Procedimento da AASHTO/

Tamanho: px
Começar a partir da página:

Download "Procedimento da AASHTO/"

Transcrição

1 Procedimento d AASHTO/ procedimento pr projeto geométrico de interseção (não nálise d operção) recomendções pr interseções sem sinlizção, com PARE, ê Preferênci, (t pr interseções PARE múltiplo) e Conversões Oposts ou com Semáforo : versão mis recente (versões de 2001 e 2004 são similres) specto de interesse: rech requerid do NCHRP R383 (ntes modelos cinemáticos): - sensível às crcterístics opercionis dos veículos (celerção/descelerção); - sensível às crcterístics físics ds interseções (dimensão/declividde,...); - não exmin dequdmente relção entre rech ceit e rech requerid... distânci de visiilidde requerid pr projeto geométrico de diversos csos: - Cso A: interseção sem controle (i.e. sem sinlizção de preferênci); - Cso B: vi secundári com controle com Pre simples (i.e. plc R1); - Cso C: vi secundári com controle com ê Preferênci (i.e. plc R2); - Cso : vi de interseção semforizd (i.e. controld por semáforo); - Cso E: vi de interseções com Pre múltiplo (i.e. tods vis com R1) - Cso F: conversão à esquerd com fluxo oposto n vi principl (R1 ou R2) verificção d condição necessári n chegd e n prtid d posição prd... Triângulo de Visiilidde: A-de Chegd; B-de Prtid (Figur 9-15, 2011)

2 istânci de Visiilidde de Prd (critério gerl) - tempo de reção: 2,5seg e frengem requerid pr utos: 3,4m/s 2 (ou 11,2ft/s 2 ) - juste pr clive (i<0)/declive (i>0): istânci de Visiilidde de ecisão (csos especiis)

3 istânci de Visiilidde n Interseção (intervisiilidde) Cso A Interseção Sem Sinlizção de Controle: triângulo de visiilidde Cso B Interseção com Pre: triângulo de visiilidde pr prtid pós prd - recomend grntir intervisiilidde n vi secundári suficiente pr mnor segur (sir d áre de conflito d interseção ou celerr té velocidde do tráfego) - se há espço suficiente no cnteiro centrl, pode-se ssumir mnor em etps (senão deve-se ssumir mnor em um únic etp em tod interseção) - nlis 3 mnors distints: conversão à direit (1), à esquerd (2) e cruzmento (3) Cso C Interseção com ê Preferênci pr Vi Secundári: decisão ntes de VP - nlis 2 mnors distints: cruzmento (1), conversão à esquerd ou direit (2) Cso Interseção com Semáforo: dotr critérios do Cso B (operção com defeito) Cso E Interseção com Pre Múltiplo: dispens intervisiilidde... Cso F Conversão à Esquerd n Vi Principl: tmém dotr critérios do Cso B...

4 Cso A Interseção Sem Sinlizção de Controle: triângulo de visiilidde - recomend grntir intervisiilidde com ntecedênci de 2,5seg e velocidde reduzid modelo do NCHRP R383: pr e (ntes ~ = VP[ V ] ou ~ = VP[ V ] ) ssume V reduzid 50% de Vprojeto (ou V85 em meio de qudr) com 0 =1,5m/s 2 2 ponto de frengem: V = 2.S.X = Ve X V0, S =3,4m/s 2 ; X ponto de decisão: V = V + 0.t r V0 ; t = t V V r + ; = X r X 0 = 2. V e ( ) + ;ms s vis S inclui necessidde de verificr o efeito de clive/declive (se mior que 3%): - verificção do triângulo de visiilidde: d =. e d =. - inclui necessidde de verificr o efeito d oliquidde d interseção (se ocorrer) - dispens verificr distânci de visiilidde de prtid (em função do fluxo reduzido)...

5 Intervisiilidde Interseção sem Sinlizção de Controle (Cso A)

6 Cso B1 Interseção com Pre: Conversão à Esquerd - verificção do triângulo de visiilidde: d =. e = r (retenção) = VP[ V ], impondo-se d =. ou d = VP[ VL ] (versão de do Green Book: é, é 1 ou 2 ; ver Figur 9-15) - recomend grntir intervisiilidde pr tempo de mnor (rech): m = V 1. t g ponto de decisão: veículo 2,0m (olhos 4,4m) do linhmento trnsversl (se possível 5,4m; veículo 3,0m; considerr posição d linh de retenção...) pressupõe vlores do veículo de projeto P (SU,...: ponto de vist melhor...) distânci o ponto de conflito:+0,5.wl vindo d esquerd;+1,5.wl vindo d direit c=distânci n vi secundári pr verificção d intervisiilidde té m... pressupõe verificção de intervisiilidde com =m e =c (ou VLimite...) tempo de mnor: rechs otids pelo NCHRP R383 (por tipo de veículo)... (cnteiros centris estreitos devem ser trnsformdos em fixs equivlentes) - se há espço suficiente no cnteiro centrl, considerr segund etp pens (em gerl condição pr conversão à direit tende tmém primeir etp) lrgur suficiente: do veículo de projeto mis 2m (1m em cd extremo)... - inclui necessidde de verificr o efeito d oliquidde n interseção (se ocorrer)... - consider mesm visiilidde suficiente pr vi principl (exceto em declive...)

7 - vlores usuis: Tel 9-6 (uto, pist simples, sem cnteiro, em nível,...)

8 Intervisiilidde Interseção com Sinl Pre: Conversão à Esquerd (Cso B1)

9 Cso B2 Interseção com Pre: Conversão à ireit - verificção do triângulo de visiilidde: d =. e = r (retenção) = VP[ V ], impondo-se d =. ou d = VP[ VL ] (versão de do Green Book: é, é 1 ou 2 ; ver Figur 9-15) - recomend grntir intervisiilidde pr tempo de mnor (rech): m = V 1. t g ponto de decisão: veículo 2,0m (olhos 4,4m) do linhmento trnsversl (se possível 5,4m; veículo 3,0m; considerr posição d linh de retenção...) pressupõe vlores do veículo de projeto P (SU,...: ponto de vist melhor...) distânci o ponto de conflito: mis 0,5.Wl vindo d esquerd em gerl... c=distânci n vi secundári pr verificção d intervisiilidde té m... pressupõe verificção de intervisiilidde com =m e =c (ou VLimite...) tempo de mnor: rechs otids pelo NCHRP R383 (por tipo de veículo)... (vlores ásicos justdos pel redução em 1seg dos vlores d Tel 9-5) - inclui necessidde de verificr o efeito d oliquidde n interseção (se ocorrer)...

10 Cso B3 Interseção com Pre: Cruzmento: - verificção do triângulo de visiilidde: d =. e = r (retenção) = VP[ V ], impondo-se d =. ou d = VP[ VL ] (versão de do Green Book: é, é 1 ou 2 ; ver Figur 9-15) - recomend grntir intervisiilidde pr tempo de mnor (rech): m = V 1. t g normlmente não é necessário verificr (conversão requer mis visiilidde) exceto se: - conversões são proiids (pens mnor de cruzmento é leglmente permitid)... - qundo o cruzmento tem de vencer distânci equivlente mis de 6 fixs (21,6m) - com muitos veículos pesdos e clive forte (efeito no sentido oposto o djcente...) recomend utilizr os critérios do cso B1 ms dotr s rechs do cso B se há espço suficiente no cnteiro centrl, considerr segund etp pens (em gerl condição pr conversão à direit tende tmém primeir etp) lrgur suficiente: do veículo de projeto mis 2m (1m em cd extremo)... - inclui necessidde de verificr o efeito d oliquidde n interseção (se ocorrer)... - consider mesm visiilidde suficiente pr vi principl (exceto em declive...)

11 - vlores usuis: Tel 9-8 (uto, pist simples, sem cnteiro, em nível,...)...

12 Intervisiilidde Interseção com Sinl Pre: Conversão à ireit (Cso B2) & Intervisiilidde Interseção com Sinl Pre: Cruzmento (Cso B3)

13 Cso C1 Interseção com ê Preferênci: Cruzmento (similr o Cso A) - verificção do triângulo de visiilidde: d =. e d = = VP[ V ] e = VP[ V ], impondo-se d =. (versão de do Green Book: é,. ou d = VP[ ] VL é 1 ou 2 ; ver Figur 9-15) - recomend grntir intervisiilidde com ntecedênci de 2,5seg e velocidde reduzid : modelo do NCHRP R383 (ntes ~ = VP[ V ] ou ~ = VP[ V ] ) ssume V reduzid 60% de Vprojeto (ou V85 em meio de qudr) com 0 =1,5m/s 2 2 ponto de frengem: V = 2.S.X = Ve X V0, S =3,4m/s 2 ; X ponto de decisão: V = V + 0.t r V0 ; t = t V V r + ; = X r X 0 = 2. V e ( ) + ;vi secundári (tomr t d Tel 9-9!; impor que t g sej mior que do Cso B3, com Pre) w +l v - distânci de visiilidde requerid n vi principl: = V.tg com tg = t + V2 w=lrgur d interseção; Lv=comprimento do veículo de projeto (em nálise)... (cnteiros centris estreitos devem ser considerdos como fixs equivlentes) - inclui necessidde de verificr o efeito de clive/declive (se mior que 3%) (plicm-se os mesmos ftores de correção do Cso A) - se há espço suficiente no cnteiro centrl, considerr primeir etp pens (segund etp, do cnteiro, deve ser exmind como no Cso B3...) lrgur suficiente: do veículo de projeto mis 2m (1m em cd extremo)... - inclui necessidde de verificr o efeito d oliquidde d interseção (se ocorrer) - incluiri necessidde de verificr visiilidde pr mnor dinte pós prd... tmém plicm-se então os critérios correspondentes o Cso B (nterior)... S 2 0

14 - vlores usuis: Tel 9-9,10 (utos, pist simples, sem cnteiro, em nível,...)

15

16 Intervisiilidde Interseção com Sinl ê Preferênci: Cruzmento (Cso C1)

17 Cso C2 Interseção com ê Preferênci: Conversão (ireit ou Esquerd) - verificção do triângulo de visiilidde: d =. e d = = VP[ V ] e = VP[ V ], impondo-se d =. (versão de do Green Book: é,. ou d = VP[ ] VL é 1 ou 2 ; ver Figur 9-15) - recomend grntir intervisiilidde com distânci de mnor n vi secundári pr conversão à direit: = 25m (referente 1 ; é mior pr 2...) - distânci de visiilidde requerid n vi principl: m = V 1. t g (similr o Cso B1 e B2) tempo de mnor: rechs otids pelo NCHRP R383 (por tipo de veículo)... (vlores ásicos justdos pel redução em 0,5seg dos vlores d Tel 9-5) - inclui necessidde de verificr o efeito d oliquidde d interseção (se ocorrer) - inclui necessidde de verificr visiilidde pr mnor dinte pós prd... tmém plicm-se então os critérios correspondentes o Cso III ( seguir)...

18 - vlores usuis: Tel 9-12 (uto, pist simples,...)

19 Intervisiilidde Interseção com Sinl ê Preferênci: Conversão (Cso C2)

20 Cso F Conversão à Esquerd d Vi Principl - recomend grntir intervisiilidde pr tempo de mnor (rech): m = V 1. t g tempo de mnor: rechs otids pelo NCHRP R383 (por tipo de veículo)... - inclui necessidde de verificr o efeito d oliquidde d interseção (se ocorrer) - especilmente relevnte próximo curvs horizontis ou crists de elevção... - tmém deve ser verificd ns conversões à esquerd em vis de pist dupl (lém d existênci de ostruções físics no cnteiro centrl conversões oposts podem representr ostruções à visiilidde, podendo justificr estrtégis pr deslocr is de conversão...)

21 - vlores usuis: Tel 9-14 (utos, pist simples,...)

22 Intervisiilidde Interseção com Conversão à Esquerd d Vi Principl (Cso F)

23 Correção pr Interseção Olíqu e Lrg: - efeito d esconsidde deve ser considerdo qundo ângulo menor que 60º... - condição fvorável pr proximções em ângulo otuso (melhor visiilidde) - condição desfvorável pr proximções em ângulo gudo (e giro d ceç) - mesmo procedimento ms medir distâncis no linhmento d vi... - exemplo: extensão do cruzmento We=W/senθ (W é medid trnsversl)...

24 Comentários sore o Procedimento d AASHTO/ principl lterção: sedo ns rechs ceits (comportmentl)... (exceto interseção sem sinlizção de controle ou com sinlizção de prioridde) diferenci crcterístics dos locis e veículos (ddos do NCHRP R383...) distingue tipo de veículo (de projeto), no.fixs, clive/declive, cnteiro centrl,... critérios vliddos pel oservção de cmpo (ms ddos reduzidos)... ignor diverss vriáveis físics, opercionis e comportmentis relevntes... (discute velocidde n vi principl; cnlizção ou impciênci tmém) modelo cinemático é mis sensível condições locis do tráfego e d vi... (vlidr interseção sem sinlizção de controle ou com sinlizção de prioridde) relção entre rech ceit e rech requerid não é trtd explicitmente... não nlis necessiddes dos usuários não-motorizdos (pedestres, ciclists,...) VER EXERCÍCIO AASHTO2011-NÃO SEMAFORIZAA

Procedimento da AASHTO/

Procedimento da AASHTO/ Procedimento d AASHTO/1984-1994 procedimento pr projeto geométrico de interseção (não nálise d operção) recomendções pr interseções sem sinlizção, com PARE, Dê Preferênci, (t pr interseções PARE múltiplo)

Leia mais

1 Distribuições Contínuas de Probabilidade

1 Distribuições Contínuas de Probabilidade Distribuições Contínus de Probbilidde São distribuições de vriáveis letóris contínus. Um vriável letóri contínu tom um numero infinito não numerável de vlores (intervlos de números reis), os quis podem

Leia mais

Módulo 02. Sistemas Lineares. [Poole 58 a 85]

Módulo 02. Sistemas Lineares. [Poole 58 a 85] Módulo Note em, leitur destes pontmentos não dispens de modo lgum leitur tent d iliogrfi principl d cdeir Chm-se à tenção pr importânci do trlho pessol relizr pelo luno resolvendo os prolems presentdos

Leia mais

Universidade de São Paulo Escola Politécnica - Engenharia Civil PEF - Departamento de Engenharia de Estruturas e Fundações

Universidade de São Paulo Escola Politécnica - Engenharia Civil PEF - Departamento de Engenharia de Estruturas e Fundações Universidde de São Pulo Escol Politécnic - Engenhri Civil PEF - Deprtmento de Engenhri de Estruturs e Fundções Estruturs de Concreto II PILARES DE CONTRAVENTAMENTO ESTABILIDADE GLOBAL Professor: Túlio

Leia mais

Formas Quadráticas. FUNÇÕES QUADRÁTICAS: denominação de uma função especial, definida genericamente por: 1 2 n ij i j i,j 1.

Formas Quadráticas. FUNÇÕES QUADRÁTICAS: denominação de uma função especial, definida genericamente por: 1 2 n ij i j i,j 1. Forms Qudrátics FUNÇÕES QUADRÁTICAS: denominção de um função especil, definid genericmente por: Q x,x,...,x x x x... x x x x x... x 1 n 11 1 1 1 1n 1 n 3 3 nn n ou Qx,x,...,x 1 n ij i j i,j1 i j n x x

Leia mais

Vectores Complexos. Prof. Carlos R. Paiva

Vectores Complexos. Prof. Carlos R. Paiva Vectores Complexos Todos sem que se podem representr vectores reis do espço ordinário (tridimensionl) por sets Porém, qul será representção geométric de um vector complexo? Mis do que um questão retóric

Leia mais

3 Teoria dos Conjuntos Fuzzy

3 Teoria dos Conjuntos Fuzzy 0 Teori dos Conjuntos Fuzzy presentm-se qui lguns conceitos d teori de conjuntos fuzzy que serão necessários pr o desenvolvimento e compreensão do modelo proposto (cpítulo 5). teori de conjuntos fuzzy

Leia mais

Curso Básico de Fotogrametria Digital e Sistema LIDAR. Irineu da Silva EESC - USP

Curso Básico de Fotogrametria Digital e Sistema LIDAR. Irineu da Silva EESC - USP Curso Básico de Fotogrmetri Digitl e Sistem LIDAR Irineu d Silv EESC - USP Bses Fundmentis d Fotogrmetri Divisão d fotogrmetri: A fotogrmetri pode ser dividid em 4 áres: Fotogrmetri Geométric; Fotogrmetri

Leia mais

FUNÇÕES. Mottola. 1) Se f(x) = 6 2x. é igual a (a) 1 (b) 2 (c) 3 (d) 4 (e) 5. 2) (UNIFOR) O gráfico abaixo. 0 x

FUNÇÕES. Mottola. 1) Se f(x) = 6 2x. é igual a (a) 1 (b) 2 (c) 3 (d) 4 (e) 5. 2) (UNIFOR) O gráfico abaixo. 0 x FUNÇÕES ) Se f() = 6, então f ( 5) f ( 5) é igul () (b) (c) 3 (d) 4 (e) 5 ) (UNIFOR) O gráfico bio 0 () não represent um função. (b) represent um função bijetor. (c) represent um função não injetor. (d)

Leia mais

Trigonometria FÓRMULAS PARA AJUDÁ-LO EM TRIGONOMETRIA

Trigonometria FÓRMULAS PARA AJUDÁ-LO EM TRIGONOMETRIA Trigonometri é o estudo dos triângulos, que contêm ângulos, clro. Conheç lgums regrs especiis pr ângulos e váris outrs funções, definições e trnslções importntes. Senos e cossenos são dus funções trigonométrics

Leia mais

Incertezas e Propagação de Incertezas. Biologia Marinha

Incertezas e Propagação de Incertezas. Biologia Marinha Incertezs e Propgção de Incertezs Cursos: Disciplin: Docente: Biologi Biologi Mrinh Físic Crl Silv Nos cálculos deve: Ser coerente ns uniddes (converter tudo pr S.I. e tender às potêncis de 10). Fzer um

Leia mais

FORÇA LONGITUDINAL DE CONTATO NA RODA

FORÇA LONGITUDINAL DE CONTATO NA RODA 1 ORÇA LONGITUDINAL DE CONTATO NA RODA A rod é o elemento de vínculo entre o veículo e vi de tráfego que permite o deslocmento longitudinl, suportndo crg verticl e limitndo o movimento lterl. Este elemento

Leia mais

44º CONGRESO ESPAÑOL DE ACÚSTICA ENCUENTRO IBÉRICO DE ACÚSTICA EAA EUROPEAN SYMPOSIUM ON ENVIRONMENTAL ACOUSTICS AND NOISE MAPPING

44º CONGRESO ESPAÑOL DE ACÚSTICA ENCUENTRO IBÉRICO DE ACÚSTICA EAA EUROPEAN SYMPOSIUM ON ENVIRONMENTAL ACOUSTICS AND NOISE MAPPING 44º CONGRESO ESPAÑO DE ACÚSTICA EAA EUROPEAN SYMPOSIUM ON ENVIRONMENTA ANÁISE COMPARATIVA DE MEDIÇÕES DE VIBRAÇÃO E DE ISOAMENTO SONORO EM EDIFÍCIOS PACS: Vitor Rosão 1 ; An Crreir 1 SCHIU, Engenhri de

Leia mais

6 Conversão Digital/Analógica

6 Conversão Digital/Analógica 6 Conversão Digitl/Anlógic n Em muits plicções de processmento digitl de sinl (Digitl Signl Processing DSP), é necessário reconstruir o sinl nlógico pós o estágio de processmento digitl. Est tref é relizd

Leia mais

Gramáticas Regulares. Capítulo Gramáticas regulares

Gramáticas Regulares. Capítulo Gramáticas regulares Cpítulo Grmátics Regulres Ests nots são um complemento do livro e destinm-se representr lguns lgoritmos estuddos ns uls teórics. É ddo um exemplo de plicção de cd conceito. Mis exemplos form discutidos

Leia mais

MT DEPARTAMENTO NACIONAL DE ESTRADAS DE RODAGEM

MT DEPARTAMENTO NACIONAL DE ESTRADAS DE RODAGEM Inspeção visul de emblgens de microesfers de vidro retrorrefletivs Norm Rodoviári DNER-PRO /9 Procedimento Págin de RESUMO Este documento, que é um norm técnic, estbelece s condições que devem ser observds

Leia mais

UNIVERSIDADE DE SÃO PAULO ESCOLA POLITÉCNICA

UNIVERSIDADE DE SÃO PAULO ESCOLA POLITÉCNICA UNVERSDDE DE SÃO PULO ESOL POLTÉN Deprtmento de Engenhri de Estruturs e Geotécnic URSO ÁSO DE RESSTÊN DOS TERS FSÍULO Nº 5 Flexão oblíqu H. ritto.010 1 FLEXÃO OLÍU 1) udro gerl d flexão F LEXÃO FLEXÃO

Leia mais

Aula 09 Equações de Estado (parte II)

Aula 09 Equações de Estado (parte II) Aul 9 Equções de Estdo (prte II) Recpitulndo (d prte I): s equções de estdo têm form (sistems de ordem n ) = A + B u y = C + D u onde: A é um mtriz n n B é um mtriz n p C é um mtriz q n D é um mtriz q

Leia mais

Sub-rede Zero e toda a sub-rede

Sub-rede Zero e toda a sub-rede Sub-rede Zero e tod sub-rede Índice Introdução Pré-requisitos Requisitos Componentes Utilizdos Convenções Sub-rede zero A sub-rede unificd Problems com sub-rede zero e com sub-rede tudo um Sub-rede zero

Leia mais

Análise de secções transversais de vigas mistas

Análise de secções transversais de vigas mistas Análise de secções trnsversis de vigs mists Análise plástic clsse 1 e 2 Análise elástic qulquer tipo de clsse Análise plástic Hipóteses de cálculo (gerl) Consider-se que existe intercção totl entre os

Leia mais

8/6/2007. Dados os conjuntos: A={0,1} e B={a,b,c},

8/6/2007. Dados os conjuntos: A={0,1} e B={a,b,c}, 8/6/7 Orgnizção Aul elções clássics e relções Fuzz Prof. Dr. Alendre d ilv imões Produto Crtesino elções Crisp Produto crtesino Forç d relção Crdinlidde Operções em relções Crisp Proprieddes de relções

Leia mais

Alocação sequencial - Pilhas

Alocação sequencial - Pilhas Alocção seqüencil - pilhs Alocção sequencil - Pilhs Pilhs A estrutur de ddos Pilh é bstnte intuitiv. A nlogi é um pilh de prtos. Se quisermos usr um pilh de prtos com máxim segurnç, devemos inserir um

Leia mais

FLEXÃO E TENSÕES NORMAIS.

FLEXÃO E TENSÕES NORMAIS. LIST N3 FLEXÃO E TENSÕES NORMIS. Nos problems que se seguem, desprer o peso próprio (p.p.) d estrutur, menos qundo dito explicitmente o contrário. FÓRMUL GERL D FLEXÃO,: eixos centris principis M G N M

Leia mais

Capítulo III INTEGRAIS DE LINHA

Capítulo III INTEGRAIS DE LINHA pítulo III INTEGRIS DE LINH pítulo III Integris de Linh pítulo III O conceito de integrl de linh é um generlizção simples e nturl do conceito de integrl definido: f ( x) dx Neste último, integr-se o longo

Leia mais

FUNÇÃO DO 2º GRAU OU QUADRÁTICA

FUNÇÃO DO 2º GRAU OU QUADRÁTICA FUNÇÃO DO º GRAU OU QUADRÁTICA - Definição É tod função do tipo f() = + + c, com *, e c. c y Eemplos,, c números e coeficient termo vr vr iável iável es independen reis indepemdem dependente de te ou te

Leia mais

Matemática Básica. A.1. Trigonometria. Apêndice A - Matemática Básica. A.1.1. Relações no triângulo qualquer. Leis Fundamentais:

Matemática Básica. A.1. Trigonometria. Apêndice A - Matemática Básica. A.1.1. Relações no triângulo qualquer. Leis Fundamentais: Apênice A - Mtemátic Básic A.. Trigonometri A... Relções no triângulo qulquer A Mtemátic Básic C A α c β B γ Figur A. - Triângulo qulquer Leis Funmentis: c sen = sen = sen c A- Lei os cossenos: = + c -

Leia mais

TÓPICOS. Equação linear. Sistema de equações lineares. Equação matricial. Soluções do sistema. Método de Gauss-Jordan. Sistemas homogéneos.

TÓPICOS. Equação linear. Sistema de equações lineares. Equação matricial. Soluções do sistema. Método de Gauss-Jordan. Sistemas homogéneos. Note bem: leitur destes pontmentos não dispens de modo lgum leitur tent d bibliogrfi principl d cdeir ÓPICOS Equção liner. AUA 4 Chm-se tenção pr importânci do trblho pessol relizr pelo luno resolvendo

Leia mais

Física Geral e Experimental I (2011/01)

Física Geral e Experimental I (2011/01) Diretori de Ciêncis Exts Lbortório de Físic Roteiro Físic Gerl e Experimentl I (/ Experimento: Cinemátic do M. R. U. e M. R. U. V. . Cinemátic do M.R.U. e do M.R.U.V. Nest tref serão borddos os seguintes

Leia mais

E m Física chamam-se grandezas àquelas propriedades de um sistema físico

E m Física chamam-se grandezas àquelas propriedades de um sistema físico Bertolo Apêndice A 1 Vetores E m Físic chmm-se grndezs àquels proprieddes de um sistem físico que podem ser medids. Els vrim durnte um fenômeno que ocorre com o sistem, e se relcionm formndo s leis físics.

Leia mais

Resolução: a) o menor valor possível para a razão r ; b) o valor do décimo oitavo termo da PA, para a condição do item a.

Resolução: a) o menor valor possível para a razão r ; b) o valor do décimo oitavo termo da PA, para a condição do item a. O segundo, o sétimo e o vigésimo sétimo termos de um Progressão Aritmétic (PA) de números inteiros, de rzão r, formm, nest ordem, um Progressão Geométric (PG), de rzão q, com qer ~ (nturl diferente de

Leia mais

Ângulo é a reunião de dois segmentos de reta orientados (ou duas semiretas orientadas) a partir de um ponto comum.

Ângulo é a reunião de dois segmentos de reta orientados (ou duas semiretas orientadas) a partir de um ponto comum. O conceito de ângulo Ângulo é reunião de dois segmentos de ret orientdos (ou dus semirets orientds) prtir de um ponto comum. A interseção entre os dois segmentos (ou semi-rets) é denomind vértice do ângulo

Leia mais

Do programa... 2 Descobre o teu livro... 4

Do programa... 2 Descobre o teu livro... 4 Índice Do progrm........................................... Descobre o teu livro....................................... 4 Atividde zero: Record.................................. 6 1. T de vrição e otimizção...........................

Leia mais

Máquinas Elétricas. Máquinas CC Parte III

Máquinas Elétricas. Máquinas CC Parte III Máquins Elétrics Máquins CC Prte III Máquin CC Máquin CC Máquin CC Comutção Operção como gerdor Máquin CC considerções fem induzid Conforme já menciondo, tensão em um único condutor debixo ds fces polres

Leia mais

Lista 5: Geometria Analítica

Lista 5: Geometria Analítica List 5: Geometri Anlític A. Rmos 8 de junho de 017 Resumo List em constnte tulizção. 1. Equção d elipse;. Equção d hiperból. 3. Estudo unificdo ds cônics não degenerds. Elipse Ddo dois pontos F 1 e F no

Leia mais

x u 30 2 u 1 u 6 + u 10 2 = lim (u 1)(1 + u + u 2 + u 3 + u 4 )(2 + 2u 5 + u 10 )

x u 30 2 u 1 u 6 + u 10 2 = lim (u 1)(1 + u + u 2 + u 3 + u 4 )(2 + 2u 5 + u 10 ) Universidde Federl de Viços Deprtmento de Mtemátic MAT 40 Cálculo I - 207/II Eercícios Resolvidos e Comentdos Prte 2 Limites: Clcule os seguintes ites io se eistirem. Cso contrário, justique não eistênci.

Leia mais

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c.

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c. EQUAÇÃO DO GRAU Você já estudou em série nterior s equções do 1 gru, o gru de um equção é ddo pelo mior expoente d vriável, vej lguns exemplos: x + = 3 equção do 1 gru já que o expoente do x é 1 5x 8 =

Leia mais

Resumo com exercícios resolvidos do assunto: Aplicações da Integral

Resumo com exercícios resolvidos do assunto: Aplicações da Integral www.engenhrifcil.weely.com Resumo com exercícios resolvidos do ssunto: Aplicções d Integrl (I) (II) (III) Áre Volume de sólidos de Revolução Comprimento de Arco (I) Áre Dd um função positiv f(x), áre A

Leia mais

Relações em triângulos retângulos semelhantes

Relações em triângulos retângulos semelhantes Observe figur o ldo. Um escd com seis degrus está poid em num muro de m de ltur. distânci entre dois degrus vizinhos é 40 cm. Logo o comprimento d escd é 80 m. distânci d bse d escd () à bse do muro ()

Leia mais

DECivil Secção de Mecânica Estrutural e Estruturas MECÂNICA I ENUNCIADOS DE PROBLEMAS

DECivil Secção de Mecânica Estrutural e Estruturas MECÂNICA I ENUNCIADOS DE PROBLEMAS Eivil Secção de Mecânic Estruturl e Estruturs MEÂNI I ENUNIOS E ROLEMS Fevereiro de 2010 ÍTULO 3 ROLEM 3.1 onsidere plc em form de L, que fz prte d fundção em ensoleirmento gerl de um edifício, e que está

Leia mais

1 As grandezas A, B e C são tais que A é diretamente proporcional a B e inversamente proporcional a C.

1 As grandezas A, B e C são tais que A é diretamente proporcional a B e inversamente proporcional a C. As grndezs A, B e C são tis que A é diretmente proporcionl B e inversmente proporcionl C. Qundo B = 00 e C = 4 tem-se A = 5. Qul será o vlor de A qundo tivermos B = 0 e C = 5? B AC Temos, pelo enuncido,

Leia mais

Aula de solução de problemas: cinemática em 1 e 2 dimensões

Aula de solução de problemas: cinemática em 1 e 2 dimensões Aul de solução de problems: cinemátic em 1 e dimensões Crlos Mciel O. Bstos, Edurdo R. Azevedo FCM 01 - Físic Gerl pr Químicos 1. Velocidde instntâne 1 A posição de um corpo oscil pendurdo por um mol é

Leia mais

PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) EXPERIMENTOS COM UM ÚNICO FATOR E A ANÁLISE DE VARIÂNCIA

PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) EXPERIMENTOS COM UM ÚNICO FATOR E A ANÁLISE DE VARIÂNCIA PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) EXPERIMENTOS COM UM ÚNICO FATOR E A ANÁLISE DE VARIÂNCIA Dr. Sivldo Leite Correi EXEMPLO DE UM PROBLEMA COM UM ÚNICO FATOR Um empres do rmo textil desej desenvolver

Leia mais

Resumo. Estruturas de Sistemas Discretos. A Explosão do Ariane 5. Objectivo. Representações gráficas das equações às diferenças

Resumo. Estruturas de Sistemas Discretos. A Explosão do Ariane 5. Objectivo. Representações gráficas das equações às diferenças Resumo Estruturs de Sistems Discretos Luís Clds de Oliveir lco@ist.utl.pt Instituto Superior Técnico Representções gráfics ds equções às diferençs Estruturs ásics de sistems IIR Forms trnsposts Estruturs

Leia mais

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou POLINÔMIOS Definição: Um polinômio de gru n é um função que pode ser escrit n form P() n n i 0... n i em que cd i é um número compleo (ou i 0 rel) tl que n é um número nturl e n 0. Os números i são denomindos

Leia mais

Prof. Ms. Aldo Vieira Aluno:

Prof. Ms. Aldo Vieira Aluno: Prof. Ms. Aldo Vieir Aluno: Fich 1 Chmmos de mtriz, tod tbel numéric com m linhs e n coluns. Neste cso, dizemos que mtriz é do tipo m x n (onde lemos m por n ) ou que su ordem é m x n. Devemos representr

Leia mais

Teoria de Linguagens 2 o semestre de 2014 Professor: Newton José Vieira Primeira Lista de Exercícios Entrega: até 16:40h de 23/10.

Teoria de Linguagens 2 o semestre de 2014 Professor: Newton José Vieira Primeira Lista de Exercícios Entrega: até 16:40h de 23/10. Pós-Grdução em Ciênci d Computção DCC/ICEx/UFMG Teori de Lingugens 2 o semestre de 2014 Professor: Newton José Vieir Primeir List de Exercícios Entreg: té 16:40h de 23/10. Oservções: O uso do softwre JFLAP,

Leia mais

Escola Secundária/2,3 da Sé-Lamego Ficha de Trabalho de Matemática A Ano Lectivo 2011/12 Distribuição de probabilidades 12.º Ano

Escola Secundária/2,3 da Sé-Lamego Ficha de Trabalho de Matemática A Ano Lectivo 2011/12 Distribuição de probabilidades 12.º Ano Escol Secundári/, d Sé-Lmego Fich de Trlho de Mtemátic A Ano Lectivo 0/ Distriuição de proiliddes.º Ano Nome: N.º: Turm:. Num turm do.º no, distriuição dos lunos por idde e sexo é seguinte: Pr formr um

Leia mais

XXVIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO

XXVIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO XXVIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO GABARITO NÍVEL 3 ) C 6) B ) C 6) D ) D ) C 7) B ) D 7) A ) D 3) C 8) B 3) A 8) D 3) D 4) A 9) B 4) C 9) D 4) E 5)

Leia mais

Análise de Variância com Dois Factores

Análise de Variância com Dois Factores Análise de Vriânci com Dois Fctores Modelo sem intercção Eemplo Neste eemplo, o testrmos hipótese de s três lojs terem volumes médios de vends iguis, estmos testr se o fctor Loj tem influênci no volume

Leia mais

Gabarito da 2ª Prova de 2ELE030 (03/06/2014) Circuitos Elétricos 1 Prof. Ernesto Ferreyra p.1/9

Gabarito da 2ª Prova de 2ELE030 (03/06/2014) Circuitos Elétricos 1 Prof. Ernesto Ferreyra p.1/9 Gbrito d ª Prov de ELE00 (0/06/0) Circuitos Elétricos Prof. Ernesto Ferreyr p./9 )No circuito d Fig., encontre: ()o vlor de R que vi mximir su potênci dissipd; [,0] (b)o vlor d potênci máxim dissipd pr

Leia mais

CONJUNTOS NUMÉRICOS NOTAÇÕES BÁSICAS. : Variáveis e parâmetros. : Conjuntos. : Pertence. : Não pertence. : Está contido. : Não está contido.

CONJUNTOS NUMÉRICOS NOTAÇÕES BÁSICAS. : Variáveis e parâmetros. : Conjuntos. : Pertence. : Não pertence. : Está contido. : Não está contido. CONJUNTOS NUMÉRICOS NOTAÇÕES BÁSICAS,,... A, B,... ~ > < : Vriáveis e prâmetros : Conjuntos : Pertence : Não pertence : Está contido : Não está contido : Contém : Não contém : Existe : Não existe : Existe

Leia mais

ESTRUTURAS DE BETÃO ARMADO I 11 ESTADO LIMITE DE RESISTÊNCIA À FLEXÃO COMPOSTA E DESVIADA

ESTRUTURAS DE BETÃO ARMADO I 11 ESTADO LIMITE DE RESISTÊNCIA À FLEXÃO COMPOSTA E DESVIADA 11 ESTADO LIMITE DE RESISTÊNCIA À FLEXÃO COMPOSTA E DESVIADA PROGRAMA 1.Introdução o etão rmdo 2.Bses de Projecto e Acções 3.Proprieddes dos mteriis: etão e ço 4.Durilidde 5.Estdos limite últimos de resistênci

Leia mais

Prova 3 Matemática QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. QUESTÕES OBJETIVAS GABARITO 4

Prova 3 Matemática QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. QUESTÕES OBJETIVAS GABARITO 4 Prov Mtemátic QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Centrl do Vestibulr Unificdo MATEMÁTICA 0 Considere s funções f e

Leia mais

Exercícios de Revisão Edgard Jamhour. Terceiro Bimestre: MPLS

Exercícios de Revisão Edgard Jamhour. Terceiro Bimestre: MPLS Exercícios de Revisão Edgrd Jmhour Terceiro Bimestre: MPLS Cenário 1: Considere o seguinte cenário MPLS FEC A FEC B LER1 LER2 L:1000 c L:2000 L:1001 LSR2 LSR1 d LSR3 L:1002 L:2001 L:2002 LER3 c FEC C Cenário

Leia mais

Prova 3 Matemática QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. QUESTÕES OBJETIVAS GABARITO 1

Prova 3 Matemática QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. QUESTÕES OBJETIVAS GABARITO 1 Prov Mtemátic QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Centrl do Vestibulr Unificdo GABARITO MATEMÁTICA 0 Considere equção

Leia mais

Resolução Numérica de Sistemas Lineares Parte I

Resolução Numérica de Sistemas Lineares Parte I Cálculo Numérico Resolução Numéric de Sistems ineres Prte I Prof. Jorge Cvlcnti jorge.cvlcnti@univsf.edu.br MATERIA ADAPTADO DOS SIDES DA DISCIPINA CÁCUO NUMÉRICO DA UFCG - www.dsc.ufcg.edu.br/~cnum/ Sistems

Leia mais

Universidade Federal de Rio de Janeiro

Universidade Federal de Rio de Janeiro Universidde Federl de Rio de Jneiro Instituto de Mtemátic Deprtmento de Métodos Mtemáticos Prof. Jime E. Muñoz River river@im.ufrj.r ttp//www.im.ufrj.r/ river Grito d Primeir Prov de Cálculo I Rio de Jneiro

Leia mais

20 29 c) 20 b) 3 5, é TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO. 1) No triângulo abaixo, o seno do ângulo B vale:

20 29 c) 20 b) 3 5, é TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO. 1) No triângulo abaixo, o seno do ângulo B vale: TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO ) (UNISINOS) O ldo do qudrdo ABCD, d figur ixo, mede m e M é o ponto médio do ldo CD. 1) No triângulo ixo, o seno do ângulo B vle: 9 ) 0 9 ) 1 0 ) 9 0 1 1 9 ) (UFRGS)

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois

Leia mais

3. ANÁLISE DA REDE GEODÉSICA

3. ANÁLISE DA REDE GEODÉSICA 3. ANÁLISE DA REDE GEODÉSICA Éric Sntos Mtos Regine Dlzon Deprtmento de Geomátic Setor de Ciêncis d Terr Universidde Federl do Prná -UFPR 3.. Análise d precisão ds observções Dus forms: priori: n etp de

Leia mais

c.c. É a função que associa a cada x X(S) um número f(x) que deve satisfazer as seguintes propriedades:

c.c. É a função que associa a cada x X(S) um número f(x) que deve satisfazer as seguintes propriedades: Prof. Lorí Vili, Dr. vili@mt.ufrgs.r http://www.mt.ufrgs.r/~vili/ Sej um vriável letóri com conjunto de vlores (S). Se o conjunto de vlores for infinito não enumerável então vriável é dit contínu. É função

Leia mais

5) Para b = temos: 2. Seja M uma matriz real 2 x 2. Defina uma função f na qual cada elemento da matriz se desloca para a posição. e as matrizes são:

5) Para b = temos: 2. Seja M uma matriz real 2 x 2. Defina uma função f na qual cada elemento da matriz se desloca para a posição. e as matrizes são: MATEMÁTIA Sej M um mtriz rel x. Defin um função f n qul cd elemento d mtriz se desloc pr posição b seguinte no sentido horário, ou sej, se M =, c d c implic que f (M) =. Encontre tods s mtrizes d b simétrics

Leia mais

INE Fundamentos de Matemática Discreta para a Computação

INE Fundamentos de Matemática Discreta para a Computação INE5403 - Fundmentos de Mtemátic Discret pr Computção 6) Relções de Ordenmento 6.1) Conjuntos Prcilmente Ordendos (Posets( Posets) 6.2) Extremos de Posets 6.3) Reticuldos 6.4) Álgers Boolens Finits 6.5)

Leia mais

3. Seja Σ um alfabeto. Explique que palavras pertencem a cada uma das seguintes linguagens:

3. Seja Σ um alfabeto. Explique que palavras pertencem a cada uma das seguintes linguagens: BCC244-Teori d Computção Prof. Lucíli Figueiredo List de Exercícios DECOM ICEB - UFOP Lingugens. Liste os strings de cd um ds seguintes lingugens: ) = {λ} ) + + = c) {λ} {λ} = {λ} d) {λ} + {λ} + = {λ}

Leia mais

WATERFLUX - MEDIDOR DE VAZÃO SEM NECESSIDADE DE TRECHOS RETOS - ALIMENTAÇÃO INTERNA (BATERIA) OU EXTERNA CA/CC

WATERFLUX - MEDIDOR DE VAZÃO SEM NECESSIDADE DE TRECHOS RETOS - ALIMENTAÇÃO INTERNA (BATERIA) OU EXTERNA CA/CC ATERFUX - MEDIDOR DE VAZÃO SEM NECESSIDADE DE TRECOS RETOS - AIMENTAÇÃO INTERNA (BATERIA) OU EXTERNA CA/CC PRINCIPAIS CARACTERÍSTICAS Montgem sem neessidde de trehos retos à montnte e à jusnte (0D:0D)

Leia mais

DC3 - Tratamento Contabilístico dos Contratos de Construção (1) Directriz Contabilística n.º 3

DC3 - Tratamento Contabilístico dos Contratos de Construção (1) Directriz Contabilística n.º 3 Mnul do Revisor Oficil de Conts DC3 - Trtmento Contbilístico dos Contrtos de Construção (1) Directriz Contbilístic n.º 3 Dezembro de 1991 1. Est directriz plic-se os contrtos de construção que stisfçm

Leia mais

Draft-v Autómatos mínimos. 6.1 Autómatos Mínimos

Draft-v Autómatos mínimos. 6.1 Autómatos Mínimos 6. Autómtos Mínimos 6 Autómtos mínimos Dd um lingugem regulr L, muitos são os utómtos determinísticos que representm. Sej A L o conjunto dos utómtos tis que (8A)(A 2A L =) L(A) =L). Os utómtos de A L não

Leia mais

Conversão de Energia I

Conversão de Energia I Deprtmento de Engenhri Elétric Conversão de Energi I Aul 5.2 Máquins de Corrente Contínu Prof. Clodomiro Unsihuy Vil Bibliogrfi FITZGERALD, A. E., KINGSLEY Jr. C. E UMANS, S. D. Máquins Elétrics: com Introdução

Leia mais

TC 071 PONTES E ESTRUTURAS ESPECIAIS II

TC 071 PONTES E ESTRUTURAS ESPECIAIS II TC 071 PONTES E ESTRUTURAS ESPECIAIS II 7ª AULA (09/09/2.010) Vmos nlisr o comportmento ds longrin e o cminhmento ds crgs trvés d estrutur em grelh, pr: ) crgs plicds n longrin em estudo, b) crgs plicds

Leia mais

AULA 1. 1 NÚMEROS E OPERAÇÕES 1.1 Linguagem Matemática

AULA 1. 1 NÚMEROS E OPERAÇÕES 1.1 Linguagem Matemática 1 NÚMEROS E OPERAÇÕES 1.1 Lingugem Mtemátic AULA 1 1 1.2 Conjuntos Numéricos Chm-se conjunto o grupmento num todo de objetos, bem definidos e discerníveis, de noss percepção ou de nosso entendimento, chmdos

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prov Escrit de MATEMÁTICA A - o Ano 08 - Fse Propost de resolução Cderno... Como eperiênci se repete váris vezes, de form independente, distribuição de probbiliddes segue o modelo binomil P X k n C k p

Leia mais

PROVA COMENTADA. Dimensionamento das armaduras de flexão no vão e no apoio da viga contínua. m - momento fletor de cálculo

PROVA COMENTADA. Dimensionamento das armaduras de flexão no vão e no apoio da viga contínua. m - momento fletor de cálculo téchne educção PROVA COMENTADA Q1) RESPOSTA Dimensionmento ds rmdurs de flexão no vão e no poio d vig contínu. Vão - M 39,4 kn. m - momento fletor crcterístico k - M M 1,4 39,4 55,16 kn. m - momento fletor

Leia mais

Telefonia Digital: Comutação Digital

Telefonia Digital: Comutação Digital MINISTÉRIO EUCÇÃO Unidde de São José Telefoni igitl: Comutção igitl Curso técnico em Telecomunicções Mrcos Moecke São José - SC, 2005 SUMÁRIO 3 COMUTÇÃO IGITL 3 INTROUÇÃO 32 TIPOS E COMUTÇÃO IGITL 32 COMUTÇÃO

Leia mais

CÁLCULO I. 1 Área entre Curvas. Objetivos da Aula. Aula n o 24: Área entre Curvas, Comprimento de Arco e Trabalho. Calcular área entre curvas;

CÁLCULO I. 1 Área entre Curvas. Objetivos da Aula. Aula n o 24: Área entre Curvas, Comprimento de Arco e Trabalho. Calcular área entre curvas; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeid Aul n o : Áre entre Curvs, Comprimento de Arco e Trblho Objetivos d Aul Clculr áre entre curvs; Clculr o comprimento de rco; Denir Trblho. 1 Áre entre

Leia mais

Resolução Numérica de Sistemas Lineares Parte I

Resolução Numérica de Sistemas Lineares Parte I Cálculo Numérico Módulo V Resolução Numéric de Sistems ineres Prte I Profs.: Bruno Correi d Nóbreg Queiroz José Eustáquio Rngel de Queiroz Mrcelo Alves de Brros Sistems ineres Form Gerl... n n b... n n

Leia mais

Ano / Turma: N.º: Data: / / GRUPO I

Ano / Turma: N.º: Data: / / GRUPO I Novo Espço Mtemátic A.º no Nome: Ano / Turm: N.º: Dt: / / GRUPO I N respost cd um dos itens deste grupo, selecion únic opção corret. Escreve, n folh de resposts: o número do item; letr que identific únic

Leia mais

Conversão de Energia II

Conversão de Energia II Deprtmento de ngenhri létric Aul 6. Máquins íncrons Prof. João Américo ilel Máquins íncrons Crcterístics vzio e de curto-circuito Curv d tensão terminl d rmdur vzio em função d excitção de cmpo. Crctéristic

Leia mais

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A.

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A. MÓDULO - AULA Aul Técnics de Integrção Substituição Trigonométric Objetivo Conhecer técnic de integrção chmd substituição trigonométric. Introdução Você prendeu, no Cálculo I, que integrl de um função

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adrino Pedreir Ctti pctti@hoocomr Universidde Federl d Bhi UFBA, MAT A01, 006 Superfícies de Revolução 1 Introdução Podemos oter superfícies não somente por meio de um equção do tipo F(,, ), eistem muitos

Leia mais

< 9 0 < f(2) 1 < 18 1 < f(2) < 19

< 9 0 < f(2) 1 < 18 1 < f(2) < 19 Resolução do Eme Mtemátic A código 6 ª fse 08.. (B) 0 P = C 6 ( )6 ( ).. (B) Como f é contínu em [0; ] e diferenciável em ]0; [, pelo teorem de Lgrnge, eiste c ]0; [tl que f() f(0) = f (c). 0 Como 0

Leia mais

16.4. Cálculo Vetorial. Teorema de Green

16.4. Cálculo Vetorial. Teorema de Green ÁLULO VETORIAL álculo Vetoril pítulo 6 6.4 Teorem de Green Nest seção, prenderemos sore: O Teorem de Green pr váris regiões e su plicção no cálculo de integris de linh. INTROUÇÃO O Teorem de Green fornece

Leia mais

As fórmulas aditivas e as leis do seno e do cosseno

As fórmulas aditivas e as leis do seno e do cosseno ul 3 s fórmuls ditivs e s leis do MÓDULO 2 - UL 3 utor: elso ost seno e do cosseno Objetivos 1) ompreender importânci d lei do seno e do cosseno pr o cálculo d distânci entre dois pontos sem necessidde

Leia mais

PORTA MOLDES COM MEDIDAS ESPECIAS, SOB ENCOMENDA OU ENVIAR DESENHO AO DEPARTAMENTO TÉCNICO.

PORTA MOLDES COM MEDIDAS ESPECIAS, SOB ENCOMENDA OU ENVIAR DESENHO AO DEPARTAMENTO TÉCNICO. PORT MOLDES Informações Gerais DEFINIÇÃO D SÉRIE: PR ESCOLH D SÉRIE, DEVE-SE CONSIDERR ÁRE ÚTIL DE EXTRÇÃO ESTUDNDO S DIMENSÕES, NÚMERO DE CVIDDES E COMPLEXIDDE D PEÇ SER INJETD DEFINIÇÃO D MONTGEM: S

Leia mais

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 3

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 3 P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 3 GRUPO I ITENS DE ESCOLHA MÚLTIPLA 1. O número de csos possíveis é. Como se pretende que o número sej pr, então pr o lgrismo ds uniddes existem

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS Prof. Bruno Fris Arquivo em nexo Conteúdo Progrmático Biliogrfi HALLIDAY,

Leia mais

Diferenciação Numérica

Diferenciação Numérica Cpítulo 6: Dierencição e Integrção Numéric Dierencição Numéric Em muits circunstâncis, torn-se diícil oter vlores de derivds de um unção: derivds que não são de ácil otenção; Eemplo clculr ª derivd: e

Leia mais

Conversão de Energia II

Conversão de Energia II Deprtnto de Engenhri Elétric Aul 2.3 Máquins Rottivs Prof. João Américo Vilel Bibliogrfi FITZGERALD, A. E., KINGSLEY Jr. C. E UMANS, S. D. Máquins Elétrics: com Introdução à Eletrônic De Potênci. 7ª Edição,

Leia mais

equação paramêtrica/vetorial da curva: a lei γ(t) =... Dizemos que a curva é fechada se I = [a, b] e γ(a) = γ(b).

equação paramêtrica/vetorial da curva: a lei γ(t) =... Dizemos que a curva é fechada se I = [a, b] e γ(a) = γ(b). 1 Lembrete: curvs Definição Chmmos Curv em R n : um função contínu : I R n onde I R é intervlo. (link desenho curvs) Definimos: Trço d curv: imgem equção prmêtric/vetoril d curv: lei (t) =... Dizemos que

Leia mais

MTDI I /08 - Integral de nido 55. Integral de nido

MTDI I /08 - Integral de nido 55. Integral de nido MTDI I - 7/8 - Integrl de nido 55 Integrl de nido Sej f um função rel de vriável rel de nid e contínu num intervlo rel I [; b] e tl que f (x) ; 8x [; b]: Se dividirmos [; b] em n intervlos iguis, mplitude

Leia mais

Grandezas escalares e grandezas vetoriais. São grandezas que ficam completamente definidas por um valor numérico, com ou sem unidades.

Grandezas escalares e grandezas vetoriais. São grandezas que ficam completamente definidas por um valor numérico, com ou sem unidades. Sumário Unidde I MECÂNICA 1- Mecânic d prtícul Cinemátic e dinâmic d prtícul em movimentos mis do que um dimensão Operções com vetores. Grndezs esclres e grndezs vetoriis Grndezs Esclres: São grndezs que

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MAT ALGEBRA LINEAR I-A PROF.: GLÓRIA MÁRCIA

UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MAT ALGEBRA LINEAR I-A PROF.: GLÓRIA MÁRCIA UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MAT - ALGEBRA LINEAR I-A PROF.: GLÓRIA MÁRCIA LISTA DE EXERCÍCIOS ) Sejm A, B e C mtries inversíveis de mesm ordem, encontre epressão d mtri X,

Leia mais

Funções do 1 o Grau. Exemplos

Funções do 1 o Grau. Exemplos UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Funções do o Gru. Função

Leia mais

ÁLGEBRA LINEAR Equações Lineares na Álgebra Linear EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS

ÁLGEBRA LINEAR Equações Lineares na Álgebra Linear EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS Equção Liner * Sej,,,...,, (números reis) e n (n ) 2 3 n x, x, x,..., x (números reis) 2 3 n Chm-se equção Liner sobre

Leia mais

UNIDADE III O Espaço

UNIDADE III O Espaço UNIAE III UNIAE III O Espço A Geometri espcil euclidin funcion como um mplição d Geometri pln euclidin e trt dos métodos propridos pr o estudo de ojetos espciis ssim como relção entre esses elementos.

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prov Escrit de MATEMÁTICA A - 1o Ano 017-1 Fse Propost de resolução GRUP I 1. s números nturis de qutro lgrismos que se podem formr com os lgrismos de 1 9 e que são múltiplos de, são constituídos por 3

Leia mais