relação a qualquer ponto. As três equações são de grande importância para a mecânica aplicada, sendo chamadas de equações algébricas redundantes. APOIOS São elementos que restringem os movimentos das estruturas e podem ser classificados em:

32

33 EXEMPLO 01) Determine as reações nos apoios A e B da viga ilustrada abaixo. SOLUÇÃO EXERCICIOS PROPOSTOS 1) Determine as reações nos apoios, sabendo que F = 15 KN e a=1,2m; b=3,5m; c=2,4m e d=1,6m:

34 SOLUÇÃO 2) Determine as reações no apoio A. SOLUÇÃO

35 3) Determine as reações nos apoios. SOLUÇÃO

36 4) Substitua as cargas atuantes na viga por uma única força resultante e um momento equivalente no ponto A. SOLUÇÃO

37 5) Substitua as cargas atuantes na viga por uma única força resultante. Especifique onde a força atua, tomando como referência o ponto B. SOLUÇÃO

38 CENTRO DE GRAVIDADE; CENTRÓÍDE E BARICENTRO CENTRO DE GRAVIADADE Um corpo é composto de uma série infinita de partículas de tamanho diferenciado, e assim, se o corpo estiver localizado dentro de um campo gravitacional, então cada uma das partículas terá um peso dw. Esses pesos formarão um sistema de forças aproximadamente paralelas, e a resultante desse sistema é o peso total do corpo, que passa por um único ponto chamado centro de gravidade, G. Equações para localização do centro de gravidade G em relação aos eixos x, y, e z tornam-se: = = = CENTRO DE MASSA DE UM CORPO Para estudar a resposta dinâmica ou movimento acelerado de um corpo, é importante localizar o centro de massa Cm do corpo. Essa localização pode ser determinada substituindo-se dw = g x dm,nas equações anteriores. Como g é constante, ele é cancelado e, portanto, temos as seguintes equações para o centro de massa. = = =

39 CENTRÓIDE DE UM VOLUME Se um corpo é feito de um material homogêneo, então sua densidade ρ (rho) será constante. Portanto um elemento diferencial de volume dv tem uma massa dm = ρ x dv. Substituindo essa massa nas equações do centro de massa e cancelando ρ, obtemos as fórmulas que localizam o centróide C ou o centro geométrico do corpo; conforme as equações abaixo: = = = CENTRÓIDE DE UMA ÁREA Se uma área se encontra no plano xy e estiver contornada pela curva y = f(x), então seu centróide estará nesse plano xy e pode ser determinado a partir de integrais semelhantes às equações do volume: = = Essas integrais podem ser avaliadas realizando-se uma integração simples se usarmos uma faixa retangular para o elemento de área diferencial CENTRÓIDE DE UMA LINHA Se um segmento de linha (ou barra) estiver dentro do plano xy e puder ser descrito por uma curva fina y = f(x), então seu centróide é determinado a partir de: = =

40 O centróide representa o centro geométrico de um corpo. Esse ponto coincide com o centro de gravidade somente se o material que compõe o corpo for uniforme ou homogêneo. As fórmulas usadas para localizar o centro de gravidade ou o centróide simplesmente representam um equilíbrio entre a soma dos momentos de todas as partes do sistema e o momento da ``resultante para o sistema. Em alguns casos, o centróide está localizado em um ponto que não está sobre o objeto, como no caso de um anel, onde o centróide está no seu centro. Além disso, esse ponto estará sobre qualquer eixo de simetria para o corpo.

41 FORMULÁRIO

42 EXEMPLO 01) A figura mostrada no quadro é feita de um pedaço de arame fino e homogêneo. Determine a localização do centro de gravidade.

43 EXEMPLO 02) Uma barra semicircular uniforme de peso W e raio r é ligada a um pino em A e repousa sobre uma superfície sem atrito em B. Determine as reações em A e B.

44 EXEMPLO 03) Numa chapa quadrada ABCD, homogênea e de lado a = 24 cm faz um corte também quadrado EFGH, de lado b = 12 cm. Determine a distância do centro de massa da chapa cortada à linha de base AD.

45 EXERCÍCIOS PROPOSTOS Determinar o centro de massa das figuras abaixo: A) SOLUÇÃO

46 B)

47 C)

48 D) E)

49 F)

50 G)

51 H)

52 2) Determine a força aplicada no cabo AB.

53 3) Determine o centroide da figura abaixo. Considere o eixo xy indicado na figura. A)

54 B)

55 4) Determinar a força aplicada na haste BC da figura abaixo.

56 MOMENTO DE INERCIA DE AREA O momento de inércia de área representa o segundo momento de área em relação a um eixo. Normalmente ele é usado em fórmulas relacionadas à força e estabilidade de membros estruturais ou elementos mecânicos. Se a forma da área for irregular, mas puder ser descrita matematicamente, então um elemento diferencial precisa ser relacionado e a integração sobre a área total deve ser realizada para determinar o momento de inércia. Ix = ʃª y² da Iy = ʃª x² da TEOREMA DOS EIXOS PARALELOS Se o momento de inércia para uma área for conhecido em relação a um eixo Centroidal, então seu momento de inércia em relação a um eixo paralelo pode ser determinado pelo teorema dos eixos paralelos. _ I = I + Ad²

57 Fórmulas para as figuras mais usadas. Ix = 1 x b x h³ Iy = 1 x b³ x h IX = 1 x b x h³ 36

58 EXEMPLO 01) Determine o momento de inércia em relação aos eixos centroidais x e y.

59 EXERCICIOS PROPOSTOS 1) Determine os momentos de inércia em relação aos eixos centroidais X e Y da peça mostrada na figura abaixo: 2) determine o centro de massa da figura:

60 TRELIÇAS Treliça é uma estrutura de elementos delgados ligados entre si pelas extremidades. Treliças planas são aquelas se distribuem em um plano e geralmente são utilizadas em estruturas de telhados e pontes. Os elementos de uma treliça atuam como barras de duas forças. Se uma força tende a alongar o elemento, é chamada de força de tração. Se uma força tende a encurtar o elemento, é chamada de força de compressão. MÉTODO DOS NÓS Quando calculamos os esforços, admitimos que as forças saem dos nós e nos próximos nós usamos os resultados das forças do nó anterior fazendo a troca de sinais. Importante lembrar que somente os jogos de sinais deverão ser feitos nas equações dos nós, pois as forças das reações horizontais e verticais devem ser inseridas na equação considerando-se exclusivamente os sinais que possuem, ou seja, não fazer jogo de sinais para tais reações. EXEMPLO 01) Calcular as forças normais N nas barras da viga sobre dois apoios em treliça representada na figura abaixo:

61

62 EXERCICIOS PROPOSTOS 1) Calcule as reações de apoio e as forças normais nas barras através do Método dos Nós nas figuras abaixo: A)

63

64 B)

65

66 C)

67

68 D)

69

70 E)

71

Mecânica Técnica. Aula 2 Lei dos Senos e Lei dos Cossenos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica Técnica. Aula 2 Lei dos Senos e Lei dos Cossenos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues Aula 2 Lei dos Senos e Lei dos Cossenos Tópicos Abordados Nesta Aula Cálculo de Força Resultante. Operações Vetoriais. Lei dos Senos. Lei dos Cossenos. Grandezas Escalares Uma grandeza escalar é caracterizada

Leia mais

O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal.

O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal. CENTRÓIDES E MOMENTO DE INÉRCIA Centróide O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal. De uma maneira bem simples: centróide

Leia mais

Aula 2 Vetores de força

Aula 2 Vetores de força Aula 2 Vetores de força slide 1 Escalares e vetores Um escalar é qualquer quantidade física positiva ou negativa que pode ser completamente especificada por sua intensidade. Exemplos de quantidades escalares:

Leia mais

MECÂNICA GERAL 1. Marcel Merlin dos Santos

MECÂNICA GERAL 1. Marcel Merlin dos Santos MECÂNICA GERAL 1 Marcel Merlin dos Santos TÓPICOS DE HOJE Revisão de álgebra vetorial Lei dos cossenos Lei dos senos Exercícios Componentes cartesianas de uma força Exercícios Equilíbrio de uma partícula

Leia mais

Mecânica Geral. Prof. Evandro Bittencourt (Dr.) Engenharia de Produção e Sistemas UDESC. 27 de fevereiro de 2008

Mecânica Geral. Prof. Evandro Bittencourt (Dr.) Engenharia de Produção e Sistemas UDESC. 27 de fevereiro de 2008 Mecânica Geral Prof Evandro Bittencourt (Dr) Engenharia de Produção e Sistemas UDESC 7 de fevereiro de 008 Sumário 1 Prof Evandro Bittencourt - Mecânica Geral - 007 1 Introdução 11 Princípios Fundamentais

Leia mais

RELAÇÕES TRIGONOMÈTRICAS

RELAÇÕES TRIGONOMÈTRICAS TÉCNICO EM EDIFICAÇÕES MÓDULO 01 RELAÇÕES TRIGONOMÈTRICAS NOTAS DE AULA: - Prof. Borja 2016.2 MÓDULO 1 Relações Trigonométricas OBJETIVOS Ao final deste módulo o aluno deverá ser capaz de: resolver problemas

Leia mais

Flexão Vamos lembrar os diagramas de força cortante e momento fletor

Flexão Vamos lembrar os diagramas de força cortante e momento fletor Flexão Vamos lembrar os diagramas de força cortante e momento fletor Elementos longos e retos que suportam cargas perpendiculares a seu eixo longitudinal são denominados vigas. Vigas são classificadas

Leia mais

Resistência dos Materiais

Resistência dos Materiais Resistência dos Materiais Conceito de Momento de uma Força O momento de uma força em relação a um ponto ou eixo fornece uma medida da tendência dessa força de provocar a rotação de um corpo em torno do

Leia mais

Lista 02 (Estática) Capítulo 02

Lista 02 (Estática) Capítulo 02 Lista 02 (Estática) Capítulo 02 1) Expresse o vetor r, na forma cartesiana; depois determine sua intensidade e os ângulos diretores coordenados. (a) (b) 2) Expresse a força F como um vetor cartesiano;

Leia mais

UFABC - Universidade Federal do ABC. ESTO Mecânica dos Sólidos I. Primeira Lista de Exercícios (2017.2) Professores: Dr.

UFABC - Universidade Federal do ABC. ESTO Mecânica dos Sólidos I. Primeira Lista de Exercícios (2017.2) Professores: Dr. UFABC - Universidade Federal do ABC ESTO008-13 Mecânica dos Sólidos I Primeira Lista de Exercícios (20172) Professores: Dr Cesar Freire CECS Dr Wesley Góis CECS 1 Preparativos para a primeira semana do

Leia mais

Resultantes de um sistema de forças

Resultantes de um sistema de forças Resultantes de um sistema de forças Objetivos da aula Discutir o conceito do momento de uma força e mostrar como calculá-lo em duas e três dimensões. Fornecer um método para determinação do momento de

Leia mais

3.1) Determine as intensidades de F1 e F2, de modo que o ponto material P esteja em equilíbrio.

3.1) Determine as intensidades de F1 e F2, de modo que o ponto material P esteja em equilíbrio. 3.1) Determine as intensidades de F1 e F2, de modo que o ponto material P esteja em equilíbrio. 3.2) Determine a intensidade e o sentido θ de F de modo que o ponto material esteja em equilíbrio. 3.3) Determine

Leia mais

Resposta: F AB = 1738,7 N F AC = 1272,8 N

Resposta: F AB = 1738,7 N F AC = 1272,8 N Trabalho 1 (Cap. 1 a Cap. 4) Mecânica Aplicada - Estática Prof. André Luis Christoforo, e-mail: christoforoal@yahoo.com.br Departamento de Engenharia Civil - DECiv/UFSCar Cap. 1 Vetores de Força 1) A força

Leia mais

Lista de Exercícios de Equilíbrio de Partículas Estruturas 1/2014 Prof. Delma P. Caixeta

Lista de Exercícios de Equilíbrio de Partículas Estruturas 1/2014 Prof. Delma P. Caixeta Lista de Exercícios de Equilíbrio de Partículas Estruturas 1/2014 Prof. Delma P. Caixeta 1- Duas forças são aplicadas no olhal roscado com o objetivo de remover a estaca. Determine o ângulo e o módulo

Leia mais

I Unidade I Lista de Exercícios https://sites.google.com/site/professorcelsohenrique/home/mecanica-geral

I Unidade I Lista de Exercícios https://sites.google.com/site/professorcelsohenrique/home/mecanica-geral FAMEC Faculdade Metropolitana de Camaçari Engenharia Ambiental / Engenharia de Controle e Automação / Eng Produção enharia de Disciplina: Mecânica Geral I Unidade Docente: Celso Henrique I Lista de Exercícios

Leia mais

Mecânica Geral 1 Rotação de corpos rígidos Prof. Dr. Cláudio Sérgio Sartori.

Mecânica Geral 1 Rotação de corpos rígidos Prof. Dr. Cláudio Sérgio Sartori. Bibliografia Básica: BEER, F. P.; JOHNSTON JUNIOR, E. R. Mecânica vetorial para engenheiros: cinemática e dinâmica 5ª ed. 2v. São Paulo: Makron, 1994. HIBBELER, R. C. Dinâmica: Mecânica para Engenharia.

Leia mais

UERJ/DFNAE Física Geral - Lista /2

UERJ/DFNAE Física Geral - Lista /2 UERJ/DFNAE Física Geral - Lista 2-2018/2 1. Identifique as forças que atuam sobre os corpos indicados nas figuras. 2. Dois blocos de peso P, são mantidos em equilíbrio em um plano inclinado sem atrito,

Leia mais

Lista de Exercícios de Estática / Resistência dos Materiais Fonte: ESTATICA: Mecânica para engenharia. 10ª edição. R.C.Hibbeler.

Lista de Exercícios de Estática / Resistência dos Materiais Fonte: ESTATICA: Mecânica para engenharia. 10ª edição. R.C.Hibbeler. Lista de Exercícios de Estática / Resistência dos Materiais Fonte: ESTATICA: Mecânica para engenharia. 10ª edição. R.C.Hibbeler. MOMENTO DE UMA FORÇA 2D E 3D 01) A chave de boca é usada para soltar o parafuso.

Leia mais

1 Introdução 3. 2 Estática de partículas Corpos rígidos: sistemas equivalentes SUMÁRIO. de forças 67. xiii

1 Introdução 3. 2 Estática de partículas Corpos rígidos: sistemas equivalentes SUMÁRIO. de forças 67. xiii SUMÁRIO 1 Introdução 3 1.1 O que é a mecânica? 4 1.2 Conceitos e princípios fundamentais mecânica de corpos rígidos 4 1.3 Conceitos e princípios fundamentais mecânica de corpos deformáveis 7 1.4 Sistemas

Leia mais

Física D Semiextensivo v. 1

Física D Semiextensivo v. 1 Física D Semiextensivo v. 1 Exercícios 01) 01 02) B 03) A 01. Verdadeira. 02. Falsa. Pressão é uma grandeza escalar. 04. Falsa. Quantidade de movimento é grandeza vetorial. 08. Falsa. Impulso e velocidade

Leia mais

Estática do ponto material e do corpo extenso

Estática do ponto material e do corpo extenso Estática do ponto material e do corpo extenso Estática do ponto material e do corpo extenso Estática é a área da Física que estuda as condições de equilíbrio do ponto material e do corpo extenso. Estática

Leia mais

Leitura obrigatória Mecânica Vetorial para Engenheiros, 5ª edição revisada, Ferdinand P. Beer, E. Russell Johnston, Jr.

Leitura obrigatória Mecânica Vetorial para Engenheiros, 5ª edição revisada, Ferdinand P. Beer, E. Russell Johnston, Jr. PUC - Goiás Curso: Engenharia Civil Disciplina: Mecânica Vetorial Corpo Docente: Geisa Pires Turma:----------- Plano de Aula Data: ------/--------/---------- Leitura obrigatória Mecânica Vetorial para

Leia mais

1 Introdução 3. 2 Estática de partículas 17 SUMÁRIO. Forças no plano 18. Forças no espaço 47

1 Introdução 3. 2 Estática de partículas 17 SUMÁRIO. Forças no plano 18. Forças no espaço 47 SUMÁRIO 1 Introdução 3 1.1 O que é mecânica? 4 1.2 Conceitos e princípios fundamentais 4 1.3 Sistemas de unidades 7 1.4 Conversão de um sistema de unidades para outro 12 1.5 Método de resolução de problemas

Leia mais

Apresentação da Disciplina MECÂNICA APLICADA. Prof. André Luis Christoforo.

Apresentação da Disciplina MECÂNICA APLICADA. Prof. André Luis Christoforo. Objetivos da Estática: 01 Universidade Federal de São Carlos Departamento de Engenharia Civil - DECiv Apresentação da Disciplina MECÂNICA APICADA Prof. André uis Christoforo christoforoal@yahoo.com.br

Leia mais

MECÂNICA 1 RESUMO E EXERCÍCIOS* P1

MECÂNICA 1 RESUMO E EXERCÍCIOS* P1 MECÂNICA 1 RESUMO E EXERCÍCIOS* P1 *Exercícios de provas anteriores escolhidos para você estar preparado para qualquer questão na prova. Resoluções em simplificaaulas.com RESULTANTE DE FORÇAS R = F i MOMENTO

Leia mais

Sumário. Estática das Partículas... 1 CAPÍTULO 1

Sumário. Estática das Partículas... 1 CAPÍTULO 1 Sumário CAPÍTULO 1 Estática das Partículas... 1 1.1 Fundamentos... 1 1.1.1 Introdução.... 1 1.1.2 Princípios da Estática... 5 1.1.3 Vínculos e suas Reações... 9 1.2 Estática das Partículas Forças Coplanares....

Leia mais

Momentos de Inércia de Superfícies

Momentos de Inércia de Superfícies PUC Goiás Curso: Engenharia Civil Disciplina: Mecânica dos Sólidos Corpo Docente: Geisa Pires Turma:----------- Plano de Aula Data: ------/--------/---------- Leitura obrigatória Mecânica Vetorial para

Leia mais

Exemplo. T 1 2g = -2a T 2 g = a. τ = I.α. T 1 T 2 g = - 3a a g = - 3a 4a = g a = g/4. τ = (T 1 T 2 )R. T 1 T 2 = Ma/2 T 1 T 2 = a.

Exemplo. T 1 2g = -2a T 2 g = a. τ = I.α. T 1 T 2 g = - 3a a g = - 3a 4a = g a = g/4. τ = (T 1 T 2 )R. T 1 T 2 = Ma/2 T 1 T 2 = a. Exercícios Petrobras 2008 eng. de petróleo Dois corpos de massa m 1 = 2 kg e m 2 = 1 kg estão fixados às pontas de uma corda com massa e elasticidade desprezíveis, a qual passa por uma polia presa ao

Leia mais

Mecânica Un.2. Momento em relação a um Ponto. Créditos: Professor Leandro

Mecânica Un.2. Momento em relação a um Ponto. Créditos: Professor Leandro Mecânica Un.2 Momento em relação a um Ponto Créditos: Professor Leandro Equilíbrio Equilíbrio Para que uma partícula esteja em equilíbrio, basta que a o resultante das forças aplicadas seja igual a zero.

Leia mais

efeito: movimento P = m. g

efeito: movimento P = m. g CAPÍTULO I 1 REVISÃO DE MECÂNICA GERAL CONCEITOS BÁSICOS I. FORÇA A. Conceito: Força é toda a grandeza capaz de provocar movimento, alterar o estado de movimento ou provocar deformação em um corpo. É uma

Leia mais

Prof. Michel Sadalla Filho

Prof. Michel Sadalla Filho MECÂNICA APLICADA Prof. Michel Sadalla Filho CONCEITOS FUNDAMENTAIS ( 2 ): SISTEMAS UNIDADES + GRANDEZAS ESCALARES E VETORIAIS... Referência HIBBELER, R. C. Mecânica Estática. 10 ed. São Paulo: Pearson

Leia mais

Arquitetura e Urbanismo

Arquitetura e Urbanismo Arquitetura e Urbanismo Sistemas Estruturais 1 APONTAMENTOS DE AULA Prof. Ricardo Karvat http://paginapessoal.utfpr.edu.br/karvat 2016/2 CLASSIFICAÇÃO DAS ESTRUTURAS ESTRUTURAS: Estrutura é todo conjunto

Leia mais

Formato: utilizar o editor de equações do word, fonte arial 12. Não serão aceitas resoluções em outro formato.

Formato: utilizar o editor de equações do word, fonte arial 12. Não serão aceitas resoluções em outro formato. APOSTILA DE EXERCÍCIOS RESISTÊNCIA DOS MATERIAIS, 1a UNIDADE Prof. Felix Silva Barreto Data de entrega: Até às 23:59 do dia 19/07/2016. Não serão aceitas resoluções enviadas após este horário. Enviar para

Leia mais

EME 311 Mecânica dos Sólidos

EME 311 Mecânica dos Sólidos 2 ESTÁTICA DOS CORPOS RÍGIDOS EME 311 Mecânica dos Sólidos - CAPÍTULO 2 - Profa. Patricia Email: patty_lauer@unifei.edu.br IEM Instituto de Engenharia Mecânica UNIFEI Universidade Federal de Itajubá 2.1

Leia mais

MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA

MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA Nona E 2 Estática CAPÍTULO MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA Ferdinand P. Beer E. Russell Johnston, Jr. Notas de Aula: J. Walt Oler Teas Tech Universit das Partículas Conteúdo Introdução Resultante

Leia mais

ESTÁTICA DOS CORPOS RÍGIDOS. Exercícios

ESTÁTICA DOS CORPOS RÍGIDOS. Exercícios ESÁICA DOS CORPOS RÍGIDOS Um caso particular de movimento é o repouso --- movimento nulo. Há repouso quando os agentes causadores do movimento se compensam ou equilibram. Daí se dizer que um corpo em repouso

Leia mais

Mecânica. CINEMÁTICA: posição, velocidade e aceleração ESTÁTICA: equilíbrio DINÂMICA: causas do movimento

Mecânica. CINEMÁTICA: posição, velocidade e aceleração ESTÁTICA: equilíbrio DINÂMICA: causas do movimento Mecânica A teoria do movimento é denominada MECÂNICA CINEMÁTICA: posição, velocidade e aceleração ESTÁTICA: equilíbrio DINÂMICA: causas do movimento Estática É a parte da MECÂNICA que estuda o EQUILÍBRIO

Leia mais

Estática. Prof. Willyan Machado Giufrida. Estática

Estática. Prof. Willyan Machado Giufrida. Estática Estática Conceito de Momento de uma Força O momento de uma força em relação a um ponto ou eixo fornece uma medida da tendência dessa força de provocar a rotação de um corpo em torno do ponto ou do eixo.

Leia mais

Unidade: Equilíbrio do Ponto material e Momento de uma. Unidade I: força

Unidade: Equilíbrio do Ponto material e Momento de uma. Unidade I: força Unidade: Equilíbrio do Ponto material e Momento de uma Unidade I: força 0 3 EQUILÍBRIO DO PONTO MATERIAL 3.1 Introdução Quando algo está em equilíbrio significa que está parado (equilíbrio estático) ou

Leia mais

Lista de Exercícios - Aula 08 Equilíbrio de um Corpo Rígido Capítulo R. C. Hibbeler

Lista de Exercícios - Aula 08 Equilíbrio de um Corpo Rígido Capítulo R. C. Hibbeler Lista de Exercícios - Aula 08 Equilíbrio de um Corpo Rígido Capítulo R. C. Hibbeler A primeira condição para que um corpo rígido esteja em equilíbrio é que a somatória das forças que agem sobre o corpo

Leia mais

Vetores. Grandeza Escalar precisa somente de um número e sua unidade.

Vetores. Grandeza Escalar precisa somente de um número e sua unidade. Vetores Grandeza Escalar precisa somente de um número e sua unidade. Grandeza Vetorial precisa de módulo, direção e sentido para ficar perfeitamente representado. VETOR É o ente matemático que nos ajuda

Leia mais

SISTEMAS EQUIVALENTES DE FORÇAS EXERCÍCIOS

SISTEMAS EQUIVALENTES DE FORÇAS EXERCÍCIOS SISTEMAS EQUIVALENTES DE FORÇAS EXERCÍCIOS 1. Uma força P é aplicada ao pedal do freio em A. Sabendo que P = 450 N e = 30, determine o momento de P em relação a B. 2. Uma força P de 400 N é aplicada ao

Leia mais

ENG1200 Mecânica Geral Lista de Exercícios 1 Equilíbrio da Partícula

ENG1200 Mecânica Geral Lista de Exercícios 1 Equilíbrio da Partícula ENG1200 Mecânica Geral 2013.2 Lista de Exercícios 1 Equilíbrio da Partícula Questão 1 - Prova P1 2013.1 Determine o máximo valor da força P que pode ser aplicada na estrutura abaixo, sabendo que no tripé

Leia mais

Resistência dos Materiais

Resistência dos Materiais Resistência dos Materiais Prof. Antonio Dias Antonio Dias / Cap.04 1 Resultantes de um sistema de forças Prof. Antonio Dias Antonio Dias / Cap.04 2 Objetivo Discutir o conceito do momento de uma força

Leia mais

ESTÁTICA DO PONTO MATERIAL EXERCÍCIOS

ESTÁTICA DO PONTO MATERIAL EXERCÍCIOS ESTÁTICA DO PONTO MATERIAL EXERCÍCIOS 1. Quando um homem está deitado numa rede (de massa desprezível), as forças que esta aplica na parede formam um angulo de 30 com a horizontal, e a intensidade de cada

Leia mais

UERJ/DFNAE Física Geral - Lista /2

UERJ/DFNAE Física Geral - Lista /2 UERJ/DFNAE Física Geral - Lista 2-2018/2 1. Identifique as forças que atuam sobre os corpos indicados nas figuras. 2. As massas e as coordenadas dos centros de massa de três blocos de chocolate são dadas

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO Prof. Bruno Farias Introdução Neste capítulo vamos aprender: Como descrever a rotação

Leia mais

Vetores. É tudo aquilo que pode ser medido em um fenômeno físico. Serve para entendermos como funciona e porque ocorre qualquer fenômeno físico.

Vetores. É tudo aquilo que pode ser medido em um fenômeno físico. Serve para entendermos como funciona e porque ocorre qualquer fenômeno físico. Grandezas Vetores É tudo aquilo que pode ser medido em um fenômeno físico. Serve para entendermos como funciona e porque ocorre qualquer fenômeno físico. GRANDEZA ESCALAR São aquelas medidas que precisam

Leia mais

Objetivo: Determinar a equação da curva de deflexão e também encontrar deflexões em pontos específicos ao longo do eixo da viga.

Objetivo: Determinar a equação da curva de deflexão e também encontrar deflexões em pontos específicos ao longo do eixo da viga. - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Deflexão de Vigas Objetivo:

Leia mais

Lista de Exercícios - Aula 01

Lista de Exercícios - Aula 01 Lista de Exercícios - Aula 01 Lei dos Cossenos e Senos 5 (R. C Hibbeler Mecânica - Estática exemplo 2.1 p.16). O parafuso tipo gancho da figura está sujeito a duas forças F 1 e F 2. Determine a intensidade

Leia mais

Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais I. Capítulo 6 Flexão

Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais I. Capítulo 6 Flexão Capítulo 6 Flexão 6.1 Deformação por flexão de um elemento reto A seção transversal de uma viga reta permanece plana quando a viga se deforma por flexão. Isso provoca uma tensão de tração de um lado da

Leia mais

LISTA 2 1) Sabendo que ɑ= 50, determine a força resultante das três forças mostradas.

LISTA 2 1) Sabendo que ɑ= 50, determine a força resultante das três forças mostradas. LISTA 2 1) Sabendo que ɑ= 50, determine a força resultante das três forças mostradas. 2) Dois cabos ligados em C são carregados tal como mostra a figura. Sabendo que a tração no cabo AC é 1350 N e 675

Leia mais

Cap.12: Rotação de um Corpo Rígido

Cap.12: Rotação de um Corpo Rígido Cap.12: Rotação de um Corpo Rígido Do professor para o aluno ajudando na avaliação de compreensão do capítulo. Fundamental que o aluno tenha lido o capítulo. Introdução: Produto vetorial Ilustração da

Leia mais

Mecânica Técnica. Aula 17 Estudo de Treliças Planas. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica Técnica. Aula 17 Estudo de Treliças Planas. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues Aula 17 Estudo de Treliças Planas Tópicos Abordados Nesta Aula Estudo de treliças Planas. Método dos Nós. Método das Seções. Treliças Simples A treliça é uma estrutura de elementos delgados ligados entre

Leia mais

Estática. Prof. Willyan Machado Giufrida. Estática

Estática. Prof. Willyan Machado Giufrida. Estática Estática Sistemas Equivalentes Representa um sistema no qual a força e o momento resultantes produzam na estrutura o mesmo efeito que o carregamento original aplicado. Redução de um Sistema de Forças Coplanares

Leia mais

Lista de Exercícios-PRA - Estática R. C. Hibbeler

Lista de Exercícios-PRA - Estática R. C. Hibbeler Lista de Exercícios-PRA - Estática R. C. Hibbeler I - Decomposição de vetores em componentes 1 - Determine a intensidade da força resultante e sua direção, medida no sentido anti-horário a partir do eixo

Leia mais

Tensão. Introdução. Introdução

Tensão. Introdução. Introdução Capítulo 1: Tensão Adaptado pela prof. Dra. Danielle Bond Introdução A resistência dos materiais é um ramo da mecânica que estuda as relações entre as cargas externas aplicadas a um corpo deformável e

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I EQUILÍBRIO. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I EQUILÍBRIO. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I EQUILÍBRIO Prof. Bruno Farias Introdução Neste capítulo vamos aprender: As condições que

Leia mais

CAPÍTULO I REVISÃO DE MECÂNICA GERAL CONCEITOS BÁSICOS

CAPÍTULO I REVISÃO DE MECÂNICA GERAL CONCEITOS BÁSICOS CAPÍTULO I REVISÃO DE MECÂNICA GERAL CONCEITOS BÁSICOS I. FORÇA A. CONCEITO: Força é toda a grandeza capaz de provocar movimento, alterar o estado de movimento ou provocar deformação em um corpo. É uma

Leia mais

1 Vetores no Plano e no Espaço

1 Vetores no Plano e no Espaço 1 Vetores no Plano e no Espaço Definimos as componentes de um vetor no espaço de forma análoga a que fizemos com vetores no plano. Vamos inicialmente introduzir um sistema de coordenadas retangulares no

Leia mais

Princípios Físicos do Controle Ambiental

Princípios Físicos do Controle Ambiental Princípios Físicos do Controle Ambiental Capítulo 02 Conceitos Básicos Sobre Mecânica Técnico em Controle Ambiental 18/05/2017 Prof. Márcio T. de Castro Parte I 2 Mecânica Mecânica: ramo da física dedicado

Leia mais

Capítulo 11 Rotações e Momento Angular

Capítulo 11 Rotações e Momento Angular Capítulo 11 Rotações e Momento Angular Corpo Rígido Um corpo rígido é um corpo ideal indeformável de tal forma que a distância entre 2 pontos quaisquer do corpo não muda nunca. Um corpo rígido pode realizar

Leia mais

Figura 9.1: Corpo que pode ser simplificado pelo estado plano de tensões (a), estado de tensões no interior do corpo (b).

Figura 9.1: Corpo que pode ser simplificado pelo estado plano de tensões (a), estado de tensões no interior do corpo (b). 9 ESTADO PLANO DE TENSÕES E DEFORMAÇÕES As tensões e deformações em um ponto, no interior de um corpo no espaço tridimensional referenciado por um sistema cartesiano de coordenadas, consistem de três componentes

Leia mais

Dinâmica. Prof.ª Betty Carvalho Rocha Gonçalves do Prado

Dinâmica. Prof.ª Betty Carvalho Rocha Gonçalves do Prado Dinâmica Prof.ª Betty Carvalho Rocha Gonçalves do Prado betty.prado@kroton.com.br bettycarvalho@ig.com.br CORPO RÍGIDO São corpos cuja dimensões não são desprezáveis Corpo rígido É um conceito limite ideal,

Leia mais

MECÂNICA GERAL 1. Marcel Merlin dos Santos

MECÂNICA GERAL 1. Marcel Merlin dos Santos MECÂNICA GERAL 1 Marcel Merlin dos Santos TÓPICOS DE HOJE Princípio da transmissibilidade Produto Vetorial Componentes cartesianas Momento de uma força em relação a um ponto Projeção de um vetor sobre

Leia mais

Fís. Leonardo Gomes (Caio Rodrigues)

Fís. Leonardo Gomes (Caio Rodrigues) Semana 15 Leonardo Gomes (Caio Rodrigues) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. Equilíbrio de

Leia mais

Mecânica 1. Prova 1 Resumo

Mecânica 1. Prova 1 Resumo Mecânica 1 Prova 1 Resumo Conceitos 1. Vetores 2. Estática 3. Hidrostática 1. Vetores a. Módulo A = (xı + yȷ + zk) = x, + y, + z, b. Produto Vetorial com Incógnita Vetorial x = u v u, + α u, α ε R c. Produto

Leia mais

Vetores de força. Objetivos da aula. Mostrar como adicionar forças e decompô-las em componentes usando a lei do paralelogramo.

Vetores de força. Objetivos da aula. Mostrar como adicionar forças e decompô-las em componentes usando a lei do paralelogramo. Objetivos da aula Vetores de força Mostrar como adicionar forças e decompô-las em componentes usando a lei do paralelogramo. Expressar a força e sua posição na forma de um vetor cartesiano e explicar como

Leia mais

Resistência dos Materiais

Resistência dos Materiais Resistência dos Materiais Prof. Antonio Dias Antonio Dias / Resistência dos Materiais / Cap.05 1 Objetivos deste capítulo Desenvolver as equações de equilíbrio para um corpo rígido. Introduzir o conceito

Leia mais

Fís. Monitor: Guilherme Brigagão

Fís. Monitor: Guilherme Brigagão Fís. Professor: Silvio Sartorelli Monitor: Guilherme Brigagão Força Magnética em Fio 06 set RESUMO Vamos ver agora o que acontece com um fio metálico retilíneo, percorrido por corrente elétrica, quando

Leia mais

CAPÍTULO 11 ROTAÇÕES E MOMENTO ANGULAR

CAPÍTULO 11 ROTAÇÕES E MOMENTO ANGULAR O que vamos estudar? CAPÍTULO 11 ROTAÇÕES E MOMENTO ANGULAR Seção 11.1 Cinemática do corpo rígido Seção 11.2 Representação vetorial das rotações Seção 11.3 Torque Seção 11.4 Momento angular Seção 11.5

Leia mais

2 de novembro de 2009

2 de novembro de 2009 MECÂNICA - de novembro de 009 6 massa e Centróide de um Aplicações; Conceitos e definições; Determinação da localização. Aplicações Para projetar a estrutura de apoio de um tanque de água, é necessário

Leia mais

Tipos de forças fundamentais na Natureza

Tipos de forças fundamentais na Natureza Tipos de Forças Tipos de forças fundamentais na Natureza Existem quatro tipos de interações/forças fundamentais na Natureza que atuam entre partículas a uma certa distância umas das outras: Gravitacional

Leia mais

Disciplina: Sistemas Estruturais Assunto: Principios da Estática e da Mecânica Prof. Ederaldo Azevedo Aula 2 e-mail: ederaldoazevedo@yahoo.com.br 2. PRINCIPIOS BÁSICOS DA ESTÁTICA E DA MECÂNICA A ciência

Leia mais

Mecânica Geral 17/02/2016. Resultante de Duas Forças

Mecânica Geral 17/02/2016. Resultante de Duas Forças Mecânica Geral Capítulo 2 Estática de Partículas Resultante de Duas Forças Força: ação de um corpo sobre outro; caracterizada por seu ponto de aplicação, sua intensidade, sua direção, e seu sentido. Evidênciaseperimentaismostramque

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO Prof. Bruno Farias Introdução Neste capítulo vamos aprender: Como descrever a rotação

Leia mais

Capítulo 2 Vetores. 1 Grandezas Escalares e Vetoriais

Capítulo 2 Vetores. 1 Grandezas Escalares e Vetoriais Capítulo 2 Vetores 1 Grandezas Escalares e Vetoriais Eistem dois tipos de grandezas: as escalares e as vetoriais. As grandezas escalares são aquelas que ficam definidas por apenas um número real, acompanhado

Leia mais

CAPÍTULO I REVISÃO DE MECÂNICA GERAL CONCEITOS BÁSICOS

CAPÍTULO I REVISÃO DE MECÂNICA GERAL CONCEITOS BÁSICOS CAPÍTULO I 1 REVISÃO DE MECÂNICA GERAL CONCEITOS BÁSICOS I. FORÇA A. CONCEITO: Força é toda a grandeza capaz de provocar movimento, alterar o estado de movimento ou provocar deformação em um corpo. É uma

Leia mais

Prof. MSc. David Roza José -

Prof. MSc. David Roza José - 1/22 2/22 Introdução Até o momento consideramos que a força de atração exercida pela terra num corpo rígido poderia ser representada por uma única força W, aplicada no centro de gravidade do corpo. O quê

Leia mais

Equilíbrio de um Corpo Rígido Cap. 5

Equilíbrio de um Corpo Rígido Cap. 5 Objetivos MECÂNICA - ESTÁTICA Equilíbrio de um Corpo Rígido Cap. 5 Desenvolver as equações de equilíbrio para um corpo rígido. Introduzir o conceito de diagrama de corpo livre para um corpo rígido. Mostrar

Leia mais

RESISTÊNCIA DOS MATERIAIS CONTROLE DE QUALIDADE INDUSTRIAL Aula 01 INTRODUÇÃO

RESISTÊNCIA DOS MATERIAIS CONTROLE DE QUALIDADE INDUSTRIAL Aula 01 INTRODUÇÃO CONTROLE DE QUALIDADE INDUSTRIAL A resistência dos materiais é um assunto bastante antigo. Os cientistas da antiga Grécia já tinham o conhecimento do fundamento da estática, porém poucos sabiam do problema

Leia mais

CAPÍTULO IV GEOMETRIA DAS MASSAS

CAPÍTULO IV GEOMETRIA DAS MASSAS CPÍTULO IV GEOMETRI DS MSSS I. SPECTOS GERIS pesar de não estar incluída dentro dos objetivos principais de Resistência dos Materiais, vamos estudar algumas grandezas características da geometria das massas

Leia mais

Resistência dos Materiais

Resistência dos Materiais Resistência dos Materiais Prof. Antonio Dias Antonio Dias / Resistência dos Materiais 1 Flexão Diagramas de força cortante e momento fletor Elementos longos e retos que suportam cargas perpendiculares

Leia mais

Equilíbrio de uma Partícula Cap. 3 T CE T CD P B T DC =-T CD T DC -T CD

Equilíbrio de uma Partícula Cap. 3 T CE T CD P B T DC =-T CD T DC -T CD Eemplo. MEÂNIA - ESTÁTIA esenhar todos os diagramas de corpo livre possíveis para o problema mostrado na figura abaio, considerando todos os nomes de forças como vetores. Equilíbrio de uma Partícula ap.

Leia mais

UNIVERSIDADE CATÓLICA DE GOIÁS

UNIVERSIDADE CATÓLICA DE GOIÁS 01 NOTA DE AULA 0 UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA Disciplina: FÍSICA GERAL E EXPERIMENTAL I (MAF 01) Coordenador: PROF. EDSON VAZ CAPÍTULOS: 05 e 06 CAPÍTULO 5 FORÇA

Leia mais

ENGENHARIA CIVIL. Prof. Msc. HELBER HOLLAND

ENGENHARIA CIVIL. Prof. Msc. HELBER HOLLAND ENGENHARIA CIVIL REVISÃO TRELIÇAS Reações em Estruturas Prof. Msc. HELBER HOLLAND As treliças são um tipo de estrutura usado em engenharia normalmente em projetos de pontes e edifícios. Uma treliça é uma

Leia mais

Instituto Politécnico de Tomar Escola Superior de Tecnologia de Tomar ÁREA INTERDEPARTAMENTAL DE FÍSICA

Instituto Politécnico de Tomar Escola Superior de Tecnologia de Tomar ÁREA INTERDEPARTAMENTAL DE FÍSICA Engenharia Civil Exercícios de Física de Física Ficha 8 Corpo Rígido Capítulo 6 Ano lectivo 010-011 Conhecimentos e capacidades a adquirir pelo aluno Aplicação das leis fundamentais da dinâmica. Aplicação

Leia mais

MECÂNICA - MAC Prof a Michèle Farage. 14 de março de Programa Princípios Gerais Forças, vetores e operações vetoriais

MECÂNICA - MAC Prof a Michèle Farage. 14 de março de Programa Princípios Gerais Forças, vetores e operações vetoriais MECÂNICA - MAC010-01 Prof a Michèle Farage 14 de março de 2011 Programa Princípios Gerais Forças, vetores e operações vetoriais Programa 1. Introdução: conceitos e definições básicos da Mecânica, sistemas

Leia mais

CURSO SUPERIOR DE ENGENHARIA CIVIL TEORIA DAS ESTRUTURAS II

CURSO SUPERIOR DE ENGENHARIA CIVIL TEORIA DAS ESTRUTURAS II CURSO SUPERIOR DE ENGENHARIA CIVIL TEORIA DAS ESTRUTURAS II PROFESSOR: Eng. CLÁUDIO MÁRCIO RIBEIRO ESPECIALISTA EM ESTRUTURAS Estrutura Definição: Estrutura é um sistema destinado a proporcionar o equilíbrio

Leia mais

LISTA DE EXERCÍCIOS Nº 4

LISTA DE EXERCÍCIOS Nº 4 Estudante: Curso: Engenharia Civil Disciplina: Mecânica da Partícula Período Letivo: 2/2015 Semestre: 2º Docente: MSc. Demetrius dos Santos Leão RA: Sala/ Turma: LISTA DE EXERCÍCIOS Nº 4 Decomposição de

Leia mais

ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO:

ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO: Professor: Edney Melo ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO: 1. Cálculo Diferencial Em vários ramos da ciência, é necessário algumas vezes utilizar as ferramentas básicas do cálculo, inventadas

Leia mais

FORÇA TICA FORÇA A RESULTANTE

FORÇA TICA FORÇA A RESULTANTE ESTÁTIC TIC Estuda a causa dos movimentos, sem se preocupar com os movimentos. FORÇ gente capaz de produzir variações no estado de movimento de um corpo e ou produzir deformações neste corpo. É uma grandeza

Leia mais

MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA

MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA Nona E 6 Análise CAPÍTULO MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA erdinand P. Beer E. Russell Johnston, Jr. Notas de Aula: J. Walt Oler Texas Tech University de Estruturas Conteúdo Introdução Definição

Leia mais

Lista 12: Rotação de corpos rígidos

Lista 12: Rotação de corpos rígidos Lista 12: Rotação de Corpos Rígidos Importante: i. Ler os enunciados com atenção. ii. Responder a questão de forma organizada, mostrando o seu raciocínio de forma coerente. iii. iv. Siga a estratégia para

Leia mais

Conceitos de vetores. Decomposição de vetores

Conceitos de vetores. Decomposição de vetores Conceitos de vetores. Decomposição de vetores 1. Introdução De forma prática, o conceito de vetor pode ser bem assimilado com auxílio da representação matemática de grandezas físicas. Figura 1.1 Grandezas

Leia mais

FÍSICA B ª SÉRIE EXERCÍCIOS COMPLEMENTARES ALUNO

FÍSICA B ª SÉRIE EXERCÍCIOS COMPLEMENTARES ALUNO EXERCÍCIOS COMPLEMENTARES ALUNO TURMA: FÍSICA B - 2012 1ª SÉRIE DATA: / / 1) Analise as afirmativas abaixo sobre o conceito de grandezas escalares e vetoriais. I Uma grandeza é chamada de escalar quando

Leia mais

Mecânica Vetorial Para Engenheiros: Estática

Mecânica Vetorial Para Engenheiros: Estática AULA 12 Prof.: Anastácio Pinto Gonçalves ilho Introdução Para problemas que tratam do equilíbrio de estruturas feitas de várias partes unidas, as forças internas, assim como as forças externas devem ser

Leia mais

FIS-14 Lista-02 Agosto/2012

FIS-14 Lista-02 Agosto/2012 FIS-14 Lista-02 Agosto/2012 1. Substitua o sistema de forças que age sobre a viga por uma força e um momento de binário equivalente no ponto B. 2. Substitua o sistema de forças por uma força e um momento

Leia mais

MECÂNICA APLICADA. Paulo Sérgio Costa Lino UNEMAT - Barra do Bugres

MECÂNICA APLICADA. Paulo Sérgio Costa Lino UNEMAT - Barra do Bugres MECÂNICA APLICADA UNEMAT - Barra do Bugres MECÂNICA APLICADA Universidade do Estado de Mato Grosso - UNEMAT Campus enê Barboux Com 57 exemplos e 19 ilustrações Barra do Bugres - MT Setembro de 216 Prefácio

Leia mais