4.4 Limite e continuidade

Tamanho: px
Começar a partir da página:

Download "4.4 Limite e continuidade"

Transcrição

1 4.4 Limite e continuidade Noções Topológicas em R : Dados dois pontos quaisquer (x 1, y 1 ) e (x, y ) de R indicaremos a distância entre eles por då(x 1, y 1 ), (x, y )è=(x 1 x ) + (y 1 y ). Definição Uma vizinhança do ponto (x 0, y 0 ) R de raio r > 0 é o conjunto V = {(x, y) R ; d[(x, y), (x 0, y 0 )] < r} Exemplo A vizinhança de (1, ) de raio y é o conjunto {(x, y) R ; d[(x, y), (1, )] < } (1, ) cuja representação gráfica é o disco dado ao lado. O x Definição Sejam S um subconjunto do R e (x 0, y 0 ) R. Dizemos que (x 0, y 0 ) é um ponto de acumulação de S, se toda vizinhança V de (x 0, y 0 ) é tal que V S {(x 0, y 0 )}. Exemplo a) Se S = {(x, y) R ; y > x}, então (, ) é um ponto de acumulação de S. (1, ) é ponto de acumulação de S. (3, 1) não é ponto de acumulação de S. O conjunto dos pontos de acumulação de S é {(x, y) R ; y x}. S y Pontos de acumulação de S y x 1 x Eliana Prates, Ivana Matos, Joseph Yartey e Silvia Velloso 53

2 b) Se S = {(x, y) R ; y > x }Ë{(, )} então (, ) S mas não é ponto de acumulação de S. O conjunto dos pontos de acumulação de S é {(x, y) R ; y x }. S y Pontos de acumulação de S y (, ) x x Definição Sejam L R, uma função f(x, y) cujo domínio indicaremos por D e (x 0, y 0 ) R um ponto de acumulação de D. Dizemos que L é o ite de f(x, y) em (x 0, y 0 ) se para todo ǫ > 0, existe δ > 0 tal que (x, y) D e 0 < d [(x, y), (x 0, y 0 )] < δ f(x, y) L < ǫ Exemplo Mostre que (x + y) = 5. (x,y) (1,) Eliana Prates, Ivana Matos, Joseph Yartey e Silvia Velloso 54

3 De fato: (x + y) 5 = (x 1) + (y ) x 1 + y (x 1) + (y ) + (x 1) + (y ) 3då(x, y), (1, )è Dado ǫ > 0, seja δ = ǫ 3 ; då(x, y), (1, )è<δ implica que (x + y) 5 < 3δ = ǫ. Logo (x + y) = 5. (x,y) (1,) Observação Do Exemplo 4.5.3, podemos concluir que se f(x, y) é um polinômio de duas variáveis então f(x, y) = f(x 0, y 0 ). Proposição (Conservação do sinal) Se f(x, y) = L > 0, então existe uma vizinhança V de (x 0, y 0 ) tal que para todo (x, y) V {(x 0, y 0 )}, f(x, y) > 0. Vale o análogo, para L < 0. Propriedades Operatórias dos ites Sejam as funções f(x, y) e g(x, y) com domínio D e seja (x 0, y 0 ) R um ponto de acumulação de D. Se temos a) k f(x, y) = k L f(x, y) = L 1, b) Se m e n são inteiros, então [f(x, y)]m/n = L m/n, desde que L m/n seja um número real. b) f(x, y) ± g(x, y)=l 1 ± L c) f(x, y) g(x, y)=l 1 L f(x, y) d) Se L 0 então g(x, y) = L 1 L g(x, y) = L, e k constante, Eliana Prates, Ivana Matos, Joseph Yartey e Silvia Velloso 55

4 3x 3 y Exemplo a) (x,y) (1,) x = = 1 = (3) (x,y) (1,) x3 y (x,y) (1,) (x,y) (1,) x (x,y) (1,) = (x,y) (1,) b) Como conseqüência das propriedades operatórias, dada qualquer função racional P(x, y) f(x, y) = Q(x, y) e qualquer (x 0, y 0 ) R pertencente a seu domínio (isto é, Q(x, y) 0) temos que P(x, y) Q(x, y) = P(x 0, y 0 ) Q(x 0, y 0 ) (Análogo ao que foi visto no Cálculo A, isto quer dizer que a função é contínua em (x 0, y 0 ).) x y y c) (x,y) (, 1) xy 4 = ( 1) ( 1) ( 1) 4 = 9. d) Em alguns casos, mesmo quando o ponto não pertence a seu domínio, podemos calcular ites de funções racionais cancelando fatores do numerador e denominador 3x (y 1) (x,y) (1, 1) xy (y + 1) = 3x (y 1)(y + 1) 3x (y 1) = = 6 (x,y) (1, 1) xy (y + 1) (x,y) (1, 1) xy Definição Uma função f : D R R é dito itada se existe um número real M > 0 tal que f(x, y) < M para todo (x, y) D. Proposição Se f(x, y) = 0 e g(x, y) M para todo (x, y) V, V uma vizinhança de (x 0, y 0 ), então f(x, y) g(x, y) = 0. Exemplo Mostre que x sen1 y=0. Como sen ( 1 y ) 1=M e x sen1 y=0. x = 0, conclui-se pelo proposição que Eliana Prates, Ivana Matos, Joseph Yartey e Silvia Velloso 56

5 Proposição (Teorema do Confronto) Sejam f, g e h funções de D R R, e seja (x 0, y 0 ) um ponto de acumulação de D. Se g(x, y) f(x, y) h(x, y) para todo (x, y) (x 0, y 0 ) em um disco com centro em (x 0, y 0 ) e h(x, y) = L, então Exemplo Mostre que sendo que 0 = f(x, y) = L. x y x + y = 0. 0 x y x + y = x y x + y x y = y, x g(x, y) = L, y = 0, conclui-se pelo teorema do confronto, que também x y x + y =0 e, conseqüentemente x y x + y = 0. Teorema Seja f : D R R uma função. Se o ite de f quando (x, y) aproxima-se de (x 0, y 0 ) existe, então ele é único. Observação Do teorema, podemos concluir que se duas curvas passam pelo ponto (x 0, y 0 ) e originam valores diferentes para o ite de uma função, então o ite da função quando (x, y) se aproxima de (x 0, y 0 ) não existe. Quando (x, y) se aproxima de (x 0, y 0 ) ao longo de uma determinada direção C, ao ite direcional. Exemplo Calcule x y x + y f(x, y) dá-se o nome (x,y) C Seja a curva C 1 de equação y = 0 Seja a curva C de equação x = 0 x 0 f(x, y) = x 0 x + 0 = x x 0 x = 1 (x,y) C 1 0 y f(x, y) = y y = y y 0 y (x,y) C = 1 Eliana Prates, Ivana Matos, Joseph Yartey e Silvia Velloso 57

6 Logo, x y não existe. x + y Exemplo Calcule (x,y) (1,0) (x 1)y (x 1) + y Seja a curva C 1 de equação y = 0 (x 1) 0 f(x, y) = (x,y) (1,0) x 1 (x 1) + 0 = 0 x 1 (x 1) = 0 (x,y) C 1 Seja a curva C de equação x = 1 f(x, y) = (x,y) (1,0) y 0 (x,y) C Seja a curva C 3 de equação y = x 1 (1 1) y (1 1) + y = y 0 0 y = 0 (x 1) (x 1) f(x, y) = (x,y) (1,0) x 1 (x 1) + (x 1) = (x 1) x 1 (x 1) = 1 (x,y) C 3 Logo, x y não existe. x + y Exemplo Calcule x y x 4 + y Seja a curva C 1 de equação y = mx (m constante) f(x, y) = x 0 (x,y) C 1 Seja a curva C de equação y = x x mx x 4 + (mx) = x 0 mx x + m = 0 x x f(x, y) = x 0 x 4 + (x ) = x 4 x 0 x = 1 4 (x,y) C Logo, x y não existe. x 4 + y Eliana Prates, Ivana Matos, Joseph Yartey e Silvia Velloso 58

7 Observação O cálculo de ites direcionais para o ponto (x 0, y 0 ) (0, 0), pode eixosx = X x 0 ser facilitado ao se efetuar uma translação dos que coloque a nova y = Y y 0 origem em (x 0, y 0 ), ficando assim o estudo de um ite em (0, 0). Exemplo Calcule (x,y) (1,1) x y (x 1) + (y 1) Fazemos a mudançax = X + 1 y = Y + 1 então temos, (x,y) (1,1) x y (x 1) + (y 1) = (X,Y ) (0,0) X Y X + Y Seja a curva C 1 de equação Y = mx (m constante) f(x, y) = (X,Y ) (0,0) X 0 (X,Y ) C 1 Como o ite direcional depende de m X mx X + (mx) = X 0 X(1 m) X 1 + m = ± 1 m 1 + m Logo, (x,y) (1,1) x y não existe. (x 1) + (y 1) Calculando Limites por Meio das Coordenadas Polares Existem algumas classes de funções, para as quais o cálculo de ites pode ser feito por = r cos θ meio de mudança de variáveis por coordenadas polaresx. y = r sen θ Proposição Seja f : D R R então f(x, y) = L f(x r cos θ, y 0 + r sen θ) = L, uniformemente em θ. Ou seja, o ite f(x, y) existe se, e só se o ite radial de f escrito em coordenadas polares centrado em (x 0, y 0 ) não depende de θ. Exemplo Calcule x + y x y. Usando coordenadas polares vamos verificar se existe r cos θ + r sen θ f(r cos θ, r sen θ) = r cos θ r sen θ = r 1 cos θ sen θ Eliana Prates, Ivana Matos, Joseph Yartey e Silvia Velloso 59

8 1 Como a função, não é itada (se θ = π/4, o denominador é nulo ) a cos θ sen θ convergência não é uniforme em θ e o ite não existe. Exemplo Calcule sen (xy) x + y Usando coordenadas polares vamos verificar se existe f(r, θ) = sen (r cos θ sen θ) r = r cos θ sen θ cos (r cos θ sen θ) r = cos θ sen θ Como o ite depende θ, a convergência não é uniforme em θ e o ite não existe. Exemplo Calcule xy x + y. Usando coordenadas polares vamos verificar se existe (r cos θ)(r sen θ) f(r, θ) = r = r cos θ sen θ r porque cos θ sen θ é uma função de θ itada, portanto xy x + y = 0 = r cos θ sen θ = 0 Exemplo Calcule sen (x + y ) 1 cos x + y. Usando coordenadas polares vamos verificar se existe sen (r ) F(r, θ) = 1 cos (r) = r cos (r ) sen (r) = cos (r ) 4r sen (r ) cos (r) =. Portanto sen (x + y ) 1 cos x + y = Eliana Prates, Ivana Matos, Joseph Yartey e Silvia Velloso 60

9 Observação Em cada um desses exemplos acima, a existência ou inexistência do ite quando r 0 é razoavelmente clara. Contudo a mudança para coordenadas polares nem sempre ajuda e pode até nos levar a conclusões falsas. Por exemplo, o ite pode existir ao longo de toda reta (ou raio) θ =constante e mesmo assim não existir em um sentido mais amplo. Exemplo Calcule x y x 4 + y. Observe que mostramos em exemplo que o ite não existe. Vamos usar coordenadas polares para analisar a existência do ite no ponto (0, 0) f(r cos θ, r sen θ) = (r cos θ)(r sen θ) r 4 cos 4 θ + r sen θ = r cos θ sen θ r cos 4 θ + sen θ Seja s 1 uma reta que passa pelo pólo, não coincidente com o eixo polar, de equação θ nπ, n Z. (r,θ) s 1 r cos θ sen θ r cos 4 θ + sen θ = (r,θ) s 1 0 cos θ sen θ 0 cos 4 θ + sen θ = (r,θ) s 1 0 sen θ = 0. Seja s a reta que contém o eixo polar, de equação θ = nπ, n Z. Nesse caso, (r,θ) s r cos θ sen θ r cos 4 θ + sen θ = r(±1) 0 r (±1) = 0 r = 0. Observamos portanto que, para qualquer reta s que passa pelo pólo, esse ite calculado sobre s é igual a zero. Continuidade Definição 5: Sejam f(x, y) uma função, D R seu domínio e (x 0, y 0 ) D. Dizemos que f(x, y) é contínua em (x 0, y 0 ) se Exemplo 15: f(x, y) = f(x 0, y 0 ). 1) Se f(x, y) é uma função polinomial, então f(x, y) é contínua em qualquer ponto do R. Eliana Prates, Ivana Matos, Joseph Yartey e Silvia Velloso 61

10 ) A seguinte função não contínua na origem: De fato: f(x, y) = 3x y + x 3 se (x, y) (0, 0) x + y 1 se (x, y) = (0, 0) 3x y + x 3 f(x, y) = x + y (x,y) (0,0) por meio das coordenadas polares. Temos 3(r cos θ)(r sen θ) + r 3 cos 3 θ = r cos θ + r sen θ 3r 4 cos θ sen θ + r 3 cos 3 θ = r = ( 3r cos θ sen θ + r cos 3 θ) = 0 Como este valor é diferente de f(0, 0), f é descontínua em (0, 0). 3) A seguinte função é contínua no ponto (3, 1): 3(x 3)(y 1) (x 5 se (x, y) (3, 1) 3) + (y 1) se (x, y) = (3, 1) De fato: 3(x 3)(y 1) 5 f(x, y) = + (x,y) (3,1) (x,y) (3,1) (x 3) + (y 1) (x,y) (3,1) por meio das coordenadas polares. Temos 3(r cos θ)(r sen θ) 5 = + (r cos θ) + (r sen θ) 3 r6 cos θ sen = + 5 θ r = + f(x, y) = + r 3 cos θ sen 5 θ= Como este valor é igual a f(0, 0), f é contínua em (0, 0). Observação: As propriedades das funções contínuas são análogas às das funções contínuas de uma variável. Proposição 4: Sejam f, g : D R R funções contínuas no ponto (x 0, y 0 ). Então: Eliana Prates, Ivana Matos, Joseph Yartey e Silvia Velloso 6

11 i) f + g e f g são contínuas em (x 0, y 0 ). ii) Se f(x 0, y 0 ) 0 então 1 f é contínua em (x 0, y 0 ). Exemplo 15: 1) As funções racionais nos pontos onde os polinômios do denominador não se anulam, são contínuas. ) A função f(x, y) = x3 + y x + 1 é contínua em R. Proposição 5: Se f(x, y) é continua em (x 0, y 0 ), L 1 = f(x 0, y 0 ), e g(z) é uma função de uma variável real tal que existe g(z) = L então g(f(x, y)) = L z L1. Exemplo 16: 1) ) Eliana Prates, Ivana Matos, Joseph Yartey e Silvia Velloso 63

Figura 4.1: Diagrama de representação de uma função de 2 variáveis

Figura 4.1: Diagrama de representação de uma função de 2 variáveis 1 4.1 Funções de 2 Variáveis Em Cálculo I trabalhamos com funções de uma variável y = f(x). Agora trabalharemos com funções de várias variáveis. Estas funções aparecem naturalmente na natureza, na economia

Leia mais

Cálculo II - B profs.: Heloisa Bauzer Medeiros e Denise de Oliveira Pinto 1 2 o semestre de 2017 Aulas 6 e 7 Limites e Continuidade

Cálculo II - B profs.: Heloisa Bauzer Medeiros e Denise de Oliveira Pinto 1 2 o semestre de 2017 Aulas 6 e 7 Limites e Continuidade Cálculo II - B profs.: Heloisa Bauzer Medeiros e Denise de Oliveira Pinto 2 o semestre de 207 Aulas 6 e 7 Limites e Continuidade Estas duas aulas envolvem detalhes muito técnicos. Por essa razão, serão

Leia mais

Respostas sem justificativas não serão aceitas. Além disso, não é permitido o uso de aparelhos eletrônicos. x x = lim.

Respostas sem justificativas não serão aceitas. Além disso, não é permitido o uso de aparelhos eletrônicos. x x = lim. UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL 1-2017.2 1A VERIFICAÇÃO DE APRENDIZAGEM - TURMA GEA Nome Legível RG CPF Respostas sem

Leia mais

Derivadas Parciais Capítulo 14

Derivadas Parciais Capítulo 14 Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS 14.2 Limites e Continuidade Nesta seção, aprenderemos sobre: Limites e continuidade de vários tipos de funções. LIMITES E CONTINUIDADE Vamos comparar o

Leia mais

Resolução dos Exercícios Propostos no Livro

Resolução dos Exercícios Propostos no Livro Resolução dos Eercícios Propostos no Livro Eercício : Considere agora uma função f cujo gráfico é dado por y 0 O que ocorre com f() quando se aproima de por valores maiores que? E quando se aproima de

Leia mais

Limites infinitos e limites no infinito Aula 15

Limites infinitos e limites no infinito Aula 15 Propriedades dos ites infinitos Limites infinitos e ites no infinito Aula 15 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 03 de Abril de 2014 Primeiro Semestre de 2014

Leia mais

Cálculo Diferencial e Integral I CDI I

Cálculo Diferencial e Integral I CDI I Cálculo Diferencial e Integral I CDI I Limites laterais e ites envolvendo o infinito Luiza Amalia Pinto Cantão luiza@sorocaba.unesp.br Limites 1 Limites Laterais a à diretia b à esquerda c Definição precisa

Leia mais

Aula 11. Considere a função de duas variáveis f(x, y). Escrevemos: lim

Aula 11. Considere a função de duas variáveis f(x, y). Escrevemos: lim Aula 11 Funções de 2 variáveis: Limites e Continuidade Considere a função de duas variáveis f(x, y). Escrevemos: f(x, y) = L (x,y) (a,b) quando temos que, se (x, y) (a, b) então f(x, y) L, isto é, se (x,

Leia mais

Matemática para a Economia I - 1 a lista de exercícios Prof. - Juliana Coelho

Matemática para a Economia I - 1 a lista de exercícios Prof. - Juliana Coelho Matemática para a Economia I - 1 a lista de exercícios Prof. - Juliana Coelho 1 - Para cada função abaixo, calcule os valores pedidos, quando for possível: (a) f(x) = x 3 3x + 3x 1, calcule f(0), f( 1)

Leia mais

1.1 Domínios & Regiões

1.1 Domínios & Regiões 1. CAMPOS ESCALARES CÁLCULO 2-2018.2 1.1 Domínios & Regiões 1. Esboce o conjunto R do plano R 2 dada abaixo e determine sua fronteira. Classi que R em: aberto, fechado, itado, compacto, ou conexo. (a)

Leia mais

Cálculo diferencial de Funções de mais de uma variável

Cálculo diferencial de Funções de mais de uma variável MATERIAL DIDÁTICO Professora Sílvia Victer CÁLCULO 2 Cálculo diferencial de Funções de mais de uma variável 1. Funções de mais de uma variável 2. Limites de funções de mais de uma variável 3. Continuidade

Leia mais

Instituto de Matemática - IM/UFRJ Cálculo I - MAC118 1 a Prova - Gabarito - 13/10/2016

Instituto de Matemática - IM/UFRJ Cálculo I - MAC118 1 a Prova - Gabarito - 13/10/2016 Instituto de Matemática - IM/UFRJ Cálculo I - MAC118 1 a Prova - Gabarito - 13/10/2016 Questão 1: (2 pontos) x (a) (0.4 ponto) Calcule o ite: 2 + 3 2. x 1 x 1 ( πx + 5 ) (b) (0.4 ponto) Calcule o ite:

Leia mais

Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de Limites. Aula 01. Projeto GAMA

Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de Limites. Aula 01. Projeto GAMA Universidade Federal de Pelotas Instituto de Física e Matemática Pró-reitoria de Ensino Atividades de Reforço em Cálculo Módulo de Limites Aula 0 208/ Projeto GAMA Grupo de Apoio em Matemática Ideia Intuitiva

Leia mais

14 AULA. Vetor Gradiente e as Derivadas Direcionais LIVRO

14 AULA. Vetor Gradiente e as Derivadas Direcionais LIVRO 1 LIVRO Vetor Gradiente e as Derivadas Direcionais 14 AULA META Definir o vetor gradiente de uma função de duas variáveis reais e interpretá-lo geometricamente. Além disso, estudaremos a derivada direcional

Leia mais

Limites. 2.1 Limite de uma função

Limites. 2.1 Limite de uma função Limites 2 2. Limite de uma função Vamos investigar o comportamento da função f definida por f(x) = x 2 x + 2 para valores próximos de 2. A tabela a seguir fornece os valores de f(x) para valores de x próximos

Leia mais

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 06: Continuidade de Funções Objetivos da Aula Definir função contínua; Reconhecer uma função contínua através do seu gráfico; Utilizar as

Leia mais

Cálculo Diferencial e Integral II

Cálculo Diferencial e Integral II Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral II Exame/Teste de Recuperação v2-8h - 29 de Junho de 215 Duração: Teste - 1h3m; Exame -

Leia mais

1. Funções Reais de Variável Real Vamos agora estudar funções definidas em subconjuntos D R com valores em R, i.e. f : D R R

1. Funções Reais de Variável Real Vamos agora estudar funções definidas em subconjuntos D R com valores em R, i.e. f : D R R . Funções Reais de Variável Real Vamos agora estudar funções definidas em subconjuntos D R com valores em R, i.e. f : D R R D x f(x). Uma função é uma regra que associa a cada elemento x D um valor f(x)

Leia mais

Recorrendo à nossa imaginação podemos tentar escrever números racionais de modo semelhante: 1 2 = 1 + 3 + 32 +

Recorrendo à nossa imaginação podemos tentar escrever números racionais de modo semelhante: 1 2 = 1 + 3 + 32 + 1 Introdução Comecemos esta discussão fixando um número primo p. Dado um número natural m podemos escrevê-lo, de forma única, na base p. Por exemplo, se m = 15 e p = 3 temos m = 0 + 2 3 + 3 2. Podemos

Leia mais

Assíntotas. 1.Assíntotas verticais e limites infinitos 2.Assíntotas horizontais e limites no infinito 3.Assíntotas inclinadas

Assíntotas. 1.Assíntotas verticais e limites infinitos 2.Assíntotas horizontais e limites no infinito 3.Assíntotas inclinadas UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Assíntotas Prof.:

Leia mais

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente.

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente. Aula 15 Derivadas Direcionais e Vetor Gradiente Seja f(x, y) uma função de variáveis. Iremos usar a notação D u f(x 0, y 0 ) para: Derivada direcional de f no ponto (x 0, y 0 ), na direção do vetor unitário

Leia mais

12 AULA. ciáveis LIVRO. META Estudar derivadas de funções de duas variáveis a valores reais.

12 AULA. ciáveis LIVRO. META Estudar derivadas de funções de duas variáveis a valores reais. 1 LIVRO Diferen- Funções ciáveis META Estudar derivadas de funções de duas variáveis a valores reais. OBJETIVOS Estender os conceitos de diferenciabilidade de funções de uma variável a valores reais. PRÉ-REQUISITOS

Leia mais

UFSC. Matemática (Amarela) Resposta: Correta. log (x + 2) log (x + 2) = Incorreta. 100% 23% = 77% Logo, V = 0,77. V 0.

UFSC. Matemática (Amarela) Resposta: Correta. log (x + 2) log (x + 2) = Incorreta. 100% 23% = 77% Logo, V = 0,77. V 0. Resposta: 6 0. Incorreta. 00% 3% = 77% Logo, V = 0,77. V 0 0. Correta. f(x) = x + 3 Para x > : f(x) = x + 3 f(x) = x (crescente) 04. Incorreta. 4 x x + 3 = 7 ( x ) x. 3 = 8 x = a a 8a 8 = 0 a = 6 x = 6

Leia mais

Cálculo 1 A Turma F1 Prova VS

Cálculo 1 A Turma F1 Prova VS Cálculo 1 A 017. Turma F1 Prova VS Nome (MAIÚSCULO): Matrícula: O IMPORTANTE É O RACIOCÍNIO, PORTANTO DEIXE-O TODO NA PROVA. RESPOSTAS SEM AS DEVIDAS JUSTIFICATIVAS SERÃO DESCONSIDERADAS. (1) Encontre

Leia mais

Limites. Slides de apoio sobre Limites. Prof. Ronaldo Carlotto Batista. 7 de outubro de 2013

Limites. Slides de apoio sobre Limites. Prof. Ronaldo Carlotto Batista. 7 de outubro de 2013 Cálculo 1 ECT1113 Slides de apoio sobre Limites Prof. Ronaldo Carlotto Batista 7 de outubro de 2013 AVISO IMPORTANTE Estes slides foram criados como material de apoio às aulas e não devem ser utilizados

Leia mais

Lista 5: Rotacional, Divergente, Campos Conservativos, Teorema de Green

Lista 5: Rotacional, Divergente, Campos Conservativos, Teorema de Green MAT 003 2 ō Sem. 207 Prof. Rodrigo Lista 5: Rotacional, Divergente, Campos Conservativos, Teorema de Green. Considere o campo de forças F (x, y) = f( r ) r, onde f : R R é uma função derivável e r = x

Leia mais

PARTE 5 LIMITE. 5.1 Um Pouco de Topologia

PARTE 5 LIMITE. 5.1 Um Pouco de Topologia PARTE 5 LIMITE 5.1 Um Pouco de Topologia Vamos agora nos preparar para definir ite de funções reais de várias variáveis reais. Para isto, precisamos de alguns conceitos importantes. Em primeiro lugar,

Leia mais

CÁLCULO I. Calcular o limite de uma função composta;

CÁLCULO I. Calcular o limite de uma função composta; CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 06: Limites Laterais. Limite da Função Composta. Objetivos da Aula Denir ites laterais de uma função em um ponto de seu

Leia mais

MATEMÁTICA A - 12o Ano Funções - Limites e Continuidade Propostas de resolução

MATEMÁTICA A - 12o Ano Funções - Limites e Continuidade Propostas de resolução MATEMÁTICA A - 2o Ano Funções - Limites e Continuidade Propostas de resolução Exercícios de exames e testes intermédios. Como a função é contínua em R, também é contínua em x 0, pelo que Temos que fx f0

Leia mais

Humberto José Bortolossi [01] (a) (1.0) Escreva infinitos números racionais que pertençam ao intervalo

Humberto José Bortolossi   [01] (a) (1.0) Escreva infinitos números racionais que pertençam ao intervalo PRIMEIRA VERIFICAÇÃO DE APRENDIZAGEM Pré-Cálculo Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ Nome legível: Assinatura: [0] (a) (.0) Escreva infinitos números racionais que pertençam

Leia mais

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR Assuntos: Produtos Notáveis; Equações; Inequações; Função; Função Afim; Paridade;

Leia mais

Aula 22 Derivadas Parciais - Diferencial - Matriz Jacobiana

Aula 22 Derivadas Parciais - Diferencial - Matriz Jacobiana Derivadas Parciais - Diferencial - Matriz Jacobiana MÓDULO 3 - AULA 22 Aula 22 Derivadas Parciais - Diferencial - Matriz Jacobiana Introdução Uma das técnicas do cálculo tem como base a idéia de aproximação

Leia mais

Capítulo 1. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas.

Capítulo 1. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas. Capítulo 1 Funções Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento em A associa um único elemento em B. A notação usual para uma função f

Leia mais

Derivadas Parciais. Copyright Cengage Learning. Todos os direitos reservados.

Derivadas Parciais. Copyright Cengage Learning. Todos os direitos reservados. 14 Derivadas Parciais Copyright Cengage Learning. Todos os direitos reservados. 14.2 Limites e Continuidade Copyright Cengage Learning. Todos os direitos reservados. Limites e Continuidade Vamos comparar

Leia mais

Aula 7 Os teoremas de Weierstrass e do valor intermediário.

Aula 7 Os teoremas de Weierstrass e do valor intermediário. Os teoremas de Weierstrass e do valor intermediário. MÓDULO - AULA 7 Aula 7 Os teoremas de Weierstrass e do valor intermediário. Objetivo Compreender o significado de dois resultados centrais a respeito

Leia mais

AT3-1 - Unidade 3. Derivadas e Aplicações 1. Cálculo Diferencial e Integral. UAB - UFSCar. Bacharelado em Sistemas de Informação

AT3-1 - Unidade 3. Derivadas e Aplicações 1. Cálculo Diferencial e Integral. UAB - UFSCar. Bacharelado em Sistemas de Informação AT3-1 - Unidade 3 1 Cálculo Diferencial e Integral Bacharelado em Sistemas de Informação UAB - UFSCar 1 Versão com 34 páginas 1 / 34 Tópicos de AT3-1 1 Uma noção intuitiva Caracterização da derivada Regras

Leia mais

Cálculo II. Derivadas Parciais

Cálculo II. Derivadas Parciais Cálculo II Derivadas Parciais (I) (II) Definição Se f é uma função de duas variáveis, suas derivadas parciais são as funções f x e f y definidas por f x ( x, y) lim h 0 f ( x h, y) f( x,

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ano 00 - a Fase Proposta de resolução GRUPO I. Como só existem bolas azuis e roxas, e a probabilidade de extrair uma bola da caixa, e ela ser azul é igual a, então existem

Leia mais

Prova de Conhecimentos Específicos 1 a QUESTÃO: (2,0 pontos)

Prova de Conhecimentos Específicos 1 a QUESTÃO: (2,0 pontos) Prova de Conhecimentos Específicos 1 a QUESTÃO: (,0 pontos) 5x Considere a função f(x)=. Determine, se existirem: x +7 (i) os pontos de descontinuidade de f; (ii) as assíntotas horizontais e verticais

Leia mais

CAPÍTULO 13 (G F )(X) = X, X A (F G)(Y ) = Y, Y B. F G = I da e G F = I db,

CAPÍTULO 13 (G F )(X) = X, X A (F G)(Y ) = Y, Y B. F G = I da e G F = I db, CAPÍTULO 3 TEOREMA DA FUNÇÃO INVERSA 3 Introdução A função identidade em R n é a função que a cada elemento de R n associa o próprio elemento ie I d : R n R n X x x n I d X X x x n A função identidade

Leia mais

MAT 3210 Cálculo Diferencial e Integral II. Prova SUB D

MAT 3210 Cálculo Diferencial e Integral II. Prova SUB D MAT 3210 Cálculo Diferencial e Integral II Prof. Paolo Piccione 25 de Novembro de 2011 Prova SUB D Nome: Número USP: Assinatura: Instruções A duração da prova é de uma hora e quarenta minutos. Assinale

Leia mais

MAT 3210 Cálculo Diferencial e Integral II. Prova SUB B

MAT 3210 Cálculo Diferencial e Integral II. Prova SUB B MAT 3210 Cálculo Diferencial e Integral II Prof. Paolo Piccione 25 de Novembro de 2011 Prova SUB B Nome: Número USP: Assinatura: Instruções A duração da prova é de uma hora e quarenta minutos. Assinale

Leia mais

MAT 3210 Cálculo Diferencial e Integral II. Prova SUB C

MAT 3210 Cálculo Diferencial e Integral II. Prova SUB C MAT 3210 Cálculo Diferencial e Integral II Prof. Paolo Piccione 25 de Novembro de 2011 Prova SUB C Nome: Número USP: Assinatura: Instruções A duração da prova é de uma hora e quarenta minutos. Assinale

Leia mais

CÁLCULO I. Estabelecer a relação entre continuidade e derivabilidade; Apresentar a derivada das funções elementares. f f(x + h) f(x) c c

CÁLCULO I. Estabelecer a relação entre continuidade e derivabilidade; Apresentar a derivada das funções elementares. f f(x + h) f(x) c c CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 11: Derivada de uma função. Continuidade e Derivabilidade. Derivada das Funções Elementares. Objetivos da Aula Denir

Leia mais

O limite de uma função

O limite de uma função Universidade de Brasília Departamento de Matemática Cálculo 1 O ite de uma função Se s(t) denota a posição de um carro no instante t > 0, então a velocidade instantânea v(t) pode ser obtida calculando-se

Leia mais

26 CAPÍTULO 4. LIMITES E ASSÍNTOTAS

26 CAPÍTULO 4. LIMITES E ASSÍNTOTAS Capítulo 4 Limites e assíntotas 4.1 Limite no ponto Considere a função f(x) = x 1 x 1. Observe que esta função não é denida em x = 1. Contudo, fazendo x sucientemente próximo de 1 (mais não igual a1),

Leia mais

Capítulo 2. f : A B. 3. A regra em (3) não define uma função de A em B porque 4 A está associado a mais de um. elemento de B.

Capítulo 2. f : A B. 3. A regra em (3) não define uma função de A em B porque 4 A está associado a mais de um. elemento de B. Departamento de Matemática Disciplina MAT154 - Cálculo 1 Capítulo 2 Funções 2.1 Definição Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento

Leia mais

CDI-II. Resumo das Aulas Teóricas (Semana 1) 2 Norma. Distância. Bola. R n = R R R

CDI-II. Resumo das Aulas Teóricas (Semana 1) 2 Norma. Distância. Bola. R n = R R R Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Prof. Gabriel Pires CDI-II Resumo das Aulas Teóricas (Semana 1) 1 Notação R n = R R R x R n : x = (x 1, x 2,, x n ) ; x

Leia mais

Capítulo 2. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas.

Capítulo 2. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas. Capítulo 2 Funções Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento em A associa um único elemento em B. A notação usual para uma função f

Leia mais

Departamento de Matemática - UEL Ulysses Sodré. 1 Comparações entre sequências e funções reais 1

Departamento de Matemática - UEL Ulysses Sodré.  1 Comparações entre sequências e funções reais 1 Matemática Essencial Limites de Funções Reais Departamento de Matemática - UEL - 200 Ulysses Sodré http://www.mat.uel.br/matessencial/ Conteúdo Comparações entre sequências e funções reais 2 Limites 3

Leia mais

AULA 7- LIMITES VERSÃO: OUTUBRO DE 2016

AULA 7- LIMITES VERSÃO: OUTUBRO DE 2016 CURSO DE ADMINISTRAÇÃO CENTRO DE CIÊNCIAS SOCIAIS APLICADAS UNIVERSIDADE CATÓLICA DE PETRÓPOLIS MATEMÁTICA 01 AULA 7- LIMITES VERSÃO: 0.2 - OUTUBRO DE 2016 Professor: Luís Rodrigo E-mail: luis.goncalves@ucp.br

Leia mais

ÁLGEBRA. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega. Maria Auxiliadora

ÁLGEBRA. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega. Maria Auxiliadora 1 ÁLGEBRA Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega Maria Auxiliadora 2 FUNÇÃO POLINOMIAL DO 1º GRAU Uma função polinomial do 1º grau (ou simplesmente, função do 1º grau) é uma relação

Leia mais

CÁLCULO II. Lista Semanal 6-04/05/2018. Questão 1. Mostre que não existe o limite abaixo. x 4 y 2 lim. Solução: Seja f(x, y) = x4 y 2

CÁLCULO II. Lista Semanal 6-04/05/2018. Questão 1. Mostre que não existe o limite abaixo. x 4 y 2 lim. Solução: Seja f(x, y) = x4 y 2 CÁLCULO II Prof. Juaci Picanço Prof. Jerônimo Monteiro Lista Semanal 6-04/05/018 Questão 1. Mostre que não eiste o ite abaio. Seja f(, y) = 4 y 4 +y. Tomando o caminho C 1 (t) = (t, 0),tem-se que: 4 y

Leia mais

AULA 1 Introdução aos limites 3. AULA 2 Propriedades dos limites 5. AULA 3 Continuidade de funções 8. AULA 4 Limites infinitos 10

AULA 1 Introdução aos limites 3. AULA 2 Propriedades dos limites 5. AULA 3 Continuidade de funções 8. AULA 4 Limites infinitos 10 Índice AULA 1 Introdução aos limites 3 AULA 2 Propriedades dos limites 5 AULA 3 Continuidade de funções 8 AULA 4 Limites infinitos 10 AULA 5 Limites quando numerador e denominador tendem a zero 12 AULA

Leia mais

4 o Roteiro de Atividades: reforço da segunda parte do curso de Cálculo II Instituto de Astronomia e Geofísica

4 o Roteiro de Atividades: reforço da segunda parte do curso de Cálculo II Instituto de Astronomia e Geofísica 4 o Roteiro de Atividades: reforço da segunda parte do curso de Cálculo II Instituto de Astronomia e Geofísica Objetivo do Roteiro Pesquisa e Atividades: Teoremas de diferenciabilidade de funções, Vetor

Leia mais

Cálculo Diferencial e Integral I. Jair Silvério dos Santos * Professor Dr. Jair Silvério dos Santos 1

Cálculo Diferencial e Integral I. Jair Silvério dos Santos * Professor Dr. Jair Silvério dos Santos 1 MATEMATICA APLICADA A NEGÓCIOS 3, 0 (200) Cálculo Cálculo Diferencial e Integral I LIMITES LATERAIS Jair Silvério dos Santos * Professor Dr Jair Silvério dos Santos Teorema 0 x x 0 Dada f : A R R uma função

Leia mais

Lista de Exercícios de Cálculo 3 Módulo 1 - Terceira Lista - 02/2016

Lista de Exercícios de Cálculo 3 Módulo 1 - Terceira Lista - 02/2016 Lista de Exercícios de Cálculo 3 Módulo 1 - Terceira Lista - 02/2016 Parte A 1. Identifique e esboce as superfícies quádricas x 2 + 4y 2 + 9z 2 = 1 x 2 y 2 + z 2 = 1 (c) y = 2x 2 + z 2 (d) x = y 2 z 2

Leia mais

Funções Polinomiais com Coeficientes Complexos. Teorema do Resto. 3 ano E.M. Professores Cleber Assis e Tiago Miranda

Funções Polinomiais com Coeficientes Complexos. Teorema do Resto. 3 ano E.M. Professores Cleber Assis e Tiago Miranda Funções Polinomiais com Coeficientes Complexos Teorema do Resto 3 ano E.M. Professores Cleber Assis e Tiago Miranda Funções Polinomiais com Coeficientes Complexos Teorema do Resto 1 Exercícios Introdutórios

Leia mais

Funções Polinomiais com Coeficientes Complexos. Divisão de Funções Polinomiais. 3 ano E.M. Professores Cleber Assis e Tiago Miranda

Funções Polinomiais com Coeficientes Complexos. Divisão de Funções Polinomiais. 3 ano E.M. Professores Cleber Assis e Tiago Miranda Funções Polinomiais com Coeficientes Complexos Divisão de Funções Polinomiais 3 ano E.M. Professores Cleber Assis e Tiago Miranda Funções Polinomiais com Coeficientes Complexos Divisão de Funções Polinomiais

Leia mais

Aula 5. Uma partícula evolui na reta. A trajetória é uma função que dá a sua posição em função do tempo:

Aula 5. Uma partícula evolui na reta. A trajetória é uma função que dá a sua posição em função do tempo: Aula 5 5. Funções O conceito de função será o principal assunto tratado neste curso. Neste capítulo daremos algumas definições elementares, e consideraremos algumas das funções mais usadas na prática,

Leia mais

Aula 18. Método Multiplicadores Lagrange (continuação)

Aula 18. Método Multiplicadores Lagrange (continuação) Aula 18 Método Multiplicadores Lagrange (continuação) Na aula anterior introduzimos o Método dos Multiplicadores de Lagrange, que serve para maximizar/minimizar uma função restrita a um domínio do tipo

Leia mais

PROFESSOR: RICARDO SÁ EARP

PROFESSOR: RICARDO SÁ EARP LISTA DE EXERCÍCIOS SOBRE TRABALHO, CAMPOS CONSERVATIVOS, TEOREMA DE GREEN, FLUXO DE UM CAMPO AO LONGO DE UMA CURVA, DIVERGÊNCIA E ROTACIONAL DE UM CAMPO NO PLANO, FUNÇÕES HARMÔNICAS PROFESSOR: RICARDO

Leia mais

Integrais Sobre Caminhos e Superfícies. Teoremas de Integração do Cálculo Vectorial.

Integrais Sobre Caminhos e Superfícies. Teoremas de Integração do Cálculo Vectorial. Capítulo 5 Integrais Sobre Caminhos e Superfícies. Teoremas de Integração do Cálculo Vectorial. 5.1 Integral de Um Caminho. Integral de Linha. Exercício 5.1.1 Seja f(x, y, z) = y e c(t) = t k, 0 t 1. Mostre

Leia mais

Exercícios de Coordenadas Polares Aula 41

Exercícios de Coordenadas Polares Aula 41 Revisão - Métodos de Integração e Exercícios de Coordenadas Polares Aula 41 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 24 de Junho de 2014 Primeiro Semestre de 2014 Turma

Leia mais

EQUAÇÕES DIFERENCIAIS LINEARES SEGUNDA ORDEM

EQUAÇÕES DIFERENCIAIS LINEARES SEGUNDA ORDEM EQUAÇÕES DIFERENCIAIS LINEARES SEGUNDA ORDEM 02/04/2014 Prof. Geraldine Revisão de Álgebra Linear Definição de conjunto Linearmente Independente Dizemos que as funções f ( x), f ( x) são LI, em um 1 2

Leia mais

Resumo: Regra da cadeia, caso geral

Resumo: Regra da cadeia, caso geral Resumo: Regra da cadeia, caso geral Teorema Suponha que u = u(x 1,..., x n ) seja uma função diferenciável de n variáveis x 1,... x n onde cada x i é uma função diferenciável de m variáveis t 1,..., t

Leia mais

CÁLCULO I. Lista Semanal 01 - Gabarito

CÁLCULO I. Lista Semanal 01 - Gabarito CÁLCULO I Prof. Tiago Coelho Prof. Emerson Veiga Questão 1. Esboce as seguintes regiões no plano xy: (a) 0 < x 6. A região representa todas os pontos onde x assume valores entre 0 e 6, sendo aberto em

Leia mais

CÁLCULO FUNÇÕES DE UMA E VÁRIAS VARIÁVEIS Pedro A. Morettin, Samuel Hazzan, Wilton de O. Bussab.

CÁLCULO FUNÇÕES DE UMA E VÁRIAS VARIÁVEIS Pedro A. Morettin, Samuel Hazzan, Wilton de O. Bussab. Introdução Função é uma forma de estabelecer uma ligação entre dois conjuntos, sujeita a algumas condições. Antes, porém, será exposta uma forma de correspondência mais geral, chamada relação. Sejam dois

Leia mais

DERIVADAS PARCIAIS. y = lim

DERIVADAS PARCIAIS. y = lim DERIVADAS PARCIAIS Definição: Seja f uma função de duas variáveis, x e y (f: D R onde D R 2 ) e (x 0, y 0 ) é um ponto no domínio de f ((x 0, y 0 ) D). A derivada parcial de f em relação a x no ponto (x

Leia mais

CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior

CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Objetivos da Aula CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 4: Aproximações Lineares e Diferenciais. Regra de L Hôspital. Definir e calcular a aproximação linear

Leia mais

INTEGRAL DEFINIDA APLICAÇÕES. Aula 05 Matemática II Agronomia Prof. Danilene Donin Berticelli

INTEGRAL DEFINIDA APLICAÇÕES. Aula 05 Matemática II Agronomia Prof. Danilene Donin Berticelli INTEGRAL DEFINIDA APLICAÇÕES Aula 05 Matemática II Agronomia Prof. Danilene Donin Berticelli Variação Total Em certas aplicações práticas, conhecemos a taxa de variação Q (x) de uma grandeza Q(x) e estamos

Leia mais

Cálculo diferencial em IR n

Cálculo diferencial em IR n Cálculo diferencial em IR n (Limites e Continuidade) Sandra Nunes e Ana Matos DMAT 3 Maio 2001 Conteúdo 1 Limites e Continuidade em Campos Escalares 2 1.1 NoçãodeLimite... 2 1.2 LimitesRelativos... 4 1.3

Leia mais

Lista de Exercícios de Cálculo 3 Quarta Semana

Lista de Exercícios de Cálculo 3 Quarta Semana Lista de Exercícios de Cálculo 3 Quarta Semana Parte A 1. Identifique e esboce as superfícies x 2 + 4y 2 + 9z 2 = 1 x 2 y 2 + z 2 = 1 (c) y = 2x 2 + z 2 (d) x = y 2 z 2 (e) 4x 2 16y 2 + z 2 = 16 (f) x

Leia mais

Apostila Cálculo Diferencial e Integral I: Derivada

Apostila Cálculo Diferencial e Integral I: Derivada Instituto Federal de Educação, Ciência e Tecnologia da Bahia Campus Vitória da Conquista Coordenação Técnica Pedagógica Programa de Assistência e Apoio aos Estudantes Apostila Cálculo Diferencial e Integral

Leia mais

FFCLRP-USP Regra de L Hospital e Lista - CALCULO DIFERENCIAL E INTEGRAL I

FFCLRP-USP Regra de L Hospital e Lista - CALCULO DIFERENCIAL E INTEGRAL I FFCLRP-USP Regra de L Hospital e Lista - CALCULO DIFERENCIAL E INTEGRAL I Professor Dr. Jair Silvério dos Santos 1 Teorema de Michel Rolle Teorema 0.1. (Rolle) Se f : [a;b] R for uma função contínua em

Leia mais

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 16/10/2016 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES: 1.

Leia mais

www.wirober.blog.uol.com.br

www.wirober.blog.uol.com.br www.wirober.blog.uol.com.br SARESP 2008 RESOLUÇÃO PROVA MATEMÁTICA ENSINO MÉDIO Resolução: em ago/2008 : 20 camisas do Arrancatoco. 40 camisas do Pernadepau. Arrancatoco a n = a 1a + (n 1)r a Pernadepau

Leia mais

Funções de duas (ou mais)

Funções de duas (ou mais) Lista 5 - CDI II Funções de duas (ou mais) variáveis. Seja f(x, y) = x+y x y, calcular: f( 3, 4) f( 2, 3 ) f(x +, y ) f( x, y) f(x, y) 2. Seja g(x, y) = x 2 y, obter: g(3, 5) g( 4, 9) g(x + 2, 4x + 4)

Leia mais

Derivadas Parciais Capítulo 14

Derivadas Parciais Capítulo 14 Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS Como vimos no Capítulo 4, no Volume I, um dos principais usos da derivada ordinária é na determinação dos valores máximo e mínimo. DERIVADAS PARCIAIS 14.7

Leia mais

A = B, isto é, todo elemento de A é também um elemento de B e todo elemento de B é também um elemento de A, ou usando o item anterior, A B e B A.

A = B, isto é, todo elemento de A é também um elemento de B e todo elemento de B é também um elemento de A, ou usando o item anterior, A B e B A. Capítulo 1 Números Reais 1.1 Conjuntos Numéricos Um conjunto é uma coleção de elementos. A relação básica entre um objeto e o conjunto é a relação de pertinência: quando um objeto x é um dos elementos

Leia mais

CÁLCULO I Aula 08: Regra da Cadeia. Derivação Implícita. Derivada da Função Inversa.

CÁLCULO I Aula 08: Regra da Cadeia. Derivação Implícita. Derivada da Função Inversa. CÁLCULO I Aula 08: Regra da Cadeia.. Função Inversa. Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará 1 2 3 Teorema (Regra da Cadeia) Sejam g(y) e y = f (x) duas funções deriváveis,

Leia mais

Seu pé direito nas melhores Faculdades

Seu pé direito nas melhores Faculdades 10 Insper 01/11/009 Seu pé direito nas melhores Faculdades análise quantitativa 40. No campeonato brasileiro de futebol, cada equipe realiza 38 jogos, recebendo, em cada partida, 3 pontos em caso de vitória,

Leia mais

Capítulo 4. Campos escalares e vetoriais

Capítulo 4. Campos escalares e vetoriais Capítulo 4 Campos escalares e vetoriais Existem várias situações em que uma variável depende de várias outras. Por exemplo, a área de um retângulo depende do comprimento e da altura deste. O volume de

Leia mais

Capítulo 1: Limite de funções de uma variável real

Capítulo 1: Limite de funções de uma variável real Notas Matemática para Economia I: Capítulo 1: Limite de funções de uma variável real Felipe Rivero e Thiago Salvador Revisado por: Emilia Neves, Juliana Coelho e Yuri Ki F. Rivero e T. Salvador 2 Matemática

Leia mais

Teoremas e Propriedades Operatórias

Teoremas e Propriedades Operatórias Capítulo 10 Teoremas e Propriedades Operatórias Como vimos no capítulo anterior, mesmo que nossa habilidade no cálculo de ites seja bastante boa, utilizar diretamente a definição para calcular derivadas

Leia mais

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial 178 Capítulo 10 Equação da reta e do plano no espaço 1. Equações paramétricas da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que

Leia mais

Universidade Estadual de Montes Claros Departamento de Ciências Exatas Curso de Licenciatura em Matemática. Notas de Aulas de

Universidade Estadual de Montes Claros Departamento de Ciências Exatas Curso de Licenciatura em Matemática. Notas de Aulas de Universidade Estadual de Montes Claros Departamento de Ciências Exatas Curso de Licenciatura em Matemática Notas de Aulas de Cálculo Rosivaldo Antonio Gonçalves Notas de aulas que foram elaboradas para

Leia mais

MATEMÁTICA. ENSINO MÉDIO - 1º ANO Função Polinomial do 1º Grau (FUNÇÃO AFIM) PROFESSOR: ALEXSANDRO DE SOUSA

MATEMÁTICA. ENSINO MÉDIO - 1º ANO Função Polinomial do 1º Grau (FUNÇÃO AFIM) PROFESSOR: ALEXSANDRO DE SOUSA E.E. Dona Antônia Valadares MATEMÁTICA ENSINO MÉDIO - 1º ANO Função Polinomial do 1º Grau (FUNÇÃO AFIM) PROFESSOR: ALEXSANDRO DE SOUSA http://donaantoniavaladares.comunidades.net Definição: Uma função

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 7 04/2014 Zeros reais de funções Parte 1 Objetivo Determinar valores aproximados para as soluções (raízes) de equações da

Leia mais

4.1 Trajetórias & Integral de Linha

4.1 Trajetórias & Integral de Linha CÁLCULO AVANÇADO 4. CÁLCULO INTEGRAL NO R N 4. Trajetórias & Integral de Linha. Calcule a integral de linha do campo vetorial f x; y; z) = y 2 z 2 i + 2yzj x 2 k, ao longo do caminho descrito por t) =

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano 2011-2 a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano 2011-2 a Fase Prova Escrita de MATEMÁTICA A - 1o Ano 011 - a Fase Proposta de resolução GRUPO I 1. Como no lote existem em total de 30 caixas, ao selecionar 4, podemos obter um conjunto de 30 C 4 amostras diferentes,

Leia mais

. B(x 2, y 2 ). A(x 1, y 1 )

. B(x 2, y 2 ). A(x 1, y 1 ) Estudo da Reta no R 2 Condição de alinhamento de três pontos: Sabemos que por dois pontos distintos passa uma única reta, ou seja, dados A(x 1, y 1 ) e B(x 2, y 2 ), eles estão sempre alinhados. y. B(x

Leia mais

Lista 2 - Cálculo. 17 de maio de Se f e g são funções cujos grácos estão representados abaixo, sejam u(x) = f(x)g(x),

Lista 2 - Cálculo. 17 de maio de Se f e g são funções cujos grácos estão representados abaixo, sejam u(x) = f(x)g(x), Lista 2 - Cálculo 17 de maio de 2019 1. Se f e g são funções cujos grácos estão representados abaixo, sejam u(x) = f(x)g(x), h(x) = f(g(x)) e k(x) = g(f(x)). Encontre as seguintes derivadas: (a) u (1)

Leia mais

CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 19: Concavidade. Teste da Segunda Derivada. Denir concavidade de uma função;

CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 19: Concavidade. Teste da Segunda Derivada. Denir concavidade de uma função; CÁLCULO I Prof. Marcos Diniz Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 19: Concavidade. Teste da Segunda Derivada. Objetivos da Aula Denir concavidade de uma função; Denir ponto de inexão;

Leia mais

Lista Função - Ita Carlos Peixoto

Lista Função - Ita Carlos Peixoto Lista Função - Ita Carlos Peixoto. (Ita 07) Sejam X e Y dois conjuntos finitos com X Y e X Y. Considere as seguintes afirmações: I. Existe uma bijeção f : X Y. II. Existe uma função injetora g: Y X. III.

Leia mais

ÁLGEBRA LINEAR I - MAT0032

ÁLGEBRA LINEAR I - MAT0032 UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e Da Natureza Centro Interdisciplinar de Ciências da Natureza ÁLGEBRA LINEAR I - MAT32 12 a Lista de exercícios

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano 2015-2 a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano 2015-2 a Fase Prova Escrita de MATEMÁTICA A - o Ano 205-2 a Fase Proposta de resolução GRUPO I. O valor médio da variável aleatória X é: µ a + 2 2a + 0, Como, numa distribuição de probabilidades de uma variável aleatória,

Leia mais

Análise Matemática II TESTE/EXAME

Análise Matemática II TESTE/EXAME Instituto Superior Técnico Departamento de Matemática o Semestre 4-5 a Data Análise Matemática II TESTE/EXAME CURSOS: LEAMB, LEEC, LCI, LQ, LEQ, LEBL Obtenha uma primitiva de cada uma das funções definidas

Leia mais