Cálculo diferencial de Funções de mais de uma variável

Tamanho: px
Começar a partir da página:

Download "Cálculo diferencial de Funções de mais de uma variável"

Transcrição

1 MATERIAL DIDÁTICO Professora Sílvia Victer CÁLCULO 2 Cálculo diferencial de Funções de mais de uma variável 1. Funções de mais de uma variável 2. Limites de funções de mais de uma variável 3. Continuidade de funções de mais de uma variável 4. Derivadas parciais 5. Derivadas parciais de ordem superior 6. Diferenciabilidade e Diferencial Total 7. A regra da cadeia 8. Condições Suficientes para a Diferenciabilidade 1- Funções de mais de uma variável Em muitas situações práticas, o valor de uma certa quantidade depende dos valores de duas outras ou de três ou mais. Assim, é comum representar estas relações como funções de várias variáveis. Funções de duas variáveis: Seja D um subconjunto (região) do espaço (plano). Chama-se função f de D toda relação que associa, a cada par, um único número real, representado por. O conjunto D é o domínio da função. Assim, D é o domínio da função em, é a função, é o valor da função calculado em. Exemplos de valores de função de 2 variáveis: 1- se então 2- se então O domínio das funções de duas variáveis segue as mesmas regras do domínio de funções de uma variável, ou seja, o domínio é a região, tal que os valores calculados da função, para todo resultem em valores finitos e reais para. Definição 1: Chamamos de função real com n variáveis a uma função do tipo Ou seja, uma função cujo domínio (ou ) é um subconjunto de e seu contradomínio é. 1

2 Usamos, também, a notação ( mais resumida) para representar funções reais de n variáveis; Neste caso é o conjunto Exemplos: Ache o domínio da função: a) R: A condição de existência dessa função é, portanto o seu domínio é: b) R: A função é finita quando, portanto o seu domínio é o conjunto de pontos, tais que: c) R: Domínio da função: Imagem da função: ou d) R: é um número real quando ou. Logo, o domínio da função é dado por: Domínio - Representação gráfica O domínio de uma função de duas variáveis é, em geral, representado por uma relação binária. A representação do domínio pode ser dada lógica ou graficamente. 2

3 Exemplo: Determine e represente graficamente os domínios das funções: 1. Representação gráfica: 2., não tem solução, logo. Representação gráfica: mesma da anterior. 3. Representação gráfica: 4. ou seja, todo o plano exceto a 1 a. bissetriz. Representação gráfica: 5. Representação gráfica: 3

4 6. Representação gráfica: Equivalente a ( e ) ou a e ( e ) e 7. A função é finita quando Assim, o domínio pontos, tais que: é o conjunto de Representação gráfica: 8. A função está definida somente para, ou seja,. Assim, Na representação gráfica do domínio usamos o fato de que a curva separa a região onde da região onde. Para determinar a região onde, podemos selecionar "um ponto teste" fora da fronteira e verificar se ou no ponto teste. Por exemplo: se, então não é uma relação verdadeira. Logo, este ponto não está na região onde. A região correspondente ao domínio é aquela que não contém este ponto teste. Representação gráfica: 9. Devemos ter. Assim, Representação gráfica do domínio da função: 10) Como estamos assumindo que a imagem de tem que ser um número real, o argumento da função raiz quadrada deve ser não negativo, ou seja, devemos ter 0, o que geometricamente é a região do plano que está acima da reta, incluindo a própria reta. 4

5 11) Como estamos assumindo que a imagem de logaritmo deve ser positivo, ou seja, plano interior à elipse:. tem que ser um número real, o argumento da função, o que geometricamente representa região do 12) 13) 14) Como a função pode ser vista como a soma das funções e, o seu domínio será a interseção dos domínios das mesmas, ou seja, temos que tomar de modo que eles satisfaçam simultaneamente as seguintes desigualdades: e, 5

6 logo: o que geometricamente é a região do plano entre os círculos centrados na origem de raios 1 e 2, incluindo os pontos do círculo de raio 1 e excluindo-se os pontos do círculo de raio 2. 15) Como é a razão das funções e devemos tomar a interseção dos domínios destas e excluir dela os pontos onde o denominador se anula. Ou seja,queremos que: logo: o que geometricamente é a região do plano que está acima da parábola, da qual tiramos os pontos que estão no círculo. e exterior ao círculo Gráfico de uma função de duas variáveis: Para as funções de uma variável independente, o gráfico é no plano e Para as funções de duas variáveis, o gráfico é em e. Uma função de duas variáveis sempre gera uma superfície no espaço. Em geral, essa representação pode se tornar bastante complexa sem o auxílio de uma ferramenta computacional. Exemplos de funções de duas variáveis: 1) A superfície é um plano infinito, paralelo a passando por., e 6

7 2). Esta função pode ser escrita na forma que é a equação de um plano. Para achar os pontos onde este plano intercepta os eixos, fazer: Gráfico de no plano: Domínio: todo plano Imagem: todo eixo Parte do gráfico de que se encontra no primeiro octante. Mostra as interseções com os planos. 3) A superfície é um paraboloide de revolução 4) A superfície gerada é uma semiesfera de centro na origem e raio. Neste caso,. A condição duas condições: consiste na posição da esfera plano é equivalente às. Assim, o gráfico sobre o 5) A superfície gerada é uma semiesfera de centro na origem e raio. 6) A equação é a equação de um plano inclinado que corta os eixos coordenados em, Esta função pode ser escrita na forma que é a equação de um plano. Domínio: todo plano Imagem: todo eixo 7

8 Exemplos de casos importantes: Equação Superfície gerada Exemplo Plano Paraboloide elíptico Paraboloide hiperbólico Metade de uma superfície esférica de raio. Metade de uma superfície cônica. Exercícios: 1- Seja a função dada por (duas variáveis). Determine: a) b) c) d) e) R: a) 5, b) 0, c) 25, d), e) 2- Seja a função dada por Determine: a) b) c) d) e) R: a) 0, b), c), d), e) 3- Seja a função dada por Determine: a) b) c) d) e) Representação gráfica do domínio de. 8

9 R: a) -3, b), c), d) 4- Seja a função dada por. Determine: a) b) c) d) e) Representação gráfica do domínio de. R: a) 1, b) 1/4, c), d) 5- Determine e represente graficamente os domínios das seguintes funções: a) b) c) d) e) f) g) h) i) j) Respostas: b) c) d) 6- Encontre o domínio e a imagem das seguintes funções: a) b) c) d) e) f) g) h) i) j) k) l) 7- Encontre o domínio das seguintes funções: a) b) c) d) e) f) g) h) i) 2- Limites de funções de mais de uma variável O limite da função, quando tende para um valor, é o número L (se existir) e é representado por: ou, 9

10 Exemplos: 1- se aproxima de quando o ponto se aproxima de Limite de uma função a duas variáveis: Supor que o ponto se aproxima do ponto pela direita, pela esquerda, e por qualquer outra direção. E também supor que se aproxima de ao longo de uma curva. "Dizer que significa que, quando tende a por qualquer direção, tende ao mesmo limite L." Como mostrar que um particular limite não existe? Mostrar que tende a dois limites diferentes quando tende a por duas direções diferentes. Exemplos: 1- Seja a função definida por. (a) Calcule o limite de quando tende a ao longo de cada um dos caminhos: (i) eixo dos ; (ii) eixo dos ; (iii) a reta ; (iv) a parábola. (b) O limite existe? Se sim, qual o seu valor? Solução (a) (i) eixo dos e para. Logo, 10

11 (a) (ii) eixo dos y e para. Logo, (a) (iii) a reta : para Logo, (a) (iv) a parábola : para Logo, (b) Ao longo de todos os caminhos do item (a), o limite é o mesmo: zero. existe e é zero. Logo, o limite 2- Seja a função definida por. (a) Calcule o limite de quando tende a ao longo dos mesmos caminhos do exercício anterior. (b) O limite existe? Se sim, qual o seu valor? (a) (i) eixo dos e para. Logo,. (a) (ii) eixo dos y e para. Logo,. (a) (iii) a reta : para Logo, (a) (iv) a parábola : para Logo,. (b) Como os limites (i) e (ii) são diferentes, não existe. 3- Seja a função definida por (a) Calcule o limite de quando tende a ao longo da reta (b) Calcule o limite de quando tende a ao longo da parábola. (c) O limite existe? Se sim, qual o seu valor? (a) para, pode aproximar-se do mesmo limite quando aproxima-se de ao longo de qualquer reta passando por. E da parábola? 11

12 (b) para, (c) Como os limites de (a) e (b) são diferentes, não existe. Propriedades dos limites para funções de duas variáveis: Se e existem e é um número real qualquer, então: (a) (b) (c) (d), desde que (e) para todo inteiro (f), se e inteiro ou se e inteiro positivo ímpar. Exemplos: como, aplica-se (d) Exercícios: 1) Calcule os limites abaixo: a) b) c) 12

13 2) Nos problemas abaixo, (a) calcule o limite de quando tende a ao longo de cada um dos caminhos indicados em (i), (ii), (iii) e (iv), e (b) determine existir. 2.1) quando tende a (i) ao longo do eixo dos, (ii), ao longo do eixo dos, (iii) ao longo da reta, (iv) ao longo da parábola. 2.2) quando tende a (i) ao longo do eixo dos, (ii), ao longo do eixo dos, (iii) ao longo da reta, (iv) ao longo da reta. Respostas: 2.1) a) (i) 0 (ii) 0 (iii) 0 (iv) 0; b) 0 2.2) a) (i) 0 (ii) 0 (iii) 1/2 (iv) ; b) não existe Cálculo de limites com algumas indeterminações: Se, qual o limite do quociente, quando tende a? Podemos encontrar qualquer valor real ou o limite pode não existir! Indeterminações do tipo : Exemplo 1: Calcular Fatorar as expressões: Exemplo 2: Calcular Exemplo 3: Calcular 3- Continuidade de funções de mais de uma variável Uma função é contínua em um ponto se: e existe 13

14 Caso contrário, a função será descontínua neste ponto. O mesmo é válido para um intervalo, isto é, a função é contínua num intervalo quando o limite existe em todos seus pontos desse intervalo. Exemplos: 1) A função é contínua em? Verificar a) se se aproxima de pelo eixo dos, para. b) se se aproxima de pelo eixo dos, para. c) se se aproxima de através de pontos da reta, para. Logo, como o limite de (c) foi diferente dos obtidos em (a) e (b),. 2) A função é contínua para a) para b) para Logo, a função não é contínua nos pontos com é contínua na origem. a) se se aproxima de pelo eixo dos, para. b) se se aproxima de pelo eixo dos, para. c) se se aproxima de através de pontos da reta, para. Que é igual ao Proposição: Sejam duas funções contínuas em. Então: a) é contínua em. b) é contínua em. c) é contínua em. d) é contínua em desde que 14

15 Uma função polinomial de duas variáveis é contínua em Exemplo: Uma função racional de duas variáveis é contínua em todos os pontos do seu domínio. Exemplo: é contínua em O limite existirá sempre, com exceção nas restrições. Exemplos: 1), é contínua. 2), é contínua. 3) é contínua em 4) é contínua em 5) é contínua em 6) é contínua em O domínio é uma circunferência de centro na origem e de raio. 15

16 Exercícios: 1) Verifique se as funções dadas são contínuas nos pontos indicados. a) em b) em Verificar ao longo do eixo e ao longo da reta. Resposta: a) b) não é contínua nos pontos indicados. 4- Derivadas parciais A definição de derivada parcial de uma função de 2 variáveis é a mesma que a de funções de uma variável. A diferença é que, como se tem duas variáveis, uma delas deve ser mantida fixa enquanto se dá acréscimos para a outra. A derivada parcial é obtida pela derivação de uma curva que represente um caminho sobre a função e paralelo à variável escolhida. Assim, uma derivada parcial é obtida considerando-se apenas uma variável de cada vez. Por exemplo, considere Consideremos, temporariamente, apenas a segunda variável relação à primeira variável x: como constante e diferenciemos em e Assim,. A fim de enfatizar que apenas pode variar, ou seja, que deve ser mantido constante quando a derivada é calculada, é comum substituir o símbolo por (o símbolo é chamado de "d round"). Assim, da equação acima, teremos: A derivada calculada em relação a enquanto é mantido temporariamente constante é denominada derivada parcial em relação a, e é chamado de operador derivada parcial em relação a. Da mesma forma, se desejarmos manter a variável fixa e diferenciarmos em relação a, usamos o símbolo. Assim, Definição: Se é uma função a duas variáveis, e é um ponto no domínio de então as derivadas parciais e de em relação à primeira e à segunda variável são definidas por: 16

17 e desde que os limites existam. O procedimento para encontrar as derivadas parciais é denominado diferenciação parcial. Se, frequentemente se escreve ou ao invés de ou para a derivada parcial de em relação a. O índice 1 (respectivamente, o índice ) denota a diferenciação parcial em relação à primeira variável (ou, em relação a ). A notação do operador para derivadas ordinárias pode ser adaptada para derivadas parciais, e teremos: a derivada parcial de em relação a (considera apenas como variável, é uma constante): A derivada parcial de em relação a (considera apenas como variável, é uma constante): Derivadas parciais de funções de 3 variáveis: Exemplos: 1) Se, encontre Solução: considerando e constantes e diferenciando em relação a, obtemos: 2) Se, encontre e Solução: usando a regra do quociente, considerando constante e diferenciando em relação a : considerando constante e diferenciando em relação a, 17

18 3) Se, encontre Solução: considerando e constantes e diferenciando em relação a, Interpretação geométrica da derivada parcial: Nas funções de uma variável, a derivada mede a inclinação da reta tangente à curva no ponto dado. Nas funções do tipo de duas variáveis, a derivada em relação a mede a inclinação da reta tangente à superfície, no ponto dado e numa seção paralela ao eixo ; a derivada em relação a, numa seção paralela a e com constante. Para (constante) a função se reduz a uma função de uma variável. Taxas de variação: 18

19 Exemplos de derivadas parciais de funções em relação a e relação a : 1) 2) 3) 19

20 4) Calcular a inclinação da reta tangente à interseção da superfície, com o plano no ponto. Solução: Para derivar em relação a, mantém constante. mas no ponto, tem-se: 5) Calcular a inclinação da tangente à interseção da superfície, com plano no ponto. 6) Achar as derivadas parciais da função. Exercícios: 1) Determine as derivadas parciais: e a) b) 2) Determine as derivadas parciais e das funções: a) b) c) d) e) f) g) h) i) j) k) l) Respostas: 20

21 i) ; j) k) l) 3) Mostre que: a) se, então b) se, então 4) Dado, determine: a) A inclinação de no ponto na direção do eixo. b) A inclinação de no ponto na direção do eixo. 5) Encontrar a declividade da reta tangente à curva resultante da intersecção de: a) com o plano no ponto b) com o plano, no ponto c) com o plano, no ponto Resposta: a) 4, b) 4, c) -3 6) Dada a função. Determine: a) o domínio de b) c) Resposta: a) b) c) 7) Seja a função dada por a) Determine e represente graficamente o domínio de. b) Encontre Resposta: b) 21

22 8) Seja a função dada por a) Determine e represente graficamente o domínio de. b) Encontre 9) O volume V de um cilindro circular reto é dado pela fórmula onde representa a medida do raio da base e a altura do cilindro. a) Determine uma fórmula para a taxa de variação instantânea de V em relação a se permanece constante. b) Determine uma fórmula para a taxa de variação instantânea de V em relação a se permanece constante. c) Suponha que tem um valor constante de mas varia. Determine a taxa de variação de V em relação a quando. d) Suponha que tem um valor constante de mas varia. Determine a taxa de variação de V em relação a quando. Respostas: 5- Derivadas parciais de ordem superior As derivadas parciais de ordem superior são obtidas da mesma forma que as derivadas parciais de primeira ordem. No entanto, deve-se observar que, para uma função de duas variáveis, existirão duas derivadas de segunda ordem para cada derivada parcial, ou seja, as derivadas de segunda ordem de são dadas por: Quando a função e suas derivadas são contínuas, as derivadas cruzadas são iguais:. Exemplo 1) Calcular as derivadas até a segunda ordem de Solução: 22

23 Exemplo 2) Calcular as derivadas até a segunda ordem de Solução: Exemplo 3) Calcular as derivadas até a segunda ordem de Solução: Exercícios: 1- Determine as derivadas de segunda ordem das funções abaixo: a) b) c) d) 2- Determine as derivadas parciais de segunda ordem (, das funções dadas por: a) b) c) d) e) f) g) h) i) Resposta: i) 23

24 Regra da Cadeia (do livro do Stewart) Há muitas versões da regra da cadeia aplicadas às derivadas parciais, a mais simples delas é uma transcrição direta da regra da cadeia para funções a uma variável. Seja uma função a mais de uma variável, mais especificamente a duas variáveis, para facilidade de compreensão. Se e, ou seja,, então mantendo constante e utilizando a regra da cadeia conhecida, temos: isto é contanto que as derivadas existam. Analogamente, mantendo-se constante e utilizando a regra da cadeia conhecida, temos: isto é contanto que as derivadas existam. 1) Se, encontre e Solução: fazendo 24

25 Pela regra da cadeia: 2) Se, encontre e Solução: 25

26 26

27 Solução: n=4 e m=2. Grafo correspondente: Solução. Com o auxílio do grafo: 27

28 Portanto: Exercícios 1) Use a primeira regra da Cadeia para determinar ou (Stewart, página 936) Resposta dos ímpares: 2) Use a primeira regra da Cadeia para determinar cada derivada (Munem, página 880) 28

29 Respostas: 3) Use a segunda regra da Cadeia (ou a versão geral) para determinar cada derivada parcial (Munem, página 880) 21. Resposta dos ímpares: 29

30 Bibliografia: 1- Cálculo com geometria analítica. Vol.2 Swokowski. 2- Cálculo. Vol. 2. Munem - Foulis 3- Cálculo. Vol. 2. James Stewart. 4- Cálculo. Leithold Funções de duas variáveis Eliana Prates, Ivana Matos, Joseph Yartey e Silvia Velloso Matemática C prof. Wilson C. Canesin da Silva 30

CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1. CAPÍTULO 2 Sistemas de Coordenadas Retangulares 9. CAPÍTULO 3 Retas 18

CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1. CAPÍTULO 2 Sistemas de Coordenadas Retangulares 9. CAPÍTULO 3 Retas 18 Sumário CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1 Sistema de Coordenadas Lineares 1 Intervalos Finitos 3 Intervalos Infinitos 3 Desigualdades 3 CAPÍTULO 2 Sistemas de

Leia mais

Capítulo 3 - Geometria Analítica

Capítulo 3 - Geometria Analítica 1. Gráficos de Equações Capítulo 3 - Geometria Analítica Conceito:O gráfico de uma equação é o conjunto de todos os pontos e somente estes pontos, cujas coordenadas satisfazem a equação. Assim, o gráfico

Leia mais

Para temos : que é a ideia de um polinômio. A série pode convergir para alguns valores de mas pode divergir para outros valores de.

Para temos : que é a ideia de um polinômio. A série pode convergir para alguns valores de mas pode divergir para outros valores de. MATERIAL DIDÁTICO Professora Sílvia Victer CÁLCULO 2 SÉRIES DE POTÊNCIAS Definição: Séries de Potências é uma série infinita de termos variáveis. Elas podem ser usadas em várias aplicações, como por exemplo,

Leia mais

UNIVERSIDADE FEDERAL DE ALAGOAS INSTITUTO DE MATEMÁTICA Aluno(a): Professor(a): Curso:

UNIVERSIDADE FEDERAL DE ALAGOAS INSTITUTO DE MATEMÁTICA Aluno(a): Professor(a): Curso: 5 Geometria Analítica - a Avaliação - 6 de setembro de 0 Justique todas as suas respostas.. Dados os vetores u = (, ) e v = (, ), determine os vetores m e n tais que: { m n = u, v u + v m + n = P roj u

Leia mais

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO. Realização:

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO. Realização: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO Realização: Fortaleza, Fevereiro/2010 1. LIMITES 1.1. Definição Geral Se os valores de f(x) puderem

Leia mais

Matéria das Aulas e Exercícios Recomendados Cálculo II- MAA

Matéria das Aulas e Exercícios Recomendados Cálculo II- MAA Matéria das Aulas e Exercícios Recomendados Cálculo II- MAA Número da Aula Data da Aula Matéria Dada Exercícios Recomendados Obs 1 06/08 Sequências, definição, exemplos, convergência e divergência, propriedades,

Leia mais

Matéria das Aulas e Exercícios Recomendados Cálculo II- MAA

Matéria das Aulas e Exercícios Recomendados Cálculo II- MAA Matéria das Aulas e Exercícios Recomendados Cálculo II- MAA Número da Aula Data da Aula 1 02/09 Sequências Numéricas, definição, exemplos, representação geométrica, convergência e divergência, propriedades,

Leia mais

Provável ordem de Assuntos das Aulas e Exercícios Recomendados Cálculo II- MAC 123

Provável ordem de Assuntos das Aulas e Exercícios Recomendados Cálculo II- MAC 123 Provável ordem de Assuntos das Aulas e Exercícios Recomendados Cálculo II- MAC 123 Número da Data da Matéria Dada Exercícios Recomendados Obs Aula Aula 1 11/03 Sequências Numéricas, definição, exemplos,

Leia mais

MAT 1351 : Cálculo para Funções de Uma Variável Real I. Sylvain Bonnot (IME-USP)

MAT 1351 : Cálculo para Funções de Uma Variável Real I. Sylvain Bonnot (IME-USP) MAT 1351 : Cálculo para Funções de Uma Variável Real I Sylvain Bonnot (IME-USP) 2016 1 Informações gerais Prof.: Sylvain Bonnot Email: sylvain@ime.usp.br Minha sala: IME-USP, 151-A (Bloco A) Site: ver

Leia mais

A sequência é ordenada pois existe um primeiro termo,, um segundo termo,, e, se denota um número inteiro positivo arbitrário, um n-ésimo termo.

A sequência é ordenada pois existe um primeiro termo,, um segundo termo,, e, se denota um número inteiro positivo arbitrário, um n-ésimo termo. MATERIAL DIDÁTICO Professora Sílvia Victer CÁLCULO 2 SEQUÊNCIAS INFINITAS A importância de sequências infinitas e séries em cálculo surge da ideia de Newton de representar funções como somas de séries

Leia mais

Capítulo 5 Derivadas Parciais e Direcionais

Capítulo 5 Derivadas Parciais e Direcionais Capítulo 5 Derivadas Parciais e Direcionais 1. Conceitos Sabe-se que dois problemas estão relacionados com derivadas: Problema I: Taxas de variação da função. Problema II: Coeficiente angular de reta tangente.

Leia mais

Cálculo Vetorial. Funções de duas variáveis Prof. Vasco Ricardo Aquino da Silva

Cálculo Vetorial. Funções de duas variáveis Prof. Vasco Ricardo Aquino da Silva Cálculo Vetorial Funções de duas variáveis Prof. Vasco Ricardo Aquino da Silva Retomando... Dada a função, determine: a. O domínio e sua representação gráfica; b. As curvas de nível para z=1, z=2, z=3;

Leia mais

Da figura, sendo a reta contendo e B tangente à curva no ponto tem-se: é a distância orientada PQ do ponto P ao ponto Q; enquanto que pois o triângulo

Da figura, sendo a reta contendo e B tangente à curva no ponto tem-se: é a distância orientada PQ do ponto P ao ponto Q; enquanto que pois o triângulo CÁLCULO DIFERENCIAL INTEGRAL AULA 09: INTEGRAL INDEFINIDA E APLICAÇÕES TÓPICO 01: INTEGRAL INDEFINIDA E FÓRMULAS DE INTEGRAÇÃO Como foi visto no tópico 2 da aula 4 a derivada de uma função f representa

Leia mais

54 CAPÍTULO 2. GEOMETRIA ANALÍTICA ( ) =

54 CAPÍTULO 2. GEOMETRIA ANALÍTICA ( ) = 54 CAPÍTULO. GEOMETRIA ANALÍTICA.5 Cônicas O grá co da equação + + + + + = 0 (.4) onde,,,, e são constantes com, e, não todos nulos, é uma cônica. A equação (.4) é chamada de equação geral do grau em e

Leia mais

,,,,,,,, e são constantes com,,,, e, não todas nulas. Uma equação desse tipo é a equação de uma quádrica. Observe que a equação

,,,,,,,, e são constantes com,,,, e, não todas nulas. Uma equação desse tipo é a equação de uma quádrica. Observe que a equação Capítulo 5 As Superfícies O estudo das superfícies do espaço, iniciado com os planos no capítulo anterior, tem como sequência natural a classi cação das superfícies que podem ser expressas por equações

Leia mais

Cálculo 2. Guia de Estudos P1

Cálculo 2. Guia de Estudos P1 Cálculo 2 Guia de Estudos P1 Resuminho Teórico e Fórmulas Parte 1 Cônicas Conceito: Cônicas são formas desenhadas em duas dimensões, considerando apenas os eixos x (horizontal) e y (vertical). Tipos de

Leia mais

Lista 5: Superfícies Engenharia Mecânica - Professora Elisandra Bär de Figueiredo

Lista 5: Superfícies Engenharia Mecânica - Professora Elisandra Bär de Figueiredo Lista 5: Superfícies Engenharia Mecânica - Professora Elisandra Bär de Figueiredo Nos eercícios 1 ao 18 identique e represente geometricamente as superfícies dadas pelas equações: 1. + 9 = 6. = 16. = 9.

Leia mais

GGM Geometria Analítica e Cálculo Vetorial Geometria Analítica Básica 20/12/2012- GGM - UFF Dirce Uesu

GGM Geometria Analítica e Cálculo Vetorial Geometria Analítica Básica 20/12/2012- GGM - UFF Dirce Uesu GGM0016 Geometria Analítica e Cálculo Vetorial Geometria Analítica Básica 0/1/01- GGM - UFF Dirce Uesu CÔNICAS DEFINIÇÃO GEOMÉTRICA Exercício: Acesse o sitio abaixo e use o programa: http://www.professores.uff.br/hjbortol/disciplinas/005.1/gma04096/applets/conic/co

Leia mais

54 CAPÍTULO 2. GEOMETRIA ANALÍTICA ( ) =

54 CAPÍTULO 2. GEOMETRIA ANALÍTICA ( ) = 54 CAPÍTULO. GEOMETRIA ANALÍTICA.5 Cônicas O grá co da equação + + + + + = 0 (.4) onde,,,, e são constantes com, e, não todos nulos, é uma cônica. A equação (.4) é chamada de equação geral do grau em e

Leia mais

3. Achar a equação da esfera definida pelas seguintes condições: centro C( 4, 2, 3) e tangente ao plano π : x y 2z + 7 = 0.

3. Achar a equação da esfera definida pelas seguintes condições: centro C( 4, 2, 3) e tangente ao plano π : x y 2z + 7 = 0. Universidade Federal de Uerlândia Faculdade de Matemática Disciplina : Geometria Analítica (GMA00) Assunto: Superfícies, Quádricas, Curvas e Coordenadas Professor Sato 4 a Lista de exercícios. Determinar

Leia mais

Lista 5: Superfícies. (e) x = 4 tan(t) (f) x = (g) x = 1 4 csc(t) y = cosh(2t)

Lista 5: Superfícies. (e) x = 4 tan(t) (f) x = (g) x = 1 4 csc(t) y = cosh(2t) 1. Parametrize as seguintes curvas. + = 16 + 5 = 15 = 4 = 16 + 5 + 8 7 = 0 (f) + 4 + 1 + 6 = 0. Lista 5: Superfícies (g) = + (h) + = (i) + = 4 (j) + = 1 (k) 6 + 18 = 0 (l) r = sin(θ). Determine a equação

Leia mais

Cálculo II. Resumo Teórico Completo

Cálculo II. Resumo Teórico Completo Cálculo II Resumo Teórico Completo Cálculo 2 A disciplina visa estudar funções e gráficos, de forma semelhante a Cálculo 1, mas expande o estudo para funções de mais de uma variável, bem como gráficos

Leia mais

A Derivada e a Inclinação de um Gráfico

A Derivada e a Inclinação de um Gráfico UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I A Derivada e a Inclinação

Leia mais

Resolvendo inequações: expressões com desigualdades (encontrar os valores que satisfazem a expressão)

Resolvendo inequações: expressões com desigualdades (encontrar os valores que satisfazem a expressão) R é ordenado: Se a, b, c R i) a < b se e somente se b a > 0 (a diferença do maior com o menor será positiva) ii) se a > 0 e b > 0 então a + b > 0 (a soma de dois números positivos é positiva) iii) se a

Leia mais

1. A partir da definição, determinar a equação da parábola P, cujo foco é F = (3, 4) e cuja diretriz é L : x + y 2 = 0. (x 3) 2 + (y + 4) 2 =

1. A partir da definição, determinar a equação da parábola P, cujo foco é F = (3, 4) e cuja diretriz é L : x + y 2 = 0. (x 3) 2 + (y + 4) 2 = QUESTÕES-AULA 18 1. A partir da definição, determinar a equação da parábola P, cujo foco é F = (3, 4) e cuja diretriz é L : x + y = 0. Solução Seja P = (x, y) R. Temos que P P d(p, F ) = d(p, L) (x 3)

Leia mais

Capítulo 2- Funções. Dado dois conjuntos não vazios e e uma lei que associa a cada elemento de um único elemento de, dizemos que é uma função de em.

Capítulo 2- Funções. Dado dois conjuntos não vazios e e uma lei que associa a cada elemento de um único elemento de, dizemos que é uma função de em. Conceitos Capítulo 2- Funções O termo função foi primeiramente usado para denotar a dependência entre uma quantidade e outra. A função é usualmente denotada por uma única letra,,,... Definição: Dado dois

Leia mais

MAT 1351 : Cálculo para Funções de Uma Variável Real I. Sylvain Bonnot (IME-USP)

MAT 1351 : Cálculo para Funções de Uma Variável Real I. Sylvain Bonnot (IME-USP) MAT 1351 : Cálculo para Funções de Uma Variável Real I Sylvain Bonnot (IME-USP) 2016 1 Informações gerais Prof.: Sylvain Bonnot Email: sylvain@ime.usp.br Minha sala: IME-USP, 151-A (Bloco A) Site: ver

Leia mais

MATRIZES VETORES E GEOMETRIA. Reginaldo J. Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais

MATRIZES VETORES E GEOMETRIA. Reginaldo J. Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais MATRIZES VETORES E GEOMETRIA ANALÍTICA Departamento de Matemática-ICEx Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi Março 2002 Matrizes Vetores e Geometria Anaĺıtica Copyright c 2002

Leia mais

c) F( 4, 2) r : 2x+y = 3 c) a = 3 F 1 = (0,0) F 2 = (1,1)

c) F( 4, 2) r : 2x+y = 3 c) a = 3 F 1 = (0,0) F 2 = (1,1) Lista de Exercícios Estudo Analítico das Cônicas e Quádricas 1. Determine o foco, o vértice, o parâmetro e a diretriz da parábola P e faça um esboço. a) P : y 2 = 4x b) P : y 2 +8x = 0 c) P : x 2 +6y =

Leia mais

A Derivada e a Inclinação de um Gráfico. A Derivada e a Inclinação de um Gráfico

A Derivada e a Inclinação de um Gráfico. A Derivada e a Inclinação de um Gráfico UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I A Derivada e a Inclinação

Leia mais

PARTE 4. ESFERAS E SUPERFÍCIES QUÁDRICAS EM GERAL (Leitura para Casa)

PARTE 4. ESFERAS E SUPERFÍCIES QUÁDRICAS EM GERAL (Leitura para Casa) PARTE 4 REVISÃO DE PLANOS, CILINDROS, SUPERFÍCIES DE REVOLUÇÃO, ESFERAS E SUPERFÍCIES QUÁDRICAS EM GERAL (Leitura para Casa) Vamos agora faer uma revisão de planos, cilindros, superfícies de revolução,

Leia mais

12 AULA. ciáveis LIVRO. META Estudar derivadas de funções de duas variáveis a valores reais.

12 AULA. ciáveis LIVRO. META Estudar derivadas de funções de duas variáveis a valores reais. 1 LIVRO Diferen- Funções ciáveis META Estudar derivadas de funções de duas variáveis a valores reais. OBJETIVOS Estender os conceitos de diferenciabilidade de funções de uma variável a valores reais. PRÉ-REQUISITOS

Leia mais

Capítulo 4 Funções à Várias Variáveis

Capítulo 4 Funções à Várias Variáveis 1. Conceito Capítulo 4 Funções à Várias Variáveis Em muitas situações práticas, o valor de certa quantidade depende dos valores de duas ou mais variáveis. Então, é usual representar estas relações como

Leia mais

Cálculo a Várias Variáveis I - MAT Cronograma para P2: aulas teóricas (segundas e quartas)

Cálculo a Várias Variáveis I - MAT Cronograma para P2: aulas teóricas (segundas e quartas) Cálculo a Várias Variáveis I - MAT 116 0141 Cronograma para P: aulas teóricas (segundas e quartas) Aula 10 4 de março (segunda) Aula 11 6 de março (quarta) Referências: Cálculo Vol James Stewart Seções

Leia mais

Definição: Uma série infinita (ou simplesmente uma série) é uma expressão que representa uma soma de números de uma sequência infinita, da forma:

Definição: Uma série infinita (ou simplesmente uma série) é uma expressão que representa uma soma de números de uma sequência infinita, da forma: MATERIAL DIDÁTICO Professora Sílvia Victer CÁLCULO 2 SÉRIES INFINITAS A importância de sequências infinitas e séries em cálculo surge da ideia de Newton de representar funções como somas de séries infinitas.

Leia mais

Capítulo 1 Como motivação para a construção dos números complexos aconselha-se o visionamento do quinto do capítulo do documentário Dimensions, disponível em http://www.dimensions-math.org/ Slides de apoio

Leia mais

Funções de várias variáveis

Funções de várias variáveis GOVERNO FEDERAL MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO CÂMPUS JUAZEIRO/BA COLEG. DE ENG. ELÉTRICA PROF. PEDRO MACÁRIO DE MOURA CÁLCULO II 2015.2 Funções de várias variáveis

Leia mais

Universidade Federal da Bahia

Universidade Federal da Bahia Universidade Federal da Bahia Instituto de Matemática DISCIPLINA: MATA3 - CÁLCULO B UNIDADE II - LISTA DE EXERCÍCIOS Atualiada 13.1 Coordenadas Polares [1] Dados os pontos P 1 (3, 5π 3 ), P ( 3, 33 ),

Leia mais

Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de Limites. Aula 01. Projeto GAMA

Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de Limites. Aula 01. Projeto GAMA Universidade Federal de Pelotas Instituto de Física e Matemática Pró-reitoria de Ensino Atividades de Reforço em Cálculo Módulo de Limites Aula 0 208/ Projeto GAMA Grupo de Apoio em Matemática Ideia Intuitiva

Leia mais

1 Cônicas Não Degeneradas

1 Cônicas Não Degeneradas Seções Cônicas Reginaldo J. Santos Departamento de Matemática-ICE Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi regi@mat.ufmg.br 11 de dezembro de 2001 Estudaremos as (seções) cônicas,

Leia mais

2 a Edição do Curso de Difusão Pré-Cálculo aos alunos de. Patricia Araripe e Pollyane Vieira. 15 de fevereiro de 2019

2 a Edição do Curso de Difusão Pré-Cálculo aos alunos de. Patricia Araripe e Pollyane Vieira. 15 de fevereiro de 2019 Função do 2 o grau: Equação e Inequação 2 a Edição do Curso de Difusão Pré-Cálculo aos alunos de graduação da ESALQ Patricia Araripe e Pollyane Vieira 15 de fevereiro de 2019 Definição (1) (Função) Dados

Leia mais

Universidade Tecnológica Federal do Paraná Câmpus Campo Mourão Departamento de Matemática

Universidade Tecnológica Federal do Paraná Câmpus Campo Mourão Departamento de Matemática Universidade Tecnológica Federal do Paraná Câmpus Campo Mourão Departamento de Matemática GAX1 - Geometria Analítica e Álgebra Linear Lista de Exercícios: Estudo Analítico de Cônicas e Quádricas Prof.

Leia mais

MÉTODOS MATEMÁTICOS. Claudia Mazza Dias Sandra Mara C. Malta

MÉTODOS MATEMÁTICOS. Claudia Mazza Dias Sandra Mara C. Malta MÉTODOS MATEMÁTICOS Claudia Mazza Dias Sandra Mara C. Malta 1 Métodos Matemáticos Aulas: De 03/11 a 08/11-8:30 as 11:00h Ementa: 1. Funções 2. Eq. Diferenciais Ordinárias de 1 a ordem 3. Sistemas de Equações

Leia mais

3. Limites e Continuidade

3. Limites e Continuidade 3. Limites e Continuidade 1 Conceitos No cálculo de limites, estamos interessados em saber como uma função se comporta quando a variável independente se aproxima de um determinado valor. Em outras palavras,

Leia mais

AULA 1 Introdução aos limites 3. AULA 2 Propriedades dos limites 5. AULA 3 Continuidade de funções 8. AULA 4 Limites infinitos 10

AULA 1 Introdução aos limites 3. AULA 2 Propriedades dos limites 5. AULA 3 Continuidade de funções 8. AULA 4 Limites infinitos 10 Índice AULA 1 Introdução aos limites 3 AULA 2 Propriedades dos limites 5 AULA 3 Continuidade de funções 8 AULA 4 Limites infinitos 10 AULA 5 Limites quando numerador e denominador tendem a zero 12 AULA

Leia mais

Superfícies Quádricas

Superfícies Quádricas Superfícies Quádricas Jorge M. V. Capela, Marisa V. Capela Instituto de Química - UNESP Araraquara, SP capela@iq.unesp.br Araraquara, SP - 2017 1 Superfícies de Revolução São superfícies criadas pela rotação

Leia mais

Preliminares de Cálculo

Preliminares de Cálculo Preliminares de Cálculo Profs. Ulysses Sodré e Olivio Augusto Weber Londrina, 21 de Fevereiro de 2008, arquivo: precalc.tex... Conteúdo 1 Números reais 2 1.1 Algumas propriedades do corpo R dos números

Leia mais

FUNÇÕES DE MAIS DE UMA VARIÁVEL REAL

FUNÇÕES DE MAIS DE UMA VARIÁVEL REAL Universidade Federal Tecnológica do Paraná Francisco Beltrão Tereza Rachel Mafioleti CÁLCULO DIFERENCIAL INTEGRAL FUNÇÕES DE MAIS DE UMA VARIÁVEL REAL A maioria dos fenômenos da natureza depende de mais

Leia mais

Aula 2: Funções. Margarete Oliveira Domingues PGMET/INPE. Aula 2 p.1/57

Aula 2: Funções. Margarete Oliveira Domingues PGMET/INPE. Aula 2 p.1/57 Aula 2 p.1/57 Aula 2: Funções. Margarete Oliveira Domingues PGMET/INPE Definição e representação Aula 2 p.2/57 Aula 2 p.3/57 Função Definição: Uma função de um conjunto em um conjunto, é uma correspondência

Leia mais

SEÇÕES CÔNICAS. Figura 1

SEÇÕES CÔNICAS. Figura 1 INSTITUTO DE MATEMÁTICA UFBA DISCIPLINA: MATEMÁTICA BÁSICA II - SEM. 004.1 PROF. GRAÇA LUZIA DOMINGUEZ SANTOS SEÇÕES CÔNICAS Sejam duas retas e e r concorrentes em O, tal que o ângulo α entre e e r é diferente

Leia mais

Superfícies e Curvas no Espaço

Superfícies e Curvas no Espaço Superfícies e Curvas no Espaço Reginaldo J. Santos Departamento de Matemática-ICE Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi regi@mat.ufmg.br 11 de deembro de 2001 1 Quádricas Nesta

Leia mais

c) F( 4, 2) r : 2x+y = 3 c) a = 3 F 1 = (0,0) F 2 = (1,1)

c) F( 4, 2) r : 2x+y = 3 c) a = 3 F 1 = (0,0) F 2 = (1,1) Lista de Exercícios Estudo Analítico das Cônicas e Quádricas 1. Determine o foco, o vértice, o parâmetro e a diretriz da parábola P e faça um esboço. a) P : y 2 = 4x b) P : y 2 +8x = 0 c) P : x 2 +6y =

Leia mais

GGM Geometria Analítica I 19/04/2012- Turma M1 Dirce Uesu

GGM Geometria Analítica I 19/04/2012- Turma M1 Dirce Uesu GGM0016 Geometria Analítica I 19/04/01- Turma M1 Dirce Uesu CÔNICAS DEFINIÇÃO GEOMÉTRICA Exercício: Acesse o sitio abaixo e use o programa: http://www.professores.uff.br/hjbortol/disciplinas/005.1/gma04096/applets/conic/co

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO

UNIVERSIDADE FEDERAL DE PERNAMBUCO CÁLCULO L1 NOTAS DA QUINTA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Iniciamos a aula definindo as funções trigonométricas e estabelecendo algumas de suas propriedades básicas. A seguir, calcularemos

Leia mais

Cálculo Vetorial / Ilka Rebouças Freire / DMAT UFBA

Cálculo Vetorial / Ilka Rebouças Freire / DMAT UFBA Cálculo Vetorial / Ilka Rebouças Freire / DMAT UFBA 1. Funções Vetoriais Até agora nos cursos de Cálculo só tratamos de funções cujas imagens estavam em R. Essas funções são chamadas de funções com valores

Leia mais

Aula 17 Superfícies quádricas - parabolóides

Aula 17 Superfícies quádricas - parabolóides Objetivos Aula 17 Superfícies quádricas - parabolóides Apresentar os parabolóides elípticos e hiperbólicos identificando suas seções planas. Estudar os parabolóides regrados e de revolução. Nas superfícies

Leia mais

LISTA DE CÁLCULO III. (A) Integrais Duplas. 1. Em cada caso, esboce a região de integração e calcule a integral: (e) (f) (g) (h)

LISTA DE CÁLCULO III. (A) Integrais Duplas. 1. Em cada caso, esboce a região de integração e calcule a integral: (e) (f) (g) (h) 1 LISTA E CÁLCULO III (A) Integrais uplas 1. Em cada caso, esboce a região de integração e calcule a integral: (c) (d) 1 y y a a 2 x 2 a 1 y 1 2 2 x x 2 y 2 dxdy; a 2 x 2 (x + y)dydx; e x+y dxdy; x 1 +

Leia mais

UNEMAT Universidade do Estado de Mato Grosso Campus Universitário de Sinop Faculdade de Ciências Exatas e Tecnológicas Curso de Engenharia Civil

UNEMAT Universidade do Estado de Mato Grosso Campus Universitário de Sinop Faculdade de Ciências Exatas e Tecnológicas Curso de Engenharia Civil PLANO DE ENSINO Disciplina: Cálculo Diferencial e Integral I C. H. 90 Créditos 6.0.0.0.0 Professor: Rogério Dias Dalla Riva Curso: Bacharelado em Engenharia Civil Semestre: 1 Período Letivo: 2015/1 1 EMENTA:

Leia mais

SUPERFÍCIES QUÁDRICAS

SUPERFÍCIES QUÁDRICAS 1 SUPERFÍCIES QUÁDRICAS Dá-se o nome de superfície quádrica ou simplesmente quádrica ao gráfico de uma equação do segundo grau, nas variáveis, e, da forma: A + B + C + D + E + F + G + H + I + K = 0, que

Leia mais

PLANO DE ENSINO IDENTIFICAÇÃO DA DISCIPLINA

PLANO DE ENSINO IDENTIFICAÇÃO DA DISCIPLINA 1 PLANO DE ENSINO IDENTIFICAÇÃO DA DISCIPLINA Curso: Curso Superior de Tecnologia em Sistemas de Telecomunicações Nome da disciplina: Cálculo Diferencial e Integral I Código: TEL015 Carga horária: 83 horas

Leia mais

AT3-1 - Unidade 3. Derivadas e Aplicações 1. Cálculo Diferencial e Integral. UAB - UFSCar. Bacharelado em Sistemas de Informação

AT3-1 - Unidade 3. Derivadas e Aplicações 1. Cálculo Diferencial e Integral. UAB - UFSCar. Bacharelado em Sistemas de Informação AT3-1 - Unidade 3 1 Cálculo Diferencial e Integral Bacharelado em Sistemas de Informação UAB - UFSCar 1 Versão com 34 páginas 1 / 34 Tópicos de AT3-1 1 Uma noção intuitiva Caracterização da derivada Regras

Leia mais

PLANO DE ENSINO IDENTIFICAÇÃO DA DISCIPLINA

PLANO DE ENSINO IDENTIFICAÇÃO DA DISCIPLINA 1 PLANO DE ENSINO IDENTIFICAÇÃO DA DISCIPLINA Curso: CST em Sistemas de Telecomunicações, Tecnologia Nome da disciplina: Álgebra Vetorial Código: CEE.002 Carga horária: 67 horas Semestre previsto: 1 Pré-requisito(s):

Leia mais

Computação Gráfica. Prof. André Yoshimi Kusumoto

Computação Gráfica. Prof. André Yoshimi Kusumoto Computação Gráfica Prof. André Yoshimi Kusumoto andrekusumoto.unip@gmail.com Curvas Curvas e superfícies desempenham um papel importante em diversas áreas tanto na criação de objetos sintéticos quanto

Leia mais

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Curitiba PLANO DE ENSINO

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Curitiba PLANO DE ENSINO Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Curitiba PLANO DE ENSINO CURSOS Bacharelados e Licenciaturas MATRIZ SA (Informação do Sistema Acadêmico) FUNDAMENTAÇÃO LEGAL Resolução

Leia mais

Análise Matemática 2 - Semana 2: 8 de Março, 2010

Análise Matemática 2 - Semana 2: 8 de Março, 2010 Análise Matemática 2 - Semana 2: 8 de Março, 200 Superfícies Identifique os seguintes conjuntos: (a) V = {(x,y,z) R 3 : x 2 + 2x + + (y ) 2 + z 2 = } Res: (x + ) 2 + (y ) 2 + z 2 = é a equação de uma esfera

Leia mais

MATEMÁTICA I FUNÇÕES. Profa. Dra. Amanda L. P. M. Perticarrari

MATEMÁTICA I FUNÇÕES. Profa. Dra. Amanda L. P. M. Perticarrari MATEMÁTICA I FUNÇÕES Profa. Dra. Amanda L. P. M. Perticarrari amanda.perticarrari@unesp.br Conteúdo Função Variáveis Traçando Gráficos Domínio e Imagem Família de Funções Funções Polinomiais Funções Exponenciais

Leia mais

Lista Determine o valor máximo e o valor mínimo da função f sujeita às restrições explicitadas:

Lista Determine o valor máximo e o valor mínimo da função f sujeita às restrições explicitadas: UFPR - Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Matemática CM048 - Cálculo II - Matemática Diurno Prof. Zeca Eidam Lista 3 Máximos e mínimos de funções de duas variáveis

Leia mais

Integração Volume. Aula 07 Matemática II Agronomia Prof. Danilene Donin Berticelli

Integração Volume. Aula 07 Matemática II Agronomia Prof. Danilene Donin Berticelli Integração Volume Aula 7 Matemática II Agronomia Prof. Danilene Donin Berticelli Volume de um sólido Na tentativa de encontra o volume de um sólido, nos deparamos com o mesmo tipo de problema que para

Leia mais

DISTRIBUIÇÃO DOS DOMÍNIOS POR PERÍODO

DISTRIBUIÇÃO DOS DOMÍNIOS POR PERÍODO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS Planificação Anual da Disciplina de Matemática 11.º ano Ano Letivo de 2016/2017 Manual adotado: Máximo 11 Matemática A 11.º ano Maria Augusta Ferreira

Leia mais

Universidade Estadual de Montes Claros Departamento de Ciências Exatas Curso de Licenciatura em Matemática. Notas de Aulas de

Universidade Estadual de Montes Claros Departamento de Ciências Exatas Curso de Licenciatura em Matemática. Notas de Aulas de Universidade Estadual de Montes Claros Departamento de Ciências Exatas Curso de Licenciatura em Matemática Notas de Aulas de Cálculo Rosivaldo Antonio Gonçalves Notas de aulas que foram elaboradas para

Leia mais

As Primitivas de f'(x) são o conjunto: { f(x): f(x)=2x + K, K real }= {..2x + 1.., 2x + 1/2,..2x + 0..,2x + 1/3,..2x }

As Primitivas de f'(x) são o conjunto: { f(x): f(x)=2x + K, K real }= {..2x + 1.., 2x + 1/2,..2x + 0..,2x + 1/3,..2x } 1 of 6 27/11/2006 00:48 Derivada Origem: Wikipédia, a enciclopédia livre. Na matemática, a derivada de uma função é o conceito central do cálculo diferencial. A derivada pode ser usada para determinar

Leia mais

4. Superfícies e sólidos geométricos

4. Superfícies e sólidos geométricos 4. Superfícies e sólidos geométricos Geometria Descritiva 2006/2007 4.1 Classificação das superfícies e sólidos geométricos Geometria Descritiva 2006/2007 1 Classificação das superfícies Linha Lugar das

Leia mais

PROGRAMA DE DISCIPLINAS DE CURSO DE GRADUAÇÃO. SERIAÇÃO IDEAL 1º ano Obrig/Opt/Est PRÉ/CO/REQUISITOS ANUAL/SEM.

PROGRAMA DE DISCIPLINAS DE CURSO DE GRADUAÇÃO. SERIAÇÃO IDEAL 1º ano Obrig/Opt/Est PRÉ/CO/REQUISITOS ANUAL/SEM. CURSO: Física Médica MODALIDADE: PROGRAMA DE DISCIPLINAS DE CURSO DE GRADUAÇÃO UNIDADE UNIVERSITÁRIA: Instituto de Biociências de Botucatu DEPARTAMENTO RESPONSÁVEL: Bioestatística IDENTIFICAÇÃO NOME DA

Leia mais

Área de uma Superfície de Revolução

Área de uma Superfície de Revolução UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Área de uma Superfície

Leia mais

Profª.. Deli Garcia Ollé Barreto

Profª.. Deli Garcia Ollé Barreto CURVAS CÔNICAS Curvas cônicas são curvas resultantes de secções no cone reto circular. Cone reto circular é aquele cuja base é uma circunferência e a projeção do vértice sobre o plano da base é o centro

Leia mais

UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA LISTA DE EXERCÍCIOS DE MAT243-CÁLCULO III

UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA LISTA DE EXERCÍCIOS DE MAT243-CÁLCULO III UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA LISTA DE EXERCÍCIOS DE MAT243-CÁLCULO III Capítulo 1 Vetores no Rn 1. Sejam u e v vetores tais que e u v = 2 e v = 1. Calcule v u v. 2. Sejam u

Leia mais

Diferenciabilidade de funções reais de várias variáveis reais

Diferenciabilidade de funções reais de várias variáveis reais Diferenciabilidade de funções reais de várias variáveis reais Cálculo II Departamento de Matemática Universidade de Aveiro 2018-2019 Cálculo II 2018-2019 Diferenciabilidade de f.r.v.v.r. 1 / 1 Derivadas

Leia mais

Planificar o estudo para o exame de 2019

Planificar o estudo para o exame de 2019 explicamat Planificar o estudo para o exame de 2019 Este documento apresenta o índice do resumo explicamat para o Exame Nacional de Matemática A de 2019 Em primeiro lugar deves ter conhecimento dos temas

Leia mais

Derivada : definições e exemplos

Derivada : definições e exemplos Derivada : definições e exemplos Retome-se o problema Dada uma curva y f ( x curva ( =, determinar em cada ponto x f ( x, a tangente à e analise-se este problema numa situação simples: Considere-se a parábola

Leia mais

TURMAS:11.ºA/11.ºB. e é perpendicular à reta definida pela condição x 2 z 0.

TURMAS:11.ºA/11.ºB. e é perpendicular à reta definida pela condição x 2 z 0. FICHA DE TRABALHO N.º 3 (GEOMETRIA ANALÍTICA DO ESPAÇO) TURMAS:11.ºA/11.ºB 2017/2018 (JANEIRO DE 2018) No âmbito da Diferenciação Pedagógica (conjunto de exercícios com diferentes níveis de dificuldade:

Leia mais

8.1 Áreas Planas. 8.2 Comprimento de Curvas

8.1 Áreas Planas. 8.2 Comprimento de Curvas 8.1 Áreas Planas Suponha que uma certa região D do plano xy seja delimitada pelo eixo x, pelas retas x = a e x = b e pelo grá co de uma função contínua e não negativa y = f (x) ; a x b, como mostra a gura

Leia mais

Ricardo Bianconi. Fevereiro de 2015

Ricardo Bianconi. Fevereiro de 2015 Seções Cônicas Ricardo Bianconi Fevereiro de 2015 Uma parte importante da Geometria Analítica é o estudo das curvas planas e, em particular, das cônicas. Neste texto estudamos algumas propriedades das

Leia mais

Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Aplicações da Derivada

Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Aplicações da Derivada 1) Velocidade e Aceleração 1.1 Velocidade Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Aplicações da Derivada Suponhamos que um corpo se move em

Leia mais

Universidade Federal de Viçosa. MAT Cálculo Diferencial e Integral III 2a Lista /II

Universidade Federal de Viçosa. MAT Cálculo Diferencial e Integral III 2a Lista /II Universidade Federal de Viçosa Centro de Ciências xatas e Tecnológicas epartamento de Matemática MAT 43 - Cálculo iferencial e Integral III a Lista - 8/II Máximos e mínimos. A distribuição de temperatura

Leia mais

Aula Exemplos diversos. Exemplo 1

Aula Exemplos diversos. Exemplo 1 Aula 3 1. Exemplos diversos Exemplo 1 Determine a equação da hipérbole equilátera, H, que passa pelo ponto Q = ( 1, ) e tem os eixos coordenados como assíntotas. Como as assíntotas da hipérbole são os

Leia mais

INSTITUTO FEDERAL DE BRASILIA 4ª Lista. Nome: DATA: 09/11/2016

INSTITUTO FEDERAL DE BRASILIA 4ª Lista. Nome: DATA: 09/11/2016 INSTITUTO FEDERAL DE BRASILIA 4ª Lista MATEMÁTICA GEOMETRIA ANALÍTICA Nome: DATA: 09/11/016 Alexandre Uma elipse tem centro na origem e o eixo maior coincide com o eixo Y. Um dos focos é 1 F1 0, 3 e a

Leia mais

ln(x + y) (x + y 1) < 1 (x + y 1)2 3. Determine o polinômio de Taylor de ordem 2 da função dada, em volta do ponto dado:

ln(x + y) (x + y 1) < 1 (x + y 1)2 3. Determine o polinômio de Taylor de ordem 2 da função dada, em volta do ponto dado: ā Lista de MAT 454 - Cálculo II - a) POLINÔMIOS DE TAYLOR 1. Seja f(x, y) = ln (x + y). a) Determine o polinômio de Taylor de ordem um de f em torno de ( 1, 1 ). b) Mostre que para todo (x, y) IR com x

Leia mais

Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas

Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: Matemática A (11º Ano) METAS CURRICULARES/CONTEÚDOS... 1º Período (13 de setembro a 15 de dezembro) Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas

Leia mais

Capítulo 2. f : A B. 3. A regra em (3) não define uma função de A em B porque 4 A está associado a mais de um. elemento de B.

Capítulo 2. f : A B. 3. A regra em (3) não define uma função de A em B porque 4 A está associado a mais de um. elemento de B. Departamento de Matemática Disciplina MAT154 - Cálculo 1 Capítulo 2 Funções 2.1 Definição Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento

Leia mais

Resolução dos Exercícios sobre Derivadas

Resolução dos Exercícios sobre Derivadas Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva = 0 e = y = nos pontos onde Vamos determinar a reta tangente à curva y = nos pontos

Leia mais

DERIVADAS PARCIAIS. y = lim

DERIVADAS PARCIAIS. y = lim DERIVADAS PARCIAIS Definição: Seja f uma função de duas variáveis, x e y (f: D R onde D R 2 ) e (x 0, y 0 ) é um ponto no domínio de f ((x 0, y 0 ) D). A derivada parcial de f em relação a x no ponto (x

Leia mais

Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas

Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: Matemática A (11º Ano) METAS CURRICULARES/CONTEÚDOS... 1º Período (15 de setembro a 16 de dezembro) Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas

Leia mais

4.1 Funções de varias variáveis - Definição e exemplos

4.1 Funções de varias variáveis - Definição e exemplos Capítulo 4 Funções de duas variáveis 4.1 Funções de varias variáveis - Definição e eemplos Definição 1: Chamamos de função real com n variáveis a uma função do tipo f : D R com D R n = R R. Ou seja, uma

Leia mais

Capítulo 1. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas.

Capítulo 1. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas. Capítulo 1 Funções Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento em A associa um único elemento em B. A notação usual para uma função f

Leia mais

AGRUPAMENTO DE ESCOLAS DE MIRA

AGRUPAMENTO DE ESCOLAS DE MIRA 1º Período DOMÍNIO 1: LÓGICA E TEORIA DOS CONJUNTOS N. de blocos previstos: 8 1.1 Introdução à lógica bivalente. 1. Proposição. Valor lógico de uma proposição 2. Proposições equivalentes 3. Operações lógicas

Leia mais

ALUNO(A): Prof.: André Luiz Acesse: 02/05/2012

ALUNO(A): Prof.: André Luiz Acesse:  02/05/2012 1. FUNÇÃO 1.1. DEFINIÇÃO Uma função é um conjunto de pares ordenados de números (x,y) no qual duas duplas ordenadas distintas não podem ter o mesmo primeiro número, ou seja, garante que y seja único para

Leia mais

O objeto fundamental deste curso são as funções de uma variável real. As funções surgem quando uma quantidade depende de outra.

O objeto fundamental deste curso são as funções de uma variável real. As funções surgem quando uma quantidade depende de outra. Universidade Federal Fluminense Departamento de Análise GAN0045 Matemática para Economia Professora Ana Maria Luz 00. Unidade Revisão de função de uma variável real O objeto fundamental deste curso são

Leia mais

21 e 22. Superfícies Quádricas. Sumário

21 e 22. Superfícies Quádricas. Sumário 21 e 22 Superfícies uádricas Sumário 21.1 Introdução....................... 2 21.2 Elipsoide........................ 3 21.3 Hiperboloide de uma Folha.............. 4 21.4 Hiperboloide de duas folhas..............

Leia mais