4.1 Definição e interpretação geométrica de integral definido. Somas de Darboux.

Tamanho: px
Começar a partir da página:

Download "4.1 Definição e interpretação geométrica de integral definido. Somas de Darboux."

Transcrição

1 Aálse Memá I - Ao Levo 006/ Cálulo Iegrl emr 4. Defção e erpreção geomér de egrl defdo. Soms de Drou. Def.4.- Sej f() um fução oíu o ervlo [, ]. M e m o mámo e o mímo vlor d fução, respevmee. Se desgrmos por K o ojuo dos poos: {(, y) R : e 0 y f ( ) }, e α( K ) áre do m α ( k) M. ojuo K, emos que ( ) ( ) α o º por defeo e o º por eesso, ms ão se poderá dzer que esses erros são gerlmee pequeos. m(-) e M(-) são vlores promdos de ( K ) Proedmos d segue form : osder-se os segues + poos, = 0,,,...,, = = 0 < < <... < < = = 0 = 0,..., =, 7ª ul eór Pág. 36

2 Aálse Memá I - Ao Levo 006/007 Como fução f() resrgd d ervlo [, ] (I=, ), é oíu, em mámo M e mímo Desgmos por s = m + m +... m e s = M + M M s - desg-se som feror e s som superor. m. Como m, urlmee s s M Cosderemos < < m f ( ξ ) M m f ( ξ ) M ξ, ξ é rráro m = = f ( ξ ) M = s s s som egrl pr fução f() Qudo má. 0 ( + ) se s soms egrs verem o mesmo lme I, dz-se que f() é egrável o ervlo [, ] e o lme I hm-se egrl defdo d fução f() o ervlo[, ]. lm f(ξ ) = f ( ) m 0 = 7ª ul eór Pág. 37

3 Aálse Memá I - Ao Levo 006/007 - Lme feror do egrl - Lme superor do egrl X - vrável de egrção Teorem 4. Se f(): [ ] R egrável o ervlo [,] Teorem4.3 Se f:[ ] R eão: f ( ) 0, é ou eão f() é., é egrável e f() 0, [, ] 4. Propreddes do Iegrl Defdo Teorem 4.4 Sej f:[, ] R um fução egrável e K um ose eão: kf ( ) = k f ( ) Teorem 4.5 Sejm f e g: I R(I=[, ] ) egráves, eão: f ( ) + g( ) = f ( ) + g( ) Teorem 4.6 Sejm f e g: I R egráves, e f() g() I, eão: f ( ) g( ) Prop. 4.7 Sej f: I Rum fução egrável, e m, M o vlor mímo e o vlor mámo d fução em I, eão: m( ) f ( ) M( ) Teorem 4.8 f ( ) f ( ) f ( ) = + Sej f: I Rum fução egrável, e I, eão 7ª ul eór Pág. 38

4 Aálse Memá I - Ao Levo 006/007 Teorem 4.9- Regr de Newo-Lez ou de Brrow Sej f:[, ] R um fução oíu, eão: f ( ) = F( ) F( ) ode F() e F() desgm os vlores de um prmv de f(), luldos os poos e, respevmee. f ( ) = F( ) = F( ) F( ) + 3 d Noção: [ ] Clule: 4.3. Méodos de Cálulo Mudç de vrável. Teorem 4. 0 Sej f:[, ] R um fução oíu e =ϕ( ), l que ϕ( ) e ϕ ( ) α, β om ϕ α são oíus o ervlo [ ] ( ) = e ( ) =. Se f[ ϕ( )] esá defd e é oíu o ervlo [ α, β] ϕ β eão: β f ( ) = f [ ϕ( ) ] ϕ ( ) d α Iegrção por pres. u v = [ uv] uv fg = Fg Fg ou [ ] 7ª ul eór Pág. 39

5 Aálse Memá I - Ao Levo 006/ Alrgmeo do oeo de egrl 5.. Iegrs om lmes fos Def. 5. Sej um fução oíu defd um ervlo + + eão: f ( ) = lm f ( ) + f [, [, Se o lme lm ( ) ese e é fo dz-se que o + egrl + f ( ) ese ou overge. Se o lme ão ese ou é fo dz-se que o egrl ão ese ou dverge. Alogmee: f ( ) = lm f ( ) f ( ) = f ( ) + f ( ) + + = lm f ( ) + lm ( ) e s f s + Eerío: Iegrl de um fução desoíu Sej f() um fução defd um ervlo [ [ desoíu em, eão f ( ) = lm f ( )., e f() O egrl dz-se overgee se o lme esr e for fo e dvergee o so oráro. 7ª ul eór Pág. 40

6 Aálse Memá I - Ao Levo 006/007 Sej f() um fução desou em [ ] f ( ) = f ( ) + f ( ) = lm f ( ) + lm f ( ) +,, eão: Noe: os egrs em 5. e 5. dzem-se egrs mprópros. Eemplos: ) ) 0 6. Cojuos emr 6.. Ssem de oordeds regulres e polres. Ssem de oordeds regulres Hulmee, osder-se dus res perpedulres e mesm udde de omprmeo em ms, pr represer o ojuo R, e rês res, perpedulres dus dus pr 3 represer o ojuo R. R Y 0 y P(,y) X R 3 Z z P(,y,z) y Y X 7ª ul eór Pág. 4

7 Aálse Memá I - Ao Levo 006/007 Ssem de oordeds polres Um ssem ulzdo por vezes, pr represer o ojuo R, é o desgdo por ssem de oordeds polres, e osse em defr d poo P R por dos vlores; ρ dsâ à orgem e θ o âgulo formdo pels sem-res OX, OP. Assm P f defdo pelo pr ( ρ,θ ), em que ρ o e θ [ o, π[ R Ese urlmee um orrespodê ere os dos ssems de oordeds: = ρ os( θ) ρ = + y y = ρse( θ) e θ = rg y 7. Aplções geomérs 7. Cálulo de áres em oordeds regulres º so y 0 Se f() o, [, ] e f() egrável em [ ],, eão: f ( ) ode om áre do ojuo {(, ) : 0 ( )} K = y R y f ρ K θ P f() Eemplo: Clule áre y = 3, =, = e o eo OX 7ª ul eór Pág. 4

8 Aálse Memá I - Ao Levo 006/007 º so Se f() mud de sl um úmero fo de vezes, áre, delmd pelo gráfo de f() e pelo eo OX deerm-se por f( ) = [ F( ) ] = F ( ) F( ) ou, deermdo s rízes A= A + A + A A + A + 0 Eemplo: Deerme áre delmd por: y=se(), eo OX, =0 e =π 3º so, áre delmd pels urvs f() e g() e pels res = e = é dd Sej f(), g() defds em [, ] e f() g(), [ ] por: ( ) f( ) g( ) = f( ) g( ) A f() g() Eemplo: Deerme áre lmd por: y = e y = 7. Cálulo de áres em oordeds polres θ A = ρ dθ θ Eerío: lule áre de um ruferê de ro r. 7ª ul eór Pág. 43

9 Aálse Memá I - Ao Levo 006/ Cálulo do omprmeo de um ro em oordeds regulres. Sej f() um fução defd em [, ], o omprmeo do ro S f f(), f() sore o gráfo de f() é ddo por: = + ( ( )) f() 7.4 Cálulo do Volume de um sóldo de revolução Sej f() defd o ervlo [, ], o volume gerdo pel roção d áre lmd pel urv y=f() em oro do eo OX é ddo por: = π ( ) = π f ( ) V f Eemplo: Deerme o volume de revolução gerdo pel roção, y R : 0 y e 0, em oro do de π d regão A= ( ) eo do X. { } 7ª ul eór Pág. 44

INTEGRAIS {(, ) ; 0 ( ( ) } y f x x e a x b. Figura 1.1

INTEGRAIS {(, ) ; 0 ( ( ) } y f x x e a x b. Figura 1.1 Cpíulo INTEGRAIS Nese cpíulo esudremos o coceo de egrl e sus propreddes A egrl em mus plcções geomer (cálculo de áre de regões pls, comprmeo de rco e cálculo de volume) e físc (cálculo de rlho, mss e momeo

Leia mais

k 0 4 n NOTAS DE AULA A Integral Definida

k 0 4 n NOTAS DE AULA A Integral Definida NOTS DE UL Itegrl Defd Som de Rem Teorem Fudmetl do Cálulo: Itegrl Defd Áre so um Curv [Eemplos e plções] Comprmeto de um Curv Pl Ls [ou Suve] Teorem do Vlor Médo pr Itegrs SOM DE RIEMNN Notção: k k Eemplos:

Leia mais

EXEMPLO 3 - CONTINUAÇÃO

EXEMPLO 3 - CONTINUAÇÃO AJUSTE A U POLINÔIO Se curv f for jusd um polômo de gru, eremos f * () 0 Segudo o mesmo procedmeo eror, chegremos o segue ssem ler: m L O L L 0 EXEPLO Os ddos bo correspodem o volume do álcool ídrco em

Leia mais

2.1. Integrais Duplos (definição de integral duplo)

2.1. Integrais Duplos (definição de integral duplo) Análise Mtemáti II- no letivo 6/7.. Integris uplos (efinição e integrl uplo) Pr melhor ompreener efinição e integrl uplo vmos omeçr por olor o seguinte esfio: Tene eterminr o volume o sólio que está im

Leia mais

Fórmulas de quadratura do tipo Gauss associadas aos polinômios similares: propriedades e exemplos

Fórmulas de quadratura do tipo Gauss associadas aos polinômios similares: propriedades e exemplos Fórls de qdrr do po Gss ssocds os polôos slres: propreddes e exeplos Algcoe Sr Rg Depo de Cêcs de Copção e Esísc IILCE UNESP 554- São José do Ro Preo SP E-l: rg@lceespr Del Olver Veroe Uversdde Federl

Leia mais

Curso: Engenharia Industrial Elétrica

Curso: Engenharia Industrial Elétrica urso: Egehr Idustrl Elétr Aálse de vráves omlexs MAT 6 Turm: Semestre:. Professor: Edmry S. B. Arújo Teor de Itegrção omlex Teor de Itegrção Resodeu Jesus: Em verdde, em verdde te dgo: quem ão ser d águ

Leia mais

TP062-Métodos Numéricos para Engenharia de Produção Sistemas Lineares Métodos Iterativos

TP062-Métodos Numéricos para Engenharia de Produção Sistemas Lineares Métodos Iterativos TP6-Métodos Numércos pr Egehr de Produção Sstems Leres Métodos Itertvos Prof. Volmr Wlhelm Curt, 5 Resolução de Sstems Leres Métodos Itertvos Itrodução É stte comum ecotrr sstems leres que evolvem um grde

Leia mais

Métodos Numéricos Sistemas Lineares Métodos Iterativos. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Sistemas Lineares Métodos Iterativos. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numércos Sstems Leres Métodos Itertvos Professor Volmr Eugêo Wlhelm Professor Mr Kle Resolução de Sstems Leres Métodos Itertvos Itrodução É stte comum ecotrr sstems leres que evolvem um grde porcetgem

Leia mais

séries de termos positivos e a n b n, n (div.) (conv.)

séries de termos positivos e a n b n, n (div.) (conv.) Teorem.9 Sej e b i) (div.) ii) b º Critério de Comprção séries de termos positivos e b, N b (div.) (cov.) (cov.) Estude turez d série = sbedo que,! Ν! Teorem.0 º Critério de Comprção Sejm 0, b > 0 e lim

Leia mais

Proposta de resolução do Exame Nacional de Matemática A 2017 (1 ạ fase) GRUPO I (Versão 1)

Proposta de resolução do Exame Nacional de Matemática A 2017 (1 ạ fase) GRUPO I (Versão 1) Propost de resolução do Exme Ncol de Mtemátc A 07 ( ạ fse) GRUPO I (Versão ). Pretede-se determr qutos úmeros turs de qutro lgrsmos, múltplos de, se podem formr com os lgrsmos de 9. Nests codções, só exste

Leia mais

Como a x > 0 para todo x real, segue que: a x = y y 1. Sendo f -1 a inversa de f, tem-se que f -1 (y)= log a ( y y 1 )

Como a x > 0 para todo x real, segue que: a x = y y 1. Sendo f -1 a inversa de f, tem-se que f -1 (y)= log a ( y y 1 ) .(TA - 99 osidere s firmções: - Se f: é um fução pr e g: um fução qulquer, eão composição gof é um fução pr. - Se f: é um fução pr e g: um fução ímpr, eão composição fog é um fução pr. - Se f: é um fução

Leia mais

CCI-22 CCI-22. 6) Ajuste de Curvas. Matemática Computacional

CCI-22 CCI-22. 6) Ajuste de Curvas. Matemática Computacional CCI- CCI- eá Copuol Ajuse de Curvs éodo dos íos Qudrdos Regressão er Irodução CCI- éodo dos íos Qudrdos Regressão ler Ajuse u polôo Ajuse ours urvs Quldde do juse Irodução CCI- éodo dos íos Qudrdos Regressão

Leia mais

Método de Eliminação de Gauss

Método de Eliminação de Gauss étodo de Elmção de Guss A de ásc deste método é trsformr o sstem A um sstem equvlete A () (), ode A () é um mtrz trgulr superor, efectudo trsformções elemetres sore s lhs do sstem ddo. Cosdere-se o sstem

Leia mais

Universidade Federal de Alfenas

Universidade Federal de Alfenas Uversdde Federl de Alfes Projeto e Aálse de Algortmos Aul 03 Fudmetos Mtemátos pr PAA humerto@.ufl-mg.edu.r Aul Pssd... Cotexto hstóro: Dedldde; O Teorem de Kurt Gödel; Máqu de Turg; Prolems Trtáves e

Leia mais

Integrais Duplos. Definição de integral duplo

Integrais Duplos. Definição de integral duplo Itegris uplos Recorde-se defiição de itegrl de Riem em : Um fução f :,, limitd em,, é itegrável à Riem em, se eiste e é fiito lim m j 0 j1 ft j j j1. ode P 0,, um qulquer prtição de, e t 1,,t um sequêci

Leia mais

Sequências Teoria e exercícios

Sequências Teoria e exercícios Sequêcs Teor e exercícos Notção forml Defmos um dd sequêc de úmeros complexos por { } ( ) Normlmete temos teresse em descobrr um fórmul fechd que sej cpz de expressr o -ésmo termo d sequêc como fução de

Leia mais

Revisão de Álgebra Linear

Revisão de Álgebra Linear UleseMG Curso de Especlzção em Auomção e Corole Revsão de Álger Ler Deção de mrz Um mrz rel ou comple é um ução que cd pr ordedo,j o cojuo S m ssoc um úmero rel ou compleo. Um orm muo comum e prác pr represer

Leia mais

1.6- MÉTODOS ITERATIVOS DE SOLUÇÃO DE SISTEMAS LINEARES PRÉ-REQUISITOS PARA MÉTODOS ITERATIVOS

1.6- MÉTODOS ITERATIVOS DE SOLUÇÃO DE SISTEMAS LINEARES PRÉ-REQUISITOS PARA MÉTODOS ITERATIVOS .6- MÉTODOS ITRATIVOS D SOLUÇÃO D SISTMAS LINARS PRÉ-RQUISITOS PARA MÉTODOS ITRATIVOS.6.- NORMAS D VTORS Defção.6.- Chm-se orm de um vetor,, qulquer fução defd um espço vetorl, com vlores em R, stsfzedo

Leia mais

A Integral Definida. A definição da integral definida utiliza a soma de muitos termos. Assim, para expressar tais

A Integral Definida.  A definição da integral definida utiliza a soma de muitos termos. Assim, para expressar tais A Itegrl Defd wwwcttmtr/log Itegrl Defd ou de Rem Notção Sgm A defção d tegrl defd utlz som de mutos termos Assm, pr epressr ts soms, troduzmos otção greg, cujo símolo é que correspode à letr S pr sgfcr

Leia mais

Universidade Federal da Bahia UFBA. Adriano Pedreira Cattai

Universidade Federal da Bahia UFBA. Adriano Pedreira Cattai Uversdde Federl d Bh UFBA Deprtmeto de Mtemátc Cálculo Dferecl e Itegrl II :: 6. Adro Pedrer Ctt http://www.luospgmt.uf.r/droctt/ [clcr Eso ] Itegrl Defd ou de Rem Notção Sgm A defção d tegrl defd utlz

Leia mais

Definição: Sejam dois números inteiros. Uma matriz real é uma tabela de números reais com m linhas e n colunas, distribuídos como abaixo:

Definição: Sejam dois números inteiros. Uma matriz real é uma tabela de números reais com m linhas e n colunas, distribuídos como abaixo: I MTRIZES Elemeos de Álgebr Lier - MTRIZES Prof Emíli / Edmé Defiição: Sem dois úmeros ieiros Um mriz rel é um bel de úmeros reis com m lihs e colus, disribuídos como bixo: ( ) i m m m m Cd elemeo d mriz

Leia mais

Dinâmica de uma partícula material de massa constante

Dinâmica de uma partícula material de massa constante ísc Gel Dâc de u ícul el de ss cose Dâc de u ícul el de ss cose Iodução Dâc É o esudo d elção esee ee o oeo de u coo e s cuss desse oeo. Ese oeo é o esuldo d ecção co ouos coos que o cec. s ecções são

Leia mais

Conceitos básicos População É constutuida por todos os elementos que são passíveis de ser analisados de tamanho N

Conceitos básicos População É constutuida por todos os elementos que são passíveis de ser analisados de tamanho N sísc Coceos áscos opulção É cosuud por odos os elemeos que são pssíves de ser lsdos de mho mosrgem Sucojuo d populção que é eecvmee lsdo com um ddo mho mosr leór mosr ode cd elemeo d populção êm hpóeses

Leia mais

CCI-22 CCI-22. Ajuste de Curvas. Matemática Computacional. Regressão Linear. Ajuste de Curvas

CCI-22 CCI-22. Ajuste de Curvas. Matemática Computacional. Regressão Linear. Ajuste de Curvas CCI- CCI- eá Copuol Ause e Curvs Crlos Herque Q. Forser Nos opleeres Ause e Curvs Apl-se os seues sos: Erpolção: vlores or o ervlo elo Vlores o erros proveees e oservções Cosse e: Deerr prâeros que ee

Leia mais

Nº de sucessos ,3277 0,4096 0,2048 0,0512 0,0064 0,0003. n Limite superior de 0,025 0,01 0,0025 0,000625

Nº de sucessos ,3277 0,4096 0,2048 0,0512 0,0064 0,0003. n Limite superior de 0,025 0,01 0,0025 0,000625 Capíulo Problema 0 Nº de sucessos 0 4 5 0,0 0, 0,4 0,6 0,8,0 P 0,77 0,4096 0,048 0,05 0,0064 0,000 E 0, p ; 0,0 5 Problema 0 4 0 5 00 400 Lme superor de 0,05 0,0 0,005 0,00065 Lme superor de p^ 0,00 0,05

Leia mais

Otimização Linear curso 1. Maristela Santos (algumas aulas: Marcos Arenales) Solução Gráfica

Otimização Linear curso 1. Maristela Santos (algumas aulas: Marcos Arenales) Solução Gráfica Otmzção Ler curso Mrstel Stos (lgums uls: Mrcos Areles) Solução Gráfc Otmzção Ler Modelo mtemátco c c c ) ( f Mmzr L fução obetvo sueto : m m m m b b b L M L L restrções ( ) 0 0 0. codção de ão-egtvdde

Leia mais

2-TRANSFORMAÇÃO DE COORDENADAS: PARÂMETROS DE REPRESENTAÇÃO

2-TRANSFORMAÇÃO DE COORDENADAS: PARÂMETROS DE REPRESENTAÇÃO 2-TANSFOMAÇÃO DE COODENADAS: PAÂMETOS DE EPESENTAÇÃO 2.1 Cosseos Dreores e a Mar de oação Seam dos ssemas caresaos um de referêca e ouro fo um corpo rígdo defdos pelos ssemas ( e ( respecvamee que são

Leia mais

Capítulo V INTEGRAIS DE SUPERFÍCIE

Capítulo V INTEGRAIS DE SUPERFÍCIE Cpítulo V INTEAIS DE SUPEFÍCIE Cpítulo V Iters de Superfíce Cpítulo V Vmos flr sobre ters sobre superfíces o espço tr-dmesol Estes ters ocorrem em problems evolvedo fluídos e clor electrcdde metsmo mss

Leia mais

m Retas perpendiculares:

m Retas perpendiculares: IF / álulo I e II Prof. Júlo ésr OMIO PRODUO NOÁVEI EQUÇÃO DO º GRU (QUDRÁI ( ( o R* e, R ( ( (.( (.( Resolução: o e produto ds ríes: FUNÇÃO ONNE ou y o R I f ( { } sedo que: 4 e. FUNÇÃO POINOMI DO º GRU

Leia mais

INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana.

INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana. INTEGRAL DEFINIDO O oneito de integrl definido está reliondo om um prolem geométrio: o álulo d áre de um figur pln. Vmos omeçr por determinr áre de um figur delimitd por dus rets vertiis, o semi-eio positivo

Leia mais

Álgebra Linear e Geometria Analítica

Álgebra Linear e Geometria Analítica Álger iner e Geometri nlti º Folh de poio o estudo Sumário: ü Operções lgris om mtrizes: dição de mtrizes multiplição de um eslr por um mtriz e multiplição de mtrizes. ü Crtersti de um mtriz. Eerios resolvidos.

Leia mais

CAP. IV INTERPOLAÇÃO POLINOMIAL

CAP. IV INTERPOLAÇÃO POLINOMIAL CAP. IV INTERPOLAÇÃO POLINOMIAL INTRODUÇÃO Muts fuções são cohecds es um cojuto fto e dscreto de otos de um tervlo [,b]. Eemlo: A tbel segute relco clor esecífco d águ e temertur: temertur (ºC 5 3 35 clor

Leia mais

Algumas Distribuições de Probabilidade Discretas. p n. (, para todo i = 1,..., n. Os valores da média e da variância desta distribuição são:

Algumas Distribuições de Probabilidade Discretas. p n. (, para todo i = 1,..., n. Os valores da média e da variância desta distribuição são: robbldde e Esís I Aoo Roque Aul Alums Dsrbuções de robbldde Dsres Alums vráves leórs dsres odem ser usds om muo suesso r modelr eros feômeos de eresse ráo, or eemlo, dsrbução boml. Vmos reser lums ds ms

Leia mais

3. CÁLCULO INTEGRAL EM IR

3. CÁLCULO INTEGRAL EM IR 3 CÁLCULO INTEGRAL EM IR A importâni do álulo integrl em IR reside ns sus inúmers plições em vários domínios d engenhri, ms tmém em ísi, em teori ds proiliddes, em eonomi, em gestão 3 Prtição de um intervlo

Leia mais

3 Integral Indefinida

3 Integral Indefinida 3 Itegrl Idefiid 3. Método d Sustituição (ou Mudç de Vriável) pr Itegrção As fórmuls de primitivção ão mostrm omo lulr s itegris Idefiids do tipo 5x + 7 Ms lgums vezes, é possível determir itegrl de um

Leia mais

DINÂMICA DA CORDA VIBRANTE. A equação da onda unidimensional: por que deveríamos estudar o deslocamento de uma corda

DINÂMICA DA CORDA VIBRANTE. A equação da onda unidimensional: por que deveríamos estudar o deslocamento de uma corda DINÂMICA DA CORDA VIBRANTE A eqação da oda idimesioal: por qe deveríamos esdar o desloameo de ma orda Cosidere ma orda de omprimeo, levemee esiada: Na figra o desloameo em sido proposialmee eagerado...

Leia mais

AULA Produto interno em espaços vectoriais reais ou complexos Produto Interno. Norma. Distância.

AULA Produto interno em espaços vectoriais reais ou complexos Produto Interno. Norma. Distância. Note bem: a letura destes apotametos ão dspesa de modo algum a letura ateta da bblografa prcpal da cadera Chama-se a ateção para a mportâca do trabalho pessoal a realzar pelo aluo resoledo os problemas

Leia mais

f(x) dx. Note que A é a área sob o gráfico

f(x) dx. Note que A é a área sob o gráfico FFCLRP-USP AULA-INTEGRAL - CÁLCULO II- ECONOMIA Professor: Jir Silvério dos Sntos PROPRIEDADES DA INTEGRAL Sejm f,g : [,b] R funções integráveis. Então (i) [f(x) + g(x)]dx = (ii) Se λ é um número rel,

Leia mais

Professor Mauricio Lutz FUNÇÃO LOGARÍTMICA

Professor Mauricio Lutz FUNÇÃO LOGARÍTMICA Professor Muriio Lutz LOGARITMO ) Defiição FUNÇÃO LOGARÍTMICA Chm-se ritmo de um úmero N, positivo, um se positiv e diferete de um, todo úmero, devemos elevr pr eotrr o úmero N Ou sej ÎÂ tl que é o epoete

Leia mais

Complexidade de Algoritmos

Complexidade de Algoritmos Complexdde de Algortmos Prof. Dego Buchger dego.uchger@outlook.com dego.uchger@udesc.r Prof. Crsto Dm Vscocellos crsto.vscocellos@udesc.r Aálse de Complexdde de Tempo de Algortmos Recursvos Algortmos Recursvos

Leia mais

VETORES. Problemas Resolvidos

VETORES. Problemas Resolvidos Prolems Resolvidos VETORES Atenção Lei o ssunto no livro-teto e ns nots de ul e reproduz os prolems resolvidos qui. Outros são deidos pr v. treinr PROBLEMA 1 Dois vetores, ujos módulos são de 6e9uniddes

Leia mais

EXERCÍCIOS DE EQUAÇÕES DE DIFERENÇAS FINITAS

EXERCÍCIOS DE EQUAÇÕES DE DIFERENÇAS FINITAS MP Cálculo de Dfereçs Fs Bcreldo e Esísc IME/USP EXERCÍCIOS DE EQUÇÕES DE DIFERENÇS FINITS SOLUÇÕES E SUGESTÕES Bblogrf: [ETS] ppled Ecooerc Te Seres, Wler Eders, Cper : Dfferece Equos (dspoível e p://cgcpeuspbr/cdf/

Leia mais

CADERNO 1 (É permitido o uso de calculadora gráfica.)

CADERNO 1 (É permitido o uso de calculadora gráfica.) Proposta de teste de avalação [mao 09] Nome: Ao / Turma: N.º: Data: - - Não é permtdo o uso de corretor. Deves rscar aqulo que pretedes que ão seja classfcado. A prova clu um formuláro. As cotações dos

Leia mais

Métodos Numéricos Ajuste de Curva pelo Método dos Quadrados Mínimos-MQM. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Ajuste de Curva pelo Método dos Quadrados Mínimos-MQM. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numércos Ajuste de Curv pelo Método dos Qudrdos Mímos-MQM Professor Volmr Eugêo Wlhelm Professor Mr Kle Método dos Qudrdos Mímos Ajuste Ler Professor Volmr Eugêo Wlhelm Professor Mr Kle Método

Leia mais

massa molar do monómero: M 0 grau de polimerização: polímero de massa molar: M = N.M 0

massa molar do monómero: M 0 grau de polimerização: polímero de massa molar: M = N.M 0 ASSA OLAR mss molr do moómero: gru de olmerzção: olímero de mss molr: DISTRIBUIÇÃO DE ASSAS OLARES cdes de mss molr dstrução d mss molr Schulz dstruto umer eght 4 8 8 6 6 4 4 4 6 8 4 6 molr mss Fuções

Leia mais

TP062-Métodos Numéricos para Engenharia de Produção Ajuste de Curva pelo Método dos Quadrados Mínimos-MQM

TP062-Métodos Numéricos para Engenharia de Produção Ajuste de Curva pelo Método dos Quadrados Mínimos-MQM TP06-Métodos Numércos pr Egehr de Produção Ajuste de Curv pelo Método dos Qudrdos Mímos-MQM Prof. Volmr Wlhelm Curtb, 05 Método dos Qudrdos Mímos Ajuste Ler Prof. Volmr - UFPR - TP06 Método dos Qudrdos

Leia mais

Usando qualquer um dos métodos de primitivação indicados anteriormente, determine uma primitiva de cada uma das seguintes funções. e x e 2x + 2e x + 1

Usando qualquer um dos métodos de primitivação indicados anteriormente, determine uma primitiva de cada uma das seguintes funções. e x e 2x + 2e x + 1 Instituto Superior Técnico Deprtmento de Mtemátic Secção de Álgebr e Análise CÁLCULO DIFERENCIAL E INTEGRAL I LEIC-ALAMEDA o SEM. 7/8 6 FICHA DE EXERCÍCIOS I. Treino Complementr de Primitivs. CÁLCULO INTEGRAL

Leia mais

5 Termopar ouro/platina

5 Termopar ouro/platina 5 Termopr ouro/pl O ermopr AuP ulzdo ese rblho fo fbrdo pel Hr Sef, sedo de modelo 569 e úmero de defção 8-006. Esse srumeo fo osruído om fos de ouro e pl de purez superor 99,999% []. Pesquss de MLre &

Leia mais

MÉTODOS GRÁFICOS 1. INTRODUÇÃO:

MÉTODOS GRÁFICOS 1. INTRODUÇÃO: MÉTODO GRÁFICO. INTRODUÇÃO: Um gráfco é um mer coveete de se represetr um relção etre vlores epermets ou vlores teórcos) de dus ou ms grdezs, de form fcltr vsulzção, terpretção e obteção d fução mtemátc

Leia mais

Equações diferenciais ordinárias Euler e etc. Equações diferenciais ordinárias. c v m. dv dt

Equações diferenciais ordinárias Euler e etc. Equações diferenciais ordinárias. c v m. dv dt Euções derecs ordárs Euler e etc. Aul 7/05/07 Métodos Numércos Aplcdos à Eger Escol Superor Agrár de Combr Lcectur em Eger Almetr 006/007 7/05/07 João Noro/ESAC Euções derecs ordárs São euções composts

Leia mais

1 Integral Indefinida

1 Integral Indefinida Itegrl Idefiid. Método d Sustituição (ou Mudç de Vriável) pr Itegrção As fórmuls de primitivção ão mostrm omo lulr s itegris Idefiids do tipo 5x + 7 Ms lgums vezes, é possível determir itegrl de um dd

Leia mais

Solução Algébrica vs. Geométrica Exemplos em Robôs Industriais Exercícios Recomendados Bibliografia Recomendada

Solução Algébrica vs. Geométrica Exemplos em Robôs Industriais Exercícios Recomendados Bibliografia Recomendada SEM7 - Aul Cemát Iver de Muldore Robóto Prof. Dr. Mrelo Beker EESC - USP Sumáro d Aul Defçõe Solução Algébr v. Geométr Eemlo em Robô Idutr Eerío Reomeddo Bblogrf Reomedd EESC-USP M. Beker 7 / Defçõe Cemát

Leia mais

[ η. lim. RECAPITULANDO: Soluções diluídas de polímeros. Equação de Mark-Houwink-Sakurada: a = 0.5 (solvente θ )

[ η. lim. RECAPITULANDO: Soluções diluídas de polímeros. Equação de Mark-Houwink-Sakurada: a = 0.5 (solvente θ ) RECPITULNDO: Soluções dluíds de polímeros Vsosdde tríse do polímero: 5 N V 5 (4 / 3) R 3 v h π h N v [ η ] v 5 Pode ser obtd prtr de: [ η ] lm η 0 sp / V Equção de rk-houwk-skurd: [η] K ode K e são osttes

Leia mais

Espaços Vectoriais. Sérgio Reis Cunha. Outubro de Faculdade de Engenharia da Universidade do Porto

Espaços Vectoriais. Sérgio Reis Cunha. Outubro de Faculdade de Engenharia da Universidade do Porto APONTAMENTOS DE ÁLGEBRA Espços Vectors Sérgo Res Ch Otbro de Fcldde de Egehr d Uersdde do Porto Lcectr em Egehr Electrotécc e de Comptdores Espços Vectors Defção de Espço Vectorl / Defção de Espço Vectorl

Leia mais

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento.

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento. Prof. Lorí Vl, Dr. vll@mt.ufrgs.r http://www.mt.ufrgs.r/~vll/ Em muts stuções dus ou ms vráves estão relcods e surge etão ecessdde de determr turez deste relcometo. A álse de regressão é um técc esttístc

Leia mais

(fg) (x + T ) = f (x + T ) g (x + T ) = f (x) g (x) = (fg) (x). = lim. f (t) dt independe de a. f(s)ds. f(s)ds =

(fg) (x + T ) = f (x + T ) g (x + T ) = f (x) g (x) = (fg) (x). = lim. f (t) dt independe de a. f(s)ds. f(s)ds = LISTA DE EXERCÍCIOS - TÓPICOS DE MATEMÁTICA APLICADA (MAP 33 PROF: PEDRO T P LOPES WWWIMEUSPBR/ PPLOPES/TMA Os eercícios seguir form seleciodos dos livros dos utores G Folld (F, Djiro Figueiredo (D e E

Leia mais

Resolução: a) o menor valor possível para a razão r ; b) o valor do décimo oitavo termo da PA, para a condição do item a.

Resolução: a) o menor valor possível para a razão r ; b) o valor do décimo oitavo termo da PA, para a condição do item a. O segundo, o sétimo e o vigésimo sétimo termos de um Progressão Aritmétic (PA) de números inteiros, de rzão r, formm, nest ordem, um Progressão Geométric (PG), de rzão q, com qer ~ (nturl diferente de

Leia mais

CAP. IV INTERPOLAÇÃO POLINOMIAL

CAP. IV INTERPOLAÇÃO POLINOMIAL CAP. IV INTERPOLAÇÃO POLINOMIAL INTRODUÇÃO Muts fuções são cohecds es um cojuto fto e dscreto de otos de um tervlo [,b]. Eemlo: A tbel segute relco clor esecífco d águ e temertur: temertur (ºC 5 3 35 clor

Leia mais

Integrais duplas UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 24. Assunto: Integrais Duplas

Integrais duplas UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 24. Assunto: Integrais Duplas Assunto: Integris Dupls UNIVESIDADE FEDEAL DO PAÁ CÁLCULO II - POJETO NEWTON AULA 24 Plvrs-hves: integris dupls,soms de iemnn, teorem de Fubini Integris dupls Sej o retângulo do plno rtesino ddo por {(x,

Leia mais

Ajuste de curvas por quadrados mínimos lineares

Ajuste de curvas por quadrados mínimos lineares juste de cuvs o quddos mímos lees Fele eodo de gu e Wdele Iocêco oe Júo Egeh de s o. Peíodo Pofesso: ode Josué Bezue Dscl: Geomet lítc e Álgeb e. Itodução Utlzmos este método qudo temos um dstbução de

Leia mais

Revisão: Lei da Inércia 1ª Lei de Newton

Revisão: Lei da Inércia 1ª Lei de Newton 3-9-16 Sumário Uidde I MECÂNICA 1- d prícul Moimeos sob ção de um forç resule cose - Segud lei de Newo (referecil fio e referecil ligdo à prícul). - As compoees d forç. - Trjeóri cosoe s orieções d forç

Leia mais

Neste capítulo usaremos polinômios interpoladores de primeiro e segundo grau, que substituirão uma função de difícil solução por um polinômio.

Neste capítulo usaremos polinômios interpoladores de primeiro e segundo grau, que substituirão uma função de difícil solução por um polinômio. CAPÍULO INEGRAÇÃO NUMÉRICA. INRODUÇÃO Neste cpítulo usremos polômos terpoldores de prmero e segudo gru, que substturão um ução de dícl solução por um polômo. Sej :, b um ução cotíu em, b. A tegrl ded I

Leia mais

MÉTODO DA SUBSTITUIÇÃO OU MUDANÇA DE VARIÁVEL PARA INTEGRAÇÃO. As fórmulas de primitivação não mostram como calcular as integrais Indefinidas do tipo

MÉTODO DA SUBSTITUIÇÃO OU MUDANÇA DE VARIÁVEL PARA INTEGRAÇÃO. As fórmulas de primitivação não mostram como calcular as integrais Indefinidas do tipo MÉTODO DA SUBSTITUIÇÃO OU MUDANÇA DE VARIÁVEL PARA INTEGRAÇÃO As fórmuls de primitivção ão mostrm omo lulr s itegris Idefiids do tipo 5x + 7 ou os(4x) Ms lgums vezes, é possível determir itegrl de um dd

Leia mais

2. MODELO DETALHADO: Relações de Recorrência. Exemplo: Algoritmo Recursivo para Cálculo do Fatorial Substituição Repetida

2. MODELO DETALHADO: Relações de Recorrência. Exemplo: Algoritmo Recursivo para Cálculo do Fatorial Substituição Repetida . MODELO DETALHADO: Relações de Recorrêca Exemplo: Algortmo Recursvo para Cálculo do Fatoral Substtução Repetda T T ( ) ( ) t 1, T ( + t, > T ( ) T ( + t T ( ) ( T( ) + t + t ) + t T ( ) T ( ) T ( ) +

Leia mais

Universidade Federal de Pelotas Vetores e Álgebra Linear Prof a : Msc. Merhy Heli Rodrigues Matrizes

Universidade Federal de Pelotas Vetores e Álgebra Linear Prof a : Msc. Merhy Heli Rodrigues Matrizes Uiversidde Federl de Pelos Veores e Álgebr Lier Prof : Msc. Merhy Heli Rodrigues Mrizes. Mrizes. Defiição: Mriz m x é um bel de m. úmeros reis disposos em m lihs (fils horizois) e colus (fils vericis)..

Leia mais

3.1 Introdução Forma Algébrica de S n Forma Matricial de Sn Matriz Aumentada ou Matriz Completa do Sistema

3.1 Introdução Forma Algébrica de S n Forma Matricial de Sn Matriz Aumentada ou Matriz Completa do Sistema Cálculo Numérco Resolução de sstems de equções leres - Resolução de sstems de equções leres. Itrodução Város prolems, como cálculo de estruturs de redes elétrcs e solução de equções dferecs, recorrem resolução

Leia mais

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral Escol Superior de Agricultur Luiz de Queiroz Universidde de São Pulo Módulo I: Cálculo Diferencil e Integrl Teori d Integrção e Aplicções Professor Rent Alcrde Sermrini Nots de ul do professor Idemuro

Leia mais

GABARITO. 2 Matemática A. 08. Correta. Note que f(x) é crescente, então quanto menor for o valor de x, menor será sua imagem f(x).

GABARITO. 2 Matemática A. 08. Correta. Note que f(x) é crescente, então quanto menor for o valor de x, menor será sua imagem f(x). Eensivo V. Eercícios ) D y = log ( + ) Pr = : y = log ( + ) y = log y = Noe que o gráfico pss pel origem. Porno, únic lerniv possível é D. ) M + = log B B M + = log B B M + = log + log B B Como M = log

Leia mais

2. Utilização de retângulos para aproximar a área de uma região. 2. Utilização de retângulos para aproximar a área de uma região

2. Utilização de retângulos para aproximar a área de uma região. 2. Utilização de retângulos para aproximar a área de uma região UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Áre e Teorem Fudmetl

Leia mais

Derivada da função composta, derivada da função inversa, derivada da função implícita e derivada de funções definidas parametricamente.

Derivada da função composta, derivada da função inversa, derivada da função implícita e derivada de funções definidas parametricamente. .5.- Derivd d função compost, derivd d função invers, derivd d função implícit e derivd de funções definids prmetricmente. Teorem.3 Derivd d Função Compost Suponh-se que g: A R é diferenciável no ponto

Leia mais

x = u y = v z = 3u 2 + 3v 2 Calculando o módulo do produto vetorial σ u σ v : 9u 2 + 9v 2

x = u y = v z = 3u 2 + 3v 2 Calculando o módulo do produto vetorial σ u σ v : 9u 2 + 9v 2 MAT 255 - Cálculo Diferencial e Integral para Engenharia III a. Prova - 22/6/21 - Escola Politécnica Questão 1. a valor: 2, Determine a massa da parte da superfície z 2 x 2 + y 2 que satisfaz z e x 2 +

Leia mais

COLÉGIO SANTO IVO. Educação Infantil - Ensino Fundamental - Ensino Médio

COLÉGIO SANTO IVO. Educação Infantil - Ensino Fundamental - Ensino Médio COLÉGIO SANTO IVO Educção Iftil - Esio Fudmetl - Esio Médio Roteiro de Estudo pr Avlição do º Trimestre - 0 Discipli: Mtemátic e Geometri Série: º Ao EFII Profª Cristi Nvl O luo deverá : - Estudr o resumo

Leia mais

MODELOS DE EQUILÍBRIO DE FLUXO EM REDES. Prof. Sérgio Mayerle Depto. Eng. Produção e Sistemas UFSC/CTC

MODELOS DE EQUILÍBRIO DE FLUXO EM REDES. Prof. Sérgio Mayerle Depto. Eng. Produção e Sistemas UFSC/CTC MODELOS DE EQUILÍBRIO DE FLUXO EM REDES Pro. Sérgio Myerle Depo. Eng. Produção e Sisems UFSC/CTC Deinição Bási A rede é deinid por um gro ( N A onde: { } N...n G é um onjuno de nós { m} A... é um onjuno

Leia mais

Cinemática Inversa de Manipuladores Robóticos

Cinemática Inversa de Manipuladores Robóticos Aul Ciemáti Iver de Miuldore Robótio Prof. Ao. Mrelo Beker USP - EESC - SEM Sumário d Aul Defiiçõe Solução Algébri v. Geométri Eemlo em Robô Idutrii Eeríio Reomeddo Bibliogrfi Reomedd USP-EESC-SEM M. Beker

Leia mais

EAE Modelo de Insumo-Produto

EAE Modelo de Insumo-Produto EAE 598 Modelo de sumo-produto Modelo de sumo-produto Costruído prtr de ddos observáves fluxos terdustrs (us, $) Estrutur mtemátc equções cógts j f j EAE 598 Modelo de sumo-produto Setor Setor (Demd Fl)

Leia mais

Sistemas Série-Paralelo e

Sistemas Série-Paralelo e Capíulo 5 Cofabldade de semas ére-paralelo e Msos Flávo. Foglao uposções comus a odos os ssemas aalsados Cofabldade de ssemas é avalada um poo o empo; ou seja, compoees apreseam cofabldades esácas em.

Leia mais

Exemplo pág. 28. Aplicação da distribuição normal. Normal reduzida Z=(900 1200)/200= 1,5. Φ( z)=1 Φ(z)

Exemplo pág. 28. Aplicação da distribuição normal. Normal reduzida Z=(900 1200)/200= 1,5. Φ( z)=1 Φ(z) Exemplo pág. 28 Aplcação da dsrbução ormal Normal reduzda Z=(9 2)/2=,5 Φ( z)= Φ(z) Subsudo valores por recurso à abela da ormal:,9332 = Φ(z) Φ(z) =,668 Φ( z)= Φ(z) Φ(z) =,33 Φ(z) =,977 z = (8 2)/2 = 2

Leia mais

Kalecki: Investimento e ciclo. Profa. Maria Isabel Busato

Kalecki: Investimento e ciclo. Profa. Maria Isabel Busato Klek: nvesmeno e lo Prof. Mr sel Buso Klek: nvesmeno e lo A nálse íl é sed n nerção do po mulpldor e elerdor Onde: = sensldde do nvesmeno à S; = sensldde do nvesmeno à vrção no luro; = sensldde do nvesmeno

Leia mais

CAP. IV INTERPOLAÇÃO POLINOMIAL

CAP. IV INTERPOLAÇÃO POLINOMIAL CAP. IV INTERPOLAÇÃO POLINOMIAL INTRODUÇÃO Muts uções são cohecds pes um cojuto to e dscreto de potos de um tervlo [,b]. Eemplo: A tbel segute relco clor especíco d águ e tempertur: tempertur (ºC 5 5 clor

Leia mais

O processo de escolha de uma amostra da população é denominado de amostragem.

O processo de escolha de uma amostra da população é denominado de amostragem. O proeo de eolha de uma amora da população é deomiado de amoragem Méodo de e iferir obre uma população a parir do oheimeo de pelo meo uma amora dea população Eudo da relaçõe eória exiee ere uma população

Leia mais

Conceitos fundamentais

Conceitos fundamentais CF Coceo fdamea Exem parâmero qe caracerzam o a e qe permem a comparação ere ele. Valor médo Para m al qe e repee com m deermado ervalo peródco a expreão para calclar o valor médo ambém é ea. < < Ex: A

Leia mais

Universidade Federal Fluminense ICEx Volta Redonda Métodos Quantitativos Aplicados I Professora: Marina Sequeiros

Universidade Federal Fluminense ICEx Volta Redonda Métodos Quantitativos Aplicados I Professora: Marina Sequeiros Uiversidde Federl Flumiese ICE Volt Redod Métodos Qutittivos Aplicdos I Professor: Mri Sequeiros. Poliômios Defiição: Um poliômio ou fução poliomil P, vriável, é tod epressão do tipo: P)=... 0, ode IN,

Leia mais

GGE RESPONDE IME 2012 MATEMÁTICA 1

GGE RESPONDE IME 2012 MATEMÁTICA 1 0. O segundo, o sétio e o vigésio sétio teros de u Progressão Aritéti () de núeros inteiros, de rzão r, for, nest orde, u Progressão Geoétri (PG), de rzão q, o q e r IN* (nturl diferente de zero). Deterine:

Leia mais

LOGARÍTMOS 1- DEFINIÇÃO. log2 5

LOGARÍTMOS 1- DEFINIÇÃO. log2 5 -(MACK) O vlor de o, é : 00 LOGARÍTMOS - DEFINIÇÃO ) -/ b)-/6 c) /6 d) / e) -(UFPA) O vlor do ( 5 5 ) é: ) b) - c) 0 d) e) 0,5 -( MACK) Se y= 5 :. ( 0,0),etão 00 y vle : 5 )5 b) c)7 d) e)6 - ( MACK) O

Leia mais

Novo Espaço Matemática A, 12.º ano Proposta de teste de avaliação [março 2019]

Novo Espaço Matemática A, 12.º ano Proposta de teste de avaliação [março 2019] Propost de teste de vlição [mrço 09] Nome: Ao / Turm: N.º: Dt: - - Não é permitido o uso de corretor. Deves riscr quilo que pretedes que ão sej clssificdo. A prov iclui um formulário. As cotções dos ites

Leia mais

Aula 4. Interferência. - Refração e Lei de Snell: frequência e comprimento de onda - Mudança de fase - Experimento de Young

Aula 4. Interferência. - Refração e Lei de Snell: frequência e comprimento de onda - Mudança de fase - Experimento de Young Aula 4 Ierferêca - Refração e e de Sell: frequêca e comprmeo de oda - Mudaça de fase - Expermeo de Youg Refração e e de Sell Já vmos a e de Sell: s s ode c v Frequêca e Comprmeo de Oda a Refração Temos:

Leia mais

QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA.

QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. 006 PROVA CONHECIMENTOS ESPECÍFICOS MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetrl do Vestibulr Uificdo GABARITO

Leia mais

Hidrologia, Ambiente e Recursos Hídricos 2009 / Rodrigo Proença de Oliveira

Hidrologia, Ambiente e Recursos Hídricos 2009 / Rodrigo Proença de Oliveira Hdrologa, Ambete e Recursos Hídrcos 009 / 00 Rodrgo roeça de Olvera Aálse estatístca IST: Hdrologa, Ambete e Recursos Hídrcos Rodrgo roeça de Olvera, 009 Cocetos base Varável aleatóra oulação Fução de

Leia mais

Capítulo 4. Vetores. Recursos com copyright incluídos nesta apresentação:

Capítulo 4. Vetores. Recursos com copyright incluídos nesta apresentação: Cpítulo 4 Vetores Reursos om oprght nluídos nest presentção: Grndes eslres: mss, volume, tempertur,... Epresss por um número e undde Grndes vetors: deslomento, forç,... Requerem módulo, dreção, sentdo

Leia mais

DESIGUALDADES Onofre Campos

DESIGUALDADES Onofre Campos OLIMPÍADA BRASILEIRA DE MATEMÁTICA NÍVEL II SEMANA OLÍMPICA Slvdor, 9 6 de jeiro de 00 DESIGUALDADES Oofre Cmpos oofrecmpos@olcomr Vmos estudr lgums desigulddes clássics, como s desigulddes etre s médis

Leia mais

Função potencial de velocidade. - Equipotenciais são rectas verticais Função de corrente

Função potencial de velocidade. - Equipotenciais são rectas verticais Função de corrente Aerodiâmic Potecil Complexo Exemplos de plicção W z com R W x + i y Fução potecil de velocidde φ ( x, y) x, φ costte x costte - Equipoteciis são rects verticis Fução de correte ψ ( x, y) y, ψ costte y

Leia mais

Métodos Numéricos Integração Numérica Regra dos Trapézio. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Integração Numérica Regra dos Trapézio. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numéricos Itegrção Numéric Regr dos Trpézio Professor Volmir Eugêio Wilhelm Professor Mri Klei Itegrção Defiid Itegrção Numéric Itegrção Numéric Itegrção Defiid Há dus situções em que é impossível

Leia mais

XV. INTEGRAL DEFINIDA

XV. INTEGRAL DEFINIDA XV INTEGRAL DEFINIDA - Itegrl ded: sums superores e erores A ore do álulo tegrl remótse á épo de Arquímedes Gre, 87- C, que epó o método pr lulr áre determd por u segmeto de práol Bseáse e r promdo áre

Leia mais

TP062-Métodos Numéricos para Engenharia de Produção Integração Numérica Regra dos Trapézio

TP062-Métodos Numéricos para Engenharia de Produção Integração Numérica Regra dos Trapézio TP6-Métodos Numéricos pr Egehri de Produção Itegrção Numéric Regr dos Trpézio Prof. Volmir Wilhelm Curiti, 5 Itegrção Defiid Itegrção Numéric Prof. Volmir - UFPR - TP6 Itegrção Numéric Itegrção Defiid

Leia mais

B é uma matriz 2 x2;

B é uma matriz 2 x2; MTRIZES e DETERMINNTES Defiição: Mriz m é um bel de m, úmeros reis disposos em m lihs (fils horizois) e colus (fils vericis) Eemplos: é um mriz ; B é um mriz ; Como podemos or os eemplos e respecivmee,

Leia mais

4. Teorema de Green. F d r = A. dydx. (1) Pelas razões acima referidas, a prova deste teorema para o caso geral está longe

4. Teorema de Green. F d r = A. dydx. (1) Pelas razões acima referidas, a prova deste teorema para o caso geral está longe 4 Teorem de Green Sej U um berto de R 2 e r : [, b] U um cminho seccionlmente, fechdo e simples, isto é, r não se uto-intersect, excepto ns extremiddes Sej região interior r([, b]) prte d dificuldde n

Leia mais

{ 2 3k > 0. Num triângulo, a medida de um lado é diminuída de 15% e a medida da altura relativa a esse lado é aumentada

{ 2 3k > 0. Num triângulo, a medida de um lado é diminuída de 15% e a medida da altura relativa a esse lado é aumentada MATEMÁTICA b Sbe-se que o qudrdo de um número nturl k é mior do que o seu triplo e que o quíntuplo desse número k é mior do que o seu qudrdo. Dess form, k k vle: ) 0 b) c) 6 d) 0 e) 8 k k k < 0 ou k >

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão.4

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão.4 FICHA de AVALIAÇÃO de MATEMÁTICA A 5º Teste º Ao de escolridde Versão4 Nome: Nº Turm: Professor: José Tioco /4/8 Apresete o seu rciocíio de form clr, idicdo todos os cálculos que tiver de efetur e tods

Leia mais

3.18 EXERCÍCIOS pg. 112

3.18 EXERCÍCIOS pg. 112 89 8 EXERCÍCIOS pg Investigue continuidde nos pontos indicdos sen, 0 em 0 0, 0 sen 0 0 0 Portnto não é contínu em 0 b em 0 0 0 0 0 0 0 0 0 0 0 0 0 Portnto é contínu em 0 8, em, c 8 Portnto, unção é contínu

Leia mais

FFI 112: Física Matemática I. Material Didático # Funções de Bessel. Gabriela Arthuzo

FFI 112: Física Matemática I. Material Didático # Funções de Bessel. Gabriela Arthuzo FFI : Físic Mtemátic I Mteril Didático # 9... 7-6-4 Funções de Bessel Gbriel Arthuzo. Epressão gerl A função: g, t = e t t é chmd função gertriz ds funções de Bessel. Vmos epndi-l em um série de Lurent

Leia mais