Busca. Busca. Exemplo. Exemplo. Busca Linear (ou Seqüencial) Busca em Vetores

Tamanho: px
Começar a partir da página:

Download "Busca. Busca. Exemplo. Exemplo. Busca Linear (ou Seqüencial) Busca em Vetores"

Transcrição

1 Busc e etores Prof. Dr. José Augusto Brnusks DFM-FFCP-USP Est ul ntroduz busc e vetores que está entre s trefs s freqüenteente encontrds e progrção de coputdores Serão borddos dos tpos de busc: lner (ou seqüencl) e bnár 1 Busc A hpótese básc ssud no processo de busc é que o conjunto de ddos, dentre o qul u deterndo eleento deve ser procurdo, possu tnho fxo, ou sej, u vetor: te [N]; onde te represent u estrutur de ddos contendo u cpo que tu coo chve pr pesqus e N é u constnte ndcndo o núero de eleentos typedef struct { nt key; // chve de busc... // des cpos d estrutur te; Objetvo d busc: ddo x encontrr [].key == x O índce resultnte perte cesso os des cpos 2 Busc Pr estudo, vos dtr que o tpo te sej coposto pens do cpo chve, ou sej, o ddo é própr chve. Alé dsso, pr fcltr o estudo nd s, chve de busc será u ntero, ou sej, o vetor será declrdo coo: Exeplo Busc de x = 19, retorn = 5 Busc de x = 45, retorn = 0 Busc de x = 8, retorn = 6 E busc de x =? nt [N]; ebrndo que N é u constnte que ndc o núero de eleentos do vetor Ass, objetvo d busc se resue ddo x encontrr [] == x 3 4 Exeplo Busc de x = 19, retorn = 5 Busc de x = 45, retorn = 0 Busc de x = 8, retorn = 6 E busc de x =? Depende d pleentção! Pode retornr = -1 (ou outro vlor) ndctvo que busc não teve êxto 5 Busc ner (ou Seqüencl) Utlzd qundo não há de nforções dcons sobre os ddos sere pesqusdos A busc lner tern qundo for stsfet u ds dus condções seguntes: 1. O eleento é encontrdo, sto é, [] == x 2. Todo o vetor fo nlsdo, s o eleento x não fo encontrdo Algorto: whle ( < N && []!= x) Ao térno do lço: Se == N então x não fo encontrdo senão [] == x, é posção onde x fo encontrdo 6 1

2 Busc ner (ou Seqüencl) Busc de x = 19 whle ( < N && []!= x) Busc ner (ou Seqüencl) Busc de x = 19 whle ( < N && []!= x) N 8 0 N Busc ner (ou Seqüencl) Busc de x = 19 whle ( < N && []!= x) Busc ner (ou Seqüencl) Busc de x = 19 whle ( < N && []!= x) N 8 1 N Busc ner (ou Seqüencl) Busc de x = 19 whle ( < N && []!= x) Busc ner (ou Seqüencl) Busc de x = 19 whle ( < N && []!= x) N 8 2 N

3 Busc ner (ou Seqüencl) Busc de x = 19 whle ( < N && []!= x) Busc ner (ou Seqüencl) Busc de x = 19 whle ( < N && []!= x) N 8 3 N Busc ner (ou Seqüencl) Busc de x = 19 whle ( < N && []!= x) Busc ner (ou Seqüencl) Busc de x = 19 whle ( < N && []!= x) N 8 4 N Busc ner (ou Seqüencl) Busc de x = 19 whle ( < N && []!= x) Busc ner (ou Seqüencl) Busc de x = 19 F whle ( < N && []!= x) N 8 5 N

4 Busc ner (ou Seqüencl) Exeplo e C++ Busc de x = 19 #nclude <ostre> usng nespce std; nt busc_sequencl(nt x, nt N, nt []) { nt whle ( < N && []!= x) N 8 5 Térno do lço: Se!= N então x fo encontrdo n posção do vetor 19 whle ( < N && []!= x) return ( == N)? -1 : ; nt n(vod) { const nt = 8; nt v[] = {45,56,12,43,95,19,8,67; Busc de 19 = 5 Busc de 45 = 0 Busc de 8 = 6 Busc de = -1 cout << "Busc de 19 = " << busc_sequencl(19,,v) << endl; cout << "Busc de 45 = " << busc_sequencl(45,,v) << endl; cout << "Busc de 8 = " << busc_sequencl(8,,v) << endl; cout << "Busc de = " << busc_sequencl(,,v) << endl; return 0; 20 Análse d Busc ner Busc ner co Sentnel E éd são efetuds N/2 coprções de chves pr encontrr u eleento prtculr x no vetor de N eleentos O por cso requerer N coprções de chves Isso pode consur uto tepo qundo o núero de eleentos do vetor é grnde O uso d sentnel te coo objetvo celerr busc, trvés d splfcção d expressão boolen A dé básc é fzer co que o eleento x sepre sej encontrdo Pr sso, ntroduz-se u eleento dconl no fnl do vetor Busc ner co Sentnel Algorto: te [N+1]; [N] = x; // sentnel whle ([]!= x) Ao fnl do lço, == N plc que x não fo encontrdo (exceto o correspondente à sentnel). Busc de x = 56 [N] = x; whle ([]!= x) N

5 Busc de x = 56 [N] = x; whle ([]!= x) Busc de x = 56 [N] = x; whle ([]!= x) 8 8 N N Sentnel Busc de x = 56 [N] = x; whle ([]!= x) Busc de x = 56 [N] = x; F whle ([]!= x) 8 8 N N Busc de x = 56 [N] = x; Busc de x = [N] = x; whle ([]!= x) whle ([]!= x) 8 8 N N 8 0 Térno do lço: Se!= N então x fo encontrdo n posção do vetor

6 Busc de x = [N] = x; whle ([]!= x) Busc de x = [N] = x; whle ([]!= x) 8 8 N 8 0 N 8 0 Sentnel Busc de x = [N] = x; whle ([]!= x) Busc de x = [N] = x; whle ([]!= x) 8 8 N 8 1 N Busc de x = [N] = x; whle ([]!= x) Busc de x = [N] = x; whle ([]!= x) 8 8 N 8 2 N

7 Busc de x = [N] = x; whle ([]!= x) Busc de x = [N] = x; whle ([]!= x) 8 8 N 8 3 N Busc de x = [N] = x; whle ([]!= x) Busc de x = [N] = x; whle ([]!= x) 8 8 N 8 4 N Busc de x = [N] = x; whle ([]!= x) Busc de x = [N] = x; whle ([]!= x) 8 8 N 8 5 N

8 Busc de x = [N] = x; whle ([]!= x) Busc de x = [N] = x; whle ([]!= x) 8 8 N 8 6 N Busc de x = [N] = x; whle ([]!= x) Busc de x = [N] = x; whle ([]!= x) 8 8 N 8 7 N Busc de x = [N] = x; whle ([]!= x) Busc de x = [N] = x; F whle ([]!= x) 8 8 N 8 8 N

9 Busc de x = [N] = x; whle ([]!= x) N Térno do lço: Se!= N então x fo encontrdo n posção do vetor. Coo == N, então x não fo encontrdo (exceto sentnel) 49 Exeplo e C++ #nclude <ostre> usng nespce std; nt busc_sentnel(nt x, nt N, nt []) { nt [N] = x; // sentnel whle ([]!= x) return ( == N)? -1 : ; nt n(vod) { const nt = 8; nt v[+1] ={45,56,12,43,95,19,8,67; Busc de 19 = 5 Busc de 45 = 0 Busc de 8 = 6 Busc de = -1 cout << "Busc de 19 = " << busc_sentnel(19,,v) << endl; cout << "Busc de 45 = " << busc_sentnel(45,,v) << endl; cout << "Busc de 8 = " << busc_sentnel(8,,v) << endl; cout << "Busc de = " << busc_sentnel(,,v) << endl; return 0; 50 Análse d Busc co Sentnel Busc Bnár E éd são efetuds (N+1)/2 coprções pr encontrr u eleento prtculr x no vetor de N eleentos O por cso requerer N+1 coprções Não é possível celerr busc se que se dsponh de ores nforções cerc do eleento ser loclzdo Sbe-se que u busc pode ser s efcente se os ddos estvere ordendos, ou sej: [0] <= [1] <= <= [N-1] A dé prncpl é de teste u eleento sortedo letorente, por exeplo, [], coprndo-o co o eleento de busc x. Se tl eleento for gul x, busc tern. Se for enor que x, conclu-se que todos os eleentos co índces enores ou gus pode ser elndos dos próxos testes. Se for or que x, todos queles eleentos co índces ores ou gus pode ser tbé elndos d busc Busc Bnár Busc de x = 19 Suponh = 3 N = Coo [] > x, Eleentos co índces ores que pode ser elndos d busc 53 Busc Bnár Algorto: chou = flse; whle ( <= &&! chou) { = qulquer vlor entre e ; f ([] == x) chou = true; f ([] < x) = - 1; N =

10 Busc Bnár Ebor escolh de sej prenteente rbtrár (no sentdo que o lgorto funcon ndependenteente dele) o vlor dest vrável nfluenc n efcênc do lgorto É clro que, cd psso, deve-se elnr o or núero possível de eleentos e futurs buscs A solução ót é escolher edn dos eleentos, porque el eln, e qulquer cso, etde dos eleentos do vetor 55 Busc Bnár A efcênc pode ser lgerente elhord trvés d perutção entre s dus cláusuls de coprção. A condção de guldde deve ser testd e segundo lugr, porque o sucesso ocorre pens u vez e todo o processo Poré, questão s relevnte se refere o fto de, coo n busc lner, se poder ou não encontrr u solução que proporcone u condção s sples pr fnlzção do processo É possível obter tl lgorto rápdo se for bndond et de ternr busc no nstnte exto e que for encontrdo o eleento pesqusdo Isso prece pouco ntelgente à prer vst, s observndo-se s fundo, pode-se perceber fclente que o gnho e efcênc e cd psso será or do que perd ocsond pel coprção de lguns poucos eleentos dcons 56 Busc Bnár ápd Algorto: whle ( < ) f ([] < x) Se o térno do lgorto condção [] == x for verdder, então x fo encontrdo n posção de ; cso contráro x não fo encontrdo. 57 Busc de x = 19 whle ( < ) f ([] < x) N = Busc de x = 19 whle ( < ) f ([] < x) N = Busc de x = 19 whle ( < ) f ([] < x) N =

11 Busc de x = 19 Busc de x = 19 whle ( < ) f ([] < x) N = whle ( < ) f ([] < x) N = Busc de x = 19 Busc de x = 19 whle ( < ) f ([] < x) N = whle ( < ) f ([] < x) N = Busc de x = 19 Busc de x = 19 whle ( < ) f ([] < x) N = whle ( < ) f ([] < x) N =

12 Busc de x = 19 Busc de x = 19 whle ( < ) f ([] < x) N = whle ( < ) f ([] < x) N = Busc de x = 19 Busc de x = 19 whle ( < ) f ([] < x) N = whle ( < ) f ([] < x) N = Térno do lço: Coo [] == x, x fo encontrdo n posção de 70 Exeplo e C++ Análse d Busc Bnár ápd #nclude <ostre> usng nespce std; nt busc_bnr_rpd(nt x, nt N, nt []) { nt,,; whle ( < ) f ([] < x) return (x == [])? : -1; nt n(vod) { const nt = 8; nt v[+1] ={8,12,19,43,45,56,67,95; Busc de 19 = 5 Busc de 45 = 0 Busc de 8 = 6 Busc de = -1 cout << "Busc de 19 = " << busc_bnr_rpd(19,,v) << endl; cout << "Busc de 45 = " << busc_bnr_rpd(45,,v) << endl; cout << "Busc de 8 = " << busc_bnr_rpd(8,,v) << endl; cout << "Busc de = " << busc_bnr_rpd(,,v) << endl; return 0; 71 E éd são efetuds + log 2 (N)-1 + coprções de chves pr encontrr u eleento prtculr x no vetor de N eleentos O por cso requerer + log 2 N + coprções N Nº Coprções (por cso)

13 Coprção Consderndo os lgortos de busc vstos, tbel segunte ostr orde de grndez dos núeros íno (C ín ), édo (C éd ) e áxo (C áx ) de coprções de chves. Coprção Núero de coprções Busc ner Algorto C ín C éd C áx Busc ner O(1) O(N) O(N) Busc ner co Sentnel O(1) O(N) O(N) Busc Bnár O(1) O(log 2 N) O(log 2 N) Busc Bnár ápd O(log 2 N) O(log 2 N) O(log 2 N) Busc Bnár 73 Núero de eleentos (N) 74 esuo Ds nálses dos lgortos de busc, está clro que o étodo de busc bnár te u desepenho tão bo ou elhor do que o étodo de busc lner Entretnto, tulzção dos índces esquerdo, dreto e édo (, e no lgorto, respectvente) requer tepo dconl Ass, pr vetores co poucos eleentos, busc lner é dequd Pr vetores co utos eleentos, busc bnár é s efcente, s sso requer que o vetor estej ordendo 75 13

Ordenação. Notação. Notação. Alguns Métodos de Ordenação. Estabilidade x Instabilidade. Ordenação em Vetores

Ordenação. Notação. Notação. Alguns Métodos de Ordenação. Estabilidade x Instabilidade. Ordenação em Vetores Ordenção e Vetores Ordenção Est ul ntroduz étos de ordenção e vetores que está entre s trefs s freqüenteente encontrds e progrção de coputres Serão bords étos dretos de ordenção por nserção, seleção e

Leia mais

Universidade do Vale do Rio dos Sinos UNISINOS Programa de Pós-Graduação em Engenharia Mecânica. Ajuste de equações

Universidade do Vale do Rio dos Sinos UNISINOS Programa de Pós-Graduação em Engenharia Mecânica. Ajuste de equações 7//4 Unversdde do Vle do Ro dos Snos UNISINOS Progr de Pós-Grdução e Engenhr Mecânc Ajuste de equções Ajuste de curvs Técnc usd pr representr crcterístcs e coportento de sstes tércos. Ddos representdos

Leia mais

Obtendo uma solução básica factível inicial. Método Simplex duas fases

Obtendo uma solução básica factível inicial. Método Simplex duas fases Obtendo um solução básc fctível ncl Método Smple dus fses Bse ncl FASE I Como determnr um prtção básc fctível ncl (A(B, N)). Algums clsses de problems de otmzção lner oferecem nturlmente solução básc fctível

Leia mais

1- Resolução de Sistemas Lineares.

1- Resolução de Sistemas Lineares. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS - Resolução de Sstes Leres..- Mtrzes e Vetores..2- Resolução de Sstes Leres de Equções Algébrcs por Métodos Extos (Dretos)..3- Resolução de Sstes Leres

Leia mais

Eixos e árvores Projeto para eixos: restrições geométricas. Aula 4. Elementos de máquinas 2 Eixos e árvores

Eixos e árvores Projeto para eixos: restrições geométricas. Aula 4. Elementos de máquinas 2 Eixos e árvores Exos e árvores Projeto pr exos: restrções geométrcs Aul 4 Elementos de máquns Exos e árvores 1 Exos e árvores Projeto pr exos: restrções geométrcs o Deflexões e nclnções: geometr de um exo corresponde

Leia mais

Lista de Exercícios - Otimização Linear Profa. Maria do Socorro DMAp/IBILCE/UNESP. Método Simplex

Lista de Exercícios - Otimização Linear Profa. Maria do Socorro DMAp/IBILCE/UNESP. Método Simplex Lst de Eercícos - Otmzção Lner Prof. Mr do Socorro DMAp/IBILCE/UNESP Método Smple Ref.: Bzr, M. e J.J. Jvs - Lner Progrmmng nd Network Flows - John Wley, 77. ) Resolv o problem bo pelo método smple começndo

Leia mais

Gabarito Sistemas Lineares

Gabarito Sistemas Lineares Gbrito Sistes ineres Eercício : () rieir inh :. > Segund inh :. > Terceir inh :. Qurt inh :. α á( α ) > ogo, não stisfz o Critério ds inhs. (b) rieir inh : > Segund inh : 6 > Terceir inh : > Qurt inh :

Leia mais

6.2 Sabendo que as matrizes do exercício precedente representam transformações lineares 2 2

6.2 Sabendo que as matrizes do exercício precedente representam transformações lineares 2 2 Cpítulo Vlores própros e vectores própros. Encontrr os vlores e vectores própros ds seguntes mtrzes ) e) f). Sendo que s mtrzes do exercíco precedente representm trnsformções lneres R R, represente s rects

Leia mais

DERIVADAS DAS FUNÇÕES SIMPLES12

DERIVADAS DAS FUNÇÕES SIMPLES12 DERIVADAS DAS FUNÇÕES SIMPLES2 Gil d Cost Mrques Fundentos de Mteátic I 2. Introdução 2.2 Derivd de y = n, n 2.2. Derivd de y = / pr 0 2.2.2 Derivd de y = n, pr 0, n =,, isto é, n é u núero inteiro negtivo

Leia mais

Fernando Nogueira Dualidade 1

Fernando Nogueira Dualidade 1 Dldde Fernndo Noger Dldde Fernndo Noger Dldde 8 6.5 M ( ) ( ) ( ).5.5.5.5.5.5.5.5.5 é m lmtnte speror é m lmtnte speror melhor Pr encontrr o lmtnte speror mltplc-se s restrções por constntes postvs e som-se

Leia mais

Física. Resolução das atividades complementares. F4 Vetores: conceitos e definições. 1 Observe os vetores das figuras:

Física. Resolução das atividades complementares. F4 Vetores: conceitos e definições. 1 Observe os vetores das figuras: Resolução ds tiiddes copleentres Físic F4 Vetores: conceitos e definições p. 8 1 Obsere os etores ds figurs: 45 c 45 b d Se 5 10 c, b 5 9 c, c 5 1 c e d 5 8 c, clcule o ódulo do etor R e cd cso: ) R 5

Leia mais

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Fatorial [ ] = A. Exercícios Resolvidos. Exercícios Resolvidos ( ) ( ) ( ) ( )! ( ).

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Fatorial [ ] = A. Exercícios Resolvidos. Exercícios Resolvidos ( ) ( ) ( ) ( )! ( ). OSG: / ENSINO PRÉ-UNIVERSITÁRIO T MATEMÁTIA TURNO DATA ALUNO( TURMA Nº SÉRIE PROFESSOR( JUDSON SANTOS ITA-IME SEDE / / Ftorl Defção h-se ftorl de e dc-se or o úero turl defdo or: > se ou se A A A A Eercícos

Leia mais

Solução da Terceira Lista de Exercícios Profa. Carmem Hara

Solução da Terceira Lista de Exercícios Profa. Carmem Hara Exercíco 1: Consdere grmátc G xo: B ǫ ǫ B B Introdução eor d Computção olução d ercer Lst de Exercícos Prof. Crmem Hr. Mostre um dervção ms esquerd d plvr. B B B B B. Quntos pssos de dervção tem o tem

Leia mais

Matriz-coluna dos segundos membros das restrições técnicas. Matriz-linha dos coeficientes das variáveis de decisão, em f(x) = [ c c ] [ 6 8] e C a

Matriz-coluna dos segundos membros das restrições técnicas. Matriz-linha dos coeficientes das variáveis de decisão, em f(x) = [ c c ] [ 6 8] e C a Versão Mtrcl do Splex VI Versão Mtrcl do Splex Introdução onsdere-se o segunte odelo de PL: Mx () 6x + 8x 2 sujeto : 3x + 2x 2 3 5x + x 2 x, x 2 Mtrzes ssocds o odelo: Mtrz Tecnológc 3 5 2 Mtrz-colun ds

Leia mais

AUTOVALORES E AUTOVETORES

AUTOVALORES E AUTOVETORES UTOLOES E UTOETOES Defnção Sej T : um operdor lner Um vetor v, v, é dto utovetor, vetor própro ou vetor crcterístco do operdor T, se exstr λ tl que T v) = λ v O esclr λ é denomndo utovlor, vlor própro

Leia mais

Seja o problema primal o qual será solucionado utilizando o método simplex Dual: (P)

Seja o problema primal o qual será solucionado utilizando o método simplex Dual: (P) PROGRAMA DE MESTRADO PROGRAMAÇÃO LIEAR PROFESSOR BALEEIRO Método Splex Dual no Tableau Garfnkel-ehauser E-al: abaleero@gal.co Ste: www.eeec.ufg.br/~baleero Sea o problea pral o qual será soluconado utlzando

Leia mais

EXERCÍCIOS RESOLVIDOS DE TEORIA DOS GRAFOS

EXERCÍCIOS RESOLVIDOS DE TEORIA DOS GRAFOS EXERCÍCIOS RESOLVIDOS DE TEORIA DOS GRAFOS.) Considere tbel de trefs seguir pr construção de um cs de mdeir: TAREFAS PRÉ-REQUISITOS DIAS. Limpez do terreno Nenhum. Produção e colocção d fundção. Produção

Leia mais

Proposta de resolução do Exame Nacional de Matemática A 2016 (1 ạ fase) GRUPO I (Versão 1)

Proposta de resolução do Exame Nacional de Matemática A 2016 (1 ạ fase) GRUPO I (Versão 1) Propost de resolução do Eme Nconl de Mtemátc A 06 ( ạ fse) GRUPO I (Versão ). Sbemos que P(A) =, P(B) = e P(A B) = 5 0 6 Assm, P(A B) P(A B) = = 6 P(B) 6 P(A B) = 6 0 P(A B) = 6 0 P(A B) = 0 Tem-se que

Leia mais

Exemplos relativos à Dinâmica (sem rolamento)

Exemplos relativos à Dinâmica (sem rolamento) Exeplos reltivos à Dinâic (se rolento) A resultnte ds forçs que ctu no corpo é iul o produto d ss pel celerção por ele dquirid: totl Cd corpo deve ser trtdo individulente, escrevendo u equção vectoril

Leia mais

ANÁLISE DE ESTRUTURAS I

ANÁLISE DE ESTRUTURAS I IST - DECvl Deprtmento de Engenhr Cvl NÁISE DE ESTRUTURS I Tels de nálse de Estruturs Grupo de nálse de Estruturs IST, 0 Formuláro de es IST - DECvl Rotções: w w θ θ θ θ n θ n n Relção curvtur-deslocmento:

Leia mais

Universidade do Vale do Rio dos Sinos UNISINOS Programa de Pós-Graduação em Engenharia Mecânica. Ajuste de equações

Universidade do Vale do Rio dos Sinos UNISINOS Programa de Pós-Graduação em Engenharia Mecânica. Ajuste de equações Unversdde do Vle do Ro dos Snos UNISINOS Progrm de Pós-Grdução em Engenhr Mecânc Ajuste de equções Ajuste de curvs Técnc usd pr representr crcterístcs e comportmento de sstems térmcos. Ddos representdos

Leia mais

Fusão (Intercalação) Exemplo. Exemplo. Exemplo. Exemplo. Ordenação por Fusão

Fusão (Intercalação) Exemplo. Exemplo. Exemplo. Exemplo. Ordenação por Fusão Ordenção por Fusão Fusão (Interlção) Prof. Dr. José Augusto Brnuss DFM-FFCRP-USP Est ul ntroduz métodos de ordenção por A é utlzd qundo dus ou ms seqüêns enontrm-se ordends O oetvo é nterlr s seqüêns ordends

Leia mais

Resolução Numérica de Sistemas Lineares Parte I

Resolução Numérica de Sistemas Lineares Parte I Cálculo Numérico Resolução Numéric de Sistems ineres Prte I Prof. Jorge Cvlcnti jorge.cvlcnti@univsf.edu.br MATERIA ADAPTADO DOS SIDES DA DISCIPINA CÁCUO NUMÉRICO DA UFCG - www.dsc.ufcg.edu.br/~cnum/ Sistems

Leia mais

Módulo de Matrizes e Sistemas Lineares. Operações com Matrizes

Módulo de Matrizes e Sistemas Lineares. Operações com Matrizes Módulo de Mtrzes e Sstems Lneres Operções com Mtrzes Mtrzes e Sstems Lneres Operções com Mtrzes 1 Exercícos Introdutóros Exercíco 1. Encontre o vlor de () 2 A. 1/2 A. 3 A. Exercíco 2. Determne ) A + B.

Leia mais

MÉTODO DE HOLZER PARA VIBRAÇÕES TORCIONAIS

MÉTODO DE HOLZER PARA VIBRAÇÕES TORCIONAIS ÉODO DE HOZE PAA VIBAÇÕES OCIONAIS Este método prómdo é dequdo pr vgs com crcterístcs não unformes centuds, ou sstems com um número grnde de msss concentrds. Substtu-se o sstem contínuo por um sstem dscreto

Leia mais

Muitas vezes, conhecemos a derivada de uma função, y = f (x) = F(x), e queremos encontrar a própria função f(x).

Muitas vezes, conhecemos a derivada de uma função, y = f (x) = F(x), e queremos encontrar a própria função f(x). Integrção Muts vezes, conhecemos dervd de um função, y f (x) F(x), e queremos encontrr própr função f(x). Por exemplo, se semos que dervd de um função f(x) é função F(x) 2x, qul deve ser, então, função

Leia mais

Exemplo: y 3, já que sen 2 e log A matriz nula m n, indicada por O m n é tal que a ij 0, i {1, 2, 3,..., m} e j {1, 2, 3,..., n}.

Exemplo: y 3, já que sen 2 e log A matriz nula m n, indicada por O m n é tal que a ij 0, i {1, 2, 3,..., m} e j {1, 2, 3,..., n}. Mrzes Mrz rel Defnção Sem m e n dos números neros Um mrz rel de ordem m n é um conuno de mn números res, dsrbuídos em m lnhs e n coluns, formndo um bel que se ndc em gerl por 9 Eemplo: A mrz A é um mrz

Leia mais

FACULDADE DE ENGENHARIA QUÍMICA DE LORENA DEPARTAMENTO BÁSICO PROF OSWALDO LUIZ COBRA GUIMARÃES

FACULDADE DE ENGENHARIA QUÍMICA DE LORENA DEPARTAMENTO BÁSICO PROF OSWALDO LUIZ COBRA GUIMARÃES FACULDADE DE ENGENHARIA QUÍMICA DE LORENA DEPARTAMENTO BÁSICO PROF OSWALDO LUIZ COBRA GUIMARÃES MÉTODOS PARA DETERMINAÇÃO DE RAÍZES DE EQUAÇÕES TRANSCENDENTES ROTEIRO PARA AULA. Intrduçã. Defnçã ds etps

Leia mais

Revisão de Matemática Simulado 301/302. Fatorial. Análise combinatória

Revisão de Matemática Simulado 301/302. Fatorial. Análise combinatória Revsão de Mtemátc Smuldo / Ftorl Eemplos: )! + 5! =! b) - Smplfcr (n+)! (n-)! b) Resolv s equções: (+)! = Permutção Smples Análse combntór Permutções são grupmentos com n elementos, de form que os n elementos

Leia mais

PARTE I. Figura Adição de dois vetores: C = A + B.

PARTE I. Figura Adição de dois vetores: C = A + B. 1 PRTE I FUNDENTS D ESTÁTIC VETRIL estudo d estátc dos corpos rígdos requer plcção de operções com vetores. Estes entes mtemátcos são defndos pr representr s grndes físcs que se comportm dferentemente

Leia mais

EXPOENTE. Podemos entender a potenciação como uma multiplicação de fatores iguais.

EXPOENTE. Podemos entender a potenciação como uma multiplicação de fatores iguais. EXPOENTE 2 3 = 8 RESULTADO BASE Podeos entender potencição coo u ultiplicção de ftores iguis. A Bse será o ftor que se repetirá O expoente indic qunts vezes bse vi ser ultiplicd por el es. 2 5 = 2. 2.

Leia mais

Programação II. Ordenação (sort) Bruno Feijó Dept. de Informática, PUC-Rio

Programação II. Ordenação (sort) Bruno Feijó Dept. de Informática, PUC-Rio Progrmção II Ordenção (sort) Bruno Feijó Dept. de Informátic, PUC-Rio Bule Sort Bule Sort Apens de interesse didático e de referênci A idéi é ir comprndo dois vizinhos e trocndo o menor pelo mior té que

Leia mais

Método de Gauss-Seidel

Método de Gauss-Seidel Método de Guss-Sedel É o ms usdo pr resolver sstems de equções lneres. Suponhmos que temos um sstem A=b e que n= Vmos resolver cd equção em ordem um ds vráves e escrevemos 0/0/9 MN em que Método de Guss-Sedel

Leia mais

ANÁLISE DE ESTRUTURAS I

ANÁLISE DE ESTRUTURAS I IST - DECvl Dertento de Engenr Cvl NÁISE DE ESTRUTURS I Tels de nálse de Estruturs Gruo de nálse de Estruturs IST, IST - DECvl Gruo de nálse de Estruturs Foruláro de es Eq. de grnge: w w w q D Equção de

Leia mais

2 Teoria de membranas elásticas

2 Teoria de membranas elásticas Teor de membrns elástcs teor de membrn pr mters ltmente deformáves dfere d elstcdde clássc, á que s deformções n superfíce méd d membrn deformd são em módulo mores que undde. Dentro dests crcunstâncs utlz-se

Leia mais

Tecnologia de Grupo. 1. Justificativa e Importância da Tecnologia de Grupo. 2. Algoritmo de Ordenação Binária. = 1 se a máquina i

Tecnologia de Grupo. 1. Justificativa e Importância da Tecnologia de Grupo. 2. Algoritmo de Ordenação Binária. = 1 se a máquina i Tecnologa de Grpo 1. Jstfcatva e Iportânca da Tecnologa de Grpo Tecnologa de grpos é conceto portante aplcado na foração de céllas de anfatra. A organzação do sstea de prodção e céllas de anfatra poss

Leia mais

20/07/15. Matemática Aplicada à Economia LES 201

20/07/15. Matemática Aplicada à Economia LES 201 Mtemátic Aplicd à Economi LES 201 Auls 3 e 4 17 e 18/08/2015 Análise de Equilíbrio Sistems Lineres e Álgebr Mtricil Márci A.F. Dis de Mores Análise de Equilíbrio em Economi (Ching, cp 3) O significdo do

Leia mais

MATEMÁTICA PROFº ADRIANO PAULO LISTA DE FUNÇÃO POLINOMIAL DO 1º GRAU - ax b, sabendo que:

MATEMÁTICA PROFº ADRIANO PAULO LISTA DE FUNÇÃO POLINOMIAL DO 1º GRAU - ax b, sabendo que: MATEMÁTICA PROFº ADRIANO PAULO LISTA DE FUNÇÃO POLINOMIAL DO º GRAU - Dd unção = +, determine Dd unção = +, determine tl que = Escrev unção im, sendo que: = e - = - - = e = c = e - = - A ret, gráico de

Leia mais

Sumário. Cálculo do juros compostos. Juros compostos conceitos. Cálculo do juros compostos. Exemplos. Engenharia Econômica e Finanças

Sumário. Cálculo do juros compostos. Juros compostos conceitos. Cálculo do juros compostos. Exemplos. Engenharia Econômica e Finanças Suáro Udde 3 ptlzção opost Professor: Fábo de Olver Alves ottos: fboolves@yhoo.de fbo@ptgors.co.br oceto de cptlzção copost Fóruls de cálculo oprtvo Juros Sples x Juros opostos Equvlêc de pts Equvlêc de

Leia mais

Sumário. Cálculo dos juros compostos. Juros compostos conceitos. Exemplos. Cálculo dos juros compostos. Engenharia Econômica e Finanças

Sumário. Cálculo dos juros compostos. Juros compostos conceitos. Exemplos. Cálculo dos juros compostos. Engenharia Econômica e Finanças Suáro Udde 3 ptlzção opost Professor: Fábo de Olver Alves ottos: fboolves@yhoo.de fbo@ptgors.co.br oceto de cptlzção copost Fóruls de cálculo oprtvo Juros Sples x Juros opostos Equvlêc de pts Equvlêc de

Leia mais

Prof. Ms. Aldo Vieira Aluno:

Prof. Ms. Aldo Vieira Aluno: Prof. Ms. Aldo Vieir Aluno: Fich 1 Chmmos de mtriz, tod tbel numéric com m linhs e n coluns. Neste cso, dizemos que mtriz é do tipo m x n (onde lemos m por n ) ou que su ordem é m x n. Devemos representr

Leia mais

Aula 1b Problemas de Valores Característicos I

Aula 1b Problemas de Valores Característicos I Unversdde Federl do ABC Aul b Problems de Vlores Crcterístcos I EN4 Dnâmc de Fludos Computconl EN4 Dnâmc de Fludos Computconl . U CASO CO DOIS GRAUS DE LIBERDADE EN4 Dnâmc de Fludos Computconl Vbrção em

Leia mais

MÉTODOS NUMÉRICOS. Integração Numérica. por Chedas Sampaio. Época 2002/2003. Escola Náutica I.D.Henrique 1de 33

MÉTODOS NUMÉRICOS. Integração Numérica. por Chedas Sampaio. Época 2002/2003. Escola Náutica I.D.Henrique 1de 33 Métodos umércos - ntegrção umérc Escol áutc.d.henrque MÉTODOS UMÉRCOS ntegrção umérc por Cheds Smpo Époc /3 Escol áutc.d.henrque de 33 Sumáro Regrs áscs Regrs do Rectngulo Regr do Trpézo Regr de Smpson

Leia mais

XI OMABC NÍVEL O lugar geométrico dos pontos P x, y cuja distância ao ponto Q 1, 2 é igual a y é uma:

XI OMABC NÍVEL O lugar geométrico dos pontos P x, y cuja distância ao ponto Q 1, 2 é igual a y é uma: O lugr geométrco dos pontos P x, y cu dstânc o ponto Q, é gul y é um: prábol com foco no ponto Q crcunferênc de ro gul N fgur segur, o trângulo ABC é equlátero de ldo 0, crcunferênc mor é tngente os três

Leia mais

x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5,

x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5, - Limite. - Conceito Intuitivo de Limite Considere função f definid pel guinte epressão: f - - Podemos obrvr que função está definid pr todos os vlores de eceto pr. Pr, tnto o numerdor qunto o denomindor

Leia mais

(x, y) dy. (x, y) dy =

(x, y) dy. (x, y) dy = Seção 7 Função Gm A expressão n! = 1 3... n (1 está definid pens pr vlores inteiros positivos de n. Um primeir extensão é feit dizendo que! = 1. Ms queremos estender noção de ftoril inclusive pr vlores

Leia mais

Unidimensional pois possui apenas uma única dimensão

Unidimensional pois possui apenas uma única dimensão Vetores e Mtrizes José Augusto Brnusks Deprtmento de Físic e Mtemátic FFCLRP-USP Sl 6 Bloco P Fone (6) 60-6 Nest ul veremos estruturs de ddos homogênes: vetores (ou rrys) e mtrizes Esss estruturs de ddos

Leia mais

Resolução. Capítulo 32. Força Magnética. 6. C Para que não haja desvio devemos garantir que as forças magnética ( F M. ) e elétrica ( F E

Resolução. Capítulo 32. Força Magnética. 6. C Para que não haja desvio devemos garantir que as forças magnética ( F M. ) e elétrica ( F E esolução orça Magnétca E D 3 C 4 D 5 Capítulo 3 Dos vetores são antparalelos quando suas dreções são concdentes (paralelos) e seus sentdos são opostos, sto é, θ 8º, coo ostra a fgura adante: E Deste odo,

Leia mais

Resolução Numérica de Sistemas Lineares Parte I

Resolução Numérica de Sistemas Lineares Parte I Cálculo Numérico Módulo V Resolução Numéric de Sistems ineres Prte I Profs.: Bruno Correi d Nóbreg Queiroz José Eustáquio Rngel de Queiroz Mrcelo Alves de Brros Sistems ineres Form Gerl... n n b... n n

Leia mais

Propriedades Matemáticas

Propriedades Matemáticas Proprieddes Mtemátics Guilherme Ferreir guifs2@hotmil.com Setembro, 2018 Sumário 1 Introdução 2 2 Potêncis 2 3 Rízes 3 4 Frções 4 5 Produtos Notáveis 4 6 Logritmos 5 6.1 Consequêncis direts d definição

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 7 e 8 06/204 Ajuste de Curvas AJUSTE DE CURVAS Cálculo Nuérco 3/64 INTRODUÇÃO E geral, experentos gera ua gaa de dados que

Leia mais

1a Verificação Refino dos Aços I EEIMVR-UFF, Setembro de 2011 Prova A

1a Verificação Refino dos Aços I EEIMVR-UFF, Setembro de 2011 Prova A 1 Verfcção Refno dos s I EEIMVR-UFF, Setembro de 11 Prov A 1. Clcule o vlor de γ no ferro, 168 o C, com os ddos fornecdos n prov. Vmos em ul que o S G e o γ estão relcondos trvés de, 5585γ G R ln M Logo,

Leia mais

Resumo com exercícios resolvidos do assunto: Aplicações da Integral

Resumo com exercícios resolvidos do assunto: Aplicações da Integral www.engenhrifcil.weely.com Resumo com exercícios resolvidos do ssunto: Aplicções d Integrl (I) (II) (III) Áre Volume de sólidos de Revolução Comprimento de Arco (I) Áre Dd um função positiv f(x), áre A

Leia mais

TÓPICOS. Exercícios. Os vectores que constituem as colunas da matriz, 1 = [ 2 0 1] T

TÓPICOS. Exercícios. Os vectores que constituem as colunas da matriz, 1 = [ 2 0 1] T Note em: letur destes pontmentos não dspens de modo lgum letur tent d logrf prncpl d cder Chm-se tenção pr mportânc do trlho pessol relzr pelo luno resolendo os prolems presentdos n logrf, sem consult

Leia mais

1.3 O método da Decomposição LU A Decomposição LU. Teorema ( Teorema da Decomposição LU)

1.3 O método da Decomposição LU A Decomposição LU. Teorema ( Teorema da Decomposição LU) . O método d Decomposção U.. A Decomposção U Teorem.. ( Teorem d Decomposção U) Sej A m mtrz qdrd de ordem n, e A k o menor prncp, consttído ds prmers nhs e cons. Assmmos qe det(a k ) pr k,,..., n. Então

Leia mais

Método de Gauss- Seidel

Método de Gauss- Seidel .7.- Método de Guss- Sedel Supohmos D = I, como fo feto pr o método de Jco-Rchrdso. Trsformmos o sstem ler A = como se segue: (L + I + R) = (L + I) = - R + O processo tertvo defdo por: é chmdo de Guss-Sedel.

Leia mais

Gabarito da 2ª Prova de 2ELE030 (03/06/2014) Circuitos Elétricos 1 Prof. Ernesto Ferreyra p.1/9

Gabarito da 2ª Prova de 2ELE030 (03/06/2014) Circuitos Elétricos 1 Prof. Ernesto Ferreyra p.1/9 Gbrito d ª Prov de ELE00 (0/06/0) Circuitos Elétricos Prof. Ernesto Ferreyr p./9 )No circuito d Fig., encontre: ()o vlor de R que vi mximir su potênci dissipd; [,0] (b)o vlor d potênci máxim dissipd pr

Leia mais

Departamento de Informática. Modelagem Analítica. Modelagem Analítica do Desempenho de Sistemas de Computação. Disciplina: Medida de Probabilidade

Departamento de Informática. Modelagem Analítica. Modelagem Analítica do Desempenho de Sistemas de Computação. Disciplina: Medida de Probabilidade Departaento de Inforátca Dscplna: do Desepenho de Ssteas de Coputação Medda de Probabldade Prof. Sérgo Colcher colcher@nf.puc-ro.br Teora da Probabldade Modelo ateátco que perte estudar, de fora abstrata,

Leia mais

ÁLGEBRA LINEAR Equações Lineares na Álgebra Linear EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS

ÁLGEBRA LINEAR Equações Lineares na Álgebra Linear EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS Equção Liner * Sej,,,...,, (números reis) e n (n ) 2 3 n x, x, x,..., x (números reis) 2 3 n Chm-se equção Liner sobre

Leia mais

Elementos de Análise - Lista 6 - Solução

Elementos de Análise - Lista 6 - Solução Elementos de Análise - List 6 - Solução 1. Pr cd f bixo considere F (x) = x f(t) dt. Pr quis vlores de x temos F (x) = f(x)? () f(x) = se x 1, f(x) = 1 se x > 1; F (x) = se x 1, F (x) = x 1 se x > 1. Portnto

Leia mais

Sistems Lineres Form Gerl onde: ij ij coeficientes n n nn n n n n n n b... b... b...

Sistems Lineres Form Gerl onde: ij ij coeficientes n n nn n n n n n n b... b... b... Cálculo Numérico Módulo V Resolução Numéric de Sistems Lineres Prte I Profs.: Bruno Correi d Nóbreg Queiroz José Eustáquio Rngel de Queiroz Mrcelo Alves de Brros Sistems Lineres Form Gerl onde: ij ij coeficientes

Leia mais

(B) (A) e o valor desta integral é 9. gabarito: Propriedades da integral Represente geometricamente as integrais para acompanhar o cálculo.

(B) (A) e o valor desta integral é 9. gabarito: Propriedades da integral Represente geometricamente as integrais para acompanhar o cálculo. Cálculo Univrido List numero integrl trcisio@sorlmtemtic.org T. Prcino-Pereir Sorl Mtemátic lun@: 7 de setemro de 7 Cálculo Produzido com L A TEX sis. op. Dein/GNU/Linux www.clculo.sorlmtemtic.org/ Os

Leia mais

Primeira Prova de Mecânica A PME /08/2012

Primeira Prova de Mecânica A PME /08/2012 SL LITÉNI UNIVRSI SÃ UL eprtmento de ngenhr Mecânc rmer rov de Mecânc M 100 8/08/01 Tempo de prov: 110 mnutos (não é permtdo o uso de dspostvos eletrôncos) r r r r r r 1º Questão (3,0 pontos) onsdere o

Leia mais

Física Geral e Experimental I (2011/01)

Física Geral e Experimental I (2011/01) Diretori de Ciêncis Exts Lbortório de Físic Roteiro Físic Gerl e Experimentl I (/ Experimento: Cinemátic do M. R. U. e M. R. U. V. . Cinemátic do M.R.U. e do M.R.U.V. Nest tref serão borddos os seguintes

Leia mais

Material envolvendo estudo de matrizes e determinantes

Material envolvendo estudo de matrizes e determinantes E. E. E. M. ÁREA DE CONHECIMENTO DE MATEMÁTICA E SUAS TECNOLOGIAS PROFESSORA ALEXANDRA MARIA º TRIMESTRE/ SÉRIE º ANO NOME: Nº TURMA: Mteril envolvendo estudo de mtrizes e determinntes INSTRUÇÕES:. Este

Leia mais

CAP. VI Integração e diferenciação numéricas. 1. Introdução

CAP. VI Integração e diferenciação numéricas. 1. Introdução CAP. VI Integrção e dferencção numércs. Introdução Se um função f é contínu num ntervlo [ ; ] e é conecd su prmtv F, o ntegrl defndo dquel função entre e pode clculr-se pel fórmul fundmentl do cálculo

Leia mais

Cálculo Numérico Módulo III Resolução Numérica de Sistemas Lineares Parte I

Cálculo Numérico Módulo III Resolução Numérica de Sistemas Lineares Parte I Cálculo Numérico Módulo III Resolução Numéric de Sistems Lineres Prte I Prof: Reinldo Hs Sistems Lineres Form Gerl... n n b... n n b onde: ij n n coeficientes i incógnits b i termos independentes... nn

Leia mais

Recordando produtos notáveis

Recordando produtos notáveis Recordndo produtos notáveis A UUL AL A Desde ul 3 estmos usndo letrs pr representr números desconhecidos. Hoje você sbe, por exemplo, que solução d equção 2x + 3 = 19 é x = 8, ou sej, o número 8 é o único

Leia mais

FONTES DISCRETAS DE INFORMAÇÃO

FONTES DISCRETAS DE INFORMAÇÃO FONTES DISCRETAS DE INFORMAÇÃO Podeos caracterzar fontes dscretas de nforação por u conjunto fnto x x, K, denonados de alfabeto da fonte. A probabldade de M síbolos, {,, x M } da fonte etr cada síbolo

Leia mais

Problemas e Algoritmos

Problemas e Algoritmos Problems e Algoritmos Em muitos domínios, há problems que pedem síd com proprieddes específics qundo são fornecids entrds válids. O primeiro psso é definir o problem usndo estruturs dequds (modelo), seguir

Leia mais

x u 30 2 u 1 u 6 + u 10 2 = lim (u 1)(1 + u + u 2 + u 3 + u 4 )(2 + 2u 5 + u 10 )

x u 30 2 u 1 u 6 + u 10 2 = lim (u 1)(1 + u + u 2 + u 3 + u 4 )(2 + 2u 5 + u 10 ) Universidde Federl de Viços Deprtmento de Mtemátic MAT 40 Cálculo I - 207/II Eercícios Resolvidos e Comentdos Prte 2 Limites: Clcule os seguintes ites io se eistirem. Cso contrário, justique não eistênci.

Leia mais

5.1 Método de Ponderação da Linha de Rotação

5.1 Método de Ponderação da Linha de Rotação 5 etodologa O copressor é o coponente de aor nfluênca no desepenho da turbna a gás ass a precsão de sua odelage te pacto sgnfcatvo na efcáca do odelo nuérco coputaconal desta ara a odelage do copressor

Leia mais

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A. 6º Teste de avaliação versão2. Grupo I

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A. 6º Teste de avaliação versão2. Grupo I Escol Secundár com 3º cclo D. Dns 10º Ano de Mtemátc A 6º Teste de vlção versão Grupo I As cnco questões deste grupo são de escolh múltpl. Pr cd um dels são ndcds qutro lterntvs, ds qus só um está corret.

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MATA07 ÁLGEBRA LINEAR A PROFESSORES: Glória Márcia, Enaldo Vergasta. 1 a LISTA DE EXERCÍCIOS

UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MATA07 ÁLGEBRA LINEAR A PROFESSORES: Glória Márcia, Enaldo Vergasta. 1 a LISTA DE EXERCÍCIOS NIESIDADE FEDEAL DA BAHIA DEPATAMENTO DE MATEMÁTICA MATA7 ÁLGEBA LINEA A POFESSOES: Glór Márc Enldo ergst LISTA DE EXECÍCIOS ) Sejm A B e C mtres nversíves de mesm ordem encontre epressão d mtr X nos tens

Leia mais

RESUMO DE INTEGRAIS. d dx. NOTA MENTAL: Não esquecer a constante para integrais indefinidas. Fórmulas de Integração

RESUMO DE INTEGRAIS. d dx. NOTA MENTAL: Não esquecer a constante para integrais indefinidas. Fórmulas de Integração RESUMO DE INTEGRAIS INTEGRAL INDEFINIDA A rte de encontrr ntiderivds é chmd de integrção. Desse modo, o plicr integrl dos dois ldos d equção, encontrmos tl d ntiderivd: f (x) = d dx [F (x)] f (x)dx = F

Leia mais

6º Teste de avaliação versão1. Grupo I

6º Teste de avaliação versão1. Grupo I Escol Secundár com 3º cclo D. Dns 0º Ano de Mtemátc A 6º Teste de vlção versão Grupo I As cnco questões deste grupo são de escolh múltpl. Pr cd um dels são ndcds qutro lterntvs, ds qus só um está corret.

Leia mais

FÍSICA MECÂNICA FORMULÁRIO 5 PESO, FORÇA DE ATRITO, TRABALHO, T.E.C. EXERCÍCIOS

FÍSICA MECÂNICA FORMULÁRIO 5 PESO, FORÇA DE ATRITO, TRABALHO, T.E.C. EXERCÍCIOS 1. (MCK) U bloco de 2 k que é lnçdo co velocidde de 8 /s sobre u superfície orizontl ásper pár pós percorrer 8. Se sobre esse bloco for diciondo u outro de 3 k e o conjunto lnçdo sobre es superfície co

Leia mais

Árvore estritamente binária É uma árvore onde todos os nós que não são folha possuem dois filhos.

Árvore estritamente binária É uma árvore onde todos os nós que não são folha possuem dois filhos. Árvore estritmente binári É um árvore onde todos os nós que não são folh possuem dois filhos. Ex.: 434 Árvore binári complet Um árvore binári complet de profundidde d é um árvore estritmente binári onde

Leia mais

4- Método de Diferenças Finitas Aplicado às Equações Diferenciais Parciais.

4- Método de Diferenças Finitas Aplicado às Equações Diferenciais Parciais. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS 4- Métoo e Dereçs Fts Aplco às Equções Derecs Prcs. 4.- Aproção e Fuções. 4..- Aproção por Polôos. 4..- Ajuste e Dos: Míos Quros. 4.- Dervs e Itegrs

Leia mais

TP062-Métodos Numéricos para Engenharia de Produção Sistemas Lineares Métodos Iterativos

TP062-Métodos Numéricos para Engenharia de Produção Sistemas Lineares Métodos Iterativos TP6-Métodos Numércos pr Egehr de Produção Sstems Leres Métodos Itertvos Prof. Volmr Wlhelm Curt, 5 Resolução de Sstems Leres Métodos Itertvos Itrodução É stte comum ecotrr sstems leres que evolvem um grde

Leia mais

Métodos Numéricos Sistemas Lineares Métodos Iterativos. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Sistemas Lineares Métodos Iterativos. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numércos Sstems Leres Métodos Itertvos Professor Volmr Eugêo Wlhelm Professor Mr Kle Resolução de Sstems Leres Métodos Itertvos Itrodução É stte comum ecotrr sstems leres que evolvem um grde porcetgem

Leia mais

Noção intuitiva de limite

Noção intuitiva de limite Noção intuitiv de ite Qundo se proim de 1, y se proim de 3, isto é: 3 y + 1 1,5 4 1,3 3,6 1,1 3, 1,05 3,1 1,0 3,04 1,01 3,0 De um modo gerl: Eemplo de um ite básico Qundo tende um vlor determindo, o ite

Leia mais

Angela Nieckele PUC-Rio DIFUSÃO

Angela Nieckele PUC-Rio DIFUSÃO Angel ecele UC-Ro IFUSÃO Angel ecele UC-Ro q e qw q w e S w d qe W w e E dw de Angel ecele UC-Ro ossíves ers pr vlr o luo erl em egru: erl ms smples possível porém nclnção de d/d ns ces do volume de controle

Leia mais

PROPRIEDADES DAS POTÊNCIAS

PROPRIEDADES DAS POTÊNCIAS EXPONENCIAIS REVISÃO DE POTÊNCIAS Represetos por, potêci de bse rel e epoete iteiro. Defiios potêci os csos bio: 0) Gráfico d fução f( ) 0 Crescete I ]0, [.....,, ftores 0, se 0 PROPRIEDADES DAS POTÊNCIAS

Leia mais

SERVIÇO PÚBLICO FEDERAL Ministério da Educação

SERVIÇO PÚBLICO FEDERAL Ministério da Educação SERVIÇO PÚBLICO FEDERAL Ministério d Educção Universidde Federl do Rio Grnde Universidde Abert do Brsil Administrção Bchreldo Mtemátic pr Ciêncis Sociis Aplicds I Rodrigo Brbos Sores . Mtrizes:.. Introdução:

Leia mais

Sub-algoritmos. Funções e Procedimentos. Funções. Funções. Funções. Função: Fluxo de Controle

Sub-algoritmos. Funções e Procedimentos. Funções. Funções. Funções. Função: Fluxo de Controle Su-lgortmos: Funções e Procedmentos José ugusto Brnusks Deprtmento de Físc e Mtemátc FFCLRP-USP Sl Bloco P Fone () - est ul veremos o conceto de su-lgortmo (ou su-rotn): funções e procedmentos Su-lgortmos

Leia mais

Escalonamento de processos num sistema computacional multi-processo e uni-processador

Escalonamento de processos num sistema computacional multi-processo e uni-processador Sstems de empo el no ectvo / lgums Nots Muto áscs Sobre o º rblho Prátco Esclonmento de processos num sstem computconl mult-processo e un-processdor. Obectvo Notção escrção Máxmo tempo de computção de

Leia mais

Vitamina A Vitamina B Vitamina C Alimento 1 50 30 20 Alimento 2 100 40 10 Alimento 3 40 20 30

Vitamina A Vitamina B Vitamina C Alimento 1 50 30 20 Alimento 2 100 40 10 Alimento 3 40 20 30 Motvção: O prole d det Itrodução os Sstes Leres U pesso e det ecesst dgerr drete s segutes qutddes de vts: g de vt A 6 g de vt B 4 g de vt C El deve suprr sus ecessddes prtr do cosuo de três letos dferetes

Leia mais

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c.

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c. EQUAÇÃO DO GRAU Você já estudou em série nterior s equções do 1 gru, o gru de um equção é ddo pelo mior expoente d vriável, vej lguns exemplos: x + = 3 equção do 1 gru já que o expoente do x é 1 5x 8 =

Leia mais

3.1 Introdução Forma Algébrica de S n Forma Matricial de Sn Matriz Aumentada ou Matriz Completa do Sistema

3.1 Introdução Forma Algébrica de S n Forma Matricial de Sn Matriz Aumentada ou Matriz Completa do Sistema Cálculo Numérco Resolução de sstems de equções leres - Resolução de sstems de equções leres. Itrodução Város prolems, como cálculo de estruturs de redes elétrcs e solução de equções dferecs, recorrem resolução

Leia mais

1. Sejam R e S duas relações entre os conjuntos não vazios E e F. Então mostre que

1. Sejam R e S duas relações entre os conjuntos não vazios E e F. Então mostre que 2 List de exercícios de Álgebr 1. Sejm R e S dus relções entre os conjuntos não vzios E e F. Então mostre que ) R 1 S 1 = (R S) 1, b) R 1 S 1 = (R S) 1. Solução: Pr primeir iguldde, temos que (, b) R 1

Leia mais

Aula 09 Equações de Estado (parte II)

Aula 09 Equações de Estado (parte II) Aul 9 Equções de Estdo (prte II) Recpitulndo (d prte I): s equções de estdo têm form (sistems de ordem n ) = A + B u y = C + D u onde: A é um mtriz n n B é um mtriz n p C é um mtriz q n D é um mtriz q

Leia mais

Exercícios. setor Aula 25

Exercícios. setor Aula 25 setor 08 080409 080409-SP Aul 5 PROGRESSÃO ARITMÉTICA. Determinr o número de múltiplos de 7 que estão compreendidos entre 00 e 000. r 7 00 7 PA 05 30 4 n 994 00 98 98 + 7 05 n + (n ) r 994 05 + (n ) 7

Leia mais

1.6- MÉTODOS ITERATIVOS DE SOLUÇÃO DE SISTEMAS LINEARES PRÉ-REQUISITOS PARA MÉTODOS ITERATIVOS

1.6- MÉTODOS ITERATIVOS DE SOLUÇÃO DE SISTEMAS LINEARES PRÉ-REQUISITOS PARA MÉTODOS ITERATIVOS .6- MÉTODOS ITRATIVOS D SOLUÇÃO D SISTMAS LINARS PRÉ-RQUISITOS PARA MÉTODOS ITRATIVOS.6.- NORMAS D VTORS Defção.6.- Chm-se orm de um vetor,, qulquer fução defd um espço vetorl, com vlores em R, stsfzedo

Leia mais

UNIVERSIDADE DE SÃO PAULO ESCOLA POLITÉCNICA

UNIVERSIDADE DE SÃO PAULO ESCOLA POLITÉCNICA UNVERSDDE DE SÃO PULO ESOL POLTÉN Deprtmento de Engenhri de Estruturs e Geotécnic URSO ÁSO DE RESSTÊN DOS TERS FSÍULO Nº 5 Flexão oblíqu H. ritto.010 1 FLEXÃO OLÍU 1) udro gerl d flexão F LEXÃO FLEXÃO

Leia mais

Universidade Estadual do Sudoeste da Bahia

Universidade Estadual do Sudoeste da Bahia Universidde Estdul do Sudoeste d Bhi Deprtmento de Estudos Básicos e Instrumentis 3 Vetores Físic I Prof. Roberto Cludino Ferreir 1 ÍNDICE 1. Grndez Vetoril; 2. O que é um vetor; 3. Representção de um

Leia mais

Física. Física Módulo 1. Sistemas de Partículas e Centro de Massa. Quantidade de movimento (momento) Conservação do momento linear

Física. Física Módulo 1. Sistemas de Partículas e Centro de Massa. Quantidade de movimento (momento) Conservação do momento linear Físca Módulo 1 Ssteas de Partículas e Centro de Massa Quantdade de ovento (oento) Conservação do oento lnear Partículas e ssteas de Partículas Átoos, Bolnhas de gude, Carros e até Planetas... Até agora,

Leia mais

Cinemática de Corpos Rígidos Cinética de Corpos Rígidos Métodos Newton-Euler Exemplos. EESC-USP M. Becker /67

Cinemática de Corpos Rígidos Cinética de Corpos Rígidos Métodos Newton-Euler Exemplos. EESC-USP M. Becker /67 SEM004 - Aul Cnemátc e Cnétc de Corpos Rígdos Prof. Dr. Mrcelo Becker SEM - EESC - USP Sumáro d Aul ntrodução Cnemátc de Corpos Rígdos Cnétc de Corpos Rígdos Métodos Newton-Euler Eemplos EESC-USP M. Becker

Leia mais

REGRESSÃO LINEAR. À variável Y cujo comportamento se pretende estudar dá-se o nome de variável dependente.

REGRESSÃO LINEAR. À variável Y cujo comportamento se pretende estudar dá-se o nome de variável dependente. REGRESSÃO LINEAR N tm N lq À vrável Y cuo comportmento se pretende estudr dá-se o nome de vrável dependente. O comportmento dest vrável depende de outrs vráves X chmds vráves ndependentes. A modelção do

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prov Escrit de MATEMÁTICA A - o Ano 0 - Fse Propost de resolução GRUPO I. Como comissão deve ter etmente mulheres, num totl de pessos, será constituíd por um único homem. Logo, como eistem 6 homens no

Leia mais