Determinação dos Momentos de Encastramento Perfeito. Um membro de secção constante ligando os nós i e j está representado na figura.

Tamanho: px
Começar a partir da página:

Download "Determinação dos Momentos de Encastramento Perfeito. Um membro de secção constante ligando os nós i e j está representado na figura."

Transcrição

1 eternção os oentos e Encstrento Perfeto U ebro e secção constnte gno os nós e está represento n fgur. A su trz e rgez reconr s forçs eercs ns etrees co os esocentos que í surge. y, sto é, = y A eor Resstênc e ters ostr que pr u g suet à feão entre pontos crregos, peo que o esocento ter poe ser represento por u ponóo cúbco. Usno funções e for, o funento e ququer ponto nteréo o ebro consero poe ser o por : = =

2 = = + + +

3 = = + + +

4 OA : c coo eercíco o cso e que u os etreos é poo e o outro encstro. Por hpótese, esprez-se s eforções es o Esforço rnserso peo que poeos escreer Por outro o s secções pns nors o eo g, ntes eforção, nté-se pns epos feão e oo que u = y A Energ e eforção rzen e c ebro é por : U o o Pr s hpóteses consers sto poe ser escrto e teros o oento fector, seno o oento, y A A e curtur, k y Então, U s,

5 eos, U Coo, L k B E ss, poeos escreer segunte epressão : B B U

6 A Energ Potenc o nó ou orç o é o por : V A Energ Potenc ot o ste será : U V B B Pr stsfzer s conções e equíbro, o or tot Energ Potenc terá e ser estconáro e íno, sto é, U + V =, one nc que o ebro se efor e u oo ferente quee que correspone posção e equíbro. Coo os prâetros nepenentes s epressões que nos ão energ são os esocentos os nós, U V U V B B B B B B e B B y y

7 este eepo há pens ses ntegrs spes e s subtrzes poe ser ccus e u for epíct, ou e u for ger :

8 E então, resoeno toos os ntegrs teos : y y Utzção e os eos e referênc A es qunte ector poe ser referenc e reção os sstes e eos. Por eepo, forç O poe ser referenc e reção os eos, y e p, q.

9 s equções e equíbro, p q cos! sn! y y sn! cos! for trc, p q cos! sn! sn! cos! y pq y y pq OA : O conunto e ectores foros por nhs ou couns trz e trnsforção ou rotção são ectores ortogons untáros. Ass, prer nh e nte os coponentes e u ector untáro n recção p ret ente o sste e eos, y. A segun nh nte os coponentes e u ector untáro n recção q ret ente o sste, y. o cso o esocento O n nh e cção forç que pss peo nó estrutur ser consero, p q cos! sn! sn! cos! y pq y y pq Coo, é u trz ortogon, = e teros, pq pq y y

10 étoo Rgez pr Anáse trc e Estruturs Qutro etps báscs :. Equções reconno s forçs ns etrees os ebros co os esocentos nesses pontos são escrts consttuno-se trz e Rgez Loc.. A trz e Rgez tote estrutur é cop prtr s trzes e Rgez os ebros. Isto poe ser conseguo escreeno s equções e equíbro e c nó e ssuno que os ebros que se encontre no eso nó ão ter os esos esocentos. Quno trz e Rgez Gob ester sseb, conções e fronter são ports nos esocentos. este oo, os esocentos os poos rígos ão ser nuos, o que poe ser conseguo conno coefcentes e rgez pr sur cção e u sste estrutur go que prooc esss conções.. Coo crg prooc eforções n peç, u posção e equíbro poe ser cnç quno os esforços nternos ns etrees os ebros prouzos pe efor peç equbrre crg etern pc e c nó. tercer fse u conunto e equções neres poe ser obto reconno crgs pcs nos nós os esocentos nesss coorens. A soução esss equções -nos r os esocentos e c nó.. o qurto esto, os esforços ns etrees os ebros poe ser obtos utpcno s trzes e rgez ocs os esocentos nos eternos. O efeto estes esforços é cono o obto pr os ebros co nós boqueos pr eternr os efetos fns crg pc.

11 q p q p q p q p ou se, pq pq pq pq E c nó trz trnsforção é por,!!!! y q p cos sn sn cos ou se, pq = y!!!! q p y cos sn sn cos ou se, y = pq

12 este oo trz e rgez e c ebro refer o sste e eos gobs, e y, y y y y y y y y one = zeno s = sn! e c = cos! c s c c s sc s sc s c Os teros e são seehntes os e, s te sns opostos pr os teros e c s c c s sc s sc s c

13 Apênce = k = + + +

14 = k = k

15 Coo á fo sto nterorente, = y y one,

16 E então, resoeno toos os ntegrs teos : y y prer nh trz concuíos que : Agor, nsno segun nh tbé é fác concur que proocno u rotção untár no poo esquer não são ntrouzos esforços n estrutur. As restntes nhs trz poe ser nss e oo náogo à prer.

Subespaços invariantes, autovalores e autovetores

Subespaços invariantes, autovalores e autovetores UFF Áebr ner II - st 2 1 Subespços nvrntes, utovores e utovetores 1 Sej trnsformção ner efn por! #$ &% )*,-!10 ostre ue ' é um subespço nvrnte e 2 Sej 2 3 45 trnsformção ner efn por ostre ue ' 3 Sejm N!OFR

Leia mais

4,00 m. E, h, ν uniformes. Figura 1 Figura 2

4,00 m. E, h, ν uniformes. Figura 1 Figura 2 Ee de nálise de Estruturs I icencitur e Engenhri iil Responsáel: Prof. J.. eieir de reits 3 de Jneiro de ª Époc º Seestre Obserções: urção de h3in (º este) ou 3 hors (Ee). onsult pens do forulário e de

Leia mais

4- Método de Diferenças Finitas Aplicado às Equações Diferenciais Parciais.

4- Método de Diferenças Finitas Aplicado às Equações Diferenciais Parciais. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS 4- Métoo e Dereçs Fts Aplco às Equções Derecs Prcs. 4.- Aproção e Fuções. 4..- Aproção por Polôos. 4..- Ajuste e Dos: Míos Quros. 4.- Dervs e Itegrs

Leia mais

ANÁLISE DE ESTRUTURAS I

ANÁLISE DE ESTRUTURAS I IST - DECvl Dertento de Engenr Cvl NÁISE DE ESTRUTURS I Tels de nálse de Estruturs Gruo de nálse de Estruturs IST, IST - DECvl Gruo de nálse de Estruturs Foruláro de es Eq. de grnge: w w w q D Equção de

Leia mais

1- Resolução de Sistemas Lineares.

1- Resolução de Sistemas Lineares. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS - Resolução de Sstes Leres..- Mtrzes e Vetores..2- Resolução de Sstes Leres de Equções Algébrcs por Métodos Extos (Dretos)..3- Resolução de Sstes Leres

Leia mais

ANÁLISE DE ESTRUTURAS I

ANÁLISE DE ESTRUTURAS I IST - DECvl Deprtmento de Engenhr Cvl NÁISE DE ESTRUTURS I Tels de nálse de Estruturs Grupo de nálse de Estruturs IST, 0 Formuláro de es IST - DECvl Rotções: w w θ θ θ θ n θ n n Relção curvtur-deslocmento:

Leia mais

11.4 ANÁLISE TRIDIMENSIONAL DE EDIFÍCIOS - MODELO DE 3 GRAUS DE LIBERDADE POR PISO

11.4 ANÁLISE TRIDIMENSIONAL DE EDIFÍCIOS - MODELO DE 3 GRAUS DE LIBERDADE POR PISO .4 ANÁLISE RIDIMENSIONAL DE EDIFÍCIOS - MODELO DE 3 RAUS DE LIBERDADE POR PISO RIIDEZ INFINIA NO PLANO 3 grus e lbere / so v u z.4. ANÁLISE ESÁICA. DESLOCAMENOS, FORÇAS E EUAÇÕES DE EUILÍBRIO u v Desloceo

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA UNICAMP-FASE 2. 2014 RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA UNICAMP-FASE 2. 2014 RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA RESOLUÇÃO D PROV DE MTEMÁTIC UNICMP-FSE. PROF. MRI NTÔNI C. GOUVEI. é, sem úv, o lmento refero e mutos ulsts. Estm-se que o onsumo áro no Brsl sej e, mlhão e s, seno o Esto e São Pulo resonsável or % esse

Leia mais

RESISTÊNCIA DE MATERIAIS

RESISTÊNCIA DE MATERIAIS DEPRTENTO DE ENENHR CVL LCENCTUR E ENENHR CVL RESSTÊNC DE TERS (204/205) FLEÃO DESVD, EO NEUTRO B C 40 knm 60 x D E y RESOLUÇÃO DE EERCÍCO CONSDERNDO SEUNTE CONVENÇÃO: x x y σ y SBEL LV TELES DEPRTENTO

Leia mais

Exercícios 3. P 1 3 cm O Q

Exercícios 3. P 1 3 cm O Q Eercícios 3 1) um ponto e um cmpo elétrico, o vetor cmpo elétrico tem ireção horizontl, sentio ireit pr esquer e intensie 10 5 /C. Coloc-se, nesse ponto, um crg puntiforme e -2C. Determine intensie, ireção

Leia mais

CCI-22 CCI-22. Ajuste de Curvas. Matemática Computacional. Regressão Linear. Ajuste de Curvas

CCI-22 CCI-22. Ajuste de Curvas. Matemática Computacional. Regressão Linear. Ajuste de Curvas CCI- CCI- eá Copuol Ause e Curvs Crlos Herque Q. Forser Nos opleeres Ause e Curvs Apl-se os seues sos: Erpolção: vlores or o ervlo elo Vlores o erros proveees e oservções Cosse e: Deerr prâeros que ee

Leia mais

Matriz-coluna dos segundos membros das restrições técnicas. Matriz-linha dos coeficientes das variáveis de decisão, em f(x) = [ c c ] [ 6 8] e C a

Matriz-coluna dos segundos membros das restrições técnicas. Matriz-linha dos coeficientes das variáveis de decisão, em f(x) = [ c c ] [ 6 8] e C a Versão Mtrcl do Splex VI Versão Mtrcl do Splex Introdução onsdere-se o segunte odelo de PL: Mx () 6x + 8x 2 sujeto : 3x + 2x 2 3 5x + x 2 x, x 2 Mtrzes ssocds o odelo: Mtrz Tecnológc 3 5 2 Mtrz-colun ds

Leia mais

Seja o problema primal o qual será solucionado utilizando o método simplex Dual: (P)

Seja o problema primal o qual será solucionado utilizando o método simplex Dual: (P) PROGRAMA DE MESTRADO PROGRAMAÇÃO LIEAR PROFESSOR BALEEIRO Método Splex Dual no Tableau Garfnkel-ehauser E-al: abaleero@gal.co Ste: www.eeec.ufg.br/~baleero Sea o problea pral o qual será soluconado utlzando

Leia mais

MÉTODO DE HOLZER PARA VIBRAÇÕES TORCIONAIS

MÉTODO DE HOLZER PARA VIBRAÇÕES TORCIONAIS ÉODO DE HOZE PAA VIBAÇÕES OCIONAIS Este método prómdo é dequdo pr vgs com crcterístcs não unformes centuds, ou sstems com um número grnde de msss concentrds. Substtu-se o sstem contínuo por um sstem dscreto

Leia mais

Capítulo II ESPAÇOS VECTORIAIS

Capítulo II ESPAÇOS VECTORIAIS Cpítlo II ESPAÇOS VECTORIAIS Cpítlo II Espços Vectors Cpítlo II Cosdereos coto K o ql estão defds pelo eos ds operções: dt e ltplct sbolzds respectete por + e O coto K será corpo se: b K + b K + b b +

Leia mais

Exemplos relativos à Dinâmica (sem rolamento)

Exemplos relativos à Dinâmica (sem rolamento) Exeplos reltivos à Dinâic (se rolento) A resultnte ds forçs que ctu no corpo é iul o produto d ss pel celerção por ele dquirid: totl Cd corpo deve ser trtdo individulente, escrevendo u equção vectoril

Leia mais

Sistemas de Campo Magnético

Sistemas de Campo Magnético Sstemas e ampo Magnétco 1. onsere o segunte sstema electromagnétco. Amta que não há spersão. A peça a sombreao tem um grau e lberae seguno a recção. 12 cm 8 cm N y z 6 cm 12 cm N 120 esp. rfe 800 4 10

Leia mais

Módulo 4 Sistema de Partículas e Momento Linear

Módulo 4 Sistema de Partículas e Momento Linear Módulo 4 Sstea de Partículas e Moento Lnear Moento lnear Moento lnear (quantdade de oento) de ua partícula: Grandeza etoral Undades S.I. : kg./s p Moento lnear e ª Le de ewton: Se a assa é constante: F

Leia mais

Universidade Estadual de Mato Grosso do Sul Curso de Física - Laboratório de Física Experimental A

Universidade Estadual de Mato Grosso do Sul Curso de Física - Laboratório de Física Experimental A Unesdde Estdul de Mto Gosso do Sul Cuso de ísc - otóo de ísc Expeentl A Pof. Pulo Cés de Souz (ט) OTEIO DA EXPEIÊNCIA Nº 9 VISCOSÍMETO DE STOKES 1. Ojetos Estud o efeto do tto scoso nu fludo tés d qued

Leia mais

SOLUÇÃO COMECE DO BÁSICO

SOLUÇÃO COMECE DO BÁSICO SOLUÇÃO COMECE DO BÁSICO SOLUÇÃO CB1. [D] Sendo nulo o oento e relção o poio, teos: Mg 5 2Mg 10 x 2,5 10 x x 7,5 c SOLUÇÃO CB2. [D] Arthur é u corpo rígido e equilírio: Pr que ele estej e equilírio de

Leia mais

TÓPICOS. Exercícios. Os vectores que constituem as colunas da matriz, 1 = [ 2 0 1] T

TÓPICOS. Exercícios. Os vectores que constituem as colunas da matriz, 1 = [ 2 0 1] T Note em: letur destes pontmentos não dspens de modo lgum letur tent d logrf prncpl d cder Chm-se tenção pr mportânc do trlho pessol relzr pelo luno resolendo os prolems presentdos n logrf, sem consult

Leia mais

Universidade do Vale do Rio dos Sinos UNISINOS Programa de Pós-Graduação em Engenharia Mecânica. Ajuste de equações

Universidade do Vale do Rio dos Sinos UNISINOS Programa de Pós-Graduação em Engenharia Mecânica. Ajuste de equações 7//4 Unversdde do Vle do Ro dos Snos UNISINOS Progr de Pós-Grdução e Engenhr Mecânc Ajuste de equções Ajuste de curvs Técnc usd pr representr crcterístcs e coportento de sstes tércos. Ddos representdos

Leia mais

PROPRIEDADE E EXERCICIOS RESOLVIDOS.

PROPRIEDADE E EXERCICIOS RESOLVIDOS. PROPRIEDADE E EXERCICIOS RESOLVIDOS. Proprieddes:. Epoete Igul u(. Cosiderdo d coo se osse qulquer uero ou o d u letr que pode tor qulquer vlor. d d d e: d 9 9 9. Epoete Mior que U(. De u or gerl te-se:...

Leia mais

INTERPOLAÇÃO POLINOMIAL DE LAGRANGE E DE HERMITE INTRODUÇÃO

INTERPOLAÇÃO POLINOMIAL DE LAGRANGE E DE HERMITE INTRODUÇÃO Interpoação Ponoa de Lagrange e de Herte INTERPOLAÇÃO POLINOMIAL DE LAGRANGE E DE HERMITE INTRODUÇÃO Obetvando a preparação aos étodos de aproação a sere apcados à resoução nuérca de equações dferencas

Leia mais

Resoluções dos testes propostos

Resoluções dos testes propostos os fundentos d físic 1 Unidde D Cpítulo 11 Os princípios d Dinâic 1.0 Respost: rt-se do princípio d inérci ou prieir lei de Newton..05 Respost: d el equção de orricelli, teos: v v 0 α s (30) (10) α 100

Leia mais

WECIQ Artigos. Cheyenne R. G. Isidro, Bernardo Lula Júnior

WECIQ Artigos. Cheyenne R. G. Isidro, Bernardo Lula Júnior WECI 6 - Artgos U Algorto pr Trnsforr Autôtos Fntos Não- Deternístcos e Autôtos Fntos uântcos Preservno o Núero e Estos e Lnguge Reconhec Cheyenne R G Isro, Bernro Lul Júnor Deprtento e Sstes e Coputção

Leia mais

Física D Semiextensivo V. 3

Física D Semiextensivo V. 3 GBIO Físic D Seietensivo V Eercícios 01) E I Fls O eslocento é istânci entre crist (ou vle) té o ponto e equilíbrio on II Fls plitue ientific energi trnsport pel on III Fls O oviento hrônico siples ocorre

Leia mais

Pêndulo de Torção. Objetivo: Introdução teórica. Estudar a dependência do memento de inércia de um corpo com relação à sua forma.

Pêndulo de Torção. Objetivo: Introdução teórica. Estudar a dependência do memento de inércia de um corpo com relação à sua forma. FEP Pêndulo de Torção nstituto de Físic d Universidde de São Pulo Pêndulo de Torção Objetivo: Estudr deendênci do eento de inérci de u coro co relção à su for. ntrodução teóric O torque é definido coo:

Leia mais

MECÂNICA CLÁSSICA. AULA N o 8. Invariância de Calibre-Partícula em um Campo Eletromagnético-Colchetes de Poisson

MECÂNICA CLÁSSICA. AULA N o 8. Invariância de Calibre-Partícula em um Campo Eletromagnético-Colchetes de Poisson 1 MECÂNICA CLÁSSICA AULA N o 8 Invarânca de Calbre-Partícula e u Capo Eletroagnétco-Colchetes de Posson Vaos ver novaente, agora co as detalhes, o ovento de ua partícula carregada e u capo eletroagnétco,

Leia mais

sendo C uma constante, β = (kt) -1, k a constante de Boltzmann, T a temperatura do sistema e m a massa da molécula. FNC Física Moderna 2 Aula 8

sendo C uma constante, β = (kt) -1, k a constante de Boltzmann, T a temperatura do sistema e m a massa da molécula. FNC Física Moderna 2 Aula 8 Estatístca Quâtca Sstea físco co utos copoetes trataeto etalhao copleo aborae estatístca. Usaa co sucesso a físca clássca para escreer ssteas teroâcos. Relação etre propreaes obseraas e o coportaeto proáel

Leia mais

CAPÍTULO 6. Seja um corpo rígido C, de massa m e centro de massa G, realizando um movimento plano paralelo ao plano de referência xy, figura 6.1.

CAPÍTULO 6. Seja um corpo rígido C, de massa m e centro de massa G, realizando um movimento plano paralelo ao plano de referência xy, figura 6.1. 55 AÍTULO 6 DINÂMIA DO MOVIMENTO LANO DE OROS RÍIDOS O estdo d dnâc do copo ígdo pode se feto nclente tondo plcções de engenh onde o ovento é plno. Neste cpítlo vos nls s eqções d dnâc do copo ígdo, no

Leia mais

PME-2350 MECÂNICA DOS SÓLIDOS II AULA #1: FUNÇÕES DE MACAULAY 1

PME-2350 MECÂNICA DOS SÓLIDOS II AULA #1: FUNÇÕES DE MACAULAY 1 ME-50 MECÂNICA DOS SÓLIDOS II AULA #1: FUNÇÕES DE MACAULAY 1 11 Motição e objetios N náise estátic de estruturs formds por igs desej-se conhecer, ém ds tensões e deformções nos pontos mis soicitdos, os

Leia mais

DERIVADAS DAS FUNÇÕES SIMPLES12

DERIVADAS DAS FUNÇÕES SIMPLES12 DERIVADAS DAS FUNÇÕES SIMPLES2 Gil d Cost Mrques Fundentos de Mteátic I 2. Introdução 2.2 Derivd de y = n, n 2.2. Derivd de y = / pr 0 2.2.2 Derivd de y = n, pr 0, n =,, isto é, n é u núero inteiro negtivo

Leia mais

GGE RESPONDE IME 2012 MATEMÁTICA 1

GGE RESPONDE IME 2012 MATEMÁTICA 1 0. O segundo, o sétio e o vigésio sétio teros de u Progressão Aritéti () de núeros inteiros, de rzão r, for, nest orde, u Progressão Geoétri (PG), de rzão q, o q e r IN* (nturl diferente de zero). Deterine:

Leia mais

9.1 Indutores e Indutância

9.1 Indutores e Indutância Cpítuo 9 Indutânci 9.1 Indutores e Indutânci Neste cpítuo, estudmos os indutores e sus indutâncis, cujs proprieddes decorrem diretmente d ei de indução de Frdy. Cpcitores: Recpitução Lembre-se que, no

Leia mais

Dinâmica de uma partícula material de massa constante

Dinâmica de uma partícula material de massa constante ísc Gel Dâc de u ícul el de ss cose Dâc de u ícul el de ss cose Iodução Dâc É o esudo d elção esee ee o oeo de u coo e s cuss desse oeo. Ese oeo é o esuldo d ecção co ouos coos que o cec. s ecções são

Leia mais

Plano de Aula Leitura obrigatória Mecânica Vetorial para Engenheiros, 5ª edição revisada, Ferdinand P. Beer, E. Russell Johnston, Jr.

Plano de Aula Leitura obrigatória Mecânica Vetorial para Engenheiros, 5ª edição revisada, Ferdinand P. Beer, E. Russell Johnston, Jr. UC - Goás Curso: Engenhara Cvl Dscplna: Mecânca Vetoral Corpo Docente: Gesa res lano e Aula Letura obrgatóra Mecânca Vetoral para Engenheros, 5ª eção revsaa, ernan. Beer, E. ussell Johnston, Jr. Etora

Leia mais

Física I p/ IO FEP111 ( )

Física I p/ IO FEP111 ( ) Físca I p/ IO FEP (4300) º Seestre de 03 Insttuto de Físca Unersdade de São Paulo Proessor: Luz Carlos C M Nagane E-al: nagane@.usp.br Fone: 309.6877 4 e 0 de outubro Quantdade de Moento º Seestre de 03

Leia mais

Busca. Busca. Exemplo. Exemplo. Busca Linear (ou Seqüencial) Busca em Vetores

Busca. Busca. Exemplo. Exemplo. Busca Linear (ou Seqüencial) Busca em Vetores Busc e etores Prof. Dr. José Augusto Brnusks DFM-FFCP-USP Est ul ntroduz busc e vetores que está entre s trefs s freqüenteente encontrds e progrção de coputdores Serão borddos dos tpos de busc: lner (ou

Leia mais

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Fatorial [ ] = A. Exercícios Resolvidos. Exercícios Resolvidos ( ) ( ) ( ) ( )! ( ).

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Fatorial [ ] = A. Exercícios Resolvidos. Exercícios Resolvidos ( ) ( ) ( ) ( )! ( ). OSG: / ENSINO PRÉ-UNIVERSITÁRIO T MATEMÁTIA TURNO DATA ALUNO( TURMA Nº SÉRIE PROFESSOR( JUDSON SANTOS ITA-IME SEDE / / Ftorl Defção h-se ftorl de e dc-se or o úero turl defdo or: > se ou se A A A A Eercícos

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica PME 100 MEÂNI ecuperção 03 de fevereiro de 009 urção d Prov: 10 inutos (não é peritido o uso de ccudors) 1ª Questão (30 pontos): N estrutur esquetizd bixo brr é rticud nos pontos e brr é rticud e e e brr

Leia mais

III - GABARITO LISTA SALA

III - GABARITO LISTA SALA cício ião Li Fíic - GBTO LST SL oáic Foç éic, po éico, Ponci, pciânci, on iênci éic Pof. D. áuio S. Soi www.cuio.oi.no.b cu@uo.co.b. cício Soução: ()..5 pf (b).5 pf p.,5 ncon foç qu u cg cooc cono, c u

Leia mais

Proposta de resolução do Exame Nacional de Matemática A 2016 (1 ạ fase) GRUPO I (Versão 1)

Proposta de resolução do Exame Nacional de Matemática A 2016 (1 ạ fase) GRUPO I (Versão 1) Propost de resolução do Eme Nconl de Mtemátc A 06 ( ạ fse) GRUPO I (Versão ). Sbemos que P(A) =, P(B) = e P(A B) = 5 0 6 Assm, P(A B) P(A B) = = 6 P(B) 6 P(A B) = 6 0 P(A B) = 6 0 P(A B) = 0 Tem-se que

Leia mais

MATEMÁTICA. Questões de 01 a 12

MATEMÁTICA. Questões de 01 a 12 GRUPO TIPO A MAT. MATEMÁTICA Questões e. Consiere seqüênci e funções f sen, f sen, n fn sen,... e s áres gráficos no intervlo,. A, A, A,..., f sen,..., A n,..., efinis pelos respectivos Um luno e Cálculo,

Leia mais

Cinemática de uma Partícula Cap. 12

Cinemática de uma Partícula Cap. 12 MECÂNIC - DINÂMIC Cinemáti e um Prtíul Cp. Objetios Introuzir os oneitos e posição, eslomento, eloie e elerção Estur o moimento e um ponto mteril o longo e um ret e representr grfimente esse moimento Inestigr

Leia mais

PARTE II EQUILÍBRIO DA PARTÍCULA E DO CORPO RÍGIDO

PARTE II EQUILÍBRIO DA PARTÍCULA E DO CORPO RÍGIDO 1 PARTE II EQUILÍBRIO DA PARTÍULA E DO ORPO RÍGIDO Neste capítulo ncalente trataos do equlíbro de partículas. E seguda são apresentadas as defnções dos centros de gravdade, centros de assa e centródes

Leia mais

P PÓ P. P r r P P Ú P P. r ó s

P PÓ P. P r r P P Ú P P. r ó s P PÓ P P r r P P Ú P P r ó s P r r P P Ú P P ss rt çã s t à rs r t t r rt s r q s t s r t çã r str ê t çã r t r r P r r Pr r r ó s Ficha de identificação da obra elaborada pelo autor, através do Programa

Leia mais

Física Teórica II. 2ª Lista 2º semestre de 2015 ALUNO TURMA PROF. NOTA:

Física Teórica II. 2ª Lista 2º semestre de 2015 ALUNO TURMA PROF. NOTA: Físic Teóric 2ª List 2º semestre e 2015 LUNO TURM PROF NOT: 01) O fio mostro n figur consiste e ois seguimentos com iâmetros iferentes, ms são feitos o mesmo metl corrente no seguimento 1 é 1 ) Compre

Leia mais

Resoluções dos exercícios propostos

Resoluções dos exercícios propostos 1 P.380 Dados: t s; F 0 N Intensidade: I F t 0 I 40 N s Direção: a esa da força ertical Sentido: o eso da força de baixo para cia P.381 Dados: 0,6 kg; g 10 /s ; t 3 s P g 0,6 10 P 6 N Intensidade do ipulso:

Leia mais

Resolução 2 o Teste 26 de Junho de 2006

Resolução 2 o Teste 26 de Junho de 2006 Resolução o Teste de Junho de roblem : Resolução: k/m m k/m k m 3m k m m 3m m 3m H R H R R ) A estti globl obtém-se: α g = α e + α i α e = ret 3 = 3 = ; α i = 3 F lint = = α g = Respost: A estrutur é eteriormente

Leia mais

CAPÍTULO EXERCÍCIOS pg. 127

CAPÍTULO EXERCÍCIOS pg. 127 CAPÍTULO. EXERCÍCIOS pg.. Deerinr equção d re ngene às seguines curvs, nos ponos indicdos. Esboçr o gráico e cd cso..,,, ; R.. As igurs que segue osr s res ngenes pr os ponos e. Coo o vlor de é genérico

Leia mais

MECÂNICA CLÁSSICA. AULA N o 5. Aplicações do Lagrangeano Trajetória no Espaço de Fases para o Pêndulo Harmônico

MECÂNICA CLÁSSICA. AULA N o 5. Aplicações do Lagrangeano Trajetória no Espaço de Fases para o Pêndulo Harmônico 1 MECÂNICA CLÁSSICA AULA N o 5 Aplicações o Lagrangeano Trajetória no Espaço e Fases para o Pênulo Harônico Vaos ver três eeplos, para ostrar a aior faciliae a aplicação o Lagrangeano, quano coparaa ao

Leia mais

ATIVIDADES PARA SALA PÁG. 7

ATIVIDADES PARA SALA PÁG. 7 Resouções píuo 8 Pirâide 0 TIIDDES PR SL PÁG. 7 Se 0 do d se. Te-se é que. picndo o Teore de Piáors, é possíve enconrr o póe d pirâide (): 0 Se-se que ur é dd por, e que é res do eredro. ssi, 0 0. 0 É

Leia mais

Física I para Engenharia. Aula 7 Massa variável - colisões

Física I para Engenharia. Aula 7 Massa variável - colisões Físca I para Engenhara º Seestre de 04 Insttuto de Físca- Unersdade de São Paulo Aula 7 Massa aráel - colsões Proessor: Valdr Guarães E-al: aldrg@.usp.br Massa Contnuaente Varáel F res F res F res dp d(

Leia mais

Tratamento de Dados 2º Semestre 2005/2006 Tópicos de Resolução do Trabalho 1

Tratamento de Dados 2º Semestre 2005/2006 Tópicos de Resolução do Trabalho 1 Trataento de Dados º Seestre 5/6 Tópcos de Resolução do Trabalho. a) A éda, para dados não classfcados, é calculada a partr da segunte expressão: x x 57,75,555 Dado que a densão da aostra é par,, a edana

Leia mais

Equação do 2º grau. Sabemos, de aulas anteriores, que podemos

Equação do 2º grau. Sabemos, de aulas anteriores, que podemos A UA UL LA Equção do 2º gru Introdução Sbemos, de us nteriores, que podemos resover probems usndo equções. A resoução de probems peo método gébrico consiste em gums etps que vmos recordr: Representr o

Leia mais

Equação do 2º grau. Sabemos, de aulas anteriores, que podemos

Equação do 2º grau. Sabemos, de aulas anteriores, que podemos A UA UL LA Acesse: http://fuvestibur.com.br/ Equção do 2º gru Introdução Sbemos, de us nteriores, que podemos resover probems usndo equções. A resoução de probems peo método gébrico consiste em gums etps

Leia mais

F-128 Física Geral I. Aula Exploratória 09 Unicamp - IFGW. F128 2o Semestre de 2012

F-128 Física Geral I. Aula Exploratória 09 Unicamp - IFGW. F128 2o Semestre de 2012 F-8 Físca Geral I Aula Exploratóra 09 Uncap - IFGW F8 o Seestre de 0 C ext a F ) ( C C C z z z z z y y y y y x x x x x r C r C ext a dt r d dt r d dt r d F ) ( (esta é a ª le de ewton para u sstea de partículas:

Leia mais

1.3 O método da Decomposição LU A Decomposição LU. Teorema ( Teorema da Decomposição LU)

1.3 O método da Decomposição LU A Decomposição LU. Teorema ( Teorema da Decomposição LU) . O método d Decomposção U.. A Decomposção U Teorem.. ( Teorem d Decomposção U) Sej A m mtrz qdrd de ordem n, e A k o menor prncp, consttído ds prmers nhs e cons. Assmmos qe det(a k ) pr k,,..., n. Então

Leia mais

PRATIQUE EM CASA. m v m M v SOLUÇÃO PC1. [A]

PRATIQUE EM CASA. m v m M v SOLUÇÃO PC1. [A] PRATIQUE EM CASA SOLUÇÃO PC. Usndo Conservção d Quntidde de oviento entre o oento ntes do choque e o instnte ieditente pós o choque e considerndo colisão perfeitente elástic se perds de energi ecânic pr

Leia mais

F-128 Física Geral I. Aula exploratória-09b UNICAMP IFGW F128 2o Semestre de 2012

F-128 Física Geral I. Aula exploratória-09b UNICAMP IFGW F128 2o Semestre de 2012 F-8 Físic Gerl I Aul exlortóri-09b UNICAMP IFGW userne@ifi.unic.br F8 o Seestre e 0 Forçs e interção O resulto líquio forç e interção é fzer rir o oento liner s rtículs. Pel t f t f lei e Newton: f Ft

Leia mais

Esforços internos em vigas com cargas transversais

Esforços internos em vigas com cargas transversais Esforços internos Esforços internos em um estrutur crcterizm s igções interns de tensões, isto é, esforços internos são integris de tensões o ongo de um seção trnsvers de um rr. Esforços internos representm

Leia mais

1. Completa as frases A, B, C e D utilizando as palavras-chave seguintes:

1. Completa as frases A, B, C e D utilizando as palavras-chave seguintes: Fich e Trblho Moieno e forçs. COECÇÃO Escol Básic e Secunári Gonçles Zrco Ciêncis Físico-Quíics, 9º no Ano lecio / 7 Noe: n.º luno: Tur: 1. Cople s frses A, B, C e D uilizno s plrs-che seguines: ecoril

Leia mais

GABARITO / 6 TRU 003: Mecânica das Estruturas II T1000 e T2000 3a. Prova 17/11/2006

GABARITO / 6 TRU 003: Mecânica das Estruturas II T1000 e T2000 3a. Prova 17/11/2006 GRITO / TRU : ecânic ds struturs II T e T. Prov 7// ( ) ( Pontos). uestão: Sej treiç d figur, compost de brrs de mesm rigidez xi, e sujeit à crg vertic posiciond no nó centr inferior. Use o teorem de peyron

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO DEPARTAMENTO DE ENGENHARIA MECÂNICA

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO DEPARTAMENTO DE ENGENHARIA MECÂNICA SC PITÉCNIC UNISI SÃ PU ecânic P ª Prov 4/6/4 urção d Prov: inutos (Nã é peritido o uso de ccudors, ceures, tets e/ou outros uipentos siires) ª Questão (, ponto) - efere-se à pestr de /6/4. Considere o

Leia mais

8.5 Centro de massa ... = N (idem para y e z) X... Posição do centro de massa de um sistema de N partículas:

8.5 Centro de massa ... = N (idem para y e z) X... Posição do centro de massa de um sistema de N partículas: 8.5 Centro de assa Posção do centro de assa de sstea de partíclas: Méda, ponderada pelas assas, das posções das partíclas c r r r r R...... 0 r E coponentes: c x x x x X...... (de para y e z) Kts LDIF

Leia mais

PROVA MATRIZ DE MATEMÁTICA EFOMM-2009

PROVA MATRIZ DE MATEMÁTICA EFOMM-2009 PROVA MATRIZ DE MATEMÁTICA EFOMM-009 ª Questão: Qul é o número inteiro ujo prouto por 9 é um número nturl omposto pens pelo lgrismo? (A) 459 4569 (C) 45679 (D) 45789 (E) 456789 ª Questão: O logotipo e

Leia mais

1º Exame de Análise de Estruturas I Mestrado Integrado em Engenharia Civil Responsável: Prof. J.A. Teixeira de Freitas 5 de Junho de 2013

1º Exame de Análise de Estruturas I Mestrado Integrado em Engenharia Civil Responsável: Prof. J.A. Teixeira de Freitas 5 de Junho de 2013 Consult ens do fomuláo. Deslgue o telemóel. Dução: hos. º Eme de nálse de Estutus I estdo Integdo em Engenh Cl Resonsáel: of. J.. ee de Fets 5 de Junho de Identfque tods s folhs. Ince cd olem num no folh.

Leia mais

SOCIEDADE PORTUGUESA DE MATEMÁTICA

SOCIEDADE PORTUGUESA DE MATEMÁTICA SOCIEDADE PORTUGUESA DE MATEMÁTICA Propost de Resolução do Exme de Mtemátc A - º ANO Códgo 65 - Fse - 07 - de junho de 07 Grupo I 5 6 7 8 Versão A B D A B C D C Versão D D B C C A B A Grupo II. 0 5 5 5

Leia mais

Bioestatística Curso de Saúde. Linha Reta 2 Parábola ou curva do segundo grau. terceiro grau curva do quarto. grau curva de grau n Hipérbole

Bioestatística Curso de Saúde. Linha Reta 2 Parábola ou curva do segundo grau. terceiro grau curva do quarto. grau curva de grau n Hipérbole Teora da Correlação: Probleas relatvos à correlação são aqueles que procura estabelecer quão be ua relação lear ou de outra espéce descreve ou eplca a relação etre duas varáves. Se todos os valores as

Leia mais

Gabarito Sistemas Lineares

Gabarito Sistemas Lineares Gbrito Sistes ineres Eercício : () rieir inh :. > Segund inh :. > Terceir inh :. Qurt inh :. α á( α ) > ogo, não stisfz o Critério ds inhs. (b) rieir inh : > Segund inh : 6 > Terceir inh : > Qurt inh :

Leia mais

Fig. 1. Problema 1. m = T g +a = 5kg.

Fig. 1. Problema 1. m = T g +a = 5kg. ÍSICA - LISA - 09/. U bloco está suspenso e u elevdor que sobe co celerção de /s (figur ). Nests condições tensão n cord (peso prente) é de 60 N. Clcule ss do bloco e seu peso rel (5 kg; 50 N). ig.. roble.

Leia mais

d eq = (1) k é a constante da velocidade da reação direta e k i , a constante da velocidade da reação inversa. Por outro lado, = exp = exp + RT RT R

d eq = (1) k é a constante da velocidade da reação direta e k i , a constante da velocidade da reação inversa. Por outro lado, = exp = exp + RT RT R Questão nº 1 Sabe-se que k K = (1) k e que K é a constante e ulíbro, k é a constante a velocae a reação reta e k, a constante a velocae a reação nversa. Por outro lao, e que o o o GR HR SR K = exp = exp

Leia mais

Física. Resolução das atividades complementares. F4 Vetores: conceitos e definições. 1 Observe os vetores das figuras:

Física. Resolução das atividades complementares. F4 Vetores: conceitos e definições. 1 Observe os vetores das figuras: Resolução ds tiiddes copleentres Físic F4 Vetores: conceitos e definições p. 8 1 Obsere os etores ds figurs: 45 c 45 b d Se 5 10 c, b 5 9 c, c 5 1 c e d 5 8 c, clcule o ódulo do etor R e cd cso: ) R 5

Leia mais

1a) QUESTÃO: ciclos 2a) QUESTÃO: estado inicial indefinidamente travar 4a) QUESTÃO: Anel 1ª) Questão

1a) QUESTÃO: ciclos 2a) QUESTÃO: estado inicial indefinidamente travar 4a) QUESTÃO: Anel 1ª) Questão 1 ) QUSTÃO: (3, pontos) Pr máquin e esto efini pel su tel e fluo io, pee-se: y\ 1 1 ) nontre um tel e fluo mínim; / /- /- / ) onstru um tel e eitção livre e /- /1 / /- orris ríti (rir ilos quno neessário);

Leia mais

3 Como os coeficientes angulares de ambas as retas são iguais (de valor 4), as retas são paralelas.

3 Como os coeficientes angulares de ambas as retas são iguais (de valor 4), as retas são paralelas. UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL COLÉGIO DE APLICAÇÃO - INSTITUTO DE MATEMÁTICA LABORATÓRIO DE PRÁTICA DE ENSINO EM MATEMÁTICA Pofessoes: Luis Mzzei e Min Duo Acêmicos: Mcos Vinícius e Diego Mtinelli

Leia mais

Sistemas Reticulados

Sistemas Reticulados EP-USP PEF63 PEF6 Estruturs n Arquitetur III - Estruturs n Arquitetur I I - Sistes Reticulos Sistes Reticulos e Linres FAU-USP Cislhento n Flexão Sistes Reticulos (Frgentos 6/3/17) Professores Ru Mrcelo

Leia mais

GGE RESPONDE IME MATEMÁTICA Determine os valores reais de x que satisfazem a inequação:

GGE RESPONDE IME MATEMÁTICA Determine os valores reais de x que satisfazem a inequação: . Determine os vores reis e x que stisfzem inequção: x IR e X og x og 9 x² x og x og Fzeno x og, temos: ( ) ( ) ( ) ² ² ² ² + + + + + + - - - - - - - - - - - - - - - - - - + + + - + + + - - - + + + + +

Leia mais

TÓPICOS DE REVISÃO MATEMÁTICA I MÓDULO 4 : Álgebra Elementar 3 a Série Ensino Médio Prof. Rogério Rodrigues. NOME :... Número :...Turma :...

TÓPICOS DE REVISÃO MATEMÁTICA I MÓDULO 4 : Álgebra Elementar 3 a Série Ensino Médio Prof. Rogério Rodrigues. NOME :... Número :...Turma :... TÓPICOS DE REVISÃO MATEMÁTICA I MÓDULO Álger Eleentr Série Ensino Médio Prof Rogério Rodrigues NOME Núero Tur I) PRODUTOS NOTÁVEIS ) Qudrdo d so de dois teros ( ) ) Qudrdo d diferenç ( ) c) Produto d so

Leia mais

Resposta: A dimensão b deve ser de b=133,3 mm e uma força P = 10,66 kn.

Resposta: A dimensão b deve ser de b=133,3 mm e uma força P = 10,66 kn. Uc Engenhara Cvl e ESA Resstênca os ateras Eame oelo A vga e maera tem seção transversal retangular e ase e altura. Supono = m, etermnar a mensão, e moo que ela atnja smultaneamente sua tensão e fleão

Leia mais

Como primeiro exemplo de uma relação de recorrência, consideremos a seguinte situação:

Como primeiro exemplo de uma relação de recorrência, consideremos a seguinte situação: Relações de Recorrêcas - Notas de aula de CAP Prof. José Carlos Becceer. Ao 6. Ua Relação de Recorrêca ou Equação de Recorrêca defe ua fução por eo de ua epressão que clu ua ou as stâcas (eores) dela esa.

Leia mais

(1) (2) (3) (4) Física I - 1. Teste 2010/ de Novembro de 2010 TópicosdeResolução

(1) (2) (3) (4) Física I - 1. Teste 2010/ de Novembro de 2010 TópicosdeResolução Físic I - 1. Teste 010/011-3 de Noembro de 010 TópicosdeResolução Sempre que necessário, utilize pr o módulo d celerção resultnte d gridde o lor =10 0m s. 1 Dus forçs, representds pelos ectores d figur,

Leia mais

Física. Física Módulo 1. Sistemas de Partículas e Centro de Massa. Quantidade de movimento (momento) Conservação do momento linear

Física. Física Módulo 1. Sistemas de Partículas e Centro de Massa. Quantidade de movimento (momento) Conservação do momento linear Físca Módulo 1 Ssteas de Partículas e Centro de Massa Quantdade de ovento (oento) Conservação do oento lnear Partículas e ssteas de Partículas Átoos, Bolnhas de gude, Carros e até Planetas... Até agora,

Leia mais

Vieiras com palmito pupunha ao molho de limão

Vieiras com palmito pupunha ao molho de limão Vs o to nh o oho d ão Oá, ss ntd fo ns dos tos fz s gost. Aé d nd dd, obnção d sbos sson té os s xgnts. A t s dfí v s onsg vs fss. Ingdnts: 1 to nh; 3 dúzs d vs; s nt t; d do. Modo d fz: t s tbhos é bs

Leia mais

ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã str Pr ss t át r t çã tít st r t

ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã str Pr ss t át r t çã tít st r t P P ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã str Pr ss t át r t çã tít st r t Ficha catalográfica preparada pela Biblioteca Central da Universidade Federal de Viçosa - Câmpus Viçosa T B591e 2015

Leia mais

, para. Assim, a soma (S) das áreas pedida é dada por:

, para. Assim, a soma (S) das áreas pedida é dada por: (9) - wwweltecapnascobr O ELITE RESOLE FUEST 9 SEGUND FSE - MTEMÁTIC MTEMÁTIC QUESTÃO Na fgura ao lado, a reta r te equação x + no plano cartesano Ox lé dsso, os pontos B, B, B, B estão na reta r, sendo

Leia mais

.FL COMPLEMENTOS DE MECÂNICA. Mecânica. Recuperação de doentes com dificuldades motoras. Desempenho de atletas

.FL COMPLEMENTOS DE MECÂNICA. Mecânica. Recuperação de doentes com dificuldades motoras. Desempenho de atletas COMPLEMENTOS DE MECÂNICA Recuperação e oentes com fculaes motoras Mecânca Desempenho e atletas Construção e prótese e outros spostvos CORPOS EM EQUILÍBRIO A prmera conção e equlíbro e um corpo correspone

Leia mais

Tratamento de Dados 2º Semestre 2005/2006 Tópicos de Resolução do Trabalho 2 = 12

Tratamento de Dados 2º Semestre 2005/2006 Tópicos de Resolução do Trabalho 2 = 12 Traaeno de Dados º Seesre 5/6 Tópcos de Resolução do Trabalho Quesão a Para agrupar os dados e classes ora consderados os valores das rendas aé 5. ua vez que a parr dese valor os dados se enconra basane

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica PE ECÂNIC Terera Prova e junho e 9 Duração a Prova: 5 mnutos (não é permto o uso e auaoras) ª Questão (, ponto) Na paestra o a 5 e junho e 9 mostrou-se ue a enomnaa Euação e eshhersy, por ee euza em 897-94

Leia mais

Matemática. Resolução das atividades complementares. M10 Função logarítmica. 1 Sendo ƒ uma função dada por f(x) 5 log 2

Matemática. Resolução das atividades complementares. M10 Função logarítmica. 1 Sendo ƒ uma função dada por f(x) 5 log 2 Resolução ds tividdes copleentres Mteátic M0 Função rític p. 7 Sendo ƒ u função dd por f(), clcule o vlor de f(). f() f()??? f() A epressão é igul : ) c) 0 e) b) d)? 0 0 Clcule y, sendo. y y Resolv epressão.

Leia mais

MÉTODOS MATEMÁTICOS 2 a Aula. Claudia Mazza Dias Sandra Mara C. Malta

MÉTODOS MATEMÁTICOS 2 a Aula. Claudia Mazza Dias Sandra Mara C. Malta MÉTODOS MATEMÁTICOS Aul Clui Mzz Dis Snr Mr C. Mlt Introução o Conceito e Derivs Noção: Velocie Méi Um utomóvel é irigio trvés e um estr cie A pr cie B. A istânci s percorri pelo crro epene o tempo gsto

Leia mais

Ministério da Educação Fundação Universidade Federal de Mato Grosso do Sul Instituto de Física Curso de Licenciatura em Física.

Ministério da Educação Fundação Universidade Federal de Mato Grosso do Sul Instituto de Física Curso de Licenciatura em Física. Ministério d Educção Fundção Universidde Feder de Mto Grosso do Su Instituto de Físic Curso de Licencitur em Físic O fio infinito Um exempo de obtenção do cmpo eetrostático por dois métodos: integrção

Leia mais

APLICAÇÃO DA TÉCNICA DA TRANSFORMADA INTEGRAL GENERALIZADA NA ANÁLISE DO COMPORTAMENTO DE CÉLULAS DE COMBUSTÍVEL NUCLEAR EM GEOMETRIAS RETANGULARES

APLICAÇÃO DA TÉCNICA DA TRANSFORMADA INTEGRAL GENERALIZADA NA ANÁLISE DO COMPORTAMENTO DE CÉLULAS DE COMBUSTÍVEL NUCLEAR EM GEOMETRIAS RETANGULARES APLICAÇÃO DA TÉCNICA DA TRANSFORMADA INTEGRAL GENERALIZADA NA ANÁLISE DO COMPORTAMENTO DE CÉLULAS DE COMBUSTÍVEL NUCLEAR EM GEOMETRIAS RETANGULARES Mateus Calegar Paulque Thago Antonn Alves Casso Roberto

Leia mais

As forças traduzem e medem interações entre corpos e essas interações podem ser de contacto ou à distância (FQ A ano 1). de contacto.

As forças traduzem e medem interações entre corpos e essas interações podem ser de contacto ou à distância (FQ A ano 1). de contacto. Suáio Unidde I MECÂNIC 1- Mecânic d ptícul Moviento de copos sujeitos ligções. - Foçs plicds e foçs de ligção. - Moviento du siste de copos ligdos nu plno hoizontl, plno veticl e plno inclindo, despezndo

Leia mais

Capítulo 4. Vetores. Recursos com copyright incluídos nesta apresentação:

Capítulo 4. Vetores. Recursos com copyright incluídos nesta apresentação: Cpítulo 4 Vetores Reursos om oprght nluídos nest presentção: Grndes eslres: mss, volume, tempertur,... Epresss por um número e undde Grndes vetors: deslomento, forç,... Requerem módulo, dreção, sentdo

Leia mais

UFRJ COPPE PEB COB /01 Nome:

UFRJ COPPE PEB COB /01 Nome: UFJ OPPE PEB OB 78 7/ Nome: ) Um polo apresenta a característca e corrente e tensão a fgura abaxo. Mostre, caso ocorra, o(s) nteralo(s) e tempo one o polo fornece energa ao sstema. Utlzano os sentos e

Leia mais

ANÁLISE DE ERROS. Todas as medidas das grandezas físicas deverão estar sempre acompanhadas da sua dimensão (unidades)! ERROS

ANÁLISE DE ERROS. Todas as medidas das grandezas físicas deverão estar sempre acompanhadas da sua dimensão (unidades)! ERROS Físca Arqutectura Pasagístca Análse de erros ANÁLISE DE ERROS A ervação de u fenóeno físco não é copleta se não puderos quantfcá-lo Para é sso é necessáro edr ua propredade físca O processo de edda consste

Leia mais

3- Autovalores e Autovetores.

3- Autovalores e Autovetores. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS - Autovalores e Autovetores..- Autovetores e Autovalores de ua Matrz..- Métodos para ecotrar os Autovalores e Autovetores de ua Matrz. Cotuação da

Leia mais

BANCO DE FÓRMULAS PROF. FRED MOURA. Movimento Circular 1 T. a cp. = velocidade angular. = espaço angular. Unidades de medida

BANCO DE FÓRMULAS PROF. FRED MOURA. Movimento Circular 1 T. a cp. = velocidade angular. = espaço angular. Unidades de medida O D ÓMUL O. D MOU MU & MU Moo ul Lço Oblíuo p = lo ul * opo l - MU y y y y y s y y y = lo é = ção spço = spço ul = o H s = Ilo po = üê * opo hozol - MU = spço (l) = píoo x os = spço Il = lo = lo l = lção

Leia mais

o Seu pé direito na medicina

o Seu pé direito na medicina o Seu pé direito n medicin UNIFESP //006 MATEMÁTIA 0 Entre os primeiros mil números inteiros positivos, quntos são divisíveis pelos números,, 4 e 5? 60 b) 0 c) 0 d) 6 e) 5 Se o número é divisível por,,

Leia mais