Cálculo II - B profs.: Heloisa Bauzer Medeiros e Denise de Oliveira Pinto 1 2 o semestre de 2017 Aulas 6 e 7 Limites e Continuidade

Tamanho: px
Começar a partir da página:

Download "Cálculo II - B profs.: Heloisa Bauzer Medeiros e Denise de Oliveira Pinto 1 2 o semestre de 2017 Aulas 6 e 7 Limites e Continuidade"

Transcrição

1 Cálculo II - B profs.: Heloisa Bauzer Medeiros e Denise de Oliveira Pinto 2 o semestre de 207 Aulas 6 e 7 Limites e Continuidade Estas duas aulas envolvem detalhes muito técnicos. Por essa razão, serão trabalhadas de modo diferente. Na primeira (aula 6), o conteúdo será discutido como aula expositiva. Na segunda, os exemplos e exercícios serão tratados sob forma de estudo orientado. Limites Lembre que uma função f : R R tem ite L quando x tende para a, se para todo ɛ > 0 existe δ > 0 tal que f(x) L < ɛ se 0 < x a < δ. A definição para funções f : R n R m é a mesma! Apenas interprete x e a como pontos em R n, f(x) e L como pontos de R m e escreva x a e f(x) L ao invés de x a e f(x) L. Assim: Definição.. f : R n R m tem ite L quando x tende para a e escrevemos f(x) = L ou f(x) L se para todo ɛ > 0 existe δ > 0 tal que f(x) L < ɛ se 0 < x a < δ. Equivalentemente, f(x) = L ou f(x) L, se para todo ɛ > 0 existe δ > 0 tal que d(f(x), L) < ɛ se 0 < d(x, a) < δ. Propriedades... O ite se existe é único. (unicidade) 2. Se f e g, funções de R n em R m são tais que f(x) = A e g(x) = B, então : (a) (f + g)(x) = A + B (regra da adição ). (b) f(x), g(x) = A, B ; em particular, caso m =, f(x) g(x) = A B (regra do produto). o conteúdo dessas aulas foi retirado, quase que integralmente, da apostila escrita em conjunto com Maria Lucia Menezes.

2 (c) caso m = e B 0 então ( ) f (x) = A g B (regra do quociente). (d) caso m =, f(x) n = A n, n N. p (e) caso m =, p f(x) = A se p é ímpar ou se p é par e A > 0. x a (f) f(x) = A. x a Valem também o teorema do sanduíche e suas conseqã ( ) 4ências: Exemplo. Calcule (x2 + y 2 )sen. ( ) Solução : sen é itada e além disso, (x2 + y 2 ) = 0. Portanto, (x2 + y 2 )sen ( ) = 0. Note que a definição acima pode ser reescrita como: Definição.2. (reescrita) A função f tem ite L quando x tende para a, e escrevemos f(x) = L ou, equivalentemente, f(x) L quando x a, se para toda bola aberta de raio ɛ > 0 em torno de L, existe uma bola aberta de raio δ > 0 tal que se x B δ (a) {a}, então f(x) B ɛ (L). Assim, fazer x se aproximar de a, significa que x se aproxima de a segundo qualquer direção. Exemplo 2. Calcule + y 2. Solução : Note que x2 = na direção y = 0, temos que, y=0 x2 + y 2 = 0. Tomando o ite + y = 2 x 0 x = = 2 x 0 Agora tomando o ite na direção x = 0, temos que, x=0 + y 2 = y 0 0 = 0 Como o ite deve ser único se existir, esse ite não existe!! 2

3 Exemplo 3. Calcule + y. 2 Solução : Tomando o ite na direção y = 0, temos que, y=0 + y 2 = x 0 0 = 0 Agora tomando o ite na direção x = 0, temos que, x=0 + y 2 = y 0 0 = 0 Finalmente, tomando o ite na direção x = y, temos que, x=0 + y 2 = x 0 2 = 2 Como o ite deve ser único se existir, esse ite não existe. y 2 Exemplo 4. Calcule ( + y 2 ). 2 Solução : Tomando o ite na direção x = 0, temos que, x=0 ( y 2 ) 0 = ( + y 2 ) 2 y 0 y = 0 4 Tomando o ite na direção y = 0, temos que, y=0 ( y 2 ) 0 = ( + y 2 ) 2 x 0 x = 0 4 Tomando o ite na direção x = y, temos que, x=0 ( y 2 ) 0 = ( + y 2 ) 4 x 0 2x = 0 4 Tomando o ite na direção y = 2x, temos que, x=0 Logo esse ite não existe. ( y 2 ) 3x 4 = ( + y 2 ) 2 x 0 25x 4 =

4 2 Exemplo 5. Calcule + y. 4 Solução : Tomando o ite na direção x = 0, temos que, x=0 2 + y 4 = y 0 Tomando o ite na direção x = y 2, temos que Assim, esse ite não existe. 0 y 4 = 0 2, x = y 2 + y = y 4 4 x 0 2y = 4 2 Os exemplos anteriores ilustram que geralmente é fácil mostrar que um ite não existe. Para mostrar que existe pode ser mais difícil. Veja: Exemplo 6. Mostre que Solução : 0 + y 2, logo, 0 Portanto, Exemplo 7. Mostre que 0 x 4 + y 2 = 0. x 4 + y 2 = 0. x 4 + y 2 x4 + y 2 x2. Assim, x 3 y x 4 + y 2 = 0. x2 = 0. Solução : 0 x 4 x 4 + y 2 logo 0 x 4 + y 2 ; 0 y 2 x 4 + y 2 logo 0 y x 4 + y 2. Assim, 0 Exemplo 8. Mostre que x 3 y + y 2 (x,y,z) (0,0,0) x4 + y 2 y x4 + y 2 x = 0. z + y 2 + z 2 = 0. 4

5 Solução : 0 + y 2 + z 2, logo, 0 x y 2 + z 2. Da mesma forma, 0 y y 2 + z 2 e 0 z y 2 + z 2. Assim, ( ) 3 z x2 + y 2 + z 2 0 (x,y,z) (0,0,0) + y 2 + z = x2 + y 2 (x,y,z) (0,0,0) + y 2 + z 2 + z 2 = 0. 2 (x,y,z) (0,0,0) Como a a a, (x,y,z) (0,0,0) z + y 2 + z 2 = 0. Definição.3. f : R n R m tem ite infinito quando x tende para a e escrevemos f(x) = ou, f(x) se para todo N > 0 existe δ > 0 tal que f(x) > N se 0 < x a < δ. Exemplo 9. Mostre que + y 2 =. Solução : Para todo N > 0, existe δ = N tal que se (x, y) < δ, i.e., x2 + y 2 < δ, então Portanto, f(x, y) = + y 2 =. + y 2 > δ 2 = N. Definição.4. f : R n R m tem ite L quando x tende para infinito e escrevemos f(x) = L ou, f(x) L quando x x se para todo ɛ > 0 existe N > 0 tal que f(x) L < ɛ se x > N. Exemplo 0. Mostre que (x,y) x 4 + y 2 = 0. Solução : x 4 + y 2 > + y 2 para x >. Assim, x >. Logo, (x,y) x 4 + y 2 (x,y) (note que esse é um ite de uma variável!) x 4 + y < 2 + y 2 + y 2 = 0. para 5

6 Exercício a) x + y b) d) g) (x,y) (0,2).. Calcule, quando existirem, os ites abaixo: sen () x y 2 e) + y 2 (x,y,z) (0,0,0) cos( 2x) (y 2) 2 2 Continuidade c) x 3 + y + z 2 x 4 + y 2 + z 3 f) (x,y) (,) Lembre da definião de continuidade em um ponto para funções de uma variável: Definição 2.. Continuidade em um ponto A função f : D R R é contínua em a D, se f(x) = f(a). A função f é descontínua em a D se f(x) f(a) ou se não existe o ite f(x). A mesma definição vale para funções f : D R n R m!!! Observe que neste caso, está implícito na definição que a é um ponto interior do domínio de f. Uma outra maneira de escrever essa definição é: Definição 2.2. Continuidade em um ponto (reescrita) A função f é contínua em a, se para toda bola aberta de raio ɛ > 0 em torno de f(a), existe uma bola aberta de raio δ > 0 tal que se x B δ (a), então f(x) B ɛ (f(a)). Propriedades 2... Se f : D R n R m e g : D 2 R n R m são contínuas em a então as funções f + g, f g e f, g : D D 2 R também são contínuas em a. Em particular, para m =, a função fg : D D 2 R também é contínua em a. Além disso, caso m = e g(a) 0, f também é contínua em a. g 2. Se f : D R n R m e g : D 2 R m R k são contínuas em a D e b D 2 com f(a) = b, então g f : {x D R n ; f(x) D 2 } R k é contínua em a. x x + y 2x + y 2 2x + 2y 6

7 Para funções reais de uma variável, era comum estudarmos ites e continuidade a direita e a esquerda. Isso não faz sentido para funções f : D R n R m para n >. Entretanto, neste caso, podemos estudar continuidade em pontos do bordo. Definição 2.3. Continuidade em pontos de bordo A função f : D R n R m é contínua em a D, se f(a). f(x) =,x int(d) Definição 2.4. Continuidade A função f : D R n R m é contínua se é contínua em todos os pontos de D. Propriedades Se f : D R n R m e g : D 2 R n R m são contínuas então as funções f + g, f g e f, g : D D 2 R também são contínuas. Em particular, para m =, a função fg : D D 2 R também é contínua. Além disso, caso m = e g(x) 0, para todo x, f/g também é contínua. 2. Se f : D R n R m e g : D 2 R m R k são contínuas e f(d ) D 2, então g f : D R k é contínua. D R n D 2 R m R k x f(x) y g(y) Aplicaà ão 2... Polinà mios são contínuos. 2. Funções racionais f : R n {zeros do denominador de f} R são contínuas. ; (x, y) (0, 0) Exemplo. Estude a continuidade de f(x, y) = + y2. 0; (x, y) = 0 Solução : Para (x, y) (0, 0), f é contínua pois é racional. Para (x, y) = (0, 0), vamos estudar o ite Tomando o ite na direção + y2 x = y, temos que + y 2 = x = 2.

8 Fazendo agora o ite na direção x = 0, temos que + y 2 = y 0 0 y 2 = 0. Assim, o ite não existe e portanto f é descontínua em (x, y) = (0, 0). Exemplo 2. (exemplo ( revisitado) ) Estude a continuidade de ( + y 2 )sen 0 f(x, y) =. 0; (x, y) = (0, 0) ( ) Solução : Note que a função sen é contínua pois é a composta de duas funções contínuas. Veja o diagrama: R 2 {(x, y); 0} R (x, y) t R sen (t) Assim, para (x, y) (0, 0), f é contínua pois é o produto de um( polinã mio ) por uma função contínua. Além disso, (x2 + y 2 )sen = 0, e logo, f é contínua em (x, y) = (0, 0). Portanto, f é contínua. Exemplo 3. (exemplo 7 revisitado) Estude a continuidade de x 3 y (x, y) (0, 0) f(x, y) = x 4 + y 2. 0; (x, y) = (0, 0) Solução : a função contínua. Além disso, x 3 y, (x, y) (0, 0) é racional sem pólos portanto x 4 + y2 (0, 0). Portanto, f é contínua. x 3 y = 0 e logo f é contínua em (x, y) = x 4 + y2 Exemplo 4. Seja f : [0, ) [0, 2π) R 2 dada por f(r, θ) = (r cos (θ), rsen (θ)) e g : R {0} R R, g(x, y) = y. O que você pode dizer sobre g f? x 8

9 Solução : g : (0, ) [0, 2π) R Como f e g são contínuas, g f é contínua. (r, θ) g(r cos (θ), rsen (θ)) = tan (θ) Exemplo 5. (exemplo 6 revisitado) Obtenha, se possível, a extensão contínua da função f(x, y) = x4 + y. 2 x 4 Solução : f é contínua, pois é racional. Além disso, como + y = 2 f(x, y) = x4 ; (x, y) (0, 0) 0 (veja o exemplo 3.2.3), f possui extensão contínua, F (x, y) = x 2 + y2 0; (x, y) = 0 Exercício 2. Em cada caso, descreva o subconjunto do R 2 no qual a função é contínua: a) f(x, y) = x + y y b) f(x, y) = x 3 + y 2 ; (x, y) (0, 0) + c) f(x, y) = x x y 2 + y2 0; (x, y) = 0 Exercício 3. Em cada caso, descreva o subconjunto do R 3 no qual a função é contínua: sen () + cos() a) f(x, y, z) = b) f(x, y, z) = 2 x + y 2 + z y 2 z 2 4. A função f; f(x, y) = x + y é contínua em R 2? Justi- Exercício fique. Exercício 5. Idem para f(x, y) = 3 Respostas aos Exercícios Seção 2.2 { + y 2 ; + y 2 4 4; + y 2 > 4 9

10 a) 0 b) 0 c) d) e) f) g) /2 Seção 2.3 a) x y b) R 2 c) R 2 {(0, 0)} 2a) + y 2 + z 2 4 2b) + y 2 + z 2 < 2 { 3) Sim: é composta de contínuas 4) f = g h, onde h(x, y) = + y 2 e g(t) = t; t 4. Como g e h são 4; t > 4 contínuas, f também é. 0

Aula 11. Considere a função de duas variáveis f(x, y). Escrevemos: lim

Aula 11. Considere a função de duas variáveis f(x, y). Escrevemos: lim Aula 11 Funções de 2 variáveis: Limites e Continuidade Considere a função de duas variáveis f(x, y). Escrevemos: f(x, y) = L (x,y) (a,b) quando temos que, se (x, y) (a, b) então f(x, y) L, isto é, se (x,

Leia mais

Cálculo Diferencial e Integral I CDI I

Cálculo Diferencial e Integral I CDI I Cálculo Diferencial e Integral I CDI I Limites laterais e ites envolvendo o infinito Luiza Amalia Pinto Cantão luiza@sorocaba.unesp.br Limites 1 Limites Laterais a à diretia b à esquerda c Definição precisa

Leia mais

Derivadas Parciais Capítulo 14

Derivadas Parciais Capítulo 14 Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS 14.2 Limites e Continuidade Nesta seção, aprenderemos sobre: Limites e continuidade de vários tipos de funções. LIMITES E CONTINUIDADE Vamos comparar o

Leia mais

Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de Limites. Aula 01. Projeto GAMA

Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de Limites. Aula 01. Projeto GAMA Universidade Federal de Pelotas Instituto de Física e Matemática Pró-reitoria de Ensino Atividades de Reforço em Cálculo Módulo de Limites Aula 0 208/ Projeto GAMA Grupo de Apoio em Matemática Ideia Intuitiva

Leia mais

4.4 Limite e continuidade

4.4 Limite e continuidade 4.4 Limite e continuidade Noções Topológicas em R : Dados dois pontos quaisquer (x 1, y 1 ) e (x, y ) de R indicaremos a distância entre eles por då(x 1, y 1 ), (x, y )è=(x 1 x ) + (y 1 y ). Definição

Leia mais

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 06: Continuidade de Funções Objetivos da Aula Definir função contínua; Reconhecer uma função contínua através do seu gráfico; Utilizar as

Leia mais

CDI-II. Resumo das Aulas Teóricas (Semana 1) 2 Norma. Distância. Bola. R n = R R R

CDI-II. Resumo das Aulas Teóricas (Semana 1) 2 Norma. Distância. Bola. R n = R R R Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Prof. Gabriel Pires CDI-II Resumo das Aulas Teóricas (Semana 1) 1 Notação R n = R R R x R n : x = (x 1, x 2,, x n ) ; x

Leia mais

Bola Aberta UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 10. Assuntos: Continuidade de funções e limite

Bola Aberta UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 10. Assuntos: Continuidade de funções e limite Assuntos: Continuidade de funções e limite UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 10 Palavras-chaves: continuidade, funções contínuas, limite Bola Aberta Sejam p R n e r R com r

Leia mais

CÁLCULO I. Calcular o limite de uma função composta;

CÁLCULO I. Calcular o limite de uma função composta; CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 06: Limites Laterais. Limite da Função Composta. Objetivos da Aula Denir ites laterais de uma função em um ponto de seu

Leia mais

LIMITES E CONTINIDADE

LIMITES E CONTINIDADE MATEMÁTICA I LIMITES E CONTINIDADE Prof. Dr. Nelson J. Peruzzi Profa. Dra. Amanda L. P. M. Perticarrari Parte 1 Parte 2 Limites Infinitos Definição de vizinhança e ite Limites laterais Limite de função

Leia mais

Cálculo Diferencial e Integral I. Jair Silvério dos Santos * Professor Dr. Jair Silvério dos Santos 1

Cálculo Diferencial e Integral I. Jair Silvério dos Santos * Professor Dr. Jair Silvério dos Santos 1 MATEMATICA APLICADA A NEGÓCIOS 3, 0 (200) Cálculo Cálculo Diferencial e Integral I LIMITES LATERAIS Jair Silvério dos Santos * Professor Dr Jair Silvério dos Santos Teorema 0 x x 0 Dada f : A R R uma função

Leia mais

1. Funções Reais de Variável Real Vamos agora estudar funções definidas em subconjuntos D R com valores em R, i.e. f : D R R

1. Funções Reais de Variável Real Vamos agora estudar funções definidas em subconjuntos D R com valores em R, i.e. f : D R R . Funções Reais de Variável Real Vamos agora estudar funções definidas em subconjuntos D R com valores em R, i.e. f : D R R D x f(x). Uma função é uma regra que associa a cada elemento x D um valor f(x)

Leia mais

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente.

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente. Aula 15 Derivadas Direcionais e Vetor Gradiente Seja f(x, y) uma função de variáveis. Iremos usar a notação D u f(x 0, y 0 ) para: Derivada direcional de f no ponto (x 0, y 0 ), na direção do vetor unitário

Leia mais

Limites. 2.1 Limite de uma função

Limites. 2.1 Limite de uma função Limites 2 2. Limite de uma função Vamos investigar o comportamento da função f definida por f(x) = x 2 x + 2 para valores próximos de 2. A tabela a seguir fornece os valores de f(x) para valores de x próximos

Leia mais

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral Limite e Continuidade

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral Limite e Continuidade Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo Módulo I: Cálculo Diferencial e Integral Limite e Continuidade Professora Renata Alcarde Sermarini Notas de aula do professor Idemauro

Leia mais

Limites infinitos e limites no infinito Aula 15

Limites infinitos e limites no infinito Aula 15 Propriedades dos ites infinitos Limites infinitos e ites no infinito Aula 15 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 03 de Abril de 2014 Primeiro Semestre de 2014

Leia mais

12 AULA. ciáveis LIVRO. META Estudar derivadas de funções de duas variáveis a valores reais.

12 AULA. ciáveis LIVRO. META Estudar derivadas de funções de duas variáveis a valores reais. 1 LIVRO Diferen- Funções ciáveis META Estudar derivadas de funções de duas variáveis a valores reais. OBJETIVOS Estender os conceitos de diferenciabilidade de funções de uma variável a valores reais. PRÉ-REQUISITOS

Leia mais

Derivadas Parciais. Copyright Cengage Learning. Todos os direitos reservados.

Derivadas Parciais. Copyright Cengage Learning. Todos os direitos reservados. 14 Derivadas Parciais Copyright Cengage Learning. Todos os direitos reservados. 14.2 Limites e Continuidade Copyright Cengage Learning. Todos os direitos reservados. Limites e Continuidade Vamos comparar

Leia mais

PARTE 5 LIMITE. 5.1 Um Pouco de Topologia

PARTE 5 LIMITE. 5.1 Um Pouco de Topologia PARTE 5 LIMITE 5.1 Um Pouco de Topologia Vamos agora nos preparar para definir ite de funções reais de várias variáveis reais. Para isto, precisamos de alguns conceitos importantes. Em primeiro lugar,

Leia mais

Lista de Exercícios de Cálculo 3 Quarta Semana

Lista de Exercícios de Cálculo 3 Quarta Semana Lista de Exercícios de Cálculo 3 Quarta Semana Parte A 1. Identifique e esboce as superfícies x 2 + 4y 2 + 9z 2 = 1 x 2 y 2 + z 2 = 1 (c) y = 2x 2 + z 2 (d) x = y 2 z 2 (e) 4x 2 16y 2 + z 2 = 16 (f) x

Leia mais

Lista de Exercícios de Cálculo 3 Módulo 1 - Terceira Lista - 02/2016

Lista de Exercícios de Cálculo 3 Módulo 1 - Terceira Lista - 02/2016 Lista de Exercícios de Cálculo 3 Módulo 1 - Terceira Lista - 02/2016 Parte A 1. Identifique e esboce as superfícies quádricas x 2 + 4y 2 + 9z 2 = 1 x 2 y 2 + z 2 = 1 (c) y = 2x 2 + z 2 (d) x = y 2 z 2

Leia mais

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO. Realização:

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO. Realização: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO Realização: Fortaleza, Fevereiro/2010 1. LIMITES 1.1. Definição Geral Se os valores de f(x) puderem

Leia mais

Propriedades das Funções Contínuas e Limites Laterais Aula 12

Propriedades das Funções Contínuas e Limites Laterais Aula 12 Propriedades das Funções Contínuas e Limites Laterais Aula 12 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 27 de Março de 2014 Primeiro Semestre de 2014 Turma 2014106 -

Leia mais

Bases Matemáticas Continuidade. Propriedades do Limite de Funções. Daniel Miranda

Bases Matemáticas Continuidade. Propriedades do Limite de Funções. Daniel Miranda Daniel De modo intuitivo, uma função f : A B, com A,B R é dita contínua se variações suficientemente pequenas em x resultam em variações pequenas de f(x), ou equivalentemente, se para x suficientemente

Leia mais

MATEMÁTICA A - 12o Ano Funções - Limites e Continuidade Propostas de resolução

MATEMÁTICA A - 12o Ano Funções - Limites e Continuidade Propostas de resolução MATEMÁTICA A - 2o Ano Funções - Limites e Continuidade Propostas de resolução Exercícios de exames e testes intermédios. Como a função é contínua em R, também é contínua em x 0, pelo que Temos que fx f0

Leia mais

Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental

Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental 3 Limites Considere a função f definida por: Qual o domínio dessa função? Se 1, então f () é dada por: (2 + 3)( 1). 1 2 +

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I Complementos ao texto de apoio às aulas. Amélia Bastos, António Bravo Julho 24 Introdução O texto apresentado tem por objectivo ser um complemento ao texto de apoio ao

Leia mais

Limites e Continuidade

Limites e Continuidade MAT111 p. 1/2 Limites e Continuidade Gláucio Terra glaucio@ime.usp.br Departamento de Matemática IME - USP Revisão MAT111 p. 2/2 MAT111 p. 3/2 Limite de uma Função num Ponto DEFINIÇÃO Sejam f : A R R,

Leia mais

CÁLCULO I. 1 Velocidade Instantânea. Objetivos da Aula. Aula n o 04: Limites e Continuidade. Denir limite de funções; Calcular o limite de uma função;

CÁLCULO I. 1 Velocidade Instantânea. Objetivos da Aula. Aula n o 04: Limites e Continuidade. Denir limite de funções; Calcular o limite de uma função; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 04: Limites e Continuidade Objetivos da Aula Denir ite de funções; Calcular o ite de uma função; Utilizar as propriedades operatórias do

Leia mais

A derivada da função inversa

A derivada da função inversa A derivada da função inversa Sumário. Derivada da função inversa............... Funções trigonométricas inversas........... 0.3 Exercícios........................ 7.4 Textos Complementares................

Leia mais

Figura 4.1: Diagrama de representação de uma função de 2 variáveis

Figura 4.1: Diagrama de representação de uma função de 2 variáveis 1 4.1 Funções de 2 Variáveis Em Cálculo I trabalhamos com funções de uma variável y = f(x). Agora trabalharemos com funções de várias variáveis. Estas funções aparecem naturalmente na natureza, na economia

Leia mais

CÁLCULO II. Lista Semanal 6-04/05/2018. Questão 1. Mostre que não existe o limite abaixo. x 4 y 2 lim. Solução: Seja f(x, y) = x4 y 2

CÁLCULO II. Lista Semanal 6-04/05/2018. Questão 1. Mostre que não existe o limite abaixo. x 4 y 2 lim. Solução: Seja f(x, y) = x4 y 2 CÁLCULO II Prof. Juaci Picanço Prof. Jerônimo Monteiro Lista Semanal 6-04/05/018 Questão 1. Mostre que não eiste o ite abaio. Seja f(, y) = 4 y 4 +y. Tomando o caminho C 1 (t) = (t, 0),tem-se que: 4 y

Leia mais

Limites. Slides de apoio sobre Limites. Prof. Ronaldo Carlotto Batista. 7 de outubro de 2013

Limites. Slides de apoio sobre Limites. Prof. Ronaldo Carlotto Batista. 7 de outubro de 2013 Cálculo 1 ECT1113 Slides de apoio sobre Limites Prof. Ronaldo Carlotto Batista 7 de outubro de 2013 AVISO IMPORTANTE Estes slides foram criados como material de apoio às aulas e não devem ser utilizados

Leia mais

LIMITE DE UMA FUNÇÃO II

LIMITE DE UMA FUNÇÃO II LIMITE DE UMA FUNÇÃO II Nice Maria Americano Costa Pinto LIMITES À ESQUERDA E À DIREITA Se a função f() tende ao ite b, quando tende ao valor a por valores inferiores a a, diz-se que b éo ite à esquerda

Leia mais

Prova de Conhecimentos Específicos 1 a QUESTÃO: (2,0 pontos)

Prova de Conhecimentos Específicos 1 a QUESTÃO: (2,0 pontos) Prova de Conhecimentos Específicos 1 a QUESTÃO: (,0 pontos) 5x Considere a função f(x)=. Determine, se existirem: x +7 (i) os pontos de descontinuidade de f; (ii) as assíntotas horizontais e verticais

Leia mais

LIMITE E CONTINUIDADE DE

LIMITE E CONTINUIDADE DE CAPÍTULO 4 LIMITE E CONTINUIDADE DE FUNÇÕES REAIS DE VÁRIAS VARIÁVEIS 4.1 Um Pouco de Topologia Vamos agora nos preparar para definir ite de funções reais de várias variáveis reais. Para isto, precisamos

Leia mais

Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão Lista 1. Números Naturais

Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão Lista 1. Números Naturais Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão 01 Lista 1 Números Naturais 1. Demonstre por indução as seguintes fórmulas: (a) (b) n (j 1) = n (soma dos n primeiros ímpares).

Leia mais

26 CAPÍTULO 4. LIMITES E ASSÍNTOTAS

26 CAPÍTULO 4. LIMITES E ASSÍNTOTAS Capítulo 4 Limites e assíntotas 4.1 Limite no ponto Considere a função f(x) = x 1 x 1. Observe que esta função não é denida em x = 1. Contudo, fazendo x sucientemente próximo de 1 (mais não igual a1),

Leia mais

14 AULA. Vetor Gradiente e as Derivadas Direcionais LIVRO

14 AULA. Vetor Gradiente e as Derivadas Direcionais LIVRO 1 LIVRO Vetor Gradiente e as Derivadas Direcionais 14 AULA META Definir o vetor gradiente de uma função de duas variáveis reais e interpretá-lo geometricamente. Além disso, estudaremos a derivada direcional

Leia mais

Capítulo 1. Limites nitos. 1.1 Limite nito num ponto

Capítulo 1. Limites nitos. 1.1 Limite nito num ponto Capítulo 1 Limites nitos 1.1 Limite nito num ponto Denição 1. Seja uma função f : D f R R, x y = f(x, e p R tal que p D f ou p é um ponto da extremidade de D f. Dizemos que a função f possui ite nito no

Leia mais

Apostila Cálculo Diferencial e Integral I: Derivada

Apostila Cálculo Diferencial e Integral I: Derivada Instituto Federal de Educação, Ciência e Tecnologia da Bahia Campus Vitória da Conquista Coordenação Técnica Pedagógica Programa de Assistência e Apoio aos Estudantes Apostila Cálculo Diferencial e Integral

Leia mais

4.1 Preliminares. 1. Em cada caso, use a de nição para calcular f 0 (x) : (a) f (x) = x 3 ; x 2 R (b) f (x) = 1=x; x 6= 0 (c) f (x) = 1= p x; x > 0:

4.1 Preliminares. 1. Em cada caso, use a de nição para calcular f 0 (x) : (a) f (x) = x 3 ; x 2 R (b) f (x) = 1=x; x 6= 0 (c) f (x) = 1= p x; x > 0: 4. FUNÇÕES DERIVÁVEIS ANÁLISE NO CORPO R - 208. 4. Preinares. Em cada caso, use a de nição para calcular f 0 (x) : (a) f (x) = x 3 ; x 2 R (b) f (x) = =x; x 6= 0 (c) f (x) = = p x; x > 0: 2. Mostre que

Leia mais

Respostas sem justificativas não serão aceitas. Além disso, não é permitido o uso de aparelhos eletrônicos. x x = lim.

Respostas sem justificativas não serão aceitas. Além disso, não é permitido o uso de aparelhos eletrônicos. x x = lim. UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL 1-2017.2 1A VERIFICAÇÃO DE APRENDIZAGEM - TURMA GEA Nome Legível RG CPF Respostas sem

Leia mais

Cálculo diferencial em IR n

Cálculo diferencial em IR n Cálculo diferencial em IR n (Limites e Continuidade) Sandra Nunes e Ana Matos DMAT 3 Maio 2001 Conteúdo 1 Limites e Continuidade em Campos Escalares 2 1.1 NoçãodeLimite... 2 1.2 LimitesRelativos... 4 1.3

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO

UNIVERSIDADE FEDERAL DE PERNAMBUCO CÁLCULO L1 NOTAS DA DÉCIMA PRIMEIRA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, apresentaremos o Teorema do Valor Médio e algumas de suas conseqüências como: determinar os intervalos de

Leia mais

CÁLCULO I Aula 05: Limites Laterais. Teorema do Valor Intermediário. Teorema do Confronto. Limite Fundamental Trigonométrico.

CÁLCULO I Aula 05: Limites Laterais. Teorema do Valor Intermediário. Teorema do Confronto. Limite Fundamental Trigonométrico. s Laterais CÁLCULO I Aula 05: s Laterais.... Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará s Laterais 1 s Laterais 2 3 4 s Laterais Considere a função de Heaviside, denida

Leia mais

CÁLCULO I. Estabelecer a relação entre continuidade e derivabilidade; Apresentar a derivada das funções elementares. f f(x + h) f(x) c c

CÁLCULO I. Estabelecer a relação entre continuidade e derivabilidade; Apresentar a derivada das funções elementares. f f(x + h) f(x) c c CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 11: Derivada de uma função. Continuidade e Derivabilidade. Derivada das Funções Elementares. Objetivos da Aula Denir

Leia mais

OPERAÇÕES COM FUNÇÕES

OPERAÇÕES COM FUNÇÕES OPERAÇÕES COM FUNÇÕES 28 nov. 17 LIVRARIA MOREIRA S.A. www.livrariamoreira.com.br DEFINIÇÕES Exercício 1 Defina as operações de adição, subtração, multiplicação, divisão, composição e inversão de funções

Leia mais

MATEMÁTICA I LIMITE. Profa. Dra. Amanda L. P. M. Perticarrari

MATEMÁTICA I LIMITE. Profa. Dra. Amanda L. P. M. Perticarrari MATEMÁTICA I LIMITE Profa. Dra. Amanda L. P. M. Perticarrari amanda@fcav.unesp.br Parte 1 Limites Definição de vizinhança e ite Limites laterais Limite de função real com uma variável real Teorema da existência

Leia mais

A Derivada. Derivadas Aula 16. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

A Derivada. Derivadas Aula 16. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil Derivadas Aula 16 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 04 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014104 - Engenharia Mecânica A Derivada Seja x = f(t)

Leia mais

Material Básico: Calculo A, Diva Fleming

Material Básico: Calculo A, Diva Fleming 1 Limites Material Básico: Calculo A, Diva Fleming O conceito de Limite é importante na construção de muitos outros conceitos no cálculo diferencial e integral, por exemplo, as noções de derivada e de

Leia mais

Universidade Estadual de Montes Claros Departamento de Ciências Exatas Curso de Licenciatura em Matemática. Notas de Aulas de

Universidade Estadual de Montes Claros Departamento de Ciências Exatas Curso de Licenciatura em Matemática. Notas de Aulas de Universidade Estadual de Montes Claros Departamento de Ciências Exatas Curso de Licenciatura em Matemática Notas de Aulas de Cálculo Rosivaldo Antonio Gonçalves Notas de aulas que foram elaboradas para

Leia mais

Limites: Noção intuitiva e geométrica

Limites: Noção intuitiva e geométrica Eemplo : f : R {} R, f sen a Gráfico de f b Ampliação do gráfico de f perto da origem Limites: Noção intuitiva e geométrica f Apesar de f não estar definida em, faz sentido questionar o que acontece com

Leia mais

Análise Matemática II - 1 o Semestre 2001/ o Exame - 25 de Janeiro de h

Análise Matemática II - 1 o Semestre 2001/ o Exame - 25 de Janeiro de h Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Análise Matemática II - 1 o Semestre 2001/2002 2 o Exame - 25 de Janeiro de 2001-9 h Todos os cursos excepto Eng. Civil,

Leia mais

Aula 5 Limites infinitos. Assíntotas verticais.

Aula 5 Limites infinitos. Assíntotas verticais. MÓDULO - AULA 5 Aula 5 Limites infinitos. Assíntotas verticais. Objetivo lim Compreender o significado dos limites infinitos lim f(x) = ±, f(x) = ± e lim f(x) = ± + Referências: Aulas 34 e 40, de Pré-Cálculo,

Leia mais

ATIVIDADES EM SALA DE AULA Cálculo I -A- Humberto José Bortolossi

ATIVIDADES EM SALA DE AULA Cálculo I -A- Humberto José Bortolossi ATIVIDADES EM SALA DE AULA Cálculo I -A- Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ 08 Continuidade e O Teorema do Valor Intermediário [0] (2008.) (a) Dê um exemplo de uma função

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBIOM, MEFT 1 o SEM. 2014/15 2 a FICHA DE EXERCÍCIOS. k + e 1 x, x > 0 f(x) = x cos 1, x > 0

CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBIOM, MEFT 1 o SEM. 2014/15 2 a FICHA DE EXERCÍCIOS. k + e 1 x, x > 0 f(x) = x cos 1, x > 0 Instituto Superior Técnico Departamento de Matemática CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBIOM, MEFT 1 o SEM. 2014/15 2 a FICHA DE EXERCÍCIOS I. Continuidade de Funções. 1) Considere a função f :

Leia mais

Aula 7 Os teoremas de Weierstrass e do valor intermediário.

Aula 7 Os teoremas de Weierstrass e do valor intermediário. Os teoremas de Weierstrass e do valor intermediário. MÓDULO - AULA 7 Aula 7 Os teoremas de Weierstrass e do valor intermediário. Objetivo Compreender o significado de dois resultados centrais a respeito

Leia mais

Fundação Universidade Federal de Pelotas Curso de Licenciatura em Matemática Disciplina de Análise II - Prof. Dr. Maurício Zahn Lista 01 de Exercícios

Fundação Universidade Federal de Pelotas Curso de Licenciatura em Matemática Disciplina de Análise II - Prof. Dr. Maurício Zahn Lista 01 de Exercícios Fundação Universidade Federal de Pelotas Curso de Licenciatura em Matemática Disciplina de Análise II - Prof Dr Maurício Zahn Lista 01 de Eercícios 1 Use a definição de derivada para calcular a derivada

Leia mais

MÓDULO 41. Funções II. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA

MÓDULO 41. Funções II. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 41 Funções II 1. (OPM) Seja f uma função de domínio dada por x x + 1 f(x) =. Determine o conjunto-imagem x + x + 1 da função.. Considere

Leia mais

Capítulo 4. Campos escalares e vetoriais

Capítulo 4. Campos escalares e vetoriais Capítulo 4 Campos escalares e vetoriais Existem várias situações em que uma variável depende de várias outras. Por exemplo, a área de um retângulo depende do comprimento e da altura deste. O volume de

Leia mais

Resumo das aulas dos dias 4 e 11 de abril e exercícios sugeridos

Resumo das aulas dos dias 4 e 11 de abril e exercícios sugeridos MAT 1351 Cálculo para funções uma variável real I Curso noturno de Licenciatura em Matemática 1 semestre de 2016 Docente: Prof. Dr. Pierluigi Benevieri Resumo das aulas dos dias 4 e 11 de abril e exercícios

Leia mais

CONTINUIDADE E LIMITES INFINITOS

CONTINUIDADE E LIMITES INFINITOS MATEMÁTICA I CONTINUIDADE E LIMITES INFINITOS Profa. Dra. Amanda L. P. M. Perticarrari Parte 1 Continuidade de Funções Definição Tipos de Descontinuidade Propriedades Parte 2 Limites Infinitos Definição

Leia mais

Aula 13. Plano Tangente e Aproximação Linear

Aula 13. Plano Tangente e Aproximação Linear Aula 13 Plano Tangente e Aproximação Linear Se fx) é uma função de uma variável, diferenciável no ponto x 0, então a equação da reta tangente à curva y = fx) no ponto x 0, fx 0 )) é dada por: y fx 0 )

Leia mais

Disciplina: Cálculo I Lista 02 Professor: Damião Júnio Araújo Semestre Explique com suas palavras o significado da equação.

Disciplina: Cálculo I Lista 02 Professor: Damião Júnio Araújo Semestre Explique com suas palavras o significado da equação. Universidade Federal da Paraíba - UFPB Centro de Ciências Exatas e da Natureza - CCEN Departamento de Matemática Disciplina: Cálculo I Lista 02 Professor: Damião Júnio Araújo Semestre 208. Aluno:. Explique

Leia mais

Limites de Funções. Bases Matemáticas. 2 o quadrimestre de o quadrimestre de / 57

Limites de Funções. Bases Matemáticas. 2 o quadrimestre de o quadrimestre de / 57 2 o quadrimestre de 2017 2 o quadrimestre de 2017 1 / Visão Geral 1 Limites Finitos Limite para x ± 2 Limites infinitos Limite no ponto Limite para x ± 3 Continuidade Definição e exemplos Resultados importantes

Leia mais

Acadêmico(a) Turma: Capítulo 7: Limites

Acadêmico(a) Turma: Capítulo 7: Limites Acadêmico(a) Turma: Capítulo 7: Limites 7.1. Noção Intuitiva de ite Considere a função f(), em que f() = 2 + 1. Para valores de que se aproima de 1, por valores maiores que 1 (Direita) e por valores menores

Leia mais

Propriedades das Funções Contínuas

Propriedades das Funções Contínuas Propriedades das Funções Contínuas Prof. Doherty Andrade 2005- UEM Sumário 1 Seqüências 2 1.1 O Corpo dos Números Reais.......................... 2 1.2 Seqüências.................................... 5

Leia mais

CÁLCULO I. Apresentar e aplicar a Regra de L'Hospital.

CÁLCULO I. Apresentar e aplicar a Regra de L'Hospital. CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o : Limites Innitos e no Innito. Assíntotas. Regra de L'Hospital Objetivos da Aula Denir ite no innito e ites innitos; Apresentar alguns tipos

Leia mais

CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior

CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Objetivos da Aula CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 4: Aproximações Lineares e Diferenciais. Regra de L Hôspital. Definir e calcular a aproximação linear

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática a Lista MAT 146 - Cálculo I 018/I DERIVADAS Para este tópico considera-se uma função f : D R R, definida num domínio

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia II 1 a lista de exercícios

MAT Cálculo Diferencial e Integral para Engenharia II 1 a lista de exercícios MAT454 - Cálculo Diferencial e Integral para Engenharia II 1 a lista de exercícios - 008 POLINÔMIO DE TAYLOR 1. Utilizando o polinômio de Taylor de ordem, calcule um valor aproximado e avalie o erro: a)

Leia mais

Aula 22 Derivadas Parciais - Diferencial - Matriz Jacobiana

Aula 22 Derivadas Parciais - Diferencial - Matriz Jacobiana Derivadas Parciais - Diferencial - Matriz Jacobiana MÓDULO 3 - AULA 22 Aula 22 Derivadas Parciais - Diferencial - Matriz Jacobiana Introdução Uma das técnicas do cálculo tem como base a idéia de aproximação

Leia mais

Resolução dos Exercícios Propostos no Livro

Resolução dos Exercícios Propostos no Livro Resolução dos Eercícios Propostos no Livro Eercício : Considere agora uma função f cujo gráfico é dado por y 0 O que ocorre com f() quando se aproima de por valores maiores que? E quando se aproima de

Leia mais

Limites e Continuidade

Limites e Continuidade Limites e Continuidade Gláucio Terra glaucio@ime.usp.br Departamento de Matemática IME - USP Elementos de Lógica Matemática p. 1/1 Revisão Elementos de Lógica Matemática p. 2/1 Limite de uma Função num

Leia mais

Aula 4 Limites e continuidade

Aula 4 Limites e continuidade MÓDULO 1 AULA 4 Aula 4 Limites e continuidade Objetivo Aprender a técnica de tomar ites de funções de várias variáveis ao longo de curvas. Conhecer a noção de continuidade de funções de várias variáveis.

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I LEA, LEM, LEAN, MEAer, MEMec o Semestre de 006/007 6 a Aula Prática Soluções e algumas resoluções abreviadas. a) Como e é crescente, com contradomínio ]0, + [, o contradomínio

Leia mais

Cálculo Infinitesimal III. Gregorio Malajovich

Cálculo Infinitesimal III. Gregorio Malajovich Cálculo Infinitesimal III Gregorio Malajovich Departamento de Matemática Aplicada Instituto de Matemática da UFRJ Março 2003 Calculo Infinitesimal III Copyright c 1995,2003 Gregorio Malajovich CAPíTULO

Leia mais

CONTINUIDADE DE FUNÇÕES REAIS DE UMA VARIÁVEL

CONTINUIDADE DE FUNÇÕES REAIS DE UMA VARIÁVEL BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL CONTINUIDADE DE FUNÇÕES REAIS DE UMA VARIÁVEL a Edição Rio Grande Editora da FURG 206 Universidade Federal

Leia mais

AT3-1 - Unidade 3. Derivadas e Aplicações 1. Cálculo Diferencial e Integral. UAB - UFSCar. Bacharelado em Sistemas de Informação

AT3-1 - Unidade 3. Derivadas e Aplicações 1. Cálculo Diferencial e Integral. UAB - UFSCar. Bacharelado em Sistemas de Informação AT3-1 - Unidade 3 1 Cálculo Diferencial e Integral Bacharelado em Sistemas de Informação UAB - UFSCar 1 Versão com 34 páginas 1 / 34 Tópicos de AT3-1 1 Uma noção intuitiva Caracterização da derivada Regras

Leia mais

LIMITE. Para uma melhor compreensão de limite, vamos considerar a função f dada por =

LIMITE. Para uma melhor compreensão de limite, vamos considerar a função f dada por = LIMITE Aparentemente, a idéia de se aproimar o máimo possível de um ponto ou valor, sem nunca alcançá-lo, é algo estranho. Mas, conceitos do tipo ite são usados com bastante freqüência. A produtividade

Leia mais

TÓPICO. Fundamentos de Matemática II FUNÇÕES DE VÁRIAS VARIÁVEIS3. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

TÓPICO. Fundamentos de Matemática II FUNÇÕES DE VÁRIAS VARIÁVEIS3. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques FUNÇÕES DE VÁRIAS VARIÁVEIS3 TÓPICO Gil da Costa Marques Fundamentos de Matemática II 3.1 Definição 3. Funções de três ou mais variáveis 3.3 Domínios 3.4 Gráficos, curvas de nível e superfícies de nível

Leia mais

LIMITES E CONTINUIDADE

LIMITES E CONTINUIDADE LIMITES E CONTINUIDADE 1 LIMITE Marina Vargas R. P. Gonçalves a a Departamento de Matemática, Universidade Federal do Paraná, marina.vargas@gmail.com, http:// www.estruturas.ufpr.br Definição 1.1 O limite

Leia mais

Integrais triplas UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 28. Assunto: Integrais Triplas

Integrais triplas UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 28. Assunto: Integrais Triplas Assunto: Integrais Triplas UNIVRSIDAD FDRAL DO PARÁ CÁLCULO II - PROJTO NWTON AULA 8 Palavras-chaves: integração, integrais triplas, volume, teorema de Fubini, soma de Riemann Integrais triplas Assim como

Leia mais

Propriedades das Funções Contínuas

Propriedades das Funções Contínuas Propriedades das Funções Contínuas Juliana Pimentel juliana.pimentel@ufabc.edu.br Propriedades das Funções Contínuas Seguem das propriedades do limite, as seguintes propriedades das funções contínuas.

Leia mais

Análise Matemática II TESTE/EXAME

Análise Matemática II TESTE/EXAME Instituto Superior Técnico Departamento de Matemática o Semestre 4-5 a Data Análise Matemática II TESTE/EXAME CURSOS: LEAMB, LEEC, LCI, LQ, LEQ, LEBL Obtenha uma primitiva de cada uma das funções definidas

Leia mais

Resolução de sistemas de equações não-lineares: Método Iterativo Linear

Resolução de sistemas de equações não-lineares: Método Iterativo Linear Resolução de sistemas de equações não-lineares: Método Iterativo Linear Marina Andretta/Franklina Toledo ICMC-USP 18 de setembro de 2013 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires.

Leia mais

1.1 Domínios & Regiões

1.1 Domínios & Regiões 1. CAMPOS ESCALARES CÁLCULO 2-2018.2 1.1 Domínios & Regiões 1. Esboce o conjunto R do plano R 2 dada abaixo e determine sua fronteira. Classi que R em: aberto, fechado, itado, compacto, ou conexo. (a)

Leia mais

Análise Matemática III. Textos de Apoio. Cristina Caldeira

Análise Matemática III. Textos de Apoio. Cristina Caldeira Análise Matemática III Textos de Apoio Cristina Caldeira A grande maioria dos exercícios presentes nestes textos de apoio foram recolhidos de folhas práticas elaboradas ao longo dos anos por vários docentes

Leia mais

Resolução de sistemas de equações não-lineares: Método Iterativo Linear

Resolução de sistemas de equações não-lineares: Método Iterativo Linear Resolução de sistemas de equações não-lineares: Método Iterativo Linear Marina Andretta/Franklina Toledo ICMC-USP 27 de março de 2015 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires.

Leia mais

MAT 121 : Cálculo Diferencial e Integral II. Sylvain Bonnot (IME-USP)

MAT 121 : Cálculo Diferencial e Integral II. Sylvain Bonnot (IME-USP) MAT 121 : Cálculo Diferencial e Integral II Sylvain Bonnot (IME-USP) 2014 1 Informações gerais Prof.: Sylvain Bonnot Email: sylvain@ime.usp.br Minha sala: IME-USP, 151-A (Bloco A) Site: ver o link para

Leia mais

Limites - Aula 08. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil. 14 de Março de 2014

Limites - Aula 08. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil. 14 de Março de 2014 Limites - Aula 08 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 14 de Março de 2014 Primeiro Semestre de 2014 Turma 2014104 - Engenharia Mecânica Limite - Noção Intuitiva

Leia mais

(versão preliminar) exceto possivelmente para x = a. Dizemos que o limite de f(x) quando x tende para x = a é um numero L, e escrevemos

(versão preliminar) exceto possivelmente para x = a. Dizemos que o limite de f(x) quando x tende para x = a é um numero L, e escrevemos LIMITE DE FUNÇÕES REAIS JOSÉ ANTÔNIO G. MIRANDA versão preinar). Revisão: Limite e Funções Continuas Definição Limite de Seqüências). Dizemos que uma seqüência de números reais n convergente para um número

Leia mais

CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 19: Concavidade. Teste da Segunda Derivada. Denir concavidade de uma função;

CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 19: Concavidade. Teste da Segunda Derivada. Denir concavidade de uma função; CÁLCULO I Prof. Marcos Diniz Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 19: Concavidade. Teste da Segunda Derivada. Objetivos da Aula Denir concavidade de uma função; Denir ponto de inexão;

Leia mais

Cálculo 1 A Turma F1 Prova VS

Cálculo 1 A Turma F1 Prova VS Cálculo 1 A 017. Turma F1 Prova VS Nome (MAIÚSCULO): Matrícula: O IMPORTANTE É O RACIOCÍNIO, PORTANTO DEIXE-O TODO NA PROVA. RESPOSTAS SEM AS DEVIDAS JUSTIFICATIVAS SERÃO DESCONSIDERADAS. (1) Encontre

Leia mais

O limite de uma função

O limite de uma função Universidade de Brasília Departamento de Matemática Cálculo 1 O ite de uma função Se s(t) denota a posição de um carro no instante t > 0, então a velocidade instantânea v(t) pode ser obtida calculando-se

Leia mais