MATEMÁTICA A - 12o Ano Funções - Limites e Continuidade Propostas de resolução

Tamanho: px
Começar a partir da página:

Download "MATEMÁTICA A - 12o Ano Funções - Limites e Continuidade Propostas de resolução"

Transcrição

1 MATEMÁTICA A - 2o Ano Funções - Limites e Continuidade Propostas de resolução Exercícios de exames e testes intermédios. Como a função é contínua em R, também é contínua em x 0, pelo que Temos que fx f0 2 + e0+k 2 + e k E calculando, vem f0 fx 2x + 2x x Assim, como fx f0, vem que x 2 + e k 3 e k 3 2 e k k ln k 0 Exame 205, 2 a Fase 2. Para averiguar se a função f é contínua em x 4, temos que verificar se f4 x 4 fx x 4 +fx f4 ln2e 4 e 4 lne 4 4 ln e 4 4 fx ln2e x e 4 ln2e 4 e 4 4 x 4 + x 4 + x 4 fx x 4 Como x 4 fx x 4 e x 4 3x + 4 x e x 4 3x + 4 x e x 4 e e x 4 3x x x Indeterminação e x 4 3x + x 4 fazendo x 4, temos x + 4 e se x 4, então 0 e e e e + 3 e 3 e x 4 fx +fx, não existe fx, pelo que a função f não é contínua em x 4. x 4 x 4 Exame 204, a Fase Página de 3

2 3. Sabemos que f0 ln k Calculando fx temos: 3x fx e2x 2 3x 2 e 2x 3 2 2x e 2x 3 2 se 2x, como x 0 então 0 2x e 2x 3 2 e 2x 2x 3 2 e 2x 2x Assim, para que fx f0, temos que: 3 2 e ln k k e 3 2 Exame 203, Ép. especial 4. Como a função é contínua, é contínua no seu domínio, logo também é contínua em x 0, pelo que Temos que fx f0 lnk 0 ln k E calculando, vem 2x + Assim, como f0 fx, vem que Resposta: Opção B f0 fx 2e x + ln x 2ex ln x 2e ln k 2 k e 2 Teste Intermédio 2 o ano Página 2 de 3

3 5. Como a função f g é contínua no ponto de abcissa, temos que f g x f gx x +f gx f g f g ln g 0 g 0 x +f gx fx gx x + x +fx x +gx ln + x +gx 0 x +gx Como em nenhuma das opções x +gx ±, vem que f gx 0 gx 0 x + x + x f gx fx gx x Calculando fx vem x e x fx x x x se x, como x então 0 x fx x gx e0 0 0 Indeterminação x fx x Assim vem que x f gx fx gx x Como f g f gx x esta condição é a opção A. 6. Temos que x 4 fx existe, se Calculando os ites laterais, temos: e x x x e 0 fx x gx x gx x gx f gx, então x + fx fx x 4 x 4 + 3x + 3 x 4 fx x 4 x ln3x x 4 +fx ln34+ x 4 + x ln Indeterminação se x 4 então + 4 x, como x 4 + então 4 + ln3x ln3 + 4 x 4 +fx x 4 + x ln3 + 3 ln3 + ln Assim temos que fx fx, pelo que existe fx x 4 x 4 + x 4 gx 0 e a única opção que verifica x Teste Intermédio 2 o ano ln3 + 2 ln Teste Intermédio 2 o ano Página 3 de 3

4 7. Temos que f0 e k+ Calculando, vem e 4x e Indeterminação e 4x + e 4x +fx 4 e4x 4x Como se pretende que f0, vem 4 4 e4x x e 4x x 4 e k+ e k+ + 4 e k+ 5 k + ln 5 k + ln 5 8. Como a função é contínua em R, também é contínua em x a, pelo que Pela observação do gráfico da função g, temos que E calculando Como x a log 3 a 3 x a fx, vem fa x a fx x a +fx fa ga x a + fx x a + gx 2 x a fx log x a 3 x log 3 3 a 3 fx fa, temos que 2 a 3 32 a a Exame 202, 2 a Fase a 28 3 a 28 3 Exame 202, a Fase 9. Para averiguar se a função f é contínua em x 2, temos que verificar se f2 x 2 fx x 2 + fx f2 3e 2 + ln2 3e 2 + ln 3e e 2 fx 3e x + lnx 3e 2 + ln2 3e 2 x 2 + x 2 + xe x 2e 2 x 2 fx 2e2 2e 2 0 x 2 x Indeterminação fazendo x 2, temos x + 2 e se x 2, então 0 xe x 2e 2 + 2e +2 2e 2 + 2e e 2 2e 2 x 2 fx x 2 x e e 2 + 2e e 2 2e 2 e e 2 + 2e 2 e 0 0 e e 2 2e 2 e + e e 2 + 2e 2 e e e 0 e 2 + 2e 2 e 2 + 2e 2 e 2 + 2e 2 3e 2 0 Como f2 x 2 + fx x 2 fx, então a função f é contínua em x 2 Teste Intermédio 2 o ano Página 4 de 3

5 0. Como a função g é contínua para x 0, então g0 e 2x 2 Como gx x 2 e2x x Então, como g0 α, vem que Como gx β 0 + Então, como g0 α 2 e, vem que Resposta: Opção B gx gx g0 gx α 2 x e 2x x β β 0 + x g0 gx 2 β 2 + β 3 β Teste Intermédio 2 o ano Sabendo que f é contínua em x, temos que fx f, e mais especificamente que x f Como f + ln + 0, vamos calcular fx x x k + ex x Se x, então como x, logo 0 x fx para determinar o valor de k : e x e x k + k + x x x x x e x k x x k e k 0 Assim, como f é contínua em x temos que f k, ou seja k k 0 2. Sabendo que f é contínua em x, temos que fx f x Calculando fx vem: x fx x x x + e x+ + + e Indeterminação fazendo x +, temos que se x, então 0 x + fx x x + e x+ + x 0 e + 0 Assim, como e x fx Exame 20, Prova especial e + e fx f e f a + 2, podemos determinar o valor de a: x fx f a a 2 x Exame + 20, Ép. especial Página 5 de 3

6 3. Para averiguar se a função h é contínua em x 0, temos que verificar se h0 hx hx h0 3 ln ln hx 3 lnx ln ln ln e 2x e x hx e0 e x 0 0 Indeterminação e 2x e x e x+x e x e x e x e x e x e x hx e x e x e x Como hx hx, então a função h não é contínua em x 0 4. Como hx 2x 0, temos que hx 2x 0 hx 2x 0 hx 2x Como a função h é par, temos que, para qualquer x R, f x fx e assim, 5. Calculando e ax ax 2 + a 2 x, vem: e ax ax 2 + a 2 x hx hx + x e ax e ax axx + a e ax ax x + a ax Exame 200, Ép. especial hx + Exame 200, 2 a Fase x + a fazendo ax, temos que se x 0, então 0 e 0 x + a 0 + a a Teste Intermédio 2 o ano Para averiguar se a função f é contínua em x 2, temos que verificar se f2 x 2 + fx x 2 fx f2 2 e e x 2 + fx x 2 + xe x + x + 2 e e x 2 fx x 2 x 2 x 2x Indeterminação x + 2x fx x 2 x 2 x 2 x + 2x x 2 x 2x x + 2x x 2 x 2 2x 2 x 2 x + 2x x + 2x x 2 xx 2 x 2 x 2 x 2 x + 2x x 2 x 2 2x Como x 2 +fx x 2 fx, então a função f não é contínua em x 2 Teste Intermédio 2 o ano Página 6 de 3

7 7. Como a função h, é definida em R + por operações sucessivas de funções contínuas neste intervalo, então f é contínua para x > 0 De forma análoga, temos que h é contínua para x < 0, porque é definida, neste intervalo, por operações sucessivas de funções contínuas em R Assim, resta averiguar se a função h é contínua para x 0, ou seja, temos que verificar se h0 hx hx h0 2 hx x2 + 4 x e 2x hx e0 0 x 0 0 Indeterminação e 2x 2 e 2x e 2x e 2x hx x 2 x 2 2 2x 2x fazendo 2x, temos que se x 0, então 0 e Como h2 hx hx, a função h é contínua em x 0, e como é contínua em R e em R +, temos que é contínua em R 8. Calculando Ct temos que: Ct Ct Exame 2009, 2 a Fase 2te 0,3t 2+ e 0,3+ + e Indeterminação 2t 0, 3 2t 2 0, 3t e 0,3t 0, 3 e0,3t fazendo 0, 3t, temos que se t +, então + 2 0, 3 + e 2 0, 3 + e 2 0, 3 2 0, 3t 0, 3 e 0,3t e + 0, 3 e 0,3t 2 0, , Como Ct é a concentração do medicamento no sangue e t é o tempo decorrido após o medicamento ter sido ministrado, então Ct 0 significa, que a um período de tempo arbitrariamente grande t +, corresponde uma concentração de 0 mg/l de medicamento no sangue do Fernando, ou seja, com o passar do tempo, o medicamento tende a desaparecer do sangue do Fernando. Exame 2009, a Fase 9. Para averiguar se a função g é contínua em x, temos que verificar se g x +gx x gx g 2 x gx x 2x + ln + x x ln ln x x +gx 0 x + x 0 Indeterminação x + x +gx x x + x x + x x + x + x + x x x + x 2 2 x + x Como g x +gx x gx, então, podemos concluir que a função g é contínua em x Teste Intermédio 2 o ano Página 7 de 3

8 20. Como a função é contínua em R, também é contínua em x a, pelo que ga x a gx x a +gx Como ga x a +gx x 2 x 3 a 2 a + 3 x a + e como x a gx x 2 2x a 2 2a x a Então, como a função é contínua, vem que: x a +gx x a gx a2 a + 3 a 2 2a a + 3 2a 2a a 3 a 3 2. Como T e 0, e Teste Intermédio 2 o ano Então sabemos que zero minutos após o início do arrefecimento, ou seja, quando se interrompeu o processo de aquecimento, a temperatura da água era de 73 graus Celsius. Como T t e 0,05 t e 0,05 t e 0,05 t e 0, e Então sabemos que um aumento arbitrariamente grande do tempo corresponde a uma temperatura de 25 graus Celsius, ou seja, com o passar do tempo a água vai arrefecer até aos 25 graus. 22. Calculando N0 temos que: N e 0, e Exame 2008, Ép. especial Como N0 0, então o número de sócios da associação, zero dias após a constituição era de 0, ou seja, a associação foi constituída com 0 sócios. Calculando Nt Nt temos que: e 0,0t e , e Como Nt 2000 então, a um aumento arbitrário do valor de t corresponde um valor de N aproximadamente de 2000, ou seja, com o passar do tempo o número de sócios da associação aproxima-se indefinidamente de Exame 2008, a Fase 23. Para mostrar que a função f é contínua em x 0, temos que mostrar que f0 fx fx f ln ln x + ln + 3x ln ln e x + x fx x fx + 0 e Indeterminação e x + x e x e x + x x x x Como f0 fx, então, podemos concluir que a função f é contínua em x 0 Teste Intermédio 2 o ano Página 8 de 3

9 24. Pela observação do gráfico podemos verificar que fx < 0 e que x 3 garantir que x 3 fx Assim temos que: Ou seja que não existe x 3 fx Resposta: Opção D 25. Calculando o valor do ite, temos: Resposta: Opção D < 0 e que x 3 + fx > 0 x x 2 x 3 fx x 3 + fx x 2 + x x fx > 0, pelo que podemos x 3 + Exame 2007, 2 a fase Exame 2007, a fase 26. Para averiguar se a função f é contínua em x 0, temos que verificar se f0 fx f0 2 x 2 + 2x fx x 3 + x xx + 2 xx 2 + 3x 2 x 3x 2 x x2 x 2 x x x + 2 x x ln Indeterminação Como f0 fx, então, podemos concluir que a função f é contínua em x 0 Teste Intermédio 2 o ano Para estudar a continuidade da função g no ponto de abcissa zero, temos que comparar os valores de g0, de gx e de gx g0 2 2x + gx e x gx 2x fx e Indeterminação 2 ex x 2 e x x 2 2 Como g0 gx, então a função g é descontínua à direita de zero e como g0 gx, então a função g também é descontínua à esquerda de zero. Resposta: Opção D Exame 2006, Ép. especial Página 9 de 3

10 28. Pela observação dos gráficos, podemos verificar que: fx k, k ]2, + [ x + fx x + E assim, temos que: fx x + gx fx x + gx x + k 0 Exame 2006, 2 a Fase 29. Sabendo que f é contínua, em particular é contínua em x 0, pelo que f0 fx Fazendo os cálculos, vem que: f0 k + sen 0 k + 0 k fx k + sen x k + sen 0 k + 0 k 3x + ln + x ln ln Indeterminação 3x ln + x x x Assim, como fx 4 e a função é contínua, temos que f0 fx, ou seja: Resposta: Opção D k Como N < M, então N M < 0, e assim temos que: P t Exame 2005, Ép. especial 5, e N Mt 5, en Mt 5, e N M + 5, e 5, Assim temos que, se N < M então P t 0, o que, no contexto do problema, significa que se a taxa de natalidade for menor que a taxa de mortalidade, para valores arbitrariamente grandes do tempo a população das aves tende para zero, ou seja, se nascem menos aves do que as que morrem, com o passar do tempo a população das aves tende a extinguir-se. Exame 2005, a Fase 3. Como a função f é contínua no intervalo ], 0[, porque resulta de operações entre funções contínuas neste intervalo, e o denominador não se anula para os valores de x deste intervalo; e também é contínua no intervalo ]0, + [, porque também resulta de operações entre funções contínuas neste intervalo, e o denominador não se anula para os valores de x deste intervalo; resta averiguar a continuidade para x 0 Para averiguar se a função f é contínua em x 0, temos que verificar se f0 fx f x + 2 fx 0 + 2x + 2 3x + 2 2x Página 0 de 3

11 e x fx x Como f0 fx fx, então, podemos concluir que a função f é contínua em x 0. Como 0 f também é contínua em R e em R, então a função f é contínua em R.. Exame 2004, Ép. especial 32. Sabendo que g é contínua, em particular é contínua em x 0, pelo que g0 gx gx Fazendo os cálculos, vem que: g0 k + cos 0 k + gx k + cos x k + cos 0 k + ln + x gx ln ln Indeterminação gx 0 + x Assim, como gx e a função é contínua, temos que: g0 gx, pelo que podemos calcular o valor de k: g0 gx k + k 0 Resposta: Opção B Exame 2004, a Fase 33. Como a função f é par e a reta de equação 0 é assintota do seu gráfico, então, como a observação do gráfico sugere, temos que: fx 0+ E assim, vem que: Resposta: Opção C fx fx Exame 2004, a Fase 34. Aplicando as propriedades dos logaritmos e calculando o valor do ite, temos: fx ln x ln x + x + ln x ln x x ln x x x + x Calculando o valor do ite, temos que: ln + x 2 ln + ln ln 0 + Exame 2003, Prova para militares Resposta: Opção C log 2 x e x log e Exame 2003, a fase - 2 a chamada Página de 3

12 36. Sabendo que f é contínua, em particular é contínua em t 60, pelo que f60 x 60 ft x 60 +ft, e mais especificamente f60 x 60 ft Fazendo os cálculos, vem que: f A 2 0, A 2 0, A A 6 + A t 60 ft ,05t , t Assim, como x 60 ft f60, podemos provar que A 24: f60 x 60 ft 6 + A 30 A 30 6 A 24 Exame 200, Prova para militares 37. Sabendo que f é contínua, em particular é contínua em x 0, pelo que fx f0 Fazendo os cálculos, vem que: f0 0 fx 0 fx lnx + k ln0 + k ln k 0 + Assim, como valor de k: Resposta: Opção C ln k e como a função é contínua, ou seja f0, podemos calcular o f0 ln k 0 k e0 k Exame 200, 2 a Fase 38. Para estudar a continuidade da função h no ponto de abcissa zero, temos que comparar os valores de h0, de hx e de hx h0 2 hx + ex + e hx 3x Como h0 hx hx, então a função h é contínua no ponto de abcissa zero. Exame 200, a fase - 2 a chamada 39. Pela observação do gráfico, podemos verificar que a função f é contínua à esquerda do ponto de abcissa 4, e descontínua à direita, ou seja: Resposta: Opção B x 4 x 4 fx f4 e fx f4 + Exame 2000, a fase - 2 a chamada Página 2 de 3

13 40. Pela observação do gráfico, podemos verificar que: x 3 fx 0+ x 3 gx k, k R+ E assim, calculando o valor do ite, temos que: Resposta: Opção D fx x 3 gx x 3 fx gx 0 + k x 3 + k>0 Exame 999, a fase - 2 a chamada prog. antigo Página 3 de 3

MATEMÁTICA A - 12o Ano Funções - Limites e Continuidade Propostas de resolução

MATEMÁTICA A - 12o Ano Funções - Limites e Continuidade Propostas de resolução MATEMÁTICA A - 2o Ano Funções - Limites e Continuidade Propostas de resolução Eercícios de eames e testes intermédios. Determinando o valor de a e de b, temos: a + 3n + n 3 n n + n n 3 e 3 b ln 2e n ln

Leia mais

MATEMÁTICA A - 12o Ano Funções - Limites e Continuidade

MATEMÁTICA A - 12o Ano Funções - Limites e Continuidade MATEMÁTICA A - 2o Ano Funções - Limites e Continuidade Eercícios de eames e testes intermédios. Para um certo número real k, é contínua em R a função f definida por 2 + e +k se 0 2 + ln( + ) Qual é o valor

Leia mais

MATEMÁTICA A - 12o Ano Funções - Limites e Continuidade

MATEMÁTICA A - 12o Ano Funções - Limites e Continuidade MATEMÁTICA A - 2o Ano Funções - Limites e Continuidade Eercícios de eames e testes intermédios. Considere as sucessões convergentes (a n ) e (b n ), de termos gerais a n = ( + ) 3n e b n = ln ( 2e n) n

Leia mais

MATEMÁTICA A - 12o Ano Funções - Teorema de Bolzano

MATEMÁTICA A - 12o Ano Funções - Teorema de Bolzano MATEMÁTICA A - 12o Ano Funções - Teorema de Bolzano Exercícios de exames e testes intermédios 1. Seja g uma função contínua, de domínio R, tal que: para todo o número real x, (g g)(x) = x para um certo

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - 1o Ano 009-1 a Fase Proposta de resolução GRUPO I 1. Como existem 4 cartas de cada tipo, existem 4 4 4 4 4 4 = 4 6 sequências do tipo 4 6 7 Dama Rei existem 4 hipóteses

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ano 00 - a Fase Proposta de resolução GRUPO I. Como A e B são acontecimentos incompatíveis, temos que A B, ou seja, P A B 0 Como P A B P A + P B P A B P A B + P A B P

Leia mais

LIMITES E CONTINIDADE

LIMITES E CONTINIDADE MATEMÁTICA I LIMITES E CONTINIDADE Prof. Dr. Nelson J. Peruzzi Profa. Dra. Amanda L. P. M. Perticarrari Parte 1 Parte 2 Limites Infinitos Definição de vizinhança e ite Limites laterais Limite de função

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - 12o Ano 2008-1 a Fase Proposta de resolução GRUPO I 1. Como se pretende ordenar 5 elementos amigos) em 5 posições lugares), existem 5 A 5 = P 5 = 5! casos possíveis. Como

Leia mais

MATEMÁTICA A - 11o Ano Funções - Derivada (extremos, monotonia e retas tangentes) Propostas de resolução

MATEMÁTICA A - 11o Ano Funções - Derivada (extremos, monotonia e retas tangentes) Propostas de resolução MATEMÁTICA A - o Ano Funções - Derivada extremos, monotonia e retas tangentes) Propostas de resolução Exercícios de exames e testes intermédios. Temos que, pela definição de derivada num ponto, f ) fx)

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - 1o Ano 01-1 a Fase Proposta de resolução GRUPO I 1. Sabemos que P B A P B A P A P B A P B A P A Como P A 0,, temos que P A 1 P A 1 0, 0,6 Como P B A 0,8 e P A 0,6, temos

Leia mais

CONTINUIDADE E LIMITES INFINITOS

CONTINUIDADE E LIMITES INFINITOS MATEMÁTICA I CONTINUIDADE E LIMITES INFINITOS Profa. Dra. Amanda L. P. M. Perticarrari Parte 1 Continuidade de Funções Definição Tipos de Descontinuidade Propriedades Parte 2 Limites Infinitos Definição

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - 1o Ano 007-1 a Fase Proposta de resolução GRUPO I 1. Calculando o valor do ite, temos: x + 1 1 x + 4 x = x + 4 x ) = 1 4 + ) = 1 4 4 + = 1 0 =. Resolvendo a inequação temos

Leia mais

Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de Limites. Aula 01. Projeto GAMA

Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de Limites. Aula 01. Projeto GAMA Universidade Federal de Pelotas Instituto de Física e Matemática Pró-reitoria de Ensino Atividades de Reforço em Cálculo Módulo de Limites Aula 0 208/ Projeto GAMA Grupo de Apoio em Matemática Ideia Intuitiva

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial Prova Escrita de MATEMÁTICA A - 2o Ano 20 - Época especial Proposta de resolução GRUPO I. O declive da reta AB é dado por: m AB = y B y A x B x A = 2 = 2 + = Como retas paralelas têm o mesmo declive, de

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ano 0 - a Fase Proposta de resolução GRUPO I. Temos que P A B) P A) + P B) P A B) P A B) P A) + P B) P A B) Como A e B são independentes, então P A) P B) P A B), pelo

Leia mais

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo LCE0130 Cálculo Diferencial e Integral

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo LCE0130 Cálculo Diferencial e Integral Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo LCE0130 Cálculo Diferencial e Integral Profa. Dra. Andreia Adami deiaadami@terra.com.br Limite Limites infinitos: resultado é +

Leia mais

Material Básico: Calculo A, Diva Fleming

Material Básico: Calculo A, Diva Fleming 1 Limites Material Básico: Calculo A, Diva Fleming O conceito de Limite é importante na construção de muitos outros conceitos no cálculo diferencial e integral, por exemplo, as noções de derivada e de

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - 1o Ano 01 - a Fase Proposta de resolução GRUPO I 1. A escolha pode ser feita selecionando, 9 dos 1 quadrados para colocar os discos brancos não considerando a ordem relevante

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ano 7 - a Fase Proposta de resolução GRUPO I. Como a área do retângulo é igual a 5, designado por x o comprimento de um dos lados e por y o comprimento de um lado adjacente,

Leia mais

MATEMÁTICA A - 12o Ano Funções - Exponenciais e logaritmos Propostas de resolução

MATEMÁTICA A - 12o Ano Funções - Exponenciais e logaritmos Propostas de resolução MATEMÁTICA A - o Ano Funções - Exponenciais e logaritmos Propostas de resolução Exercícios de exames e testes intermédios. Usando as propriedades dos logaritmos, temos que: 4 + log a 5 ln a = 4 + ln a

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - 1o Ano 009 - a Fase Proposta de resolução GRUPO I 1. Como a Maria escolheu CD de um conjunto de 9, sem considerar a ordem relevante, existem 9 C pares diferentes que podem

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial Prova Escrita de MATEMÁTICA A - 1o Ano 010 - Época especial Proposta de resolução GRUPO I 1. O grupo dos 3 livros de Matemática pode ser arrumado de 3 A 3 = P 3 = 3! formas diferentes. Como a prateleira

Leia mais

MATEMÁTICA A - 12o Ano Funções - Limites e Continuidade

MATEMÁTICA A - 12o Ano Funções - Limites e Continuidade MATEMÁTICA A - 12o Ano Funções - Limites e Continuidade Eercícios de eames e testes intermédios 1. Para um certo número real k, é contínua em R a função f definida por 2 + e +k se 0 f() = 2 + ln( + 1)

Leia mais

Exercícios de exames e provas oficiais

Exercícios de exames e provas oficiais Eercícios de eames e provas oficiais 1. Considere as funções f e g, de domínio,0, definidas por ln 1 e g f f Recorrendo a processos eclusivamente analíticos, mostre que a condição pelo menos, uma solução

Leia mais

Cálculo Diferencial e Integral I CDI I

Cálculo Diferencial e Integral I CDI I Cálculo Diferencial e Integral I CDI I Limites laterais e ites envolvendo o infinito Luiza Amalia Pinto Cantão luiza@sorocaba.unesp.br Limites 1 Limites Laterais a à diretia b à esquerda c Definição precisa

Leia mais

Ficha de trabalho nº 17

Ficha de trabalho nº 17 Ficha de trabalho nº 7 ºano Matemática A Continuidade, teorema de Bolzano e assíntotas ª Parte k e se 0 Seja g ( ) O valor de k para o qual é possível aplicar o teorema de se 0 Bolzano à função g, no intervalo,

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial Prova Escrita de MATEMÁTICA A - o Ano 0 - Época especial Proposta de resolução GRUPO I. Temos que A e B são acontecimentos incompatíveis, logo P A B 0 Como P A B P B P A B, e P A B 0, vem que: P A B P

Leia mais

Cálculo Diferencial e Integral I. Jair Silvério dos Santos * Professor Dr. Jair Silvério dos Santos 1

Cálculo Diferencial e Integral I. Jair Silvério dos Santos * Professor Dr. Jair Silvério dos Santos 1 MATEMATICA APLICADA A NEGÓCIOS 3, 0 (200) Cálculo Cálculo Diferencial e Integral I LIMITES LATERAIS Jair Silvério dos Santos * Professor Dr Jair Silvério dos Santos Teorema 0 x x 0 Dada f : A R R uma função

Leia mais

Gabarito da Prova Final Unificada de Cálculo I- 2015/2, 08/03/2016. ln(ax. cos (

Gabarito da Prova Final Unificada de Cálculo I- 2015/2, 08/03/2016. ln(ax. cos ( Gabarito da Prova Final Unificada de Cálculo I- 05/, 08/03/06. Considere a função f : (0, ) R definida por ln(ax ), se x, f(x) = 6 ln cos ( π, x 3 se 0 < x

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ano 06 - a Fase Proposta de resolução GRUPO I. Como P A B ) P A B ) P A B), temos que: P A B ) 0,6 P A B) 0,6 P A B) 0,6 P A B) 0,4 Como P A B) P A) + P B) P A B) P A

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial Prova Escrita de MATEMÁTICA A - 1o Ano 01 - Época especial Proposta de resolução GRUPO I 1. Como o primeiro e último algarismo são iguais, o segundo e o penúltimo também, o mesmo acontecendo com o terceiro

Leia mais

Limites e continuidade: parte II

Limites e continuidade: parte II Cálculo diferencial e integral Limites e continuidade: parte II Thiago de Paula Oliveira 26 de Setembro de 208 2. Prove que os seguintes ites não existem. a) x d) x x2 + 9 x 2 + x b) x x + 2 x x e) x 3

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ano 06 - a Fase Proposta de resolução GRUPO I. Como P (A B) P (A B) P (B) P (A B) P (A B) P (B) vem que: P (A B) 6 0 60 0 Como P (A B) P (A) + P (B) P (A B), temos que:

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MAEMÁICA A - o Ano 006 - a Fase Proposta de resolução GRUPO I. Como o ponto (0,) pertence ao gráfico de f, temos que f(0) =, e assim vem que: f(0) = a 0 + b = + b = b = b = Como o ponto

Leia mais

Derivadas 1

Derivadas 1 www.matematicaemexercicios.com Derivadas 1 Índice AULA 1 Introdução 3 AULA 2 Derivadas fundamentais 5 AULA 3 Derivada do produto e do quociente de funções 7 AULA 4 Regra da cadeia 9 www.matematicaemexercicios.com

Leia mais

Aula 22 O teste da derivada segunda para extremos relativos.

Aula 22 O teste da derivada segunda para extremos relativos. O teste da derivada segunda para extremos relativos. MÓDULO 2 - AULA 22 Aula 22 O teste da derivada segunda para extremos relativos. Objetivo: Utilizar a derivada segunda para determinar pontos de máximo

Leia mais

Concavidade. Universidade de Brasília Departamento de Matemática

Concavidade. Universidade de Brasília Departamento de Matemática Universidade de Brasília Departamento de Matemática Cálculo 1 Concavidade Conforme vimos anteriormente, o sinal da derivada de uma função em um intervalo nos dá informação sobre crescimento ou decrescimento

Leia mais

Volume de um gás em um pistão

Volume de um gás em um pistão Universidade de Brasília Departamento de Matemática Cálculo Volume de um gás em um pistão Suponha que um gás é mantido a uma temperatura constante em um pistão. À medida que o pistão é comprimido, o volume

Leia mais

Limites. 2.1 Limite de uma função

Limites. 2.1 Limite de uma função Limites 2 2. Limite de uma função Vamos investigar o comportamento da função f definida por f(x) = x 2 x + 2 para valores próximos de 2. A tabela a seguir fornece os valores de f(x) para valores de x próximos

Leia mais

Nome: Nº. Página 1 de 10

Nome: Nº. Página 1 de 10 Nome: Nº Página 1 de 10 Página 2 de 10 1. Considere duas retas r e s paralelas entre si. Na reta r marcam-se 5 pontos e na reta s marcam-se 4 pontos. O número de circunferências que é possível formar,

Leia mais

Itens para resolver (CONTINUAÇÃO)

Itens para resolver (CONTINUAÇÃO) PREPARAR EXAME NACINAL Itens para resolver (CNTINUAÇÃ) e. Seja g a função, de domínio IR\{}, definida por g(). Sem usar a calculadora, determine, se eistirem, as equações das assíntotas do gráfico de g.

Leia mais

Cálculo 1 A Turma F1 Prova VS

Cálculo 1 A Turma F1 Prova VS Cálculo 1 A 017. Turma F1 Prova VS Nome (MAIÚSCULO): Matrícula: O IMPORTANTE É O RACIOCÍNIO, PORTANTO DEIXE-O TODO NA PROVA. RESPOSTAS SEM AS DEVIDAS JUSTIFICATIVAS SERÃO DESCONSIDERADAS. (1) Encontre

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ano 00 - a Fase Proposta de resolução GRUPO I. Como só existem bolas azuis e roxas, e a probabilidade de extrair uma bola da caixa, e ela ser azul é igual a, então existem

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial Prova Escrita de MATEMÁTICA A - o Ano 07 - Época especial Proposta de resolução GRUPO I. Como o número a formar deve ser maior que 0 000, então para o algarismo das dezenas de milhar existem apenas 3 escolhas

Leia mais

Propriedades das Funções Contínuas e Limites Laterais Aula 12

Propriedades das Funções Contínuas e Limites Laterais Aula 12 Propriedades das Funções Contínuas e Limites Laterais Aula 12 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 27 de Março de 2014 Primeiro Semestre de 2014 Turma 2014106 -

Leia mais

Derivada : definições e exemplos

Derivada : definições e exemplos Derivada : definições e exemplos Retome-se o problema Dada uma curva y f ( x curva ( =, determinar em cada ponto x f ( x, a tangente à e analise-se este problema numa situação simples: Considere-se a parábola

Leia mais

Lista 1 - Cálculo Numérico - Zeros de funções

Lista 1 - Cálculo Numérico - Zeros de funções Lista 1 - Cálculo Numérico - Zeros de funções 1.) De acordo com o teorema de Bolzano, se uma função contínua f(x) assume valores de sinais opostos nos pontos extremos do intervalo [a, b], isto é se f(a)

Leia mais

Exercício 1 Dê o valor, caso exista, que a função deveria assumir no ponto dado para. em p = 9

Exercício 1 Dê o valor, caso exista, que a função deveria assumir no ponto dado para. em p = 9 Exercícios - Limite e Continuidade-1 Exercício 1 Dê o valor, caso exista, que a função deveria assumir no ponto dado para ser contínua: (a) f(x) = x2 16 x 4 (b) f(x) = x3 x x em p = 4 em p = 0 (c) f(x)

Leia mais

Respostas sem justificativas não serão aceitas. Além disso, não é permitido o uso de aparelhos eletrônicos. x x = lim.

Respostas sem justificativas não serão aceitas. Além disso, não é permitido o uso de aparelhos eletrônicos. x x = lim. UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL 1-2017.2 1A VERIFICAÇÃO DE APRENDIZAGEM - TURMA GEA Nome Legível RG CPF Respostas sem

Leia mais

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO. Realização:

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO. Realização: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO Realização: Fortaleza, Fevereiro/2010 1. LIMITES 1.1. Definição Geral Se os valores de f(x) puderem

Leia mais

Estudo de funções. Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática.

Estudo de funções. Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática. Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática Estudo de funções Continuidade Consideremos as funções: f : R R g : R R x x + x x +, x 1

Leia mais

Ficha de Problemas n o 6: Cálculo Diferencial (soluções) 2.Teoremas de Rolle, Lagrange e Cauchy

Ficha de Problemas n o 6: Cálculo Diferencial (soluções) 2.Teoremas de Rolle, Lagrange e Cauchy Ficha de Problemas n o 6: Cálculo Diferencial soluções).teoremas de Rolle, Lagrange e Cauchy. Seja f) = 3 e. Então f é contínua e diferenciável em R. Uma vez que f) = +, f0) = conclui-se do Teorema do

Leia mais

Professor: Luiz Gonzaga Damasceno. Turma: Disciplina: Matemática II Avaliação: Lista Recuperação Data: 01/03.11.

Professor: Luiz Gonzaga Damasceno. Turma: Disciplina: Matemática II Avaliação: Lista Recuperação Data: 01/03.11. Data da Prova: 08..0 0) lim x+ x 8x+ 9 (B) (C) 9 (E) 0) lim x 5 x+5 x 5 0 (B) 0 (C) 0, 0, (E) 5 0) lim x x x (B) (C) / / (E) 0 0) lim x x x (B) 0,5 (C) - - 0,5 (E) 05) Calcule, se existir, o limite lim

Leia mais

Respostas sem justificativas não serão aceitas. Além disso, não é permitido o uso de aparelhos eletrônicos. x 1 x 1. 1 sen x 1 (x 2 1) 2 (x 2 1) 2 sen

Respostas sem justificativas não serão aceitas. Além disso, não é permitido o uso de aparelhos eletrônicos. x 1 x 1. 1 sen x 1 (x 2 1) 2 (x 2 1) 2 sen UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL - 07. A VERIFICAÇÃO DE APRENDIZAGEM - TURMA EL Nome Legível RG CPF Respostas sem justificativas

Leia mais

Apresente todos os cálculos e justificações relevantes. a) Escreva A e B como intervalos ou união de intervalos e mostre que C = { 1} [1, 3].

Apresente todos os cálculos e justificações relevantes. a) Escreva A e B como intervalos ou união de intervalos e mostre que C = { 1} [1, 3]. Instituto Superior Técnico Departamento de Matemática 1. o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I - Versão A LEAN, LEMat, MEQ 1. o Sem. 2016/17 12/11/2016 Duração: 1h0m Apresente todos os cálculos e

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO

UNIVERSIDADE FEDERAL DE PERNAMBUCO CÁLCULO L NOTAS DA NONA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, apresentaremos as funções logaritmo e exponencial e calcularemos as suas derivadas. Também estabeleceremos algumas propriedades

Leia mais

T. Rolle, Lagrange e Cauchy

T. Rolle, Lagrange e Cauchy T. Rolle, Lagrange e Cauchy EXERCÍCIOS RESOLVIDOS. Mostre que a equação 5 + 5 = 5 tem uma única solução em R. Seja f = 5 +5 5. Então f é contínua e diferenciável em R. Temos f = 5 4 + > 0, em R, logo f

Leia mais

GABARITO S = { 1, 33; 0, 2} (VERDADEIRO) 08. 2x 5 = 8x x 2 9 x x = 3 e x = 3. x = 7 ± 3. x =

GABARITO S = { 1, 33; 0, 2} (VERDADEIRO) 08. 2x 5 = 8x x 2 9 x x = 3 e x = 3. x = 7 ± 3. x = 88 0) x 0, 5 aplicando a prop. a n m m a n : 88 5 00 x 88 5 0 x 8 5 0 x 80 5 0 x 75 0 x 75x 0 x 0 75 x 5 multiplicando toda inequação por 0: multiplicando toda inequação por x: Porém, x 0, pois x é o denominador.

Leia mais

LIMITE. Para uma melhor compreensão de limite, vamos considerar a função f dada por =

LIMITE. Para uma melhor compreensão de limite, vamos considerar a função f dada por = LIMITE Aparentemente, a idéia de se aproimar o máimo possível de um ponto ou valor, sem nunca alcançá-lo, é algo estranho. Mas, conceitos do tipo ite são usados com bastante freqüência. A produtividade

Leia mais

CÁLCULO I. Calcular o limite de uma função composta;

CÁLCULO I. Calcular o limite de uma função composta; CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 06: Limites Laterais. Limite da Função Composta. Objetivos da Aula Denir ites laterais de uma função em um ponto de seu

Leia mais

MATEMÁTICA - 3o ciclo. Propostas de resolução

MATEMÁTICA - 3o ciclo. Propostas de resolução MATEMÁTICA - 3o ciclo Função afim e equação da reta (8 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Como retas paralelas têm o mesmo declive, o declive da reta s,

Leia mais

= 6 lim. = lim. 2x + 2 sin(x) cos(x) 4 sin(4x) 2 x cos(x) = lim. x + ln(x) cos ) ] 3x. 3 ln. = lim x 1 x +

= 6 lim. = lim. 2x + 2 sin(x) cos(x) 4 sin(4x) 2 x cos(x) = lim. x + ln(x) cos ) ] 3x. 3 ln. = lim x 1 x + UFRGS - PAG Cálculo - MAT05-0/ Lista 5-04/05/0 - Soluções.a ln + 0 + ln = + + 0 =.b sin8 0 sin4 = 0 8 cos8 4 cos4 =.c.d + sin 0 cos4 = 0 + sin cos 4 sin4 = 0 + cos sin 6 cos4 = 4 0 + sin e cos = 0 + e

Leia mais

Limites de Funções. Bases Matemáticas. 2 o quadrimestre de o quadrimestre de / 57

Limites de Funções. Bases Matemáticas. 2 o quadrimestre de o quadrimestre de / 57 2 o quadrimestre de 2017 2 o quadrimestre de 2017 1 / Visão Geral 1 Limites Finitos Limite para x ± 2 Limites infinitos Limite no ponto Limite para x ± 3 Continuidade Definição e exemplos Resultados importantes

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial Prova Escrita de MATEMÁTIA A - o Ano 006 - Época especial Proposta de resolução GRUPO I. Estudando a variação de sinal de f e relacionando com o sentido das concavidades do gráfico de f, vem: 6 ) + + +

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO Grupo I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO Grupo I Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 27-A 500-236 Lisboa Tel.: +35 2 76 36 90 / 2 7 03 77 Fa: +35 2 76 64 24 http://www.apm.pt email: geral@apm.pt PROPOSTA DE RESOLUÇÃO

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO Grupo I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO Grupo I PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) ª FASE 25 DE JUNHO 203 Grupo I Questões 2 3 4 5 6 7 8 Versão B D C A D B C A Versão 2 C A B D D C B B Grupo II...

Leia mais

Lista 2 - Cálculo. 17 de maio de Se f e g são funções cujos grácos estão representados abaixo, sejam u(x) = f(x)g(x),

Lista 2 - Cálculo. 17 de maio de Se f e g são funções cujos grácos estão representados abaixo, sejam u(x) = f(x)g(x), Lista 2 - Cálculo 17 de maio de 2019 1. Se f e g são funções cujos grácos estão representados abaixo, sejam u(x) = f(x)g(x), h(x) = f(g(x)) e k(x) = g(f(x)). Encontre as seguintes derivadas: (a) u (1)

Leia mais

Cálculo 1 - Quinta Lista de Exercícios Derivadas

Cálculo 1 - Quinta Lista de Exercícios Derivadas Cálculo 1 - Quinta Lista de Exercícios Derivadas Prof. Fabio Silva Botelho November 2, 2017 1. Seja f : D = R\{ 7/5} R onde 1 5x+7. Seja x D. Utilizando a definição de derivada, calcule f (x). Calcule

Leia mais

Aula 7 Os teoremas de Weierstrass e do valor intermediário.

Aula 7 Os teoremas de Weierstrass e do valor intermediário. Os teoremas de Weierstrass e do valor intermediário. MÓDULO - AULA 7 Aula 7 Os teoremas de Weierstrass e do valor intermediário. Objetivo Compreender o significado de dois resultados centrais a respeito

Leia mais

Fun c ao Logaritmo Fun c ao Logaritmo ( ) F. Logaritmo Matem atica II 2008/2009

Fun c ao Logaritmo Fun c ao Logaritmo ( ) F. Logaritmo Matem atica II 2008/2009 Função Logaritmo (27-02-09) Função Logaritmo Acabámos de estudar a função exponencial, cuja forma mais simples é a função f(x) = e x. Resolvemos vários problemas que consistiam em calcular f(x 0 ) para

Leia mais

Cálculo Diferencial e Integral I 1 o Sem. 2016/17 - LEAN, MEMat, MEQ

Cálculo Diferencial e Integral I 1 o Sem. 2016/17 - LEAN, MEMat, MEQ Instituto Superior Técnico Departamento de Matemática Cálculo Diferencial e Integral I o Sem. 06/7 - LEAN, MEMat, MEQ FICHA 8 - SOLUÇÕES Regra de Cauchy. Estudo de funções.. a) 0; b) ln ; c) ln ; d) +

Leia mais

DERIVAÇÃO de FUNÇÕES REAIS de VARIÁVEL REAL

DERIVAÇÃO de FUNÇÕES REAIS de VARIÁVEL REAL DERIVAÇÃO de FUNÇÕES REAIS de VARIÁVEL REAL Derivada de uma função num ponto. Sejam f uma função denida num intervalo A R e a um ponto de acumulação de A. Cama-se derivada de f no ponto a ao ite, caso

Leia mais

MATEMÁTICA A - 12o Ano Funções - 2 a Derivada (concavidades e pontos de inflexão) Propostas de resolução

MATEMÁTICA A - 12o Ano Funções - 2 a Derivada (concavidades e pontos de inflexão) Propostas de resolução MATEMÁTICA A - 1o Ano Funções - a Derivada concavidades e pontos de infleão) Propostas de resolução Eercícios de eames e testes intermédios 1. Por observação do gráfico de f, podemos observar o sentido

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ano 04 - a Fase Proposta de resolução GRUPO I. Usando as leis de DeMorgan, e a probabilidade do acontecimento contrário, temos que: P A B P A B P A B então P A B 0,48

Leia mais

3. Limites e Continuidade

3. Limites e Continuidade 3. Limites e Continuidade 1 Conceitos No cálculo de limites, estamos interessados em saber como uma função se comporta quando a variável independente se aproxima de um determinado valor. Em outras palavras,

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO

UNIVERSIDADE FEDERAL DE PERNAMBUCO CÁLCULO L1 NOTAS DA DÉCIMA PRIMEIRA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, apresentaremos o Teorema do Valor Médio e algumas de suas conseqüências como: determinar os intervalos de

Leia mais

= 2 sen(x) (cos(x) (b) (7 pontos) Pelo item anterior, temos as k desigualdades. sen 2 (2x) sen(4x) ( 3/2) 3

= 2 sen(x) (cos(x) (b) (7 pontos) Pelo item anterior, temos as k desigualdades. sen 2 (2x) sen(4x) ( 3/2) 3 Problema (a) (3 pontos) Sendo f(x) = sen 2 (x) sen(2x), uma função π-periódica, temos que f (x) = 2 sen(x) cos(x) sen(2x) + sen 2 (x) 2 cos(2x) = 2 sen(x) (cos(x) sen(2x) + sen(x) cos(2x) ) = 2 sen(x)

Leia mais

AULA 1 Introdução aos limites 3. AULA 2 Propriedades dos limites 5. AULA 3 Continuidade de funções 8. AULA 4 Limites infinitos 10

AULA 1 Introdução aos limites 3. AULA 2 Propriedades dos limites 5. AULA 3 Continuidade de funções 8. AULA 4 Limites infinitos 10 Índice AULA 1 Introdução aos limites 3 AULA 2 Propriedades dos limites 5 AULA 3 Continuidade de funções 8 AULA 4 Limites infinitos 10 AULA 5 Limites quando numerador e denominador tendem a zero 12 AULA

Leia mais

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 06: Continuidade de Funções Objetivos da Aula Definir função contínua; Reconhecer uma função contínua através do seu gráfico; Utilizar as

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO 2018 CADERNO 1

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO 2018 CADERNO 1 Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 7-A 500-36 Lisboa Tel.: +35 76 36 90 / 7 03 77 Fa: +35 76 64 4 http://www.apm.pt email: geral@apm.pt PROPOSTA DE RESOLUÇÃO DA

Leia mais

LIMITES E CONTINUIDADE

LIMITES E CONTINUIDADE LIMITES E CONTINUIDADE Marina Vargas R. P. Gonçalves a a Departamento de Matemática, Universidade Federal do Paraná, marina.vargas@gmail.com, http:// www.estruturas.ufpr.br 1 NOÇÃO INTUITIVA DE LIMITE

Leia mais

4.1 Preliminares. 1. Em cada caso, use a de nição para calcular f 0 (x) : (a) f (x) = x 3 ; x 2 R (b) f (x) = 1=x; x 6= 0 (c) f (x) = 1= p x; x > 0:

4.1 Preliminares. 1. Em cada caso, use a de nição para calcular f 0 (x) : (a) f (x) = x 3 ; x 2 R (b) f (x) = 1=x; x 6= 0 (c) f (x) = 1= p x; x > 0: 4. FUNÇÕES DERIVÁVEIS ANÁLISE NO CORPO R - 208. 4. Preinares. Em cada caso, use a de nição para calcular f 0 (x) : (a) f (x) = x 3 ; x 2 R (b) f (x) = =x; x 6= 0 (c) f (x) = = p x; x > 0: 2. Mostre que

Leia mais

AT3-1 - Unidade 3. Derivadas e Aplicações 1. Cálculo Diferencial e Integral. UAB - UFSCar. Bacharelado em Sistemas de Informação

AT3-1 - Unidade 3. Derivadas e Aplicações 1. Cálculo Diferencial e Integral. UAB - UFSCar. Bacharelado em Sistemas de Informação AT3-1 - Unidade 3 1 Cálculo Diferencial e Integral Bacharelado em Sistemas de Informação UAB - UFSCar 1 Versão com 34 páginas 1 / 34 Tópicos de AT3-1 1 Uma noção intuitiva Caracterização da derivada Regras

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A ESCOLA SECUNDÁRIA COM º CICLO D. DINIS º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema III Trigonometria e Números Compleos TPC nº. Seja f = + ln (entregar até 7/0/009).. Determine f ( ), usando a definição

Leia mais

MATEMÁTICA I LIMITE. Profa. Dra. Amanda L. P. M. Perticarrari

MATEMÁTICA I LIMITE. Profa. Dra. Amanda L. P. M. Perticarrari MATEMÁTICA I LIMITE Profa. Dra. Amanda L. P. M. Perticarrari amanda@fcav.unesp.br Parte 1 Limites Definição de vizinhança e ite Limites laterais Limite de função real com uma variável real Teorema da existência

Leia mais

TESTE N.º 4 Proposta de resolução

TESTE N.º 4 Proposta de resolução TESTE N.º 4 Proposta de resolução Caderno 1 1. 1.1. Consideremos os seguintes acontecimentos: A: O produto ser vendido para os Estados Unidos da América. B: O produto ser vendido para o Japão. Sabemos

Leia mais

Universidade Federal do Rio de Janeiro

Universidade Federal do Rio de Janeiro Å INSTITUTO DE MATEMÁTICA Universidade Federal do Rio de Janeiro Gabarito da a Prova Unificada de Cálculo I a Questão: Calcule ou justifique caso não exista, cada um dos ite abaixo: ( (a) x + (+x )e x,

Leia mais

MATEMÁTICA - 3o ciclo. Propostas de resolução

MATEMÁTICA - 3o ciclo. Propostas de resolução MATEMÁTICA - 3o ciclo Função afim e equação da reta (8 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Como a reta s é paralela à reta r, os respetivos declives são

Leia mais

Diferenciabilidade de função de uma variável

Diferenciabilidade de função de uma variável Capítulo 6 Diferenciabilidade de função de uma variável Um conceito importante do Cálculo é o de derivada, que é um ite, como veremos na definição. Fisicamente o conceito de derivada está relacionado ao

Leia mais

Esboço de Gráfico - Exemplos e Regras de L Hospital Aula 23

Esboço de Gráfico - Exemplos e Regras de L Hospital Aula 23 Esboço de Gráfico - s e Regras de L Hospital Aula 23 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 06 de Maio de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia

Leia mais

LISTA DE EXERCÍCIOS. Humberto José Bortolossi

LISTA DE EXERCÍCIOS. Humberto José Bortolossi GMA DEPARTAMENTO DE MATEMÁTICA APLICADA LISTA DE EXERCÍCIOS Cálculo I A Humberto José Bortolossi http://wwwprofessoresuffbr/hjbortol/ 03 Operações com funções: soma, diferença, produto, quociente, composição

Leia mais

MATEMÁTICA - 3o ciclo. Propostas de resolução

MATEMÁTICA - 3o ciclo. Propostas de resolução MATEMÁTICA - 3o ciclo Função afim e equação da reta (8 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Observando a representação das retas e as coordenadas dos pontos

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I Complementos ao texto de apoio às aulas. Amélia Bastos, António Bravo Julho 24 Introdução O texto apresentado tem por objectivo ser um complemento ao texto de apoio ao

Leia mais

MATEMÁTICA A - 12o Ano Funções - Assintotas

MATEMÁTICA A - 12o Ano Funções - Assintotas MATEMÁTICA A - 12o Ano Funções - Assintotas Eercícios de eames e testes intermédios 1. Seja f a função, de domínio R + 0, definida por f() = 2 e 1 Estude a função f quanto à eistência de assintota horizontal,

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO 2018 CADERNO 1

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO 2018 CADERNO 1 PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) ª FASE 5 DE JUNHO 08 CADERNO... P00/00 Seja X a variável aleatória: Número de vezes que sai a face numerada com

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 12º ANO DE ESCOLARIDADE MATEMÁTICA A. Aula nº 1 do plano nº 12

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 12º ANO DE ESCOLARIDADE MATEMÁTICA A. Aula nº 1 do plano nº 12 ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA º ANO DE ESCOLARIDADE MATEMÁTICA A Aula nº do plano nº Resolver os eercícios 35, 355, 358, 360, 36, 364 das páginas 67 a 7 Conceito de derivada de uma função

Leia mais

INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA. MATEMÁTICA APLICADA 1 o SEMESTRE 2016/2017

INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA. MATEMÁTICA APLICADA 1 o SEMESTRE 2016/2017 3 de janeiro de 7 Instruções: INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA MATEMÁTICA APLICADA o SEMESTRE 6/7 Resolução do o Teste Duração: hm É obrigatória

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 22 DE JULHO 2019

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 22 DE JULHO 2019 Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 7-A 1500-36 Lisboa Tel.: +351 1 716 36 90 / 1 711 03 77 Fax: +351 1 716 64 4 http://www.apm.pt email: geral@apm.pt PROPOSTA DE

Leia mais

Funções de Uma Variável - 1 a Avaliação - Turma B3 31 de outubro de Prof. Armando Caputi

Funções de Uma Variável - 1 a Avaliação - Turma B3 31 de outubro de Prof. Armando Caputi Funções de Uma Variável - 1 a Avaliação - Turma B 1 de outubro de 017 - Prof. Armando Caputi 1 Determine o domínio da função g(x) = arctan ( ln(x x + ) ) (justifique) e a equação da reta tangente ao seu

Leia mais