Aula 2: Funções. Margarete Oliveira Domingues PGMET/INPE. Aula 2 p.1/57

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Aula 2: Funções. Margarete Oliveira Domingues PGMET/INPE. Aula 2 p.1/57"

Transcrição

1 Aula 2 p.1/57 Aula 2: Funções. Margarete Oliveira Domingues PGMET/INPE

2 Definição e representação Aula 2 p.2/57

3 Aula 2 p.3/57 Função Definição: Uma função de um conjunto em um conjunto, é uma correspondência que associa a cada elemento um único elemento. O elemento é chamado imagem de. por, e denota-se

4 Função Aula 2 p.4/57

5 Conj. Imagem Aula 2 p.5/57

6 Função Injetora Aula 2 p.6/57, então

7 Aula 2 p.7/57 Função Sobrejetora Imagem é o próprio contradomínio

8 Aula 2 p.8/57 Função Bijetora Injetora e sobrejetora

9 Exemplos Aula 2 p.9/57

10 Esboço de algumas funções Aula 2 p.10/57

11 Esboço de algumas funções Aula 2 p.11/57

12 Aula 2 p.12/57 Limitantes Se M é um limitante superior Se m é um limitante inferior é limitada em um intervalo.

13 Aula 2 p.13/57 Seqüências Seqüências são um conjunto de muitos números arranjados podendo ou não exibir determinados padrões. Uma seqüência de números reais é uma função. Ou seja, uma seqüência pode ser denotada por ou. Exemplo A seqüência de números é representada com a notação.

14 Funções Contínuas. e/ou Seja Definição: para, diz se que é contínua em dado, existir um ; e qualquer se, e somente se, é contínua em um ponto para toda sucessão em em que para toda seqüência Aula 2 p.14/57

15 Funções Contínuas Se direita. Se e esquerda. e é contínua em é contínua em não é contínua à esquerda em, é dita contínua à, é dita contínua à. se se é contínua à esquerda em. se se Aula 2 p.15/57

16 Aula 2 p.16/57 Funções contínuas(operações) Sejam Então: função contínuas em um ponto. é contínua em ; écontínua em ; Se em ;,então a função é contínua

17 Aula 2 p.17/57 Máximo e Mínimo Se é um ponto de un intervalo tal que máximo absoluto mínimo absoluto Se isso é válido apenas em uma vizinhança é dito ter um máximo relativo é dito ter um mínimo relativo

18 Aula 2 p.18/57 Máximo e Mínimo Seja uma função real contínua definida em um intervalo fechado. Então, assume um máximo e um mínimo em [a,b]. Seja intervalo fechado uma função contínua em um. Então, é limitada.

19 Aula 2 p.19/57 Funções monótonas Seja, para tem se que é dita monótona crescente se é dita monótona decrescente se é dita monótona não decrescente se é dita monótona não crescente se

20 Aula 2 p.19/57 Funções monótonas Ex: Funções monótona crescente monótona não decrescente f(x) a b x

21 Aula 2 p.20/57 Funções inversas Definição: Se é uma função de, denotada por uma função de denotada por Troca-se o por pode se considerar, então, é

22 Aula 2 p.21/57 Funções inversas Ramo Principal: Se é uma função de valor simples, pode ser uma função de valores múltiplos. Cada coleção desses valores múltiplos é chamada de ramo. Ex:, que é uma função de múltiplos valores, desde que para cada em existem muitos valores de..

23 Aula 2 p.22/57 Funções Compostas Se é uma função em então a função composta definida por e é uma função de é uma função de em, em,

24 Tipos de Funções Aula 2 p.23/57

25 Aula 2 p.24/57 Funções Polinomiais Funções polinomiais tem a forma em que são constantes e chamado de grau do polinômio se é um inteiro positivo. O Teorema fundamental da álgebra Toda a equação polinomial possui pelo menos uma raiz. Se o grau de um equação é raízes (contando as raízes repetidas de mutiplicidade raízes) como

26 Aula 2 p.25/57 Funções Lineares definidas por para todo Dada uma reta. em um plano coordenado, ela é o gráfico de uma função linear se não for paralela ao eixo ; caso contrário, a equação de retas paralelas ao eixo da forma. seria

27 Aula 2 p.26/57 Funções algébricas Funções algébricas forma satisfazem equações da em que são polinômios em. função racional algébrica função irracional algébrica Em analogia com números reais: polinômios correspondem aos números inteiros funções racionais aos números racionais

28 Aula 2 p.27/57 Funções Transcendentais Definição: Funções que não são algébricas Função exponencial:. Função logarítmica: Funções trigonométricas Funções trigonométricas inversas Funções hiperbólicas definidas em termos de exponenciais Funções hiperbólicas inversas e seus valores principais

29 Características de funções Aula 2 p.28/57

30 Esboço de algumas funções Aula 2 p.29/57

31 Limite Aula 2 p.30/57

32 Aula 2 p.31/57 Limite Seja uma função,, e um ponto não necessariamente pertencente a. Supõem se que exista um número tal que se aproxima de, quando se aproximar de, com. Quando isto acontecer diz se que é o limite de, em, e escreve se: ou com

33 Limite (Definição) Dados uma função e um ponto de acumulação de, diz-se que um número é limite de em, e escreve se: ou com quando vale a seguinte condição: Para todo, existe tal que: Não importa quão pequeno seja o número, é sempre possível encontrar de modo que essa relação seja válida. dado; se Aula 2 p.32/57

34 . Aula 2 p.33/57

35 Propriedades e Sejam, então Se uma função não é localmente limitada no ponto. Por outro lado, sendo não existe, não se pode dizer que o limite em localmente limitada em exista. Aula 2 p.34/57

36 Continuidade Aula 2 p.35/57

37 Aula 2 p.36/57 Definição Uma função existe e que Uma função dado um é contínua em um ponto significa que leva pontos próximos de. é contínua em um ponto, existe um tal que se,

38 Condições de continuidade, Se o domínio de for um intervalo, existe Aula 2 p.37/57

39 Ex. são contínuas em qualquer ponto e.., para são contínuas em Aula 2 p.38/57

40 Derivada Aula 2 p.39/57

41 Aula 2 p.40/57 Derivada De um ponto de vista geométrico o conceito de derivada está relacionado com o de tangência.

42 Aula 2 p.41/57 Ponto de vista da Dinâmica Derivada como taxa de variação A velocidade escalar (instantânea) é uma derivada. A aceleração Isto é, a medida da evolução de uma grandeza quando uma outra, da qual ela depende, varia..a velocidade, por exemplo, é a taxa de variação do espaço com relação ao tempo.

43 Definição. A função um ponto acumulação de se existir o limite Seja e é derivável em em que é chamado de derivada de em. Há várias notações para derivadas, sendo têm se por exemplo, Aula 2 p.42/57

44 Funções deriváveis (Operações) Seja, e um ponto no interior de. Se f e g são deriváveis em e, então é derivável em e Aula 2 p.43/57

45 Aula 2 p.44/57 Seja é derivavél no interior de um ponto uma função definida num intervalo, então, a qual. Se existir um máximo local em.

46 Aula 2 p.45/57 Regra da cadeia Sejam e duas funções reais definidas em intervalos, respectivamente, tais que e é um ponto interior de e seja derivável no ponto. Então, a função composta é deriváveis em c e vale a fórmula

47 Aula 2 p.46/57 Teorema do valor médio Seja uma função contínua definida num intervalo fechado. Supõem se que seja derivável no intervalo aberto. Então existe, tal que

48 Taylor Aula 2 p.47/57

49 Fórmula de Taylor Seja existam e sejam contínuas em. tal que: uma função contínua definida num intervalo fechado. Supõem se as derivadas Seja um ponto qualquer fixado em Então, para cada,, existe um ponto entre e Para essa fórmula expressa o Teorema do valor médio. Aula 2 p.48/57

50 Aula 2 p.49/57 Polinômio de Taylor Uma idéia básica em análise numérica é a de usar funções simples, usualmente polinômios, para aproximar uma dada função. O problema é achar um polinômio o qual concorda com uma função e algumas de suas derivadas de ordem em um ponto dado.

51 Aula 2 p.49/57 Polinômio de Taylor Pode ser provado que se é uma função com derivada de ordem em um ponto, então, existe um único polinômio de grau o qual satisfaz as relações A solução dessas relações é o polinômio de Taylor,

52 Aula 2 p.50/57 Erro O erro dessa aproximação é dado por. Se possuir derivadas contínuas de ordem em algum intervalo contendo, então para cada no intervalo o erro pode ser expresso como em que.

53 Método de Newton-Rapson Aula 2 p.51/57

54 Aula 2 p.52/57 Idéias proposto Isaac Newton em 1687 sistematizado por Joseph Rapson em Combina: linearização e iteração. Na linearização procura se substituir uma certa vizinhança de um problema complicado por uma aproximação linear ( Taylor ) Processo iterativo, ou aproximações sucessivas, consiste na repetição sistemática de um procedimento até que seja atingido o grau de aproximação desejado.

55 Aula 2 p.53/57 Método (idéias)

56 Aula 2 p.54/57 Método a linearização consiste em substituir a curva por retas tangentes a essa curva. Seja uma aproximação inicial da raiz, a primeira aproximação é uma reta tangente a esse ponto. O ponto em que essa reta intercepta o eixo é obtido um novo valor de. Repete-se o processo.

57 (Cont.) Aula 2 p.55/57 reorganizando os termos na próxima iteração

58 Aula 2 p.56/57 Posto isto, tem se que

59 Fim do TOMO II Aula 2 p.57/57

Curso de Matemática Aplicada.

Curso de Matemática Aplicada. Aula 1 p.1/25 Curso de Matemática Aplicada. Margarete Oliveira Domingues PGMET/INPE Sistema de números reais e complexos Aula 1 p.2/25 Aula 1 p.3/25 Conjuntos Conjunto, classe e coleção de objetos possuindo

Leia mais

Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Aplicações da Derivada

Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Aplicações da Derivada 1) Velocidade e Aceleração 1.1 Velocidade Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Aplicações da Derivada Suponhamos que um corpo se move em

Leia mais

dia 10/08/2010

dia 10/08/2010 Número complexo Origem: Wikipédia, a enciclopédia livre. http://pt.wikipedia.org/wiki/n%c3%bamero_complexo dia 10/08/2010 Em matemática, os números complexos são os elementos do conjunto, uma extensão

Leia mais

Função Exponencial, Inversa e Logarítmica

Função Exponencial, Inversa e Logarítmica CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.2 Função Exponencial, Inversa e Logarítmica Bárbara Simionatto Engenharia Civil Jaime Vinícius - Engenharia de Produção Função Exponencial Dúvida:

Leia mais

CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1. CAPÍTULO 2 Sistemas de Coordenadas Retangulares 9. CAPÍTULO 3 Retas 18

CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1. CAPÍTULO 2 Sistemas de Coordenadas Retangulares 9. CAPÍTULO 3 Retas 18 Sumário CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1 Sistema de Coordenadas Lineares 1 Intervalos Finitos 3 Intervalos Infinitos 3 Desigualdades 3 CAPÍTULO 2 Sistemas de

Leia mais

Matéria das Aulas e Exercícios Recomendados Cálculo II- MAA

Matéria das Aulas e Exercícios Recomendados Cálculo II- MAA Matéria das Aulas e Exercícios Recomendados Cálculo II- MAA Número da Aula Data da Aula 1 02/09 Sequências Numéricas, definição, exemplos, representação geométrica, convergência e divergência, propriedades,

Leia mais

Função Exponencial, Inversa e Logarítmica

Função Exponencial, Inversa e Logarítmica CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.1 Função Exponencial, Inversa e Logarítmica Bruno Conde Passos Engenharia Civil Rodrigo Vanderlei - Engenharia Civil Função Exponencial Dúvida: Como

Leia mais

CÁLCULO I Aula 01: Funções.

CÁLCULO I Aula 01: Funções. Inversa CÁLCULO I Aula 01: Funções. Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará Inversa 1 Funções e seus 2 Inversa 3 Funções Funções e seus Inversa Consideremos A e B dois

Leia mais

REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES

REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES Marina Vargas R. P. Gonçalves a a Departamento de Matemática, Universidade Federal do Paraná, marina.vargas@gmail.com, http:// www.estruturas.ufpr.br 1 REVISÃO

Leia mais

Propriedades das Funções Contínuas e Limites Laterais Aula 12

Propriedades das Funções Contínuas e Limites Laterais Aula 12 Propriedades das Funções Contínuas e Limites Laterais Aula 12 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 27 de Março de 2014 Primeiro Semestre de 2014 Turma 2014106 -

Leia mais

FUNÇÕES. a < 0. a = 0. a > 0. b < 0 b = 0 b > 0

FUNÇÕES. a < 0. a = 0. a > 0. b < 0 b = 0 b > 0 FUNÇÕES As principais definições, teorias e propriedades sobre funções podem ser encontradas em seu livro-teto (Guidorizzi, vol1, Stewart vol1...); Assim, não vamos aqui nos alongar na teoria que pode

Leia mais

Curso Satélite de. Matemática. Sessão n.º 4. Universidade Portucalense

Curso Satélite de. Matemática. Sessão n.º 4. Universidade Portucalense Curso Satélite de Matemática Sessão n.º 4 Universidade Portucalense Continuidade de uma função: Seja c um ponto pertencente ao domínio da função f. Dizemos que a função f é contínua em c quando lim f (

Leia mais

E. S. JERÓNIMO EMILIANO DE ANDRADE DE ANGRA DO HEROISMO. Conteúdo Programáticos / Matemática e a Realidade. Curso de Nível III Técnico de Laboratório

E. S. JERÓNIMO EMILIANO DE ANDRADE DE ANGRA DO HEROISMO. Conteúdo Programáticos / Matemática e a Realidade. Curso de Nível III Técnico de Laboratório E. S. JERÓNIMO EMILIANO DE ANDRADE DE ANGRA DO HEROISMO Curso de Nível III Técnico de Laboratório Técnico Administrativo PROFIJ Conteúdo Programáticos / Matemática e a Realidade 2º Ano Ano Lectivo de 2008/2009

Leia mais

P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o

P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o 206-207 DISCIPLINA / ANO: Matemática A - ºano MANUAL ADOTADO: NOVO ESPAÇO - Matemática A º ano GESTÃO DO TEMPO Nº de Nº de Nº de tempos tempos tempos

Leia mais

Ordenar ou identificar a localização de números racionais na reta numérica.

Ordenar ou identificar a localização de números racionais na reta numérica. Ordenar ou identificar a localização de números racionais na reta numérica. Estabelecer relações entre representações fracionárias e decimais dos números racionais. Resolver situação-problema utilizando

Leia mais

A Derivada. 1.0 Conceitos. 2.0 Técnicas de Diferenciação. 2.1 Técnicas Básicas. Derivada de f em relação a x:

A Derivada. 1.0 Conceitos. 2.0 Técnicas de Diferenciação. 2.1 Técnicas Básicas. Derivada de f em relação a x: 1.0 Conceitos A Derivada Derivada de f em relação a x: Uma função é diferenciável / derivável em x 0 se existe o limite Se f é diferenciável no ponto x 0, então f é contínua em x 0. f é diferenciável em

Leia mais

1º ano. Capítulo 2 - Itens: todos (2º ano) Modelos matemáticos relacionados com a função logarítmica

1º ano. Capítulo 2 - Itens: todos (2º ano) Modelos matemáticos relacionados com a função logarítmica 1º ano Conjuntos Símbolos lógicos Operações com conjuntos Conjuntos numéricos Os Números Naturais Propriedades dos racionais Operações com naturais Os números Inteiros Propriedades dos inteiros Operações

Leia mais

TEMA TÓPICOS OBJETIVOS ESPECÍFICOS AVALIAÇÃO* Lei dos senos e lei dos cossenos. casos de ângulos retos e obtusos. Resolução de triângulos

TEMA TÓPICOS OBJETIVOS ESPECÍFICOS AVALIAÇÃO* Lei dos senos e lei dos cossenos. casos de ângulos retos e obtusos. Resolução de triângulos AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO Escola Básica e Secundária Dr. Vieira de Carvalho Departamento de Matemática e Ciências Experimentais Planificação Anual de Matemática A 11º ano Ano Letivo

Leia mais

Chamamos de funções numéricas aquelas cujas variáveis envolvidas são números reais. Isso é funções denidas sobre R ou uma parte de R e a valor em R.

Chamamos de funções numéricas aquelas cujas variáveis envolvidas são números reais. Isso é funções denidas sobre R ou uma parte de R e a valor em R. Capítulo 2 Funções e grácos 2.1 Funções númericas Chamamos de funções numéricas aquelas cujas variáveis envolvidas são números reais. Isso é funções denidas sobre R ou uma parte de R e a valor em R. Denição

Leia mais

Gênesis S. Araújo Pré-Cálculo

Gênesis S. Araújo Pré-Cálculo Gênesis Soares Jaboatão, de de 2016. Estudante: PAR ORDENADO: Um par ordenado de números reais é o conjunto formado por dois números reais em determinada ordem. Os parênteses, em substituição às chaves,

Leia mais

Especialização em Matemática - Estruturas Algébricas

Especialização em Matemática - Estruturas Algébricas 1 Universidade Estadual de Santa Cruz Departamento de Ciências Exatas e Tecnológicas Especialização em Matemática - Estruturas Algébricas Prof a.: Elisangela Farias e Sérgio Motta FUNÇÕES Sejam X e Y conjuntos.

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 7 04/2014 Zeros reais de funções Parte 1 Objetivo Determinar valores aproximados para as soluções (raízes) de equações da

Leia mais

MATEMÁTICA - SEMI/NOITE PROF. FELIPE HEY 20/04/ Assinale V para as afirmativas verdadeiras e F para as falsas. a) ( ) -8 = 8 b) ( ) 5 = ±5

MATEMÁTICA - SEMI/NOITE PROF. FELIPE HEY 20/04/ Assinale V para as afirmativas verdadeiras e F para as falsas. a) ( ) -8 = 8 b) ( ) 5 = ±5 MATEMÁTICA - SEMI/NOITE PROF. FELIPE HEY 20/04/2016 Aula 04 FUNÇÃO MODULAR 01.01. Assinale V para as afirmativas verdadeiras e F para as falsas. a) ( ) -8 = 8 b) ( ) 5 = ±5 c) ( ) x² d) ( ) 3 ² 3 e) (

Leia mais

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO. Realização:

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO. Realização: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO Realização: Fortaleza, Fevereiro/2010 1. LIMITES 1.1. Definição Geral Se os valores de f(x) puderem

Leia mais

A derivada da função inversa, o Teorema do Valor Médio e Máximos e Mínimos - Aula 18

A derivada da função inversa, o Teorema do Valor Médio e Máximos e Mínimos - Aula 18 A derivada da função inversa, o Teorema do Valor Médio e - Aula 18 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 10 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014106

Leia mais

Programa Anual MATEMÁTICA EXTENSIVO

Programa Anual MATEMÁTICA EXTENSIVO Programa Anual MATEMÁTICA EXTENSIVO Os conteúdos conceituais de Matemática estão distribuídos em 5 frentes. A) Equações do 1º e 2º graus; Estudo das funções; Polinômios; Números complexos; Equações algébricas.

Leia mais

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Objetivos da Aula CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 03: Funções Logarítmica, Exponencial e Hiperbólicas Definir as funções logarítmica, exponencial e hiperbólicas; Enunciar

Leia mais

DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS

DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS Escolas João de Araújo Correia ORGANIZAÇÃO DO ANO LETIVO 16 17 GESTÃO CURRICULAR DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA A 11º ANO 1º PERÍODO ---------------------------------------------------------------------------------------------------------------------

Leia mais

Conceitos: Função. Domínio, contradomínio e imagem de uma função. Funções potência, exponencial e

Conceitos: Função. Domínio, contradomínio e imagem de uma função. Funções potência, exponencial e Matemática II 05/6 Curso: Gestão Departamento de Matemática ESTG-IPBragança Ficha Prática : Revisões: Funções, Derivadas. Primitivas -------------------------------------------------------------------------------------------------------------------

Leia mais

Cálculo a Várias Variáveis I - MAT Cronograma para P2: aulas teóricas (segundas e quartas)

Cálculo a Várias Variáveis I - MAT Cronograma para P2: aulas teóricas (segundas e quartas) Cálculo a Várias Variáveis I - MAT 116 0141 Cronograma para P: aulas teóricas (segundas e quartas) Aula 10 4 de março (segunda) Aula 11 6 de março (quarta) Referências: Cálculo Vol James Stewart Seções

Leia mais

Consideremos uma função definida em um intervalo ] [ e seja ] [. Seja um acréscimo arbitrário dado a, de forma tal que ] [.

Consideremos uma função definida em um intervalo ] [ e seja ] [. Seja um acréscimo arbitrário dado a, de forma tal que ] [. 6 Embora o conceito de diferencial tenha sua importância intrínseca devido ao fato de poder ser estendido a situações mais gerais, introduziremos agora esse conceito com o objetivo maior de dar um caráter

Leia mais

O ESTUDO DAS FUNÇÕES INTRODUÇÃO

O ESTUDO DAS FUNÇÕES INTRODUÇÃO O ESTUDO DAS FUNÇÕES INTRODUÇÃO DEFINIÇÃO As funções explicitam relações matemáticas especiais entre duas grandezas. As grandezas envolvidas nessas relações são conhecidas como variável dependente

Leia mais

Função. Definição formal: Considere dois conjuntos: o conjunto X com elementos x e o conjunto Y com elementos y. Isto é:

Função. Definição formal: Considere dois conjuntos: o conjunto X com elementos x e o conjunto Y com elementos y. Isto é: Função Toda vez que temos dois conjuntos e algum tipo de associação entre eles, que faça corresponder a todo elemento do primeiro conjunto um único elemento do segundo, ocorre uma função. Definição formal:

Leia mais

x exp( t 2 )dt f(x) =

x exp( t 2 )dt f(x) = INTERPOLAÇÃO POLINOMIAL 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia Aproximação

Leia mais

Zero de Funções ou Raízes de Equações

Zero de Funções ou Raízes de Equações Zero de Funções ou Raízes de Equações Um número ξ é um zero de uma função f() ou raiz da equação se f(ξ). Graficamente os zeros pertencentes ao conjunto dos reais, IR, são representados pelas abscissas

Leia mais

FACULDADE PITÁGORAS DE LINHARES Prof. Esp. Thiago Magalhães

FACULDADE PITÁGORAS DE LINHARES Prof. Esp. Thiago Magalhães VETORES NO PLANO E NO ESPAÇO INTRODUÇÃO Cumpre de início, distinguir grandezas escalares das grandezas vetoriais. Grandezas escalares são aquelas que para sua perfeita caracterização basta informarmos

Leia mais

Resolvendo inequações: expressões com desigualdades (encontrar os valores que satisfazem a expressão)

Resolvendo inequações: expressões com desigualdades (encontrar os valores que satisfazem a expressão) R é ordenado: Se a, b, c R i) a < b se e somente se b a > 0 (a diferença do maior com o menor será positiva) ii) se a > 0 e b > 0 então a + b > 0 (a soma de dois números positivos é positiva) iii) se a

Leia mais

1.1 Conceitos Básicos

1.1 Conceitos Básicos 1 Zeros de Funções 1.1 Conceitos Básicos Muito frequentemente precisamos determinar um valor ɛ para o qual o valor de alguma função é igual a zero, ou seja: f(ɛ) = 0. Exemplo 1.1 Suponha que certo produto

Leia mais

Índice. Introdução Unidade 1 Probabilidades e Cálculo Combinatório

Índice. Introdução Unidade 1 Probabilidades e Cálculo Combinatório Índice Introdução... 9 Unidade 1 Probabilidades e Cálculo Combinatório Probabilidades Introdução ao cálculo das probabilidades...12 Experiência...13 Classificação para os acontecimentos. Espaço de acontecimentos...14

Leia mais

Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo Aula 1 Professor: Carlos Sérgio. Revisão de Funções

Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo Aula 1 Professor: Carlos Sérgio. Revisão de Funções Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo - 01. Aula 1 Professor: Carlos Sérgio Revisão de Funções Sistema cartesiano ortogonal O Sistema de Coordenadas Cartesianas,

Leia mais

Notas de aulas. André Arbex Hallack

Notas de aulas. André Arbex Hallack Cálculo I Notas de aulas André Arbex Hallack Setembro/2009 Índice 1 Números reais 1 1.1 Números reais.................................... 1 1.2 Relação de ordem em IR.............................. 3 1.3

Leia mais

CAP. II RESOLUÇÃO NUMÉRICA DE EQUAÇÕES NÃO LINEARES

CAP. II RESOLUÇÃO NUMÉRICA DE EQUAÇÕES NÃO LINEARES CAP. II RESOLUÇÃO NUMÉRICA DE EQUAÇÕES NÃO LINEARES Vamos estudar alguns métodos numéricos para resolver: Equações algébricas (polinómios não lineares; Equações transcendentais equações que envolvem funções

Leia mais

Conjuntos Numéricos. I) Números Naturais N = { 0, 1, 2, 3,... }

Conjuntos Numéricos. I) Números Naturais N = { 0, 1, 2, 3,... } Conjuntos Numéricos I) Números Naturais N = { 0, 1, 2, 3,... } II) Números Inteiros Z = {..., -2, -1, 0, 1, 2,... } Todo número natural é inteiro, isto é, N é um subconjunto de Z III) Números Racionais

Leia mais

Limites. 2.1 Limite de uma função

Limites. 2.1 Limite de uma função Limites 2 2. Limite de uma função Vamos investigar o comportamento da função f definida por f(x) = x 2 x + 2 para valores próximos de 2. A tabela a seguir fornece os valores de f(x) para valores de x próximos

Leia mais

Derivadas Parciais Capítulo 14

Derivadas Parciais Capítulo 14 Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS 14.2 Limites e Continuidade Nesta seção, aprenderemos sobre: Limites e continuidade de vários tipos de funções. LIMITES E CONTINUIDADE Vamos comparar o

Leia mais

SUMÁRIO. Unidade 1 Matemática Básica

SUMÁRIO. Unidade 1 Matemática Básica SUMÁRIO Unidade 1 Matemática Básica Capítulo 1 Aritmética Introdução... 12 Expressões numéricas... 12 Frações... 15 Múltiplos e divisores... 18 Potências... 21 Raízes... 22 Capítulo 2 Álgebra Introdução...

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Função do 1 Grau. Rafael Carvalho - Engenharia Civil

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Função do 1 Grau. Rafael Carvalho - Engenharia Civil CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 06. Função do Grau Rafael Carvalho - Engenharia Civil Equações do primeiro grau Equação é toda sentença matemática aberta que exprime uma relação de igualdade.

Leia mais

Faculdades Integradas Campos Salles

Faculdades Integradas Campos Salles Curso: Administração e Ciências Contábeis Profª Alexandra Garrote Angiolin Disciplina: Matemática II Derivada O conceito de derivada foi introduzido em meados do século XVII em estudos de problemas de

Leia mais

PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL

PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL. Introdução Considere f uma função, não constante, de uma variável real ou complexa, a equação f(x) = 0 será denominada equação de uma incógnita. EXEMPLO e x + senx

Leia mais

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Câmpus Medianeira PLANO DE ENSINO. CURSO Engenharia Elétrica MATRIZ 548

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Câmpus Medianeira PLANO DE ENSINO. CURSO Engenharia Elétrica MATRIZ 548 Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Câmpus Medianeira PLANO DE ENSINO CURSO Engenharia Elétrica MATRIZ 548 FUNDAMENTAÇÃO LEGAL Processo N 0/11, aprovado pela Resolução n.

Leia mais

Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas

Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: Matemática A (11º Ano) METAS CURRICULARES/CONTEÚDOS... 1º Período (15 de setembro a 16 de dezembro) Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas

Leia mais

Cálculo Diferencial e Integral I Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Diferencial e Integral I Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Diferencial e Integral I Faculdade de Engenaria, Arquiteturas e Urbanismo FEAU Prof. Dr. Sergio Pilling Parte 1 - Limites Definição e propriedades; Obtendo limites; Limites laterais. 1) Introdução

Leia mais

Bases Matemáticas Continuidade. Propriedades do Limite de Funções. Daniel Miranda

Bases Matemáticas Continuidade. Propriedades do Limite de Funções. Daniel Miranda Daniel De modo intuitivo, uma função f : A B, com A,B R é dita contínua se variações suficientemente pequenas em x resultam em variações pequenas de f(x), ou equivalentemente, se para x suficientemente

Leia mais

Métodos Numéricos Interpolação / Aproximação. Renato S. Silva, Regina C. Almeida

Métodos Numéricos Interpolação / Aproximação. Renato S. Silva, Regina C. Almeida Métodos Numéricos Interpolação / Aproximação Renato S. Silva, Regina C. Almeida Interpolação / Aproximação situação: uma fábrica despeja dejetos no leito de um rio; objetivo: determinar a quantidade de

Leia mais

Tópico 3. Limites e continuidade de uma função (Parte 1)

Tópico 3. Limites e continuidade de uma função (Parte 1) Tópico 3. Limites e continuidade de uma função (Parte 1) O Cálculo Diferencial e Integral, também chamado de Cálculo Infinitesimal, ou simplesmente Cálculo, é um ramo importante da matemática, desenvolvido

Leia mais

1 Teoria dos Conjuntos O conceito de conjunto Conjunto e estrutura elemento, subconjunto operações...

1 Teoria dos Conjuntos O conceito de conjunto Conjunto e estrutura elemento, subconjunto operações... Sumário Introdução.......................... 6 1 Teoria dos Conjuntos. 7 1.1 O conceito de conjunto........................... 7 1.2 Conjunto e estrutura............................ 11 1.3 elemento, subconjunto...........................

Leia mais

CAPÍTULO 1 Operações Fundamentais com Números 1. CAPÍTULO 2 Operações Fundamentais com Expressões Algébricas 12

CAPÍTULO 1 Operações Fundamentais com Números 1. CAPÍTULO 2 Operações Fundamentais com Expressões Algébricas 12 Sumário CAPÍTULO 1 Operações Fundamentais com Números 1 1.1 Quatro operações 1 1.2 O sistema dos números reais 1 1.3 Representação gráfica de números reais 2 1.4 Propriedades da adição e multiplicação

Leia mais

DEPARTAMENTO DE ESTATÍSTICA PLANO DE ENSINO FICHA N.º 1

DEPARTAMENTO DE ESTATÍSTICA PLANO DE ENSINO FICHA N.º 1 DEPARTAMENTO DE ESTATÍSTICA PLANO DE ENSINO FICHA N.º 1 Departamento de Estatística Setor de Ciências Exatas Disciplina: Elementos Básicos para Estatística Código: CE065 Natureza: Semestral Carga Horária:

Leia mais

II. Funções de uma única variável

II. Funções de uma única variável II. Funções de uma única variável 1 II.1. Conceitos básicos A otimização de de funções de de uma única variável consiste no no tipo mais elementar de de otimização. Importância: Tipo de problema encontrado

Leia mais

eixo das ordenadas y eixo das abscissas Origem 1º quadrante 2º quadrante O (0, 0) x 4º quadrante 3º quadrante

eixo das ordenadas y eixo das abscissas Origem 1º quadrante 2º quadrante O (0, 0) x 4º quadrante 3º quadrante PLANO CARTESIANO eixo das ordenadas y 2º quadrante 1º quadrante eixo das abscissas O (0, 0) x Origem 3º quadrante 4º quadrante y ordenado do ponto P 4 P P(3, 4) O 3 x abscissa do ponto P No caso, 3 e 4

Leia mais

Formalizar relações de dependência entre grandezas. Eduardo Nobre Lages CTEC/UFAL

Formalizar relações de dependência entre grandezas. Eduardo Nobre Lages CTEC/UFAL Universidade Federal de Alagoas Faculdade de Arquitetura e Urbanismo Curso de Arquitetura e Urbanismo Disciplina: Fundamentos para a Análise Estrutural Código: AURB006 Turma: A Período Letivo: 2007-2 Professor:

Leia mais

MATEMÁTICA NÍVEL MÉDIO

MATEMÁTICA NÍVEL MÉDIO MATEMÁTICA NÍVEL MÉDIO 1. CONJUNTOS 1.1. Representação e relação: pertinência, inclusão e igualdade. 1.2. Operações: união, intercessão, diferença e complementar. 1.3. Conjuntos numéricos: Naturais, Inteiros,

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES. FUNÇÕES Parte A

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES. FUNÇÕES Parte A Universidade Federal do Rio Grande FURG Instituto de Matemática, Estatística e Física IMEF Edital 5 CAPES FUNÇÕES Parte A Prof. Antônio Maurício Medeiros Alves Profª Denise Maria Varella Martinez UNIDADE

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Faculdade de Engenharias, Arquitetura e Urbanismo Universidade do Vale do Paraíba Cálculo Diferencial e Integral I Prof. Rodrigo Sávio Pessoa São José dos Campos 0 Sumário Tópico Tópico Tópico Tópico Tópico

Leia mais

Função Definida Por Várias Sentenças

Função Definida Por Várias Sentenças Ministrante Profª. Drª. Patrícia Aparecida Manholi Material elaborado pela Profª. Drª. Patrícia Aparecida Manholi SUMÁRIO Função Definida Por Várias Sentenças Lembrando... Dados dois conjuntos não vazios

Leia mais

Derivadas Parciais Capítulo 14

Derivadas Parciais Capítulo 14 Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS Como vimos no Capítulo 4, no Volume I, um dos principais usos da derivada ordinária é na determinação dos valores máximo e mínimo. DERIVADAS PARCIAIS 14.7

Leia mais

MAT Análise Real - 1 semestre de 2014 Docente: Prof. Dr. Pierluigi Benevieri Notas das aulas e exercícios sugeridos - Atualizado 9.11.

MAT Análise Real - 1 semestre de 2014 Docente: Prof. Dr. Pierluigi Benevieri Notas das aulas e exercícios sugeridos - Atualizado 9.11. MAT 206 - Análise Real - semestre de 204 Docente: Prof. Dr. Pierluigi Benevieri Notas das aulas e exercícios sugeridos - Atualizado 9..204. Segunda-feira, 7 de fevereiro de 204 Apresentação do curso. www.ime.usp.br/

Leia mais

Funções de várias variáveis

Funções de várias variáveis GOVERNO FEDERAL MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO CÂMPUS JUAZEIRO/BA COLEG. DE ENG. ELÉTRICA PROF. PEDRO MACÁRIO DE MOURA CÁLCULO II 2015.2 Funções de várias variáveis

Leia mais

TEMA I: Interagindo com os números e funções

TEMA I: Interagindo com os números e funções 31 TEMA I: Interagindo com os números e funções D1 Reconhecer e utilizar característictas do sistema de numeração decimal. D2 Utilizar procedimentos de cálculo para obtenção de resultados na resolução

Leia mais

A velocidade instantânea (Texto para acompanhamento da vídeo-aula)

A velocidade instantânea (Texto para acompanhamento da vídeo-aula) A velocidade instantânea (Texto para acompanamento da vídeo-aula) Prof. Méricles Tadeu Moretti Dpto. de Matemática - UFSC O procedimento que será utilizado neste vídeo remete a um tempo em que pesquisadores

Leia mais

MATRIZES DE REFERÊNCIA COMPETÊNCIAS E HABILIDADES QUE SERÃO AVALIADAS: ENSINO FUNDAMENTAL I ANOS INICIAIS

MATRIZES DE REFERÊNCIA COMPETÊNCIAS E HABILIDADES QUE SERÃO AVALIADAS: ENSINO FUNDAMENTAL I ANOS INICIAIS MATRIZES DE REFERÊNCIA COMPETÊNCIAS E HABILIDADES QUE SERÃO AVALIADAS: ENSINO FUNDAMENTAL I ANOS INICIAIS II. Implicações do Suporte, do Gênero e /ou do Enunciador na Compreensão do Texto Estabelecer relação

Leia mais

Capítulo 4 - Equações Não-Lineares

Capítulo 4 - Equações Não-Lineares Capítulo 4 - Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng. Civil, Química e Gestão Industrial Carlos Balsa Métodos Numéricos 1/

Leia mais

Matemática e suas tecnologias

Matemática e suas tecnologias Matemática e suas tecnologias Fascículo 1 Módulo 1 Teoria dos conjuntos e conjuntos numéricos Noção de conjuntos Conjuntos numéricos Módulo 2 Funções Definindo função Lei e domínio Gráficos de funções

Leia mais

Conteúdo Programático. Cursos Técnicos Subsequentes

Conteúdo Programático. Cursos Técnicos Subsequentes Conteúdo Programático Cursos Técnicos Subsequentes Especificações das Provas Disciplinas da prova objetiva Nº questões Pesos Total de pontos Língua Portuguesa 15 2 30 Matemática 15 2 30 Total 30-60 Prova

Leia mais

Processamento de Malhas Poligonais

Processamento de Malhas Poligonais Processamento de Malhas Poligonais Tópicos Avançados em Computação Visual e Interfaces I Prof.: Marcos Lage www.ic.uff.br/~mlage mlage@ic.uff.br Conteúdo: Notas de Aula Curvas 06/09/2015 Processamento

Leia mais

Cálculo Numérico. Santos Alberto Enriquez-Remigio FAMAT-UFU 2015

Cálculo Numérico. Santos Alberto Enriquez-Remigio FAMAT-UFU 2015 Cálculo Numérico Santos Alberto Enriquez-Remigio FAMAT-UFU 2015 1 Capítulo 1 Solução numérica de equações não-lineares 1.1 Introdução Lembremos que todo problema matemático pode ser expresso na forma de

Leia mais

ÁLGEBRA. Aula 4 _ Classificação das Funções Professor Luciano Nóbrega. Maria Auxiliadora

ÁLGEBRA. Aula 4 _ Classificação das Funções Professor Luciano Nóbrega. Maria Auxiliadora 1 ÁLGEBRA Aula 4 _ Classificação das Funções Professor Luciano Nóbrega Maria Auxiliadora 2 FUNÇÃO INJETORA É quando quaisquer dois elementos diferentes do conjunto A têm imagens diferentes no conjunto

Leia mais

b) Para que valores reais de x, f(x) > 2x + 2? 2. (Ufscar 2002) Sejam as funções f(x) = x - 1 e g(x) = (x + 4x - 4).

b) Para que valores reais de x, f(x) > 2x + 2? 2. (Ufscar 2002) Sejam as funções f(x) = x - 1 e g(x) = (x + 4x - 4). 1. (Fuvest 2000) a) Esboce, para x real, o gráfico da função f(x)= x-2 + 2x+1 -x-6. O símbolo a indica o valor absoluto de um número real a e é definido por a =a, se aµ0 e a =-a, se a

Leia mais

Funções UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE MATEMÁTICA

Funções UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE MATEMÁTICA UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE MATEMÁTICA Funções UTILIZAR COMO UMA DIRETRIZ OS CAPÍTULOS DE 0 A 3 DO LIVRO CÁLCULO DIFERENCIAL E INTEGRAL DE ROBERTO ROMANO. ENTRETANTO, ESSE LIVRO PECA

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aulas 5 e 6 03/2014 Erros Aritmética no Computador A aritmética executada por uma calculadora ou computador é diferente daquela

Leia mais

Planificação Anual. 0,5 Geometria no plano e no espaço II. 32 Avaliações escritas e respetivas correcções. 5 Auto-avaliação

Planificação Anual. 0,5 Geometria no plano e no espaço II. 32 Avaliações escritas e respetivas correcções. 5 Auto-avaliação 3º Período 2º Período 1º Período AGRUPAMENTO DE ESCOLAS DE CASTRO DAIRE Escola Secundária de Castro Daire Grupo de Recrutamento 500 MATEMÁTICA Ano lectivo 2012/2013 Planificação Anual Disciplina: Matemática

Leia mais

Prof. Doherty Andrade. 25 de outubro de 2005

Prof. Doherty Andrade. 25 de outubro de 2005 Funções Hiperbólicas - Resumo Prof. Doherty Andrade 5 de outubro de 005 Sumário Funções Transcendentes. Função Logaritmo Natural............................ Funções Trigonométricas Hiperbólicas.....................

Leia mais

Funções Elementares. Sadao Massago. Maio de Alguns conceitos e notações usados neste texto. Soma das funções pares é uma função par.

Funções Elementares. Sadao Massago. Maio de Alguns conceitos e notações usados neste texto. Soma das funções pares é uma função par. Funções Elementares Sadao Massago Maio de 0. Apresentação Neste teto, trataremos rapidamente sobre funções elementares. O teto não é material completo do assunto, mas é somente uma nota adicional para

Leia mais

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional MA11 Números e Funções Reais Avaliação 2 GABARITO 22 de junho de 201 1. Em cada um dos itens abaixo, dê, se possível,

Leia mais

TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS

TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS O conjunto dos números reais,, que possui as seguintes propriedades:, possui uma relação menor ou igual, denotada por O1: Propriedade Reflexiva:

Leia mais

Aula 05 - Limite de uma Função - Parte I Data: 30/03/2015

Aula 05 - Limite de uma Função - Parte I Data: 30/03/2015 bras.png Cálculo I Logonewton.png Aula 05 - Limite de uma Função - Parte I Data: 30/03/2015 Objetivos da Aula: Definir limite de uma função Definir limites laterias Apresentar as propriedades operatórias

Leia mais

Índice. Equações algébricas. Números racionais. Figuras geométricas. Semelhança. Generalidades sobre funções. Funções, sequências e sucessões

Índice. Equações algébricas. Números racionais. Figuras geométricas. Semelhança. Generalidades sobre funções. Funções, sequências e sucessões Índice Números racionais. Números inteiros. Adição de números inteiros 8. Subtração de números inteiros 0. Números racionais 5. Adição algébrica de números racionais 6. Multiplicação de números racionais

Leia mais

Conjuntos Numéricos. É o conjunto no qual se encontram os elementos de todos os conjuntos estudados.

Conjuntos Numéricos. É o conjunto no qual se encontram os elementos de todos os conjuntos estudados. Conjuntos Numéricos INTRODUÇÃO Conjuntos: São agrupamentos de elementos com algumas características comuns. Ex.: Conjunto de casas, conjunto de alunos, conjunto de números. Alguns termos: Pertinência Igualdade

Leia mais

MATEMÁTICA Prof.: Alexsandro de Sousa

MATEMÁTICA Prof.: Alexsandro de Sousa E. E. DONA ANTÔNIA VALADARES MATEMÁTICA Prof.: Alexsandro de Sousa Introdução ao conceito de funções FERNANDO FAVORETTO/CID A ideia de função no cotidiano Relação entre duas grandezas Quantidade de pães

Leia mais

ACADEMIA DA FORÇA AÉREA PROVA DE MATEMÁTICA 1998

ACADEMIA DA FORÇA AÉREA PROVA DE MATEMÁTICA 1998 PROVA DE MATEMÁTICA 998 Se a seqüência de inteiros positivos (,, y) é uma Progressão Geométrica e (+, y, ) uma Progressão Aritmética, então, o valor de + y é a) b) c) d) A soma das raízes da equação log

Leia mais

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 2 Funções e Gráficos Generalidades. Funções polinomiais. Função módulo.

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 2 Funções e Gráficos Generalidades. Funções polinomiais. Função módulo. Escola Secundária com º ciclo D. Dinis 0º no de Matemática TEM Funções e Gráficos Generalidades. Funções polinomiais. Função módulo. Tarefa nº 5 FUNÇÕES LINERES E VRIÇÃO DE PRÂMETROS. Considere as seguintes

Leia mais

ABORDAGEM DAS FUNÇÕES EXPONENCIAL E LOGARÍTMICA NUMA PESPECTIVA CONCEITUAL E GRÁFICA NO ENSINO MÉDIO

ABORDAGEM DAS FUNÇÕES EXPONENCIAL E LOGARÍTMICA NUMA PESPECTIVA CONCEITUAL E GRÁFICA NO ENSINO MÉDIO APÊNDICE 106 107 APÊNDICE A (ATIVIDADES REFORMULADAS) - CADERNO DE ATIVIDADES INVESTIGATIVAS ABORDAGEM DAS FUNÇÕES EXPONENCIAL E LOGARÍTMICA NUMA PESPECTIVA CONCEITUAL E GRÁFICA NO ENSINO MÉDIO Mestrando:

Leia mais

OBJETIVOS DOS CAPÍTULOS

OBJETIVOS DOS CAPÍTULOS OBJETIVOS DOS CAPÍTULOS Capítulo 1 Nesse capítulo, você notará como muitas situações práticas nas áreas de administração, economia e ciências contábeis podem ser representadas por funções matemáticas.

Leia mais

2. Pré-requisitos do 3. Ciclo. 7. ano PR 7.1. Resolução

2. Pré-requisitos do 3. Ciclo. 7. ano PR 7.1. Resolução 7. ano PR 7.1. Dados dois conjuntos A e B fica definida uma função 1ou aplicação2 f de A em B, quando a cada elemento de A se associa um elemento único de B representado por f 1x2. Dada uma função numérica

Leia mais

Erros META OBJETIVOS. 2.1 Erros

Erros META OBJETIVOS. 2.1 Erros Erros META Conceituar o erro, as fontes e formas de expressar estes erros, propagação dos erros em operações aritméticas fórmula geral e problema inverso. OBJETIVOS Resolver problemas práticos de erros

Leia mais

DISTRIBUIÇÃO DOS DOMÍNIOS POR PERÍODO

DISTRIBUIÇÃO DOS DOMÍNIOS POR PERÍODO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS Planificação Anual da Disciplina de Matemática 10.º ano Ano Letivo de 2015/2016 Manual adotado: Máximo 10 Matemática A 10.º ano Maria Augusta Ferreira

Leia mais

UNIVERSIDADE FEDERAL DE PELOTAS INSTITUTO DE FÍSICA E MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA E ESTATÍSTICA PLANO DE ENSINO. Ano Letivo/Semestre 2015/1

UNIVERSIDADE FEDERAL DE PELOTAS INSTITUTO DE FÍSICA E MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA E ESTATÍSTICA PLANO DE ENSINO. Ano Letivo/Semestre 2015/1 UNIVERSIDADE FEDERAL DE PELOTAS INSTITUTO DE FÍSICA E MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA E ESTATÍSTICA PLANO DE ENSINO Ano Letivo/Semestre 2015/1 1 Identificação 1.1. Unidade: Instituto de Física e

Leia mais

Complementos sobre Números Complexos

Complementos sobre Números Complexos Complementos sobre Números Complexos Ementa 1 Introdução Estrutura Algébrica e Completude 1 O Corpo dos números complexos Notações 3 Interpretação Geométrica e Completude de C 4 Forma Polar de um Número

Leia mais

2. (Ufpe 96) Seja A um conjunto com 3 elementos e B um conjunto com 5 elementos. Quantas funções injetoras de A em B existem?

2. (Ufpe 96) Seja A um conjunto com 3 elementos e B um conjunto com 5 elementos. Quantas funções injetoras de A em B existem? 1. (Unirio 99) Sejam as funções f : IR ë IR x ë y= I x I e g : IR ë IR x ë y = x - 2x - 8 Faça um esboço gráfico da função fog. 2. (Ufpe 96) Seja A um conjunto com 3 elementos e B um conjunto com 5 elementos.

Leia mais

1º) Esboce o gráfico das funções, calcule e marque os interceptos: a) f(x) = x b) f(x) = - 3x + 2

1º) Esboce o gráfico das funções, calcule e marque os interceptos: a) f(x) = x b) f(x) = - 3x + 2 1º) Esboce o gráfico das funções, calcule e marque os interceptos: a) f() = b) f() = - 3 + 2 (0,0) (0,2) no eio (,0) no eio c) f() = + 3 d) f() = 2-3 (0,3) no (0,-3) no (-3,0) no (1,5;0) no 2º) Determine

Leia mais