Curvas Planas. Sumário COMPUTAÇÃO GRÁFICA E INTERFACES. Introdução. Introdução. Carlos Carreto

Tamanho: px
Começar a partir da página:

Download "Curvas Planas. Sumário COMPUTAÇÃO GRÁFICA E INTERFACES. Introdução. Introdução. Carlos Carreto"

Transcrição

1 Sumáro COMUTAÇÃO GRÁFICA E INTERFACES Curvs lns Crlos Crreo Inroução Curvs prmérs Curv Bèzer Curv Herme Curv B-Splne Curv Cmull-Rom Curso e Engenhr Informá Ano levo /4 Esol Superor e Tenolog e Gesão Gur Inroução Hoje em, um s plções ms mpornes ompução gráf é sem uv o ompuer-e esgn (CAD). O CAD é uso exensvmene num grne número e áres s omo engenhr eroespl, engenhr uomóvel, engenhr náu, engenhr vl e engenhr elerón. O suesso plção ompução gráf à engenhr eve-se soreuo o progresso o hmo ompuer e geomer esgn (CAGD) que proporon se memá pr esrever e proessr form geomérs, nomemene (urvs, superfíes e sólos). Os méoos ms promssores pr esrever forms geomérs são s urvs e superfíes prmérs. Emor eses méoos sejm em onheos n eor, s sus plções em ssems CAD êm so ojeo e nvesgção nos úlmos 5 nos. Os mores vnços onseguos são sem uv s represenções Bèzer e B-splne e urvs e superfíes que são hoje em o snr nusr. Veremos segur memá por erás eses méoos que são e grne mporân pr moelção e superfíes e sólos. Inroução Forms e represenr urvs Form não prmérs Represenção por equções one um s oorens é eermn em função our: y F(x) Equções prmérs Represenção por equções one s oorens são os em função e um prâmero: y F() x F()

2 Inroução Form não prmér Exemplos e equções não prmérs n form expl y f(x) y mx z - (Ax By D) / C Levnm prolems n hor e represenr urvs om lços ou om ngenes vers (m n equção re).or esse movo êm um uso lmo n ompução gráf. Inroução Form não prmér Exemplos e equções não prmérs n form mplí f( x, y) Ax By C (x - x ) (y - y ) -r Resolvem lguns prolems represenção expl, ms não permem o lulo reo s oorens os ponos. São úes em ompução pr eermnr o exeror e o neror. f( x, y, z) > > Exeror f( x, y, z) < > Ineror Inroução rnps esvngens form não prmérs pr uso em CAGD É fíl efnr equção não prmér e um urv prr e um onjuno e ponos e onrolo (é fíl e mnpulr nervmene). Inroução Form prmér Curvs prmérs x f(u) y g(u) z h(u) Superfíes rmérs x f(u,v) y g(u,v) z h(u,v) Não perme represenção e urvs om lços. É fíl efnr equção não prmér e um urv que psse por um onjuno e ponos pré-efnos. Exemplos e equções prmérs Crunferên: x x r os θ y y r sn θ θ [, π] Segmeno e re: x (-). x. x y (-). y. y [, ]

3 Inroução rnps vngens form prmérs pr uso em CAGD Resolve os prolems form não prmér. A urv poe ser efn prr e um onjuno e ponos e onrolo (é fál e mnpulr nervmene). A urv poe ou não pssr por um onjuno e ponos pré-efnos. A urv é proxm por polnómos que efnem s sus várs pres. O ompormeno urv em relção um os exos é efno por equções nepenenes. Inroução A urv é efn rvés e um onjuno e ponos e onrolo que nfluenm form urv. Os nós são ponos e onrolo que perenem à urv. A urv poe ser nerpol, pssno nesse so por oos os ponos e onrolo, ou poe ser proxm, pssno pens em lguns ponos e onrolo ou mesmo em nenhum. Os ponos e onrolo efnem froner e um polígono esgno por onvex hull. As oorens são os em função e um prâmero. Inroução or vezes é neessáro represenr urv rvés e um onjuno e urvs menores lgs enre s. Nesse so queremos grnr onnue s urvs. Inroução Defnção e Splne Um Splne é um urv ompos por segmenos e urvs efnos por polnómos que ssfzem eermns onções e onnue ns exremes e segmeno. Um equção é lssf e oro om os ermos que onem. Se oos os ermos são elevos um eermn poên, equção é um polnómo. Se mor poên é um, equção é lner. Se mor poên é os, equção é qurá. E mor poên é rês, equção é ú. Connue e orem zero, s urvs enonrm-se num pono Connue e prmer orem, s ngenes são onenes Connue e segun orem, veloe nes e epos é gul

4 Inroução Curvs prmérs ús r grnr onnue e prmer orem, s urvs são proxms por polnómos e gru : x() x x x x y() y y y y [, ] Form mrl: Curvs Bèzer Creríss urv Bèzer É efn por 4 ponos e onrolo (,,, ). ss pelos ponos exremos. Os veores ngenes os ponos exremos são eermnos prr os segmenos e re (, ) e (, ). [ x y] [ ] x x x x y y y y Curvs Bèzer Curv Bèzer e ponos Conserem-se ponos, e efnno os segmenos e re (, ) e (, ). Vmos que equção re onsse num mé poner one (-) é o peso e e é o peso e : () (-).. É enão possível efnr um urv om os ponos, fzeno ponerção enre os os segmenos e re: Curvs Bèzer Curv Bèzer e 4 ponos Seguno o mesmo roíno e fzeno gor ponerção e us urvs: C () (-). R. R C () (-). R. R C () (-)... (-)... (-).. R () (-).. R () (-).. C C C() (-). R. R C() (-).. (-)...

5 Curvs Bèzer Curvs Bèzer Curv Bèzer e 4 ponos A form mrl f: Vngens É fál e onsrur. Os veores ngenes são efnos uommene pelos segmenos e re. [ x y] [ ] - 6 Desvngens Não grne, e form uomá, onnue enre os segmenos e urvs. r que hj onnue os úlmos os ponos o prmero segmeno e os os prmeros ponos o seguno segmeno êm que ser olneres. Não perme onrolo lol, so é, lerção e um pono e onrolo ler o urv. Curvs Herme Curvs Herme Creríss urv Herme É efn por os ponos e onrolo e, e os veores ngenes (ervs nos ponos), V e V. ss pelos os ponos e onrolo. Consrução urv Herme Semos que em form gerl ()..., om [, ]. Semos que psso nos ponos exremos e e s ervs nesses ponos são V e V. Enão: V ().... V (), (), () V, () V V V

6 Curvs Herme Consrução urv Herme () () () ' () ' Curvs Herme Consrução urv Herme As quro nógns,, e poem ser eermns resolveno o ssem e equções: Resolveno em orem os oefenes: () ' () ' () () () ' () ' () () Curvs Herme Consrução urv Herme Como F: () () ' () ' () () () Curvs Herme Vngens É fál e onsrur. É equ pr plções one sej úl efnr urv em função nlnção os veores ngenes. ss nos ponos e onrolo. Desvngens Não grne, e form uomá, onnue enre os segmenos e urvs. r que hj onnue, o veor e fm o prmero segmeno eve er mesm reção e seno o veor e no o seguno segmeno. Não perme onrolo lol, so é, lerção e um pono e onrolo ler o urv.

7 Curvs B-Splne Creríss urv B-Splne Curvs B-Splne Equção mrl urv B-Splne É efn por quro ponos e onrolo (,,, ). Não pss por nenhum os ponos e onrolo. É um po e urv ms suve o que s nerores, om onnue e segun orem enre segmenos. () [ ] Curvs B-Splne Vngens É fál e onsrur. Grne onnue uommene. erme onrolo lol. Desvngens Não pss nos ponos e onrolo. Curvs Cmull-Rom Creríss urv Cmull-Rom É efn por quro ponos e onrolo (,,, ). É form prr e um sequên e urvs Herme, ujs ngenes são luls uommene prr os ponos e onrolo. É rç um urv Herme pr e ponos. A urv pss pelos ponos e onrolo exepo pelo prmero e úlmo.

8 Curvs Cmull-Rom Consrução urv Cmull-Rom Do um onjuno e ponos e onrolo {,,, n }, queremos urv que pss por oos os ponos. A urv Cmull-Rom é onsruí om segmenos e urvs Herme pr (, ) e ponos e onrolo, ujos respevs ngenes são: ( - ) / e ( ) /. Conserno equção mrl urv Herme: ou () () - Curvs Cmull-Rom Consrução urv Cmull-Rom Mulplno s us mrzes e oefenes oemos equção mrl urv: () - Curvs Cmull-Rom Consrução urv Cmull-Rom ( - ) / ( ) / Curvs Cmull-Rom Vngens É fál e onsrur. Grne onnue uommene. erme onrolo lol. ss nos ponos e onrolo.

CCI-22 CCI-22. Ajuste de Curvas. Matemática Computacional. Regressão Linear. Ajuste de Curvas

CCI-22 CCI-22. Ajuste de Curvas. Matemática Computacional. Regressão Linear. Ajuste de Curvas CCI- CCI- eá Copuol Ause e Curvs Crlos Herque Q. Forser Nos opleeres Ause e Curvs Apl-se os seues sos: Erpolção: vlores or o ervlo elo Vlores o erros proveees e oservções Cosse e: Deerr prâeros que ee

Leia mais

Kalecki: Investimento e ciclo. Profa. Maria Isabel Busato

Kalecki: Investimento e ciclo. Profa. Maria Isabel Busato Klek: nvesmeno e lo Prof. Mr sel Buso Klek: nvesmeno e lo A nálse íl é sed n nerção do po mulpldor e elerdor Onde: = sensldde do nvesmeno à S; = sensldde do nvesmeno à vrção no luro; = sensldde do nvesmeno

Leia mais

Introdução à Computação Gráfica

Introdução à Computação Gráfica Inrodução à Compuação Gráfca Desenho de Consrução Naval Manuel Venura Insuo Superor Técnco Secção Auónoma de Engenhara Naval Sumáro Represenação maemáca de curvas Curvas polnomas e curvas paramércas Curvas

Leia mais

L triangular inferior U triangular superior

L triangular inferior U triangular superior 69 Forção Ax A rgr feror rgr speror Vmos oserr o exempo roóro m Po () m po 8 Osere qe mrz () poe ser o e pré-mpco- por m mrz coeee o cso: mesm form mrz é o pré-mpco- por: 7 eror é m mrz râgr Assm sp A

Leia mais

Exemplo: y 3, já que sen 2 e log A matriz nula m n, indicada por O m n é tal que a ij 0, i {1, 2, 3,..., m} e j {1, 2, 3,..., n}.

Exemplo: y 3, já que sen 2 e log A matriz nula m n, indicada por O m n é tal que a ij 0, i {1, 2, 3,..., m} e j {1, 2, 3,..., n}. Mrzes Mrz rel Defnção Sem m e n dos números neros Um mrz rel de ordem m n é um conuno de mn números res, dsrbuídos em m lnhs e n coluns, formndo um bel que se ndc em gerl por 9 Eemplo: A mrz A é um mrz

Leia mais

No mecanismo de Lindemann-Hinshelwood admite-se que a molécula do reagente A torna-se excitada em colisão com outra molécula de A.

No mecanismo de Lindemann-Hinshelwood admite-se que a molécula do reagente A torna-se excitada em colisão com outra molécula de A. Aul: 30 Temátic: Reções Unimoleculres e Ctlisores Vmos continur noss nálise cinétic em função e um mecnismo e reção. Depois fremos um introução um novo tópico isciplin, os ctlisores. 1. Reções unimoleculres

Leia mais

GGE RESPONDE IME MATEMÁTICA Determine os valores reais de x que satisfazem a inequação:

GGE RESPONDE IME MATEMÁTICA Determine os valores reais de x que satisfazem a inequação: . Determine os vores reis e x que stisfzem inequção: x IR e X og x og 9 x² x og x og Fzeno x og, temos: ( ) ( ) ( ) ² ² ² ² + + + + + + - - - - - - - - - - - - - - - - - - + + + - + + + - - - + + + + +

Leia mais

VETORES. Problemas Resolvidos

VETORES. Problemas Resolvidos Prolems Resolvidos VETORES Atenção Lei o ssunto no livro-teto e ns nots de ul e reproduz os prolems resolvidos qui. Outros são deidos pr v. treinr PROBLEMA 1 Dois vetores, ujos módulos são de 6e9uniddes

Leia mais

Matemática Básica. A.1. Trigonometria. Apêndice A - Matemática Básica. A.1.1. Relações no triângulo qualquer. Leis Fundamentais:

Matemática Básica. A.1. Trigonometria. Apêndice A - Matemática Básica. A.1.1. Relações no triângulo qualquer. Leis Fundamentais: Apênice A - Mtemátic Básic A.. Trigonometri A... Relções no triângulo qulquer A Mtemátic Básic C A α c β B γ Figur A. - Triângulo qulquer Leis Funmentis: c sen = sen = sen c A- Lei os cossenos: = + c -

Leia mais

4.1 Definição e interpretação geométrica de integral definido. Somas de Darboux.

4.1 Definição e interpretação geométrica de integral definido. Somas de Darboux. Aálse Memá I - Ao Levo 006/007 4- Cálulo Iegrl emr 4. Defção e erpreção geomér de egrl defdo. Soms de Drou. Def.4.- Sej f() um fução oíu o ervlo [, ]. M e m o mámo e o mímo vlor d fução, respevmee. Se

Leia mais

Índice. Disciplina: Matemática Segundo Ano do Ensino Médio Matrizes Arquivo: Matrizes.doc 17/11/03, 17:13 h

Índice. Disciplina: Matemática Segundo Ano do Ensino Médio Matrizes Arquivo: Matrizes.doc 17/11/03, 17:13 h CCeenn rroo FFeeeerrl ll ee EEuuççããoo TTeennoo llóóggi l ii hhi ii. Disiplin: Memái Seguno no o Ensino Méio Mrizes rquivo: Mrizes.o //, : h Ínie Mrizes. Definição.. Noção e um mriz Mriz Qur. Mriz Digonl

Leia mais

MÉTODOS MATEMÁTICOS 2 a Aula. Claudia Mazza Dias Sandra Mara C. Malta

MÉTODOS MATEMÁTICOS 2 a Aula. Claudia Mazza Dias Sandra Mara C. Malta MÉTODOS MATEMÁTICOS Aul Clui Mzz Dis Snr Mr C. Mlt Introução o Conceito e Derivs Noção: Velocie Méi Um utomóvel é irigio trvés e um estr cie A pr cie B. A istânci s percorri pelo crro epene o tempo gsto

Leia mais

Árvores Binárias de Busca Balanceadas

Árvores Binárias de Busca Balanceadas Árvores nárs de usc lnceds 8 9 4 12 8 2 6 13 7 1 3 5 7 9 11 14 15 6 O(log(n)) 4 5 O(n) 3 2 1 4/4/218 1 Número mínmo de nós num árvore che de lur h h = h = 2 4 1 2 6 h = 1 2 1 3 5 7 h = 3 8 1 3 4 12 2 6

Leia mais

02. Resolva o sistema de equações, onde x R. x x Solução: (1 3 1) Faça 3x + 1 = y 2, daí: 02. Resolva o sistema de equações, onde x R e y R.

02. Resolva o sistema de equações, onde x R. x x Solução: (1 3 1) Faça 3x + 1 = y 2, daí: 02. Resolva o sistema de equações, onde x R e y R. GGE ESPONDE 7 ATEÁTICA Prov Disursiv. Sej um mtriz rel. Defin um função n qul element mtriz se eslo pr posição seguinte no sentio horário, sej, se,impli que ( ) f. Enontre tos s mtrizes simétris reis n

Leia mais

Modelagem de Curvas. Prof. Márcio Bueno Fonte: Material do Prof. Jack van Wijk

Modelagem de Curvas. Prof. Márcio Bueno Fonte: Material do Prof. Jack van Wijk Modelagem de Curvas Prof. Márco Bueno {cgarde,cgnoe}@marcobueno.com Fone: Maeral do Prof. Jack van Wjk Coneúdo Curvas Paramércas Requsos Conceos Ineolação Lnear Inerolação de Lagrange Curva de Bézer 2

Leia mais

Torção. Tensões de Cisalhamento

Torção. Tensões de Cisalhamento orção O esuo ese cpíulo será iviio em us pres: 1) orção e brrs circulres ) orção e brrs não circulres. OÇÃO E BS CICULES Sej um brr circulr com iâmero e comprimeno., solici por um momeno e orção, como

Leia mais

2.1. Integrais Duplos (definição de integral duplo)

2.1. Integrais Duplos (definição de integral duplo) Análise Mtemáti II- no letivo 6/7.. Integris uplos (efinição e integrl uplo) Pr melhor ompreener efinição e integrl uplo vmos omeçr por olor o seguinte esfio: Tene eterminr o volume o sólio que está im

Leia mais

MODELOS DE EQUILÍBRIO DE FLUXO EM REDES. Prof. Sérgio Mayerle Depto. Eng. Produção e Sistemas UFSC/CTC

MODELOS DE EQUILÍBRIO DE FLUXO EM REDES. Prof. Sérgio Mayerle Depto. Eng. Produção e Sistemas UFSC/CTC MODELOS DE EQUILÍBRIO DE FLUXO EM REDES Pro. Sérgio Myerle Depo. Eng. Produção e Sisems UFSC/CTC Deinição Bási A rede é deinid por um gro ( N A onde: { } N...n G é um onjuno de nós { m} A... é um onjuno

Leia mais

Matemática Régis Cortes FUNÇÃO DO 2 0 GRAU

Matemática Régis Cortes FUNÇÃO DO 2 0 GRAU FUNÇÃO DO 2 0 GRAU 1 Fórmul de Bháskr: x 2 x 2 4 2 Utilizndo fórmul de Bháskr, vmos resolver lguns exeríios: 1) 3x²-7x+2=0 =3, =-7 e =2 2 4 49 4.3.2 49 24 25 Sustituindo n fórmul: x 2 7 25 2.3 7 5 7 5

Leia mais

PROVA MATRIZ DE MATEMÁTICA EFOMM-2009

PROVA MATRIZ DE MATEMÁTICA EFOMM-2009 PROVA MATRIZ DE MATEMÁTICA EFOMM-009 ª Questão: Qul é o número inteiro ujo prouto por 9 é um número nturl omposto pens pelo lgrismo? (A) 459 4569 (C) 45679 (D) 45789 (E) 456789 ª Questão: O logotipo e

Leia mais

Cinemática de uma Partícula Cap. 12

Cinemática de uma Partícula Cap. 12 MECÂNIC - DINÂMIC Cinemáti e um Prtíul Cp. Objetios Introuzir os oneitos e posição, eslomento, eloie e elerção Estur o moimento e um ponto mteril o longo e um ret e representr grfimente esse moimento Inestigr

Leia mais

3. Equações diferenciais parciais 32

3. Equações diferenciais parciais 32 . Eqções diferenciis prciis.. Definição de eqção diferencil prcil Definição: Chm-se eqção diferencil prcil m eqção qe coném m o mis fnções desconhecids de ds o mis vriáveis e s ss derivds prciis em relção

Leia mais

Aula. Transformações lineares hlcs

Aula. Transformações lineares hlcs UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE Aul Álger Liner Trnsformções lineres hls Resumo Trnsformções lineres Definição Núleo Imgem Definição Relção entre espços vetoriis Preservção e operções* Aplição

Leia mais

TÓPICOS. Exercícios. Os vectores que constituem as colunas da matriz, 1 = [ 2 0 1] T

TÓPICOS. Exercícios. Os vectores que constituem as colunas da matriz, 1 = [ 2 0 1] T Note em: letur destes pontmentos não dspens de modo lgum letur tent d logrf prncpl d cder Chm-se tenção pr mportânc do trlho pessol relzr pelo luno resolendo os prolems presentdos n logrf, sem consult

Leia mais

MATEMÁTICA II - Engenharias/Itatiba. 1 o Semestre de 2009 Prof. Maurício Fabbri RELAÇÕES TRIGONOMÉTRICAS NO TRIÂNGULO RETÂNGULO.

MATEMÁTICA II - Engenharias/Itatiba. 1 o Semestre de 2009 Prof. Maurício Fabbri RELAÇÕES TRIGONOMÉTRICAS NO TRIÂNGULO RETÂNGULO. MTEMÁTIC II - Engenhris/Ii o Semesre de 09 Prof. Muríio Fri 04-9 Série de Exeríios RELÇÕES TRIGONOMÉTRICS NO TRIÂNGULO RETÂNGULO sen = os = n = se = os os e = sen sen n = os o n = n ÂNGULOS NOTÁVEIS grus

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA UNICAMP-FASE 2. 2014 RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA UNICAMP-FASE 2. 2014 RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA RESOLUÇÃO D PROV DE MTEMÁTIC UNICMP-FSE. PROF. MRI NTÔNI C. GOUVEI. é, sem úv, o lmento refero e mutos ulsts. Estm-se que o onsumo áro no Brsl sej e, mlhão e s, seno o Esto e São Pulo resonsável or % esse

Leia mais

Adriano Pedreira Cattai. Universidade Federal da Bahia UFBA Semestre

Adriano Pedreira Cattai.   Universidade Federal da Bahia UFBA Semestre Cálculo II A, MAT Adrino Pedreir Ci hp://www.lunospgm.uf.r/drinoci/ Universidde Federl d Bhi UFBA Semesre 6. Inrodução No Teorem Fundmenl do Cálculo TFC, os ies de inegrção, e em, são números reis e f

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL II INTEGRAIS MÚLTIPLAS

CÁLCULO DIFERENCIAL E INTEGRAL II INTEGRAIS MÚLTIPLAS CÁLCULO IFEENCIAL E INTEGAL II INTEGAIS MÚLTIPLAS A ierenç prinipl entre Integrl eini F ) F ) e s Integris Múltipls resie no to e que, em lugr e omeçrmos om um prtição o intervlo [, ], suiviimos um região

Leia mais

5. 5. RESPOSTA A UMA UMA ACÇÃO DINÂMICA QUALQUER

5. 5. RESPOSTA A UMA UMA ACÇÃO DINÂMICA QUALQUER 5. 5. RESPOSTA A UMA UMA ACÇÃO DINÂMICA QUALQUER Em mios csos cção inâmic não é hrmónic. Veremos qe respos poe ser obi em ermos e m inegrl, qe nos csos em qe cção é simples, poe ser clclo nliicmene e qe

Leia mais

MATEMÁTICA. Equações do Segundo Grau. Professor : Dêner Rocha. Monster Concursos 1

MATEMÁTICA. Equações do Segundo Grau. Professor : Dêner Rocha. Monster Concursos 1 MATEMÁTICA Equções do Segundo Gru Professor : Dêner Roh Monster Conursos 1 Equções do segundo gru Ojetivos Definir equções do segundo gru. Resolver equções do segundo gru. Definição Chm-se equção do º

Leia mais

Universidade Federal de Alfenas

Universidade Federal de Alfenas Uversdde Federl de Alfes Projeto e Aálse de Algortmos Aul 03 Fudmetos Mtemátos pr PAA humerto@.ufl-mg.edu.r Aul Pssd... Cotexto hstóro: Dedldde; O Teorem de Kurt Gödel; Máqu de Turg; Prolems Trtáves e

Leia mais

11.4 ANÁLISE TRIDIMENSIONAL DE EDIFÍCIOS - MODELO DE 3 GRAUS DE LIBERDADE POR PISO

11.4 ANÁLISE TRIDIMENSIONAL DE EDIFÍCIOS - MODELO DE 3 GRAUS DE LIBERDADE POR PISO .4 ANÁLISE RIDIMENSIONAL DE EDIFÍCIOS - MODELO DE 3 RAUS DE LIBERDADE POR PISO RIIDEZ INFINIA NO PLANO 3 grus e lbere / so v u z.4. ANÁLISE ESÁICA. DESLOCAMENOS, FORÇAS E EUAÇÕES DE EUILÍBRIO u v Desloceo

Leia mais

Simulado 7: matrizes, determ. e sistemas lineares

Simulado 7: matrizes, determ. e sistemas lineares Simulo 7 Mtrizes, eterminntes e sistems lineres. b... e 6. 7. 8.. 0. b.. e. Simulo 8 Cirunferêni / Projeções / Áres. b 6. e 7. 8.. 0. Simulo Análise ombintóri / Probbilie / Esttísti. e.. e.. b... e.....

Leia mais

Assíntotas verticais. lim f lim lim. x x x. x 2 x 2. e e e e e. lim lim

Assíntotas verticais. lim f lim lim. x x x. x 2 x 2. e e e e e. lim lim 1. 1.1. Assínos vericis 0 0 1 ) lim f lim lim 4 6 1 i 6 1 1 6 14 i) é riz dos polinómios e 4 6 1. Uilizndo regr de Ruffini pr os decompor, conclui-se que: 1 e que 4 6 1 1 6 e e e e e lim f lim 0 e e 1

Leia mais

Matemática. Atividades. complementares. ENSINO FUNDAMENTAL 7- º ano. Este material é um complemento da obra Matemática 7. uso escolar. Venda proibida.

Matemática. Atividades. complementares. ENSINO FUNDAMENTAL 7- º ano. Este material é um complemento da obra Matemática 7. uso escolar. Venda proibida. 7 ENSINO FUNMENTL 7- º no Memáic ividdes complemenres Ese meril é um complemeno d or Memáic 7 Pr Viver Junos. Reprodução permiid somene pr uso escolr. Vend proiid. Smuel sl píulo 9 Polígonos 1. Oserve

Leia mais

Prova elaborada pelo prof. Octamar Marques. Resolução da profa. Maria Antônia Conceição Gouveia.

Prova elaborada pelo prof. Octamar Marques. Resolução da profa. Maria Antônia Conceição Gouveia. ª AVALIAÇÃO DA ª UNIDADE ª SÉRIE DO ENSINO MÉDIO DISCIPLINA: MATEMÁTICA Prov elord pelo prof. Otmr Mrques. Resolução d prof. Mri Antôni Coneição Gouvei.. Dispondo de livros de mtemáti e de físi, qunts

Leia mais

Resumo com exercícios resolvidos do assunto: Aplicações da Integral

Resumo com exercícios resolvidos do assunto: Aplicações da Integral www.engenhrifcil.weely.com Resumo com exercícios resolvidos do ssunto: Aplicções d Integrl (I) (II) (III) Áre Volume de sólidos de Revolução Comprimento de Arco (I) Áre Dd um função positiv f(x), áre A

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica SCOLA POLITÉCNICA DA UNIVSIDAD D SÃO PAULO Deprmeno de ngenhri Mecânic PM-50MCÂNICA DOS SÓLIDOS II Profs.: Celso P. Pesce e. mos Jr. Prov /0/0 Durção: 00 minuos Quesão (5,0 ponos): A figur io ilusr um

Leia mais

Aula de solução de problemas: cinemática em 1 e 2 dimensões

Aula de solução de problemas: cinemática em 1 e 2 dimensões Aul de solução de problems: cinemátic em 1 e dimensões Crlos Mciel O. Bstos, Edurdo R. Azevedo FCM 01 - Físic Gerl pr Químicos 1. Velocidde instntâne 1 A posição de um corpo oscil pendurdo por um mol é

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adrino Pedreir Ctti pctti@hoocomr Universidde Federl d Bhi UFBA, MAT A01, 006 Superfícies de Revolução 1 Introdução Podemos oter superfícies não somente por meio de um equção do tipo F(,, ), eistem muitos

Leia mais

FÍSICA. Questões de 01 a 06

FÍSICA. Questões de 01 a 06 GRUO TIO A FÍS. FÍSICA Quesões de. Um mss de 7kg de águ, nclmene C, deve ser converd olmene em vpor C, rvés de um uecedor elérco de ressênc elérc R e lgdo um fone de forç eleromorz de V. Consdere emperur

Leia mais

CÁLCULO I. Teorema 1 (Teorema Fundamental do Cálculo I). Se f for contínua em [a, b], então. f(x) dx = F (b) F (a) x dx = F (b) F (a), x dx = x2 2

CÁLCULO I. Teorema 1 (Teorema Fundamental do Cálculo I). Se f for contínua em [a, b], então. f(x) dx = F (b) F (a) x dx = F (b) F (a), x dx = x2 2 CÁLCULO I Prof. Mrcos Diniz Prof. André Almeid Prof. Edilson Neri Júnior Aul n o 5: Teorem Fundmentl do Cálculo I. Áre entre grácos. Objetivos d Aul Apresentr o Teorem Fundmentl do Cálculo (Versão Integrl).

Leia mais

Q(s 1,I) = Q(s 1,I) (1- α ) + α (r + γ max a Q(s 4,I))= 0. Q(s 4,I) = Q(s 4,I) (1- α ) + α (r + γ max a Q(s 7,D))= 0

Q(s 1,I) = Q(s 1,I) (1- α ) + α (r + γ max a Q(s 4,I))= 0. Q(s 4,I) = Q(s 4,I) (1- α ) + α (r + γ max a Q(s 7,D))= 0 Plno de Auls: einforcemen Lerning Conceios básicos Elemenos de um sisem L Crcerísics Fundmenos Teóricos Processos de Decisão de Mrkov Propriedde de Mrkov Funções de Vlor Aprendizdo L Méodos pr solução

Leia mais

Valoração de Grafos. Fluxo em Grafos. Notas. Teoria dos Grafos - BCC 204, Fluxo em Grafos. Notas. Exemplos. Fluxo em Grafos. Notas.

Valoração de Grafos. Fluxo em Grafos. Notas. Teoria dos Grafos - BCC 204, Fluxo em Grafos. Notas. Exemplos. Fluxo em Grafos. Notas. Teori o Grfo - BCC 204 Fluxo em Grfo Hrolo Gmini Sno Univerie Feerl e Ouro Preo - UFOP 19 e ril e 2011 1 / 19 Vlorção e Grfo Exemplo vlore eáio: iâni roovi que lig ie e ie é e 70 kilômero vlore inâmio:

Leia mais

1a) QUESTÃO: ciclos 2a) QUESTÃO: estado inicial indefinidamente travar 4a) QUESTÃO: Anel 1ª) Questão

1a) QUESTÃO: ciclos 2a) QUESTÃO: estado inicial indefinidamente travar 4a) QUESTÃO: Anel 1ª) Questão 1 ) QUSTÃO: (3, pontos) Pr máquin e esto efini pel su tel e fluo io, pee-se: y\ 1 1 ) nontre um tel e fluo mínim; / /- /- / ) onstru um tel e eitção livre e /- /1 / /- orris ríti (rir ilos quno neessário);

Leia mais

CAPÍTULO EXERCÍCIOS pg. 127

CAPÍTULO EXERCÍCIOS pg. 127 CAPÍTULO. EXERCÍCIOS pg.. Deerinr equção d re ngene às seguines curvs, nos ponos indicdos. Esboçr o gráico e cd cso..,,, ; R.. As igurs que segue osr s res ngenes pr os ponos e. Coo o vlor de é genérico

Leia mais

MATEMÁTICA. 01. Sejam os conjuntos P 1, P 2, S 1 e S 2 tais que (P 2 S 1) P 1, (P 1 S 2) P 2 e (S 1 S 2) (P 1 P 2). Demonstre que (S 1 S 2) (P 1 P 2).

MATEMÁTICA. 01. Sejam os conjuntos P 1, P 2, S 1 e S 2 tais que (P 2 S 1) P 1, (P 1 S 2) P 2 e (S 1 S 2) (P 1 P 2). Demonstre que (S 1 S 2) (P 1 P 2). GGE RESOE - VESTIBULAR IME MATEMÁTICA) MATEMÁTICA Sj o ojuo S S qu S ) S ) S S ) ) or qu S S ) ) : Sj S S Coo S S ão ou l r o rol oo uor r grl) qu oo S ão logo oo qurío orr F F F F F ) Crufrê ro -) ro

Leia mais

ÁLGEBRA LINEAR Equações Lineares na Álgebra Linear EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS

ÁLGEBRA LINEAR Equações Lineares na Álgebra Linear EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS Equção Liner * Sej,,,...,, (números reis) e n (n ) 2 3 n x, x, x,..., x (números reis) 2 3 n Chm-se equção Liner sobre

Leia mais

Capítulo 2 Movimento Retilíneo

Capítulo 2 Movimento Retilíneo Cpíulo Moimeno Reilíneo. Deslocmeno, empo e elocidde médi Eemplo: Descreer o moimeno de um crro que nd em linh re Anes de mis nd, emos que: - Modelr o crro como um prícul - Definir um referencil: eio oriendo

Leia mais

UFGD 2015 DANIEL KICHESE

UFGD 2015 DANIEL KICHESE Quesão 59: º) Deermnação dos ponos de nerseção: 5 5 º Pono : B 5 5 º Pono : C 5 5 º Pono : B C C º) Deermnação da Área: B 5 5 5 / e 0 e 5 5 5 5 e 0 5 5/ 5 5 0 0 0 5 5 Resposa: E Quesão 60: Número de blhees

Leia mais

Universidade Federal de Viçosa DEPARTAMENTO DE MATEMÁTICA MAT Cálculo Dif. e Int. I PRIMEIRA LISTAA

Universidade Federal de Viçosa DEPARTAMENTO DE MATEMÁTICA MAT Cálculo Dif. e Int. I PRIMEIRA LISTAA Universidde Federl de Viços DEPARTAMENTO DE MATEMÁTICA MAT - Cálculo Dif e In I PRIMEIRA LISTAA Memáic básic Professors: Gbriel e Crin Simplifique: ) b ) 9 c ) d ) ( 9) e ) 79 f ) g ) ) ) i j ) Verddeiro

Leia mais

PROCESSO MARKOVIANO DE DECISÃO APLICADO AO CONTROLE DE ADMISSÕES EM HOSPITAIS ELETIVOS

PROCESSO MARKOVIANO DE DECISÃO APLICADO AO CONTROLE DE ADMISSÕES EM HOSPITAIS ELETIVOS PROCSSO MARKOVIANO D DCISÃO APLICADO AO CONTROL D ADMISSÕS M HOSPITAIS LTIVOS Luz Gulherme Nl Nunes Ree Srh e Hosps e Reblção e Insuo Nconl e Pesquss spcs SMHS-501, Conuno A, Brsíl, DF, 70335-901 gulhermenl@gml.com

Leia mais

Como a x > 0 para todo x real, segue que: a x = y y 1. Sendo f -1 a inversa de f, tem-se que f -1 (y)= log a ( y y 1 )

Como a x > 0 para todo x real, segue que: a x = y y 1. Sendo f -1 a inversa de f, tem-se que f -1 (y)= log a ( y y 1 ) .(TA - 99 osidere s firmções: - Se f: é um fução pr e g: um fução qulquer, eão composição gof é um fução pr. - Se f: é um fução pr e g: um fução ímpr, eão composição fog é um fução pr. - Se f: é um fução

Leia mais

xy 1 + x 2 y + x 1 y 2 x 2 y 1 x 1 y xy 2 = 0 (y 1 y 2 ) x + (x 2 x 1 ) y + (x 1 y 2 x 2 y 1 ) = 0

xy 1 + x 2 y + x 1 y 2 x 2 y 1 x 1 y xy 2 = 0 (y 1 y 2 ) x + (x 2 x 1 ) y + (x 1 y 2 x 2 y 1 ) = 0 EQUAÇÃO DA RETA NO PLANO 1 Equção d ret Denominmos equção de um ret no R 2 tod equção ns incógnits x e y que é stisfeit pelos pontos P (x, y) que pertencem à ret e só por eles. 1.1 Alinhmento de três pontos

Leia mais

Curso: Engenharia Industrial Elétrica

Curso: Engenharia Industrial Elétrica urso: Egehr Idustrl Elétr Aálse de vráves omlexs MAT 6 Turm: Semestre:. Professor: Edmry S. B. Arújo Teor de Itegrção omlex Teor de Itegrção Resodeu Jesus: Em verdde, em verdde te dgo: quem ão ser d águ

Leia mais

3. CÁLCULO INTEGRAL EM IR

3. CÁLCULO INTEGRAL EM IR 3 CÁLCULO INTEGRAL EM IR A importâni do álulo integrl em IR reside ns sus inúmers plições em vários domínios d engenhri, ms tmém em ísi, em teori ds proiliddes, em eonomi, em gestão 3 Prtição de um intervlo

Leia mais

Universidade do Vale do Rio dos Sinos UNISINOS Programa de Pós-Graduação em Engenharia Mecânica. Ajuste de equações

Universidade do Vale do Rio dos Sinos UNISINOS Programa de Pós-Graduação em Engenharia Mecânica. Ajuste de equações Unversdde do Vle do Ro dos Snos UNISINOS Progrm de Pós-Grdução em Engenhr Mecânc Ajuste de equções Ajuste de curvs Técnc usd pr representr crcterístcs e comportmento de sstems térmcos. Ddos representdos

Leia mais

Exemplos de pilares mistos

Exemplos de pilares mistos Pilre Mio Exemplo de pilre mio Peri meálio reveido om beão Peri ubulre irulre heio om beão Peri meálio prilmene reveido om beão Peri ubulre heio om beão reveindo um peril bero Peri ubulre rengulre heio

Leia mais

Gabarito da 2 a lista de MAT )u.v = Este produto interno representa o valor do estoque representado pelo vetor u.

Gabarito da 2 a lista de MAT )u.v = Este produto interno representa o valor do estoque representado pelo vetor u. Grio lis e MAT A forç resle em iesie N ireção o prir o semi-eio posiio os A eloie resle é m/h m âglo e -6 o sese O ião ee segir ireção -6 o soese Ese proo iero represe o lor o esoqe represeo pelo eor m

Leia mais

CÁLCULO I. 1 Volume. Objetivos da Aula. Aula n o 25: Volume por Casca Cilíndrica e Volume por Discos

CÁLCULO I. 1 Volume. Objetivos da Aula. Aula n o 25: Volume por Casca Cilíndrica e Volume por Discos CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeid Aul n o 25: Volume por Csc Cilíndric e Volume por Discos Objetivos d Aul Clculr o volume de sólidos de revolução utilizndo técnic do volume por csc

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear NOS DE UL Geometri nlíti e Álger Liner rnsformções Lineres Professor: Lui Fernndo Nunes Dr 8/Sem_ Geometri nlíti e Álger Liner ii Índie 6 rnsformções Lineres 6 Definição 6 Imgem de um trnsformção liner

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática. Primeira Lista de Exercícios MAT 241 Cálculo III

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática. Primeira Lista de Exercícios MAT 241 Cálculo III Universidade Federal de Viçosa Cenro de Ciências Exaas e Tecnológicas Deparameno de Maemáica Primeira Lisa de Exercícios MAT 4 Cálculo III Julgue a veracidade das afirmações abaixo assinalando ( V para

Leia mais

V ( ) 3 ( ) ( ) ( ) ( ) { } { } ( r ) 2. Questões tipo exame Os triângulos [ BC Da figura ao lado são semelhantes, pelo que: BC CC. Pág.

V ( ) 3 ( ) ( ) ( ) ( ) { } { } ( r ) 2. Questões tipo exame Os triângulos [ BC Da figura ao lado são semelhantes, pelo que: BC CC. Pág. António: c ; Diogo: ( ) i e ; Rit: e c Pág Se s firmções dos três migos são verddeirs, firmção do António é verddeir, pelo que proposição c é verddeir e, consequentemente, proposição c é fls Por outro

Leia mais

COMPENSAÇÃO ANGULAR E REMOÇÃO DA COMPONENTE DE SEQÜÊNCIA ZERO NA PROTEÇÃO DIFERENCIAL DE TRANSFORMADORES

COMPENSAÇÃO ANGULAR E REMOÇÃO DA COMPONENTE DE SEQÜÊNCIA ZERO NA PROTEÇÃO DIFERENCIAL DE TRANSFORMADORES SHWETZER ENGNEERNG LORTORES, OMERL LTD OMPENSÇÃO NGULR E REMOÇÃO D OMPONENTE DE SEQÜÊN ZERO N PROTEÇÃO DFERENL DE TRNSFORMDORES Por Rfel rdoso. NTRODUÇÃO O prinípio d proteção diferenil é de que som ds

Leia mais

16.4. Cálculo Vetorial. Teorema de Green

16.4. Cálculo Vetorial. Teorema de Green ÁLULO VETORIAL álculo Vetoril pítulo 6 6.4 Teorem de Green Nest seção, prenderemos sore: O Teorem de Green pr váris regiões e su plicção no cálculo de integris de linh. INTROUÇÃO O Teorem de Green fornece

Leia mais

Física A Semi-Extensivo V. 2

Física A Semi-Extensivo V. 2 Físic A Semi-Exensio V. Exercícios ) C q = 6 ) A q = 3) A + q = 3 s b) Eixo x (MRU) x = x + D = q D =. 3 + + D = 4 3 m c) Eixo y (MRUV) No eixo y x = x y +. y h =.,8 =. =,4 s No eixo x x = x + D = D =

Leia mais

ATIVIDADES PARA SALA PÁG. 7

ATIVIDADES PARA SALA PÁG. 7 Resouções píuo 8 Pirâide 0 TIIDDES PR SL PÁG. 7 Se 0 do d se. Te-se é que. picndo o Teore de Piáors, é possíve enconrr o póe d pirâide (): 0 Se-se que ur é dd por, e que é res do eredro. ssi, 0 0. 0 É

Leia mais

Física I FEP111 ( )

Física I FEP111 ( ) Físic I FEP 4345) º Semesre de 3 Insiuo de Físic Uniersidde de São Pulo Professor: Vldir Guimrães E-mil: ldirg@if.usp.br Fone: 39.74 4 e 5 de goso Moimeno Unidimensionl Noção cienífic Vmos conencionr escreer

Leia mais

3 Como os coeficientes angulares de ambas as retas são iguais (de valor 4), as retas são paralelas.

3 Como os coeficientes angulares de ambas as retas são iguais (de valor 4), as retas são paralelas. UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL COLÉGIO DE APLICAÇÃO - INSTITUTO DE MATEMÁTICA LABORATÓRIO DE PRÁTICA DE ENSINO EM MATEMÁTICA Pofessoes: Luis Mzzei e Min Duo Acêmicos: Mcos Vinícius e Diego Mtinelli

Leia mais

Marcus Vinícius Dionísio da Silva (Angra dos Reis) 9ª série Grupo 1

Marcus Vinícius Dionísio da Silva (Angra dos Reis) 9ª série Grupo 1 Mrcus Vinícius Dionísio d Silv (Angr dos Reis) 9ª série Grupo 1 Tutor: Emílio Ruem Btist Júnior 1. Introdução: Este plno de ul tem o ojetivo gerl de mostrr os lunos um processo geométrico pr resolução

Leia mais

6.2 Sabendo que as matrizes do exercício precedente representam transformações lineares 2 2

6.2 Sabendo que as matrizes do exercício precedente representam transformações lineares 2 2 Cpítulo Vlores própros e vectores própros. Encontrr os vlores e vectores própros ds seguntes mtrzes ) e) f). Sendo que s mtrzes do exercíco precedente representm trnsformções lneres R R, represente s rects

Leia mais

Cinética Eletroquímica: Eletrodo Simples Cinética do Eletrodo Misto: Equações de Wagner-Traud e Tafel Efeito do Transporte de Massa

Cinética Eletroquímica: Eletrodo Simples Cinética do Eletrodo Misto: Equações de Wagner-Traud e Tafel Efeito do Transporte de Massa Cnét Eletrquím: Eletrd Smples Cnét d Eletrd Mst: Equções de Wgner-Trud e Tfel Efet d Trnsprte de Mss Detlhes: Le de Frdy Equçã Gerl d Cnét d Eletrd Butler-Vlmer Equlíbr: Energ de Atvçã pr reduçã e xdçã

Leia mais

ÁLGEBRA LINEAR - 1. MATRIZES

ÁLGEBRA LINEAR - 1. MATRIZES ÁLGEBRA LINEAR - 1. MATRIZES 1. Conceios Básicos Definição: Chmmos de mriz um el de elemenos disposos em linhs e coluns. Por exemplo, o recolhermos os ddos populção, áre e disânci d cpil referenes à quros

Leia mais

Sequências Teoria e exercícios

Sequências Teoria e exercícios Sequêcs Teor e exercícos Notção forml Defmos um dd sequêc de úmeros complexos por { } ( ) Normlmete temos teresse em descobrr um fórmul fechd que sej cpz de expressr o -ésmo termo d sequêc como fução de

Leia mais

CÁLCULO I. Aula n o 29: Volume. A(x i ) x = i=1. Para calcularmos o volume, procedemos da seguinte maneira:

CÁLCULO I. Aula n o 29: Volume. A(x i ) x = i=1. Para calcularmos o volume, procedemos da seguinte maneira: CÁLCULO I Prof. Mrcos Diniz Prof. André Almeid Prof. Edilson Neri Júnior Prof. Emerson Veig Prof. Tigo Coelho Aul n o 29: Volume. Objetivos d Aul Clculr o volume de sólidos de revolução utilizndo o método

Leia mais

Cálculo Diferencial e Integral I - Turma C 26 de Junho de 2015

Cálculo Diferencial e Integral I - Turma C 26 de Junho de 2015 Cálculo Diferencial e Inegral I - Turma C 6 e Junho e 5 Quesão................................................................................ 7 Calcule as inegrais abaixo: ( ) πx (a) ( poins) x cos Soluion:

Leia mais

Lista de Exercícios 4 Cinemática

Lista de Exercícios 4 Cinemática Lis de Eercícios 4 Cinemáic. Fís1 633303 04/1 G.1 E.4 p. 14 IF UFRJ 2004/1 Físic 1 IFA (prof. Mr) 1. Um objeo em elocidde ~ ± consne. No insne ± = 0, o eor posição do objeo é ~r ±. Escre equção que descree

Leia mais

Matemática. 2 log 2 + log 3 + log 5 log 5 ( ) 10 2 log 2 + log 3 + log. 10 log. 2 log 2 + log 3 + log 10 log 2 log 10 log 2.

Matemática. 2 log 2 + log 3 + log 5 log 5 ( ) 10 2 log 2 + log 3 + log. 10 log. 2 log 2 + log 3 + log 10 log 2 log 10 log 2. Mtemátic Aotno-se os vlores log = 0,30 e log 3 = 0,48, riz equção x = 60 vle proximmente: ), b),8 c) 4 ),4 e),67 x = 60 log x = log 60 x. log = log (. 3. ) x = x = log + log 3 + log log 0 log + log 3 +

Leia mais

Método de Gauss-Seidel

Método de Gauss-Seidel Método de Guss-Sedel É o ms usdo pr resolver sstems de equções lneres. Suponhmos que temos um sstem A=b e que n= Vmos resolver cd equção em ordem um ds vráves e escrevemos 0/0/9 MN em que Método de Guss-Sedel

Leia mais

RELAÇÕES MÉTRICAS E TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO

RELAÇÕES MÉTRICAS E TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO Mtemáti RELÇÕES MÉTRIS E TRIGONOMETRI NO TRIÂNGULO RETÂNGULO 1. RELÇÕES MÉTRIS Ddo o triângulo retângulo io:. RELÇÕES TRIGONOMÉTRIS Sej o triângulo retângulo io: n m Temos: e são os tetos; é ipotenus;

Leia mais

Técnicas de Linearização de Sistemas

Técnicas de Linearização de Sistemas EA66 Pro. Vo Ze DCA/FEEC/Uc éccs e Lerzção e Sses Iroção ese óco vos recorrer reqüeeee éccs e lerzção e sse ão-ler e oro e oo e oerção. Iso ere qe o sse ler resle se lso co se s oeross erres e álse váls

Leia mais

Módulo 03. Determinantes. [Poole 262 a 282]

Módulo 03. Determinantes. [Poole 262 a 282] Móulo Not m, ltur sts potmtos ão sps moo lum ltur tt lor prpl r Cm-s à tção pr mportâ o trlo pssol rlzr plo luo rsolvo os prolms prstos lor, sm osult prév s soluçõs proposts, áls omprtv tr s sus rspost

Leia mais

Definição 0.1. Define se a derivada direcional de f : R n R em um ponto X 0 na direção do vetor unitário u como sendo: df 0) = lim t 0 t (1)

Definição 0.1. Define se a derivada direcional de f : R n R em um ponto X 0 na direção do vetor unitário u como sendo: df 0) = lim t 0 t (1) Cálculo II - B profs.: Heloisa Bauzer Medeiros e Denise de Oliveira Pino 1 2 o semesre de 2017 Aulas 11/12 derivadas de ordem superior/regra da cadeia gradiene e derivada direcional Derivadas direcionais

Leia mais

Módulo de Matrizes e Sistemas Lineares. Operações com Matrizes

Módulo de Matrizes e Sistemas Lineares. Operações com Matrizes Módulo de Mtrzes e Sstems Lneres Operções com Mtrzes Mtrzes e Sstems Lneres Operções com Mtrzes 1 Exercícos Introdutóros Exercíco 1. Encontre o vlor de () 2 A. 1/2 A. 3 A. Exercíco 2. Determne ) A + B.

Leia mais

Determinação dos Momentos de Encastramento Perfeito. Um membro de secção constante ligando os nós i e j está representado na figura.

Determinação dos Momentos de Encastramento Perfeito. Um membro de secção constante ligando os nós i e j está representado na figura. eternção os oentos e Encstrento Perfeto U ebro e secção constnte gno os nós e está represento n fgur. A su trz e rgez reconr s forçs eercs ns etrees co os esocentos que í surge. y, sto é, = y A eor Resstênc

Leia mais

Dep. Matemática e Aplicações 27 de Abril de 2011 Universidade do Minho 1 o Teste de Teoria das Linguagens. Proposta de resolução

Dep. Matemática e Aplicações 27 de Abril de 2011 Universidade do Minho 1 o Teste de Teoria das Linguagens. Proposta de resolução Dep. Mtemátic e Aplicções 27 de Aril de 2011 Universidde do Minho 1 o Teste de Teori ds Lingugens Lic. Ciêncis Computção Propost de resolução 1. Considere lingugem L = A sore o lfeto A = {,}. Durção: 2

Leia mais

TÉCNICAS PARA REDUÇÃO DO NÚMERO DE ITERAÇÕES NO MÉTODO DE PONTOS INTERIORES

TÉCNICAS PARA REDUÇÃO DO NÚMERO DE ITERAÇÕES NO MÉTODO DE PONTOS INTERIORES Sepember 4-8, 0 Ro e Jnero, Brl TÉCNICAS PARA REDUÇÃO DO NÚMERO DE ITERAÇÕES NO MÉTODO DE PONTOS INTERIORES Lln F. Ber Depo e Memác Aplc - IMECC - UNICAMP 3083-859 - Cmpn - SP lln@me.uncmp.br Crl T. L.

Leia mais

Conceitos básicos População É constutuida por todos os elementos que são passíveis de ser analisados de tamanho N

Conceitos básicos População É constutuida por todos os elementos que são passíveis de ser analisados de tamanho N sísc Coceos áscos opulção É cosuud por odos os elemeos que são pssíves de ser lsdos de mho mosrgem Sucojuo d populção que é eecvmee lsdo com um ddo mho mosr leór mosr ode cd elemeo d populção êm hpóeses

Leia mais

EXEMPLO 3 - CONTINUAÇÃO

EXEMPLO 3 - CONTINUAÇÃO AJUSTE A U POLINÔIO Se curv f for jusd um polômo de gru, eremos f * () 0 Segudo o mesmo procedmeo eror, chegremos o segue ssem ler: m L O L L 0 EXEPLO Os ddos bo correspodem o volume do álcool ídrco em

Leia mais

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c.

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c. EQUAÇÃO DO GRAU Você já estudou em série nterior s equções do 1 gru, o gru de um equção é ddo pelo mior expoente d vriável, vej lguns exemplos: x + = 3 equção do 1 gru já que o expoente do x é 1 5x 8 =

Leia mais

Sólidos semelhantes. Segmentos proporcionais Área Volume

Sólidos semelhantes. Segmentos proporcionais Área Volume Sólios semelntes Segmentos proporcionis Áre olume Sólios semelntes Consiere um pirâmie cuj se é um polígono qulquer: Se seccionrmos ess pirâmie por um plno prlelo à se, iiiremos pirâmie em ois outros sólios:

Leia mais

4. Teorema de Green. F d r = A. dydx. (1) Pelas razões acima referidas, a prova deste teorema para o caso geral está longe

4. Teorema de Green. F d r = A. dydx. (1) Pelas razões acima referidas, a prova deste teorema para o caso geral está longe 4 Teorem de Green Sej U um berto de R 2 e r : [, b] U um cminho seccionlmente, fechdo e simples, isto é, r não se uto-intersect, excepto ns extremiddes Sej região interior r([, b]) prte d dificuldde n

Leia mais

Se entregar em papel, por favor, prenda esta folha de rosto na sua solução desta lista, deixando-a em branco. Ela será usada na

Se entregar em papel, por favor, prenda esta folha de rosto na sua solução desta lista, deixando-a em branco. Ela será usada na 1 2 Cálculo Numérico List numero 04 Curvs com gnuplot trcisio.prcino@gmil.com T. Prcino-Pereir Dep. e Computção lun@: 17 e bril e 2013 Univ. Estul Vle o Acrú Documento escrito com L A TEX sis. op. Debin/Gnu/Linux

Leia mais

Extrapolação de Richardson

Extrapolação de Richardson Etrpolção de Rirdson Apesr de todos os visos em relção à etrpolção, qui temos um eepção, em que, prtir de dus determinções de um integrl se lul um tereir, mis preis. 3/5/4 MN Etrpolção de Rirdson E é epressão

Leia mais

1 Integral Indefinida

1 Integral Indefinida Itegrl Idefiid. Método d Sustituição (ou Mudç de Vriável) pr Itegrção As fórmuls de primitivção ão mostrm omo lulr s itegris Idefiids do tipo 5x + 7 Ms lgums vezes, é possível determir itegrl de um dd

Leia mais

Recordando produtos notáveis

Recordando produtos notáveis Recordndo produtos notáveis A UUL AL A Desde ul 3 estmos usndo letrs pr representr números desconhecidos. Hoje você sbe, por exemplo, que solução d equção 2x + 3 = 19 é x = 8, ou sej, o número 8 é o único

Leia mais

Análise de Algoritmos Gabarito da Primeira Prova

Análise de Algoritmos Gabarito da Primeira Prova Análise e Algoritmos Gbrito Primeir Prov Tópios: Funmentos e nálise e lgoritmos e lgoritmos pr orenção Instituto e Ciênis Exts, Universie e Brsíli 22 e bril e 2009 Prof. Muriio Ayl-Rinón Funmentos: relções

Leia mais

Suavização de Isolinhas por Meio de Spline de Catmull-Rom

Suavização de Isolinhas por Meio de Spline de Catmull-Rom Suvição e Isolinhs por Meio e Spline e Cull-Ro LAÉRCIO MASSARU NAMIKAWA INPE - Insiuo Nionl e Pesquiss Espiis Ci Posl 55-0-097 - São José os Cpos - SP, Brsil lerio@pi.inpe.r Asr This pper esries he use

Leia mais

Revisão de Matemática Simulado 301/302. Fatorial. Análise combinatória

Revisão de Matemática Simulado 301/302. Fatorial. Análise combinatória Revsão de Mtemátc Smuldo / Ftorl Eemplos: )! + 5! =! b) - Smplfcr (n+)! (n-)! b) Resolv s equções: (+)! = Permutção Smples Análse combntór Permutções são grupmentos com n elementos, de form que os n elementos

Leia mais

Aula 1b Problemas de Valores Característicos I

Aula 1b Problemas de Valores Característicos I Unversdde Federl do ABC Aul b Problems de Vlores Crcterístcos I EN4 Dnâmc de Fludos Computconl EN4 Dnâmc de Fludos Computconl . U CASO CO DOIS GRAUS DE LIBERDADE EN4 Dnâmc de Fludos Computconl Vbrção em

Leia mais