< 9 0 < f(2) 1 < 18 1 < f(2) < 19

Tamanho: px
Começar a partir da página:

Download "< 9 0 < f(2) 1 < 18 1 < f(2) < 19"

Transcrição

1 Resolução do Eme Mtemátic A código 6 ª fse 08.. (B) 0 P = C 6 ( )6 ( ).. (B) Como f é contínu em [0; ] e diferenciável em ]0; [, pelo teorem de Lgrnge, eiste c ]0; [tl que f() f(0) = f (c). 0 Como 0 < f (c) < 9 então 0 < f() f(0) < 9. Podemos então concluir observndo que < f() f(0) 0 < 9 0 < f() < 8 < f() < 9 QP. QR = QP. QR.cos(QP QR) = cos (0 ) = 8.. O ponto P é o ponto de interseção entre ret PS, perpendiculr o plno PQR e que pss em S, com o plno PQR. Como ret PS é perpendiculr PQR então o vetor de coordends (,, ), sendo norml o plno PQR, é tmbém diretor d ret PS. Assim, um equção vetoril d ret PS é (, y, z) = (,,0) + k(,, ), k R e, como P pertence o plno PQR, s coordends do ponto P obtêm-se resolvendo o sistem seguinte: = + k = + k y = + k y = + k {, k R {, k R + y z = 0 ( + k) + ( + k) ( k) = 0 = + k = 0 y = + k y = {, k R { z = k + 9k + k = 8 + k = logo P(0,,) Assim, PS = S P = (,,0) (0,,) = (,6, ) e PS = ( ) = 6 Então áre lterl do prism é igul A = 6 ( 6) = 6 Respost: A 79,6 uniddes de áre (pro. décims).. P = 6 6 C 6 = C 7 Respost: P 0,0 (pro. centésims).. (D) P P P 8 = Sejm os contecimentos: E o luno estud Espnhol e I O luno estud Inglês De cordo com os ddos do problem, P(E I) = P(E I) e P(E) = P(I) Assim, como

2 P(E) + P(I) P(E I) = P(E I) P(E) = P(E I) P(E) = P(E I) podemos concluir que P(I E) = P(E I) P(E) Respost: P(I E) = 0% = P(E) P(E) = = 0,. De cordo com o enuncido, L = I e R = λ Logo I( λ) 6. e λ = I o que é equivlente ( λ) 6. e λ = porque I é não nulo. (Ver observção) Determinmos bciss do ponto de interseção dos gráficos ds funções definids por: y = ( ) 6. e e y = Respost: P 0,07 Observção No enuncido é indicdo eplicitmente pr não justificr vlidde do resultdo obtido n clculdor. Porém, pr que este problem fique com um resolução mtemticmente ceitável será necessário presentr lgum justificção como que se pont em i), ii) e iii). i. Comecemos por verificr que equção tem pelo menos um solução: Sej f função definid em [0,] por f(λ) = ( λ) 6. e λ Como est função é contínu no domínio ([0,]) pois é diferenç de dus funções contínus (o produto de um função polinomil pel compost de um função eponencil com um polinomil e um função constnte), estmos em condições de plicr o teorem de Bolzno-Cuchy nesse intervlo.. Como f(0) = = e f() =, tendo-se f() < 0 < f(0) então, pelo teorem de Bolzno- Cuchy, eiste um número rel c no intervlo ]0,[ tl que f(c ) = 0, ou sej, é grntid eistênci de pelo menos um solução pr equção ( λ) 6. e λ =. ii. Sbendo que solução eiste, provemos que el é únic: Sendo f(λ) = ( λ) 6. e λ, veriguemos o sinl d função derivd f. f (λ) = ( ( λ) 6( λ) 6 ). e λ é negtiv em ]0,[, pelo que f é decrescente no intervlo [0;], concluindo-se ssim que equção tem um únic solução nesse intervlo. iii. Assegurd eistênci de um únic solução, frá sentido então procurr determinr um proimção d mesm, tl como é pedido, recorrendo à clculdor gráfic. Pr grntirmos que solução fornecid pel clculdor corresponde à proimção pedid bst notr que os vlores de f em dois pontos, um à esquerd e outro à direit de 0,07, um distânci inferior 0,000 (por eemplo 0,076 e 0,07) são respetivmente superior e inferior. Com efeito, plicndo de novo o teorem de Bolzno-Cuchy, concluímos que solução únic procurd está entre 0,076 e 0,07 sendo portnto igul 0,07, rredonddo às milésims.

3 . (B) z = (e i ) 0 = e i0 = cos(0) + isen(0). Então Im(z) = sen(0) e Re(z) = cos(0) Finlmente, Im(z) = Re(z) sen(0) = cos () tg(0) = no domínio considerdo. Respost: Utilizndo clculdor, 0,0 (pro. centésims) 6. Como sucessão é um progressão geométric (de termos não nulos), equivlente à equção ( + 8) = ( + 6). = +6 o que é Est equção tem como solução únic = 6. Assim rzão d progressão geométric é igul r = +6 = = pelo que 6 S 7 = 7 u 8 = 7 u u = Respost: O primeiro termo d progressão é. 7. (C) 8.. (A) Um vetor diretor d ret é (,,0) e de entre s diverss opções proposts pens o ponto (,0,) pertence à ret. 8.. (A) rcsen() + rcos ( ) = π + π = 7π 6 9. i i = = + i + i Logo w = + i +i = i ( i)( i) ( + i)( i) = i = i w = + ( ) = e θ é tl que tgθ = e, como o fio de w pertence o qurto qudrnte, θ = π, menos d dição de um múltiplo inteiro de π. O compleo w eprime-se n form trigonométric por w = e i( π ) Sbe-se que se w = e i( π ) é um ds rízes qurts de um compleo z então riz consecutiv de rgumento superior é dd por w = e i( π +π ), ou sej, w = e i(π 6 ) Est riz é solução pretendid pois o respetivo fio pertence o primeiro qudrnte. 0.. (D) Pr que o produto sej nulo é necessário e suficiente que um dos números sej nulo. P(X = 0) = =

4 0.. (D) lim ( n+k n )n = lim ( + k n )n = e k Como o limite é solução d equção ln ( ) = então ln (ek ) = e e ln(ek ) = k =. Como > então ln > 0 (I) processo b ln( ) ln (b ). ln. lnb. ln. ln ln. ( ) 0 0 [, 0[ [, + [ n.d (II) Processo lnb = ln lnb ln = log b = = b e b ( ) 0 Utilizndo o qudro de estudo de sinl do processo (I). 0 [,0[ [, + [.. (A) g() = 0 ( e = 0 < 0) ( = 0 0 ) sen() e = 0 < 0 e = < 0 = 0 < 0 (condição impossível).. e lim g() = lim = lim (e ) = lim y 0 (ey y ) = = plicndo mudnç de vriável y =. lim g() = lim sen() = g(0) = Conclusão: g é contínu em = 0 porque lim 0.. g () = ( sen() ) = g() = lim g() = g(0) 0 + ( cos()) ( sen()) = cos () ( sen())

5 g () = 0 ( cos() = 0 sen() 0) ]0, π] cos() = 0 sen() ]0, π] = π + k. π, k Z ]0, π] = π + k. π, k Z ]0, π] = π = π 0 π π π cos () ( sen()) g () , g g é crescente em ]0, π ] e em [π, π] e é decrescente em [π, π ] Tem dois máimos reltivos: g ( π ) = e g (π) = e um mínimo reltivo g (π ) =. (B) lim f() = lim lim f() = π. π senπ = π 0 Tem-se que P (, ln sen = lim 0 + sen =, logo não eiste ssíntot verticl em = 0 + = +, logo = π é ssíntot verticl. ln() ) e Q (, ), logo PQ = (, ln+ln ln ln ln ) = (, ) O triângulo é isósceles se e só se ret PQ tiver declive igul. Note-se tmbém que ln ln = ln ln = Sej f função definid em [ ln ln, ] por f() = Como est função é contínu no domínio ([, ]) pois é o quociente de funções contínus, estmos em condições de plicr o teorem de Bolzno-Cuchy. f ( ) = ln = ln = ln6 e f() = ln = ln Or, tem-se que lne = e ln < ln < lne < ln6 porque função logrítmic de bse e é crescente, ou sej, ln < < ln6 f() < < f ( ) Então, pelo teorem de Bolzno-Cuchy, eiste um vlor de no intervlo ], [ tl que f() =, ou sej, é grntid eistênci de um vlor de pr o qul o triângulo é isósceles.

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prov Escrit de MATEMÁTICA A - o Ano 08 - Fse Propost de resolução Cderno... Como eperiênci se repete váris vezes, de form independente, distribuição de probbiliddes segue o modelo binomil P X k n C k p

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prov Escrit de MATEMÁTICA A - o Ano 0 - Fse Propost de resolução GRUPO I. Como comissão deve ter etmente mulheres, num totl de pessos, será constituíd por um único homem. Logo, como eistem 6 homens no

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prov Escrit de MATEMÁTICA A - 1o Ano 017-1 Fse Propost de resolução GRUP I 1. s números nturis de qutro lgrismos que se podem formr com os lgrismos de 1 9 e que são múltiplos de, são constituídos por 3

Leia mais

Exame Final Nacional de Matemática A Prova ª Fase Ensino Secundário º Ano de Escolaridade. Critérios de Classificação.

Exame Final Nacional de Matemática A Prova ª Fase Ensino Secundário º Ano de Escolaridade. Critérios de Classificação. Eme Finl Ncionl de Mtemátic A Prov 635.ª Fse Ensino Secundário 08.º Ano de Escolridde Decreto-Lei n.º 39/0, de 5 de julho Critérios de Clssificção Págins Prov 635/.ª F. CC Págin / CRITÉRIOS GERAIS DE CLASSIFICAÇÃO

Leia mais

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 3

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 3 P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 3 GRUPO I ITENS DE ESCOLHA MÚLTIPLA 1. O número de csos possíveis é. Como se pretende que o número sej pr, então pr o lgrismo ds uniddes existem

Leia mais

Do programa... 2 Descobre o teu livro... 4

Do programa... 2 Descobre o teu livro... 4 Índice Do progrm........................................... Descobre o teu livro....................................... 4 Atividde zero: Record.................................. 6 1. T de vrição e otimizção...........................

Leia mais

Capítulo IV. Funções Contínuas. 4.1 Noção de Continuidade

Capítulo IV. Funções Contínuas. 4.1 Noção de Continuidade Cpítulo IV Funções Contínus 4 Noção de Continuidde Um idei muito básic de função contínu é de que o seu gráfico pode ser trçdo sem levntr o lápis do ppel; se houver necessidde de interromper o trço do

Leia mais

Matemática B Superintensivo

Matemática B Superintensivo GRITO Mtemátic Superintensivo Eercícios 0) 4 m M, m 0 m N tg 0 = b = b = b = = cos 0 = 4 = = 4. =.,7 =,4 MN =, +,4 + MN =,9 m tg 60 = = =.. = h = + = 0 m 04) 0) D O vlor de n figur bio é: (Errt) 4 sen

Leia mais

Proposta de teste de avaliação

Proposta de teste de avaliação Propost de teste de vlição Mtemátic A. O ANO DE ESOLARIDADE Durção: 90 minutos Dt: derno (é permitido o uso de clculdor) N respost o item de escolh múltipl, selecione opção corret. Escrev, n olh de resposts,

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO 2018 CADERNO 1

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO 2018 CADERNO 1 PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) ª FASE 5 DE JUNHO 08 CADERNO... P00/00 Seja X a variável aleatória: Número de vezes que sai a face numerada com

Leia mais

Teste Intermédio Matemática A. 11.º Ano de Escolaridade. Resolução (Versão 1) RESOLUÇÃO GRUPO I. Duração do Teste: 90 minutos

Teste Intermédio Matemática A. 11.º Ano de Escolaridade. Resolução (Versão 1) RESOLUÇÃO GRUPO I. Duração do Teste: 90 minutos Teste Intermédio Mtemátic A Resolução (Versão ) Durção do Teste: 90 minutos.0.0.º Ano de Escolridde RESOLUÇÃO GRUPO I. Respost (C) O vlor máimo d unção objetivo de um problem de progrmção liner é tingido

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO 2018 CADERNO 1

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO 2018 CADERNO 1 Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 7-A 500-36 Lisboa Tel.: +35 76 36 90 / 7 03 77 Fa: +35 76 64 4 http://www.apm.pt email: geral@apm.pt PROPOSTA DE RESOLUÇÃO DA

Leia mais

1 Assinale a alternativa verdadeira: a) < <

1 Assinale a alternativa verdadeira: a) < < MATEMÁTICA Assinle lterntiv verddeir: ) 6 < 7 6 < 6 b) 7 6 < 6 < 6 c) 7 6 < 6 < 6 d) 6 < 6 < 7 6 e) 6 < 7 6 < 6 Pr * {} temos: ) *, * + e + * + ) + > + + > ) Ds equções (I) e (II) result 7 6 < ( 6 )

Leia mais

Matemática A. Versão 2. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A.

Matemática A. Versão 2. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A. Teste Intermédio de Mtemátic Versão Teste Intermédio Mtemátic Versão Durção do Teste: 90 minutos 09.0.0.º no de Escolridde Decreto-Lei n.º 74/004, de 6 de mrço N su folh de resposts, indique de form legível

Leia mais

Seu pé direito nas melhores faculdades

Seu pé direito nas melhores faculdades MTMÁTI Seu pé direito ns melhores fculddes 0. João entrou n lnchonete OG e pediu hmbúrgueres, suco de lrnj e cocds, gstndo $,0. N mes o ldo, lgums pessos pedirm 8 hmbúrgueres, sucos de lrnj e cocds, gstndo

Leia mais

Cálculo Diferencial e Integral I 2 o Teste - LEAN, MEAer, MEAmb, MEBiol, MEMec

Cálculo Diferencial e Integral I 2 o Teste - LEAN, MEAer, MEAmb, MEBiol, MEMec Cálculo Diferencil e Integrl I o Teste - LEAN, MEAer, MEAmb, MEBiol, MEMec de Junho de, h Durção: hm Apresente todos os cálculos e justificções relevntes..5 vl.) Clcule, se eistirem em R, os limites i)

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, utilizaremos o Teorema Fundamental do Cálculo (TFC) para o cálculo da área entre duas curvas.

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, utilizaremos o Teorema Fundamental do Cálculo (TFC) para o cálculo da área entre duas curvas. CÁLCULO L1 NOTAS DA DÉCIMA SÉTIMA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nest ul, utilizremos o Teorem Fundmentl do Cálculo (TFC) pr o cálculo d áre entre dus curvs. 1. A áre entre dus curvs A

Leia mais

V ( ) 3 ( ) ( ) ( ) ( ) { } { } ( r ) 2. Questões tipo exame Os triângulos [ BC Da figura ao lado são semelhantes, pelo que: BC CC. Pág.

V ( ) 3 ( ) ( ) ( ) ( ) { } { } ( r ) 2. Questões tipo exame Os triângulos [ BC Da figura ao lado são semelhantes, pelo que: BC CC. Pág. António: c ; Diogo: ( ) i e ; Rit: e c Pág Se s firmções dos três migos são verddeirs, firmção do António é verddeir, pelo que proposição c é verddeir e, consequentemente, proposição c é fls Por outro

Leia mais

6 Cálculo Integral. 1. (Exercício VI.1 de [1]) Considere a função f definida no intervalo [0, 2] por. 1 se x [0, 1[ 3 se x ]1, 2]

6 Cálculo Integral. 1. (Exercício VI.1 de [1]) Considere a função f definida no intervalo [0, 2] por. 1 se x [0, 1[ 3 se x ]1, 2] 6 Cálculo Integrl. (Eercício VI. de []) Considere função f definid no intervlo [, ] por se [, [ f () = se = 3 se ], ] () Mostre que pr tod decomposição do intervlo [, ], s soms superior S d ( f ) e inferior

Leia mais

CAPÍTULO 5 - ESTUDO DA VARIAÇÃO DAS FUNÇÕES

CAPÍTULO 5 - ESTUDO DA VARIAÇÃO DAS FUNÇÕES CAPÍTULO 5 - ESTUDO DA VARIAÇÃO DAS FUNÇÕES 5.- Teorems Fundmentis do Cálculo Diferencil Os teorems de Rolle, de Lgrnge, de Cuch e regr de L Hospitl são os qutro teorems fundmentis do cálculo diferencil

Leia mais

x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5,

x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5, - Limite. - Conceito Intuitivo de Limite Considere função f definid pel guinte epressão: f - - Podemos obrvr que função está definid pr todos os vlores de eceto pr. Pr, tnto o numerdor qunto o denomindor

Leia mais

Simulado EFOMM - Matemática

Simulado EFOMM - Matemática Simuldo EFOMM - Mtemátic 1. Sejm X, Y, Z, W subconjuntos de N tis que: 1. (X Y ) Z = {1,,, },. Y = {5, 6}, Z Y =,. W (X Z) = {7, 8},. X W Z = {, }. Então o conjunto [X (Z W)] [W (Y Z)] é igul (A) {1,,,,

Leia mais

Instituto Politécnico de Bragança Escola Superior de Tecnologia e Gestão. Análise Matemática I Frequência

Instituto Politécnico de Bragança Escola Superior de Tecnologia e Gestão. Análise Matemática I Frequência Instituto Politécnico de Brgnç Escol Superior de Tecnologi e Gestão Análise Mtemátic I Frequênci Durção d prov: h min Dt: // Tolerânci: 5 min Cursos: EQ, IG, GEI Resolução Grupo I g π. ) Considere função

Leia mais

Índice TEMA TEMA TEMA TEMA TEMA

Índice TEMA TEMA TEMA TEMA TEMA Índice Resolução de roblems envolvendo triângulos retângulos Teori. Rzões trigonométrics de um ângulo gudo 8 Teori. A clculdor gráfic e s rzões trigonométrics 0 Teori. Resolução de roblems usndo rzões

Leia mais

Profª Cristiane Guedes DERIVADA. Cristianeguedes.pro.br/cefet

Profª Cristiane Guedes DERIVADA. Cristianeguedes.pro.br/cefet Proª Cristine Guedes 1 DERIVADA Cristineguedes.pro.br/ceet Ret Tngente Como determinr inclinção d ret tngente curv y no ponto P,? 0 0 Proª Cristine Guedes Pr responder ess pergunt considermos um ponto

Leia mais

Cálculo I (2015/1) IM UFRJ Lista 5: Integral Prof. Milton Lopes e Prof. Marco Cabral Versão Exercícios de Integral

Cálculo I (2015/1) IM UFRJ Lista 5: Integral Prof. Milton Lopes e Prof. Marco Cabral Versão Exercícios de Integral Eercícios de Integrl Eercícios de Fição Cálculo I (5/) IM UFRJ List 5: Integrl Prof Milton Lopes e Prof Mrco Cbrl Versão 55 Fi : Determine se é Verddeiro (provndo rmtiv) ou Flso (dndo contreemplo): b ()

Leia mais

1.ª FASE 2018 PROPOSTA DE RESOLUÇÃO EXAME NACIONAL DE MATEMÁTICA A ª FASE PROPOSTA DE RESOLUÇÃO

1.ª FASE 2018 PROPOSTA DE RESOLUÇÃO EXAME NACIONAL DE MATEMÁTICA A ª FASE PROPOSTA DE RESOLUÇÃO EXAME NACIONAL DE MATEMÁTICA A 08.ª FASE PROPOSTA DE RESOLUÇÃO Site: http://recursos-para-matematica.webnode.pt/ Facebook: https://www.facebook.com/recursos.para.matematica EXAME NACIONAL DE MATEMÁTICA

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO 2015 GRUPO I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO 2015 GRUPO I Associção de Professores de Mtemátic Contctos: Ru Dr. João Couto, n.º 27-A 1500-236 Lisbo Tel.: +351 21 716 36 90 / 21 711 03 77 Fx: +351 21 716 64 24 http://www.pm.pt emil: gerl@pm.pt PROPOSTA DE RESOLUÇÃO

Leia mais

FUNÇÃO LOGARITMICA. Professora Laura. 1 Definição de Logaritmo

FUNÇÃO LOGARITMICA. Professora Laura. 1 Definição de Logaritmo 57 FUÇÃO LOGARITMICA Professor Lur 1 Definição de Logritmo Chm se logritmo de um número > 0 em relção um bse (0 < 1), o expoente que se deve elevr bse, fim de que potênci obtid sej igul. log, onde: > 0,

Leia mais

Integral. (1) Queremos calcular o valor médio da temperatura ao longo do dia. O valor. a i

Integral. (1) Queremos calcular o valor médio da temperatura ao longo do dia. O valor. a i Integrl Noção de Integrl. Integrl é o nálogo pr unções d noção de som. Ddos n números 1, 2,..., n, podemos tomr su som 1 + 2 +... + n = i. O integrl de = té = b dum unção contínu é um mneir de somr todos

Leia mais

CÁLCULO I. 1 Área entre Curvas. Objetivos da Aula. Aula n o 24: Área entre Curvas, Comprimento de Arco e Trabalho. Calcular área entre curvas;

CÁLCULO I. 1 Área entre Curvas. Objetivos da Aula. Aula n o 24: Área entre Curvas, Comprimento de Arco e Trabalho. Calcular área entre curvas; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeid Aul n o : Áre entre Curvs, Comprimento de Arco e Trblho Objetivos d Aul Clculr áre entre curvs; Clculr o comprimento de rco; Denir Trblho. 1 Áre entre

Leia mais

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução (9) - www.elitecmpins.com.br O ELITE RESOLVE MATEMÁTICA QUESTÃO Se Améli der R$, Lúci, então mbs ficrão com mesm qunti. Se Mri der um terço do que tem Lúci, então est ficrá com R$, mis do que Améli. Se

Leia mais

Matemática. Resolução das atividades complementares. M24 Equações Polinomiais. 1 (PUC-SP) No universo C, a equação

Matemática. Resolução das atividades complementares. M24 Equações Polinomiais. 1 (PUC-SP) No universo C, a equação Resolução ds tividdes complementres Mtemátic M Equções Polinomiis p. 86 (PUC-SP) No universo C, equção 0 0 0 dmite: ) três rízes rcionis c) dus rízes irrcionis e) um únic riz positiv b) dus rízes não reis

Leia mais

Teorema Fundamental do Cálculo - Parte 2

Teorema Fundamental do Cálculo - Parte 2 Universidde de Brsíli Deprtmento de Mtemátic Cálculo Teorem Fundmentl do Cálculo - Prte 2 No teto nterior vimos que, se F é um primitiv de f em [,b], então f()d = F(b) F(). Isto reduz o problem de resolver

Leia mais

IME MATEMÁTICA. Questão 01. Calcule o número natural n que torna o determinante abaixo igual a 5. Resolução:

IME MATEMÁTICA. Questão 01. Calcule o número natural n que torna o determinante abaixo igual a 5. Resolução: IME MATEMÁTICA A mtemátic é o lfbeto com que Deus escreveu o mundo Glileu Glilei Questão Clcule o número nturl n que torn o determinnte bixo igul 5. log (n ) log (n + ) log (n ) log (n ) Adicionndo s três

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO 2015 GRUPO I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO 2015 GRUPO I PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO 2015 GRUPO I 1. A função objetivo é o lucro e é dd por L(x, y) = 30x + 50y. Restrições: x 0

Leia mais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais Escol Secundári com º ciclo D. Dinis 11º no de Mtemátic Tem II Introdução o álculo Diferencil I Funções Rcionis e com Rdicis Tx de Vrição e Derivd Tref nº 0 1. Estude função f(x) = x, evidencindo s seguintes

Leia mais

TEORIA DOS LIMITES LIMITES. Professor: Alexandre 2. DEFINIÇÃO DE LIMITE

TEORIA DOS LIMITES LIMITES. Professor: Alexandre 2. DEFINIÇÃO DE LIMITE TEORIA DOS LIMITES Professor: Alendre LIMITES. NOÇÃO INTUITIVA DE LIMITE Vmos nlisr o comportmento gráfico d função f ( ) qundo tende pr. ) Primeirmente vmos tender vriável por vlores inferiores, ou sej,

Leia mais

8 AULA. Funções com Valores Vetoriais LIVRO. META Estudar funções de uma variável real a valores em R 3

8 AULA. Funções com Valores Vetoriais LIVRO. META Estudar funções de uma variável real a valores em R 3 1 LIVRO Funções com Vlores Vetoriis 8 AULA META Estudr funções de um vriável rel vlores em R 3 OBJETIVOS Estudr movimentos de prtículs no espço. PRÉ-REQUISITOS Ter compreendido os conceitos de funções

Leia mais

Definição Definimos o dominio da função vetorial dada em (1.1) como: dom(f i ) i=1

Definição Definimos o dominio da função vetorial dada em (1.1) como: dom(f i ) i=1 Cpítulo 1 Funções Vetoriis Neste cpítulo estudremos s funções f : R R n, funções que descrevem curvs ou movimentos de objetos no espço. 1.1 Definições e proprieddes Definição 1.1.1 Um função vetoril, é

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 1. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 1. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 6 FASE. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA QUESTÃO O gráfico bio eibe o lucro líquido (em milhres de reis) de três pequens empress A, B e

Leia mais

EXAME NACIONAL DE MATEMÁTICA A ª FASE

EXAME NACIONAL DE MATEMÁTICA A ª FASE EXAME NACIONAL DE MATEMÁTICA A 08.ª FASE PROPOSTA DE RESOLUÇÃO Site: http://recursos-para-matematica.webnode.pt/ Facebook: https://www.facebook.com/recursos.para.matematica EXAME NACIONAL DE MATEMÁTICA

Leia mais

Seja f : D R uma função, a R um ponto de acumulação D ) diz-se que f(x) tende para b quando x tende para a ou { }

Seja f : D R uma função, a R um ponto de acumulação D ) diz-se que f(x) tende para b quando x tende para a ou { } .4- Limites e continuidde de unções. De. Deinição de Limite Sej : D R um unção, R um ponto de cumulção D diz-se que tende pr b qundo tende pr ou b se : { } > ε > V ε D \ V b b b b ε ε De.. Dd um unção

Leia mais

5) Para b = temos: 2. Seja M uma matriz real 2 x 2. Defina uma função f na qual cada elemento da matriz se desloca para a posição. e as matrizes são:

5) Para b = temos: 2. Seja M uma matriz real 2 x 2. Defina uma função f na qual cada elemento da matriz se desloca para a posição. e as matrizes são: MATEMÁTIA Sej M um mtriz rel x. Defin um função f n qul cd elemento d mtriz se desloc pr posição b seguinte no sentido horário, ou sej, se M =, c d c implic que f (M) =. Encontre tods s mtrizes d b simétrics

Leia mais

fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que:

fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que: Cpítulo 8 Integris Imprópris 8. Introdução A eistênci d integrl definid f() d, onde f é contínu no intervlo fechdo [, b], é grntid pelo teorem fundmentl do cálculo. Entretnto, determinds plicções do Cálculo

Leia mais

Prova 3 Matemática QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. QUESTÕES OBJETIVAS GABARITO 3

Prova 3 Matemática QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. QUESTÕES OBJETIVAS GABARITO 3 Prov Mtemátic QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Centrl do Vestibulr Unificdo MATEMÁTICA 0 Considere n um número nturl.

Leia mais

Prova 3 Matemática QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. QUESTÕES OBJETIVAS GABARITO 2

Prova 3 Matemática QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. QUESTÕES OBJETIVAS GABARITO 2 Prov Mtemátic QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Centrl do Vestibulr Unificdo MATEMÁTICA 0 Colocm-se qutro cubos de

Leia mais

Prova 3 Matemática QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. QUESTÕES OBJETIVAS GABARITO 4

Prova 3 Matemática QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. QUESTÕES OBJETIVAS GABARITO 4 Prov Mtemátic QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Centrl do Vestibulr Unificdo MATEMÁTICA 0 Considere s funções f e

Leia mais

Prova 3 Matemática QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. QUESTÕES OBJETIVAS GABARITO 1

Prova 3 Matemática QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. QUESTÕES OBJETIVAS GABARITO 1 Prov Mtemátic QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Centrl do Vestibulr Unificdo GABARITO MATEMÁTICA 0 Considere equção

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 2. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 2. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 6 FASE. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA. O gráfico de brrs bixo exibe distribuição d idde de um grupo de pessos. ) Mostre que, nesse grupo,

Leia mais

Platão Comenta Prova Específica de Matemática UEM julho de 2009 Gabarito 1

Platão Comenta Prova Específica de Matemática UEM julho de 2009 Gabarito 1 Pltão Coment Prov Específic de Mtemátic UEM julho de Grito QUESTÃO: GRITO: ) Corret q 6 6 6 6 6. q 6 6 6 6 8 ) Corret q n com *. n n, q > e ) Incorret. n. n ( ). n S n n n. n n. n 6 8) Corret Como < então.

Leia mais

Usando qualquer um dos métodos de primitivação indicados anteriormente, determine uma primitiva de cada uma das seguintes funções. e x e 2x + 2e x + 1

Usando qualquer um dos métodos de primitivação indicados anteriormente, determine uma primitiva de cada uma das seguintes funções. e x e 2x + 2e x + 1 Instituto Superior Técnico Deprtmento de Mtemátic Secção de Álgebr e Análise CÁLCULO DIFERENCIAL E INTEGRAL I LEIC-ALAMEDA o SEM. 7/8 6 FICHA DE EXERCÍCIOS I. Treino Complementr de Primitivs. CÁLCULO INTEGRAL

Leia mais

+ + = + lim. x 1. 1 x. , x 0 tem descontinuidade infinita no ponto x = 0 pois. =, x 0 tem descontinuidade de salto no ponto x = 0 pois

+ + = + lim. x 1. 1 x. , x 0 tem descontinuidade infinita no ponto x = 0 pois. =, x 0 tem descontinuidade de salto no ponto x = 0 pois Mtemátic II 9. Prof.: Luiz Gonzg Dmsceno E-mils: dmsceno4@yhoo.com.br dmsceno@uol.com.br dmsceno@hotmil.com http://www.dmsceno.info www.dmsceno.info dmsceno.info. Descontinuiddes Descontinuidde Infinit

Leia mais

Questão 1: (Valor 2,0) Determine o domínio de determinação e os pontos de descontinuidade da 1. lim

Questão 1: (Valor 2,0) Determine o domínio de determinação e os pontos de descontinuidade da 1. lim Escol de Engenhri Industril e etlúrgic de olt edond Pro Gustvo Benitez Alvrez Nome do Aluno (letr orm): Prov Escrit Nº 0/006 Não rsure est olh, pois cálculos relizdos nest, não serão considerdos Use olh

Leia mais

Prof.(s): Judson Santos - Luciano Santos 1º S I M U L A D O ITA/IME

Prof.(s): Judson Santos - Luciano Santos 1º S I M U L A D O ITA/IME Prof.(s): Judson Sntos - Lucino Sntos y 0) Sbendo que (,,, ) estão em progressão ritmétic nest ordem y stisfendo s condições de eistênci dos ritmos. Então o vlor d epressão y é igul : ) b) y 0) Sej,, 4,,

Leia mais

CÁLCULO A UMA VARIÁVEL

CÁLCULO A UMA VARIÁVEL Profª Cristine Guedes 1 CÁLCULO A UMA VARIÁVEL cristineguedes.pro.r/cefet Ement do Curso 2 Funções Reis Limites Continuidde Derivd Ts Relcionds - Funções Crescentes e Decrescentes Máimos e Mínimos Construção

Leia mais

Exercícios. setor Aula 25. f(2) = 3. f(3) = 0. f(11) = 12. g(3) = 14. Temos: 2x 1 = 5 x = 3 Logo, f(5) = 3 2 = 9

Exercícios. setor Aula 25. f(2) = 3. f(3) = 0. f(11) = 12. g(3) = 14. Temos: 2x 1 = 5 x = 3 Logo, f(5) = 3 2 = 9 setor 07 070409 070409-SP Aul 5 FUNÇÃO (COMPOSIÇÃO DE FUNÇÕES) FUNÇÃO COMPOSTA Sej f um função de A em B e sej g um função de B em C. Chm-se função compost de g com f função h definid de A em C, tl que

Leia mais

Derivada da função composta, derivada da função inversa, derivada da função implícita e derivada de funções definidas parametricamente.

Derivada da função composta, derivada da função inversa, derivada da função implícita e derivada de funções definidas parametricamente. .5.- Derivd d função compost, derivd d função invers, derivd d função implícit e derivd de funções definids prmetricmente. Teorem.3 Derivd d Função Compost Suponh-se que g: A R é diferenciável no ponto

Leia mais

o Seu pé direito na medicina

o Seu pé direito na medicina o Seu pé direito n medicin UNIFESP //006 MATEMÁTIA 0 Entre os primeiros mil números inteiros positivos, quntos são divisíveis pelos números,, 4 e 5? 60 b) 0 c) 0 d) 6 e) 5 Se o número é divisível por,,

Leia mais

ALGEBRA LINEAR AUTOVALORES E AUTOVETORES. Prof. Ademilson

ALGEBRA LINEAR AUTOVALORES E AUTOVETORES. Prof. Ademilson LGEBR LINER UTOVLORES E UTOVETORES Prof. demilson utovlores e utovetores utovlores e utovetores são conceitos importntes de mtemátic, com plicções prátics em áres diversificds como mecânic quântic, processmento

Leia mais

TÓPICO. Fundamentos da Matemática II DERIVADA DIRECIONAL E PLANO TANGENTE8. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

TÓPICO. Fundamentos da Matemática II DERIVADA DIRECIONAL E PLANO TANGENTE8. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques DERIVADA DIRECIONAL E PLANO TANGENTE8 TÓPICO Gil d Cost Mrques Fundmentos d Mtemátic II 8.1 Diferencil totl de um função esclr 8.2 Derivd num Direção e Máxim Derivd Direcionl 8.3 Perpendiculr um superfície

Leia mais

O binário pode ser escrito em notação vetorial como M = r F, onde r = OA = 0.1j + ( )k metros e F = 500i N. Portanto:

O binário pode ser escrito em notação vetorial como M = r F, onde r = OA = 0.1j + ( )k metros e F = 500i N. Portanto: Mecânic dos Sólidos I - TT1 - Engenhri mbientl - UFPR Dt: 5/8/13 Professor: Emílio G. F. Mercuri Nome: ntes de inicir resolução lei tentmente prov e verifique se mesm está complet. vlição é individul e

Leia mais

Diferenciação Numérica

Diferenciação Numérica Cpítulo 6: Dierencição e Integrção Numéric Dierencição Numéric Em muits circunstâncis, torn-se diícil oter vlores de derivds de um unção: derivds que não são de ácil otenção; Eemplo clculr ª derivd: e

Leia mais

1 x 5 (d) f = 1 + x 2 2 (f) f = tg 2 x x p 1 + x 2 (g) f = p x + sec 2 x (h) f = x 3p x. (c) f = 2 sen x. sen x p 1 + cos x. p x.

1 x 5 (d) f = 1 + x 2 2 (f) f = tg 2 x x p 1 + x 2 (g) f = p x + sec 2 x (h) f = x 3p x. (c) f = 2 sen x. sen x p 1 + cos x. p x. 6. Primitivs cd. 6. Em cd cso determine primitiv F (x) d função f (x), stisfzendo condição especi- () f (x) = 4p x; F () = f (x) = x + =x ; F () = (c) f (x) = (x + ) ; F () = 6. Determine função f que

Leia mais

Diogo Pinheiro Fernandes Pedrosa

Diogo Pinheiro Fernandes Pedrosa Integrção Numéric Diogo Pinheiro Fernndes Pedros Universidde Federl do Rio Grnde do Norte Centro de Tecnologi Deprtmento de Engenhri de Computção e Automção http://www.dc.ufrn.br/ 1 Introdução O conceito

Leia mais

Resolução: a) o menor valor possível para a razão r ; b) o valor do décimo oitavo termo da PA, para a condição do item a.

Resolução: a) o menor valor possível para a razão r ; b) o valor do décimo oitavo termo da PA, para a condição do item a. O segundo, o sétimo e o vigésimo sétimo termos de um Progressão Aritmétic (PA) de números inteiros, de rzão r, formm, nest ordem, um Progressão Geométric (PG), de rzão q, com qer ~ (nturl diferente de

Leia mais

I PARÁBOLA MATQUEST CÔNICAS PROF.: JOSÉ LUÍS

I PARÁBOLA MATQUEST CÔNICAS PROF.: JOSÉ LUÍS MATQUEST CÔNICAS PROF.: JOSÉ LUÍS I PARÁBOLA 1 Definição - Ddos um ret d e um ponto F, F d, de um plno, chmmos de práol o conjunto de pontos do plno eqüidistntes de F e d. A figur ssim otid é chmd de práol.

Leia mais

CÁLCULO I. Apresentar a técnica de integração por substituição; Utilizar técnicas apresentadas no cálculo integral.

CÁLCULO I. Apresentar a técnica de integração por substituição; Utilizar técnicas apresentadas no cálculo integral. CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeid Auls n o 8: Técnics de Integrção I - Método d Substituição Objetivos d Aul Apresentr técnic de integrção por substituição; Utilizr técnics presentds

Leia mais

Noção intuitiva de limite

Noção intuitiva de limite Noção intuitiv de ite Qundo se proim de 1, y se proim de 3, isto é: 3 y + 1 1,5 4 1,3 3,6 1,1 3, 1,05 3,1 1,0 3,04 1,01 3,0 De um modo gerl: Eemplo de um ite básico Qundo tende um vlor determindo, o ite

Leia mais

Reta vertical é uma reta paralela ao eixo das ordenadas, é do tipo: Reta vertical é uma reta paralela ao eixo das ordenadas, é do tipo:

Reta vertical é uma reta paralela ao eixo das ordenadas, é do tipo: Reta vertical é uma reta paralela ao eixo das ordenadas, é do tipo: mta0 geometri nlític Referencil crtesino no plno Referencil Oxy o.n. (ortonormdo) é um referencil no plno em que os eixos são perpendiculres (referencil ortogonl) s uniddes de comprimento em cd um dos

Leia mais

MATEMÁTICA. Questão 01. Considere os conjuntos S = {0, 2, 4, 6}, T = { 1, 3, 5} e U = {0, 1} e as afirmações:

MATEMÁTICA. Questão 01. Considere os conjuntos S = {0, 2, 4, 6}, T = { 1, 3, 5} e U = {0, 1} e as afirmações: MATEMÁTICA Considere os conjuntos S = {0,,, 6}, T = {,, } e U = {0, } e s firmções: I. {0} S e S U. II. {} S \ U e S T U = {0,}. III. Eiste um função f : S T injetiv. IV. Nenhum função g: T S é sobrejetiv.

Leia mais

Fundamentos de Matemática I EFETUANDO INTEGRAIS. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

Fundamentos de Matemática I EFETUANDO INTEGRAIS. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques EFETUANDO INTEGRAIS 7 Gil d Cost Mrques Fundmentos de Mtemátic I 7. Introdução 7. Algums Proprieddes d Integrl Definid Propriedde Propriedde Propriedde Propriedde 4 7. Um primeir técnic de Integrção 7..

Leia mais

A força não provém da capacidade física, e sim de uma vontade indomável. Mahatma Gandhi

A força não provém da capacidade física, e sim de uma vontade indomável. Mahatma Gandhi A forç não provém d cpcidde físic, e sim de um vontde indomável. Mhtm Gndhi Futuros militres, postos! É hor de meter o ggá! Este é o módulo 8 do curso de MATEMÁTICA d turm AFA-EN-EFOMM- EsPCE-EEAr. Nesse

Leia mais

(Nova) Matemática, Licenciatura / Engenharia de Produção

(Nova) Matemática, Licenciatura / Engenharia de Produção Recredencimento Portri EC 7, de 5.. - D.O.U.... (ov) temátic, Licencitur / Engenhri de Produção ódulo de Pesquis: Prátics de ensino em mtemátic, contetos e metodois Disciplin: Fundmentos de temátic II

Leia mais

Aula 5 Plano de Argand-Gauss

Aula 5 Plano de Argand-Gauss Ojetivos Plno de Argnd-Guss Aul 5 Plno de Argnd-Guss MÓDULO - AULA 5 Autores: Celso Cost e Roerto Gerldo Tvres Arnut 1) presentr geometricmente os números complexos ) Interpretr geometricmente som, o produto

Leia mais

UNIVERSIDADE DE SÃO PAULO ESCOLA POLITÉCNICA

UNIVERSIDADE DE SÃO PAULO ESCOLA POLITÉCNICA UNVERSDDE DE SÃO PULO ESOL POLTÉN Deprtmento de Engenhri de Estruturs e Geotécnic URSO ÁSO DE RESSTÊN DOS TERS FSÍULO Nº 5 Flexão oblíqu H. ritto.010 1 FLEXÃO OLÍU 1) udro gerl d flexão F LEXÃO FLEXÃO

Leia mais

CÁLCULO I. Denir o trabalho realizado por uma força variável; Denir pressão e força exercidas por um uido.

CÁLCULO I. Denir o trabalho realizado por uma força variável; Denir pressão e força exercidas por um uido. CÁLCULO I Aul n o 3: Comprimento de Arco. Trblho. Pressão e Forç Hidrostátic. Objetivos d Aul Denir comprimento de rco; Denir o trblho relizdo por um forç vriável; Denir pressão e forç exercids por um

Leia mais

Solução: Alternativa: A. Solução: Mas, 3 x, Daí, 2 cos x. Ora, tgx 7. Então, 14 senx. Assim, Alternativa: B

Solução: Alternativa: A. Solução: Mas, 3 x, Daí, 2 cos x. Ora, tgx 7. Então, 14 senx. Assim, Alternativa: B 0. Considere s seguintes firmções: I. A função f() = log 0 ( ) é estritmente crescente no intervlo ] [ II. A equção + = possui um únic solução rel. III. A equção ( + ) = dmite pelo menos um solução rel

Leia mais

Matemática B Extensivo V. 8

Matemática B Extensivo V. 8 Mtemátic B Extensivo V. 8 Resolv Aul 9 9.01) = ; b = c = + b c + 9 c = Distânci focl = c 0 9.0) x = 0 0 x = ; b = c = + b c = + c = Como o eixo rel está sobre o eixo e o centro é (0, 0), então F 1 (0,

Leia mais

Aula 27 Integrais impróprias segunda parte Critérios de convergência

Aula 27 Integrais impróprias segunda parte Critérios de convergência Integris imprópris segund prte Critérios de convergênci MÓDULO - AULA 7 Aul 7 Integris imprópris segund prte Critérios de convergênci Objetivo Conhecer dois critérios de convergênci de integris imprópris:

Leia mais

GABARITO IME DISCURSIVAS 2017/2018 MATEMÁTICA

GABARITO IME DISCURSIVAS 2017/2018 MATEMÁTICA GABARITO IME DISCURSIVAS 07/08 MATEMÁTICA DISCURSIVAS /0/7 Questão 0 Sej o número complexo z que stisfz relção ( z i) 07 ( + i)( iz ) 07. Determine z, sbendo- -se que z. Gbrito: ( z i) ( + i) ( i z ) 07

Leia mais

FUNÇÕES. Funções. TE203 Fundamentos Matemáticos para a Engenharia Elétrica I. TE203 Fundamentos Matemáticos para a Engenharia Elétrica I

FUNÇÕES. Funções. TE203 Fundamentos Matemáticos para a Engenharia Elétrica I. TE203 Fundamentos Matemáticos para a Engenharia Elétrica I FUNÇÕES DATA //9 //9 4//9 5//9 6//9 9//9 //9 //9 //9 //9 6//9 7//9 8//9 9//9 //9 5//9 6//9 7//9 IBOVESPA (fechmento) 8666 9746 49 48 4755 4 47 4845 45 467 484 9846 9674 97 874 8 88 88 DEFINIÇÃO Um grndez

Leia mais

1,0,1,2. EXERCÍCIIOS 1º ENS. MÉDIO CONJUNTOS NUMÉRICOS OPERAÇÕES ENTRE CONJUNTOS. 1. A representação correta do conjunto. e) n.d.a.

1,0,1,2. EXERCÍCIIOS 1º ENS. MÉDIO CONJUNTOS NUMÉRICOS OPERAÇÕES ENTRE CONJUNTOS. 1. A representação correta do conjunto. e) n.d.a. EXERCÍCIIOS º ENS MÉDIO CONJUNTOS NUMÉRICOS OPERAÇÕES ENTRE CONJUNTOS A representção corret do conjunto A / ),,,, b),,,,0,, c),,,0, d),,,0,, e) nd Dê o conjunto A B, sbendo que z / B Z / A e A {} B {-,0,,}

Leia mais

4 π. 8 π Considere a função real f, definida por f(x) = 2 x e duas circunferência C 1 e C 2, centradas na origem.

4 π. 8 π Considere a função real f, definida por f(x) = 2 x e duas circunferência C 1 e C 2, centradas na origem. EFOMM 2010 1. Anlise s firmtivs bixo. I - Sej K o conjunto dos qudriláteros plnos, seus subconjuntos são: P = {x K / x possui ldos opostos prlelos}; L = {x K / x possui 4 ldos congruentes}; R = {x K /

Leia mais

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA.. b) a circunferência x y z

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA.. b) a circunferência x y z INSTITTO DE MATEMÁTICA DA FBA DEPARTAMENTO DE MATEMÁTICA A LISTA DE CÁLCLO IV SEMESTRE 00. (Função vetoril de um vriável, curv em R n. Integrl dupl e plicções) ) Determine um função vetoril F: I R R tl

Leia mais

10/09/2016 UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS DA TERRA DEPARTAMENTO DE GEOMÁTICA AJUSTAMENTO II GA110. Prof. Alvaro Muriel Lima Machado

10/09/2016 UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS DA TERRA DEPARTAMENTO DE GEOMÁTICA AJUSTAMENTO II GA110. Prof. Alvaro Muriel Lima Machado UNIVERSIDDE FEDERL DO PRNÁ SEOR DE IÊNIS D ERR DEPRMENO DE GEOMÁI JUSMENO II G Prof. lvro Muriel Lim Mchdo justmento de Observções Qundo s medids não são feits diretmente sobre s grndezs procurds, ms sim

Leia mais

Comprimento de arco. Universidade de Brasília Departamento de Matemática

Comprimento de arco. Universidade de Brasília Departamento de Matemática Universidde de Brsíli Deprtmento de Mtemátic Cálculo Comprimento de rco Considerefunçãof(x) = (2/3) x 3 definidnointervlo[,],cujográficoestáilustrdo bixo. Neste texto vmos desenvolver um técnic pr clculr

Leia mais

As fórmulas aditivas e as leis do seno e do cosseno

As fórmulas aditivas e as leis do seno e do cosseno ul 3 s fórmuls ditivs e s leis do MÓDULO 2 - UL 3 utor: elso ost seno e do cosseno Objetivos 1) ompreender importânci d lei do seno e do cosseno pr o cálculo d distânci entre dois pontos sem necessidde

Leia mais

Matemática para Economia Les 201. Aulas 28_29 Integrais Luiz Fernando Satolo

Matemática para Economia Les 201. Aulas 28_29 Integrais Luiz Fernando Satolo Mtemátic pr Economi Les 0 Auls 8_9 Integris Luiz Fernndo Stolo Integris As operções inverss n mtemátic: dição e sutrção multiplicção e divisão potencição e rdicição A operção invers d diferencição é integrção

Leia mais

Resumo com exercícios resolvidos do assunto: Aplicações da Integral

Resumo com exercícios resolvidos do assunto: Aplicações da Integral www.engenhrifcil.weely.com Resumo com exercícios resolvidos do ssunto: Aplicções d Integrl (I) (II) (III) Áre Volume de sólidos de Revolução Comprimento de Arco (I) Áre Dd um função positiv f(x), áre A

Leia mais

Cálculo III-A Módulo 6

Cálculo III-A Módulo 6 Universidde Federl Fluminense Instituto de Mtemátic e Esttístic Deprtmento de Mtemátic Aplicd álculo III-A Módulo 6 Aul urvs Prmetrids Objetivo Prmetrir curvs plns e espciis. Prmetrição de curvs Prmetrir

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial Prova Escrita de MATEMÁTICA A - o Ano 08 - Época especial Proposta de resolução Caderno... Como A e B são acontecimentos equiprováveis, temos que P A P B E como A e B são acontecimentos independentes,

Leia mais

Gabarito - Matemática Grupo G

Gabarito - Matemática Grupo G 1 QUESTÃO: (1,0 ponto) Avlidor Revisor Um resturnte cobr, no lmoço, té s 16 h, o preço fixo de R$ 1,00 por pesso. Após s 16h, esse vlor ci pr R$ 1,00. Em determindo di, 0 pessos lmoçrm no resturnte, sendo

Leia mais

DERIVADAS DAS FUNÇÕES SIMPLES12

DERIVADAS DAS FUNÇÕES SIMPLES12 DERIVADAS DAS FUNÇÕES SIMPLES2 Gil d Cost Mrques Fundentos de Mteátic I 2. Introdução 2.2 Derivd de y = n, n 2.2. Derivd de y = / pr 0 2.2.2 Derivd de y = n, pr 0, n =,, isto é, n é u núero inteiro negtivo

Leia mais

CÁLCULO I. Teorema 1 (Teorema Fundamental do Cálculo I). Se f for contínua em [a, b], então. f(x) dx = F (b) F (a) x dx = F (b) F (a), x dx = x2 2

CÁLCULO I. Teorema 1 (Teorema Fundamental do Cálculo I). Se f for contínua em [a, b], então. f(x) dx = F (b) F (a) x dx = F (b) F (a), x dx = x2 2 CÁLCULO I Prof. Mrcos Diniz Prof. André Almeid Prof. Edilson Neri Júnior Aul n o 5: Teorem Fundmentl do Cálculo I. Áre entre grácos. Objetivos d Aul Apresentr o Teorem Fundmentl do Cálculo (Versão Integrl).

Leia mais

Definição 1. (Volume do Cilindro) O volume V de um um cilindro reto é dado pelo produto: V = area da base altura.

Definição 1. (Volume do Cilindro) O volume V de um um cilindro reto é dado pelo produto: V = area da base altura. Cálculo I Aul 2 - Cálculo de Volumes Dt: 29/6/25 Objetivos d Aul: Clculr volumes de sólidos por seções trnsversis Plvrs-chves: Seções Trnsversis - Volumes Volume de um Cilindro Nosso objetivo nest unidde

Leia mais

Dessa forma o eixo ox é uma assíntota da função exponencial e assim valores de y < 0 não se relacionam com nenhum x do domínio, portanto Im = R +.

Dessa forma o eixo ox é uma assíntota da função exponencial e assim valores de y < 0 não se relacionam com nenhum x do domínio, portanto Im = R +. 6 4. Função Eponencil É todo função que pode ser escrit n form: f: R R + = Em que é um número rel tl que 0

Leia mais

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II. Tarefa nº 3 do plano de trabalho nº 5

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II. Tarefa nº 3 do plano de trabalho nº 5 Escol Secndári com 3º ciclo D. Dinis º Ano de Mtemátic A Tem II Introdção o Cálclo Diferencil II ( e ) = e Tref nº 3 do plno de trblo nº 5 e e = ( ln ) = ( ln ) = ( log ) Not: é m fnção de e é m constnte

Leia mais

4. Teorema de Green. F d r = A. dydx. (1) Pelas razões acima referidas, a prova deste teorema para o caso geral está longe

4. Teorema de Green. F d r = A. dydx. (1) Pelas razões acima referidas, a prova deste teorema para o caso geral está longe 4 Teorem de Green Sej U um berto de R 2 e r : [, b] U um cminho seccionlmente, fechdo e simples, isto é, r não se uto-intersect, excepto ns extremiddes Sej região interior r([, b]) prte d dificuldde n

Leia mais