Capítulo II ESPAÇOS VECTORIAIS

Tamanho: px
Começar a partir da página:

Download "Capítulo II ESPAÇOS VECTORIAIS"

Transcrição

1 Cpítlo II ESPAÇOS VECTORIAIS

2 Cpítlo II Espços Vectors Cpítlo II Cosdereos coto K o ql estão defds pelo eos ds operções: dt e ltplct sbolzds respectete por + e O coto K será corpo se: b K + b K + b b + cottdde ( b + c + ( b + c + ssoctdde é o eleeto lo de K (zero 5 b K K : + + é o eleeto oposto de 6 b K b K 7 b b cottdde 8 ( b c ( b c ssoctdde 9 é o eleeto dde de K b K b K ( b é o erso de b sto é b b b b ( b c ( c + ( b c dstrbtdde Fclete se coclr qe o coto R dos úeros res e tbé os cotos Q dos úeros rcos e C dos úeros coplexos é corpo Neste cso s operções + e são respectete s dção e ltplcção rtétcs O oposto de é e o erso de b é b b Defção Ddo o coto V { } e o corpo { } é espço ectorl sobre o corpo R se: A V + V A + + A ( ( + R dz-se qe V A + + ( eleeto lo de V A4 : + V + ( - eleeto oposto de 8 Prof Alzr Ds

3 Cpítlo II Espços Vectors B R e V V + + B ( + + B ( B ( ( B4 U dos cotos á cohecdos ode todos estes xos são stsfetos é o coto dos ectores lres qer o plo qer o espço Dí qe os eleetos de qlqer espço ectorl se desgdos por ectores os eleetos do corpo chos esclres Exeplo O coto o corpo Co efeto: M ds trzes do tpo é espço ectorl sobre Sedo A e B M tbé A + B M por defção de dção de trzes Coo se dção de trzes é cott - A + B B + A - e ssoct - ( A B + C A + ( B + C + O eleeto lo de M é trz l qe é represetd por A M A M : A + A A + A Sedo ( ; os eleetos de A os eleetos de A serão os opostos de Vos tbé qe R e A M tbé A M ( A B A + B + coo segr se deostr: b + b b b + b + b + b + b + b + b + b + b b + b b b b b + b b 9 Prof Alzr Ds

4 Cpítlo II Espços Vectors ( + β A A + βa e ( A ( βa IA A coo é edete β (s deostrções dos xos são álogs às terores Propreddes Eleetres dos Espços Vectors As propreddes dos espços ectors deostr-se prtr dos 8 xos qe costte s defção: ª - E qlqer espço ectorl exste só eleeto lo ª - E qlqer espço ectorl cd eleeto te só oposto ª - V (e-se qe o zero do º ebro R e o do º ebro V 4ª - R (bos os zeros pertece V 5ª - V ( e V ( ( ( 6ª - R 7ª - R e V 8ª - o 9ª - β β o Prodto Crteso O Espço Vectorl Se os cotos A ( e B ( b b Ch-se prodto crteso de A e B ( A B o coto A B {( b : A e b B} Se B A te-se o prodto crteso A A o coo é orlete represetdo A sedo este represetdo por A {( b : b A} {( : } A A Geerlzdo tereos etão Exeplo Se A { 5} e B { 46} B {( ( 4 ( 6 ( 5( 54( 56 } A B A {( 4 ( 5 ( 4 ( 45 ( 6 ( 65 } A {( ( 5 ( 5 ( 55 } Note-se qe o úero de eleetos de A B é gl o prodto do úero de eleetos de A pelo úero de eleetos de B Prof Alzr Ds

5 Cpítlo II Espços Vectors Pro-se qe o coto R - R é o coto dos úeros res é espço ectorl desde qe este defds s operções: ( ( b b b + ( + b + b + b e ( ( b b b R co b b e ( ( b Mtos dos cotos á cohecdos pode ser cosderdos cotos lgs: O coto dos úeros coplexos { + b : b R} C Veos o coto dos polóos de gr eor o gl { x + b : b R} e o coto ds trzes do tpo por exeplo são cotos M : b R b P Co efeto eos o qe scede co P á qe co C e M se poderão tecer cosderções álogs Sedo p e p eleetos de P co p x + b e p x + b fácl é erfcr qe p + p ( + x + ( b + b e p ( x + ( b Os esos resltdos se pode obter b co o eso procedeto: ( x + b + ( x + b ( b + ( ( + b + b ( + x + ( b + b e ( x + b ( b ( b ( x + ( b Veos s lgs cotos: O coto dos polóos de grs eor o gl { x + bx + c : b R} P c V o coto dos ectores do espço { ( b c : b c R} e o coto ds trzes do tpo {[ b c] : b c R} M são exeplos de cotos O coto dos polóos de gr eor o gl e { x + bx + cx + d : b c R} P d b o coto ds trzes qdrds de ª orde M : b c d R c d Prof Alzr Ds

6 Cpítlo II Espços Vectors são cotos 4 Sb-espços Vectors Se V espço ectorl sobre R e A V Dz-se qe A é sb-espço ectorl de V se: b A + b A R e A A Exeplo Verfcr se os cotos {( b + b : b R} {( x y z : x + y + } X z são sb-espços de A e Note-se qe tto o coto A coo o coto X estão cotdos e R á qe qlqer eleeto de cd destes cotos é tbé eleeto de Tereos de erfcr se s codções qe defe sb-espço ectorl são q stsfets Coeceos co o coto A e toeos dos eleetos geércos deste coto: ( b + b ( b + b : ( b b + ( b + b ( + b + b ( + b + ( + b + o eleeto obtdo pertece tbé A á qe stsfz defção de eleeto deste coto cd eleeto de A é costtdo por três úeros res o tercero sedo so dos preros ( b b ( b + b + tbé este eleeto pertece A pels rzões ocds e O coto A é portto sb-espço de Psseos o coto X Coo os três úeros res qe defe os eleetos deste coto estão terlgdos pel relção x + y + z o se z x y o coto pode ser descrto d segte for: X {( x y x y : x y R} Procededo coo o exeplo teror teríos ss ( x y x + y + ( x y x + y ( x + x y + y ( x + x ( y + y o qe os le coclr qe o eleeto obtdo ão pertece X pos o tercero úero qe o costt ão é Prof Alzr Ds

7 Cpítlo II Espços Vectors gl ( x + x ( y + y O coto X ão é portto sb-espço de Cobção Ler de Vectores Gerdores de Espço Vectorl Dzeos qe ector V é cobção ler dos ectores V se exstre os esclres R - coefcetes d cobção ler ts qe Exeplo O ector ( 6 5 ( ( ( de R é cobção ler dos ectores Co efeto bstrá tor 6 5 pr qe se poss escreer É edete qe qlqer ector R é cobção ler dqeles três ectores pos ( xyz x( + y( + z( x + y + z ( x y z Dreos qe os ectores V ger o são gerdores do espço ectorl V se qlqer ector deste espço ectorl for cobção ler dqeles ectores sto é se V R : Coo se cocl do exeplo teror os ectores ( ( e ( ger Exeplo Verfcr se os ectores ( ( ( ger Toeos o ector geérco ( xyz ( + ( + ( e fços ( xyz Verfqeos se qsqer qe se x y z exste sepre esclres ts qe relção teror se erdder Obteos: ( y z ( x o se + x x + + y Resolos o sste: y z z Prof Alzr Ds

8 Cpítlo II Espços Vectors y x z 4 4 y x y z + y 4 4 y x y z + y + 4z Cocl-se qe o sste só é possíel pr x + y + 4z cso cotráro ão exstrão qe stsfç o sste e coseqeteete relção ( xyz ( + ( + ( Ne todos os ectores de cobção ler dos ectores ddos Estes ão ger R são portto Depedêc e Idepedêc Leres Dz-se qe os ectores V são lerete depedetes se Se est gldde sbsstr pr ão todos los os ectores serão lerete depedetes Exeplo Os ectores ( ( ( depedetes Pr o erfcr escree-se são lerete ( + ( + ( ( Etão Teore Os ectores V são lerete depedetes se e só se deles for cobção ler de todos os otros Deostrção Se são lerete depedetes etão relção é possíel tbé pr ão todos los Spodo qe se poderá cosderr Neste cso prtr d eqção teror podeos obter scessete: Prof Alzr Ds

9 Cpítlo II Espços Vectors + + Coo são úeros res e dí o ector ser cobção ler de todos os otros Recprocete se for cobção ler dos ectores qe sbe-se qe R ts Adcodo bos os ebros dest gldde o opsoto de obté-se ( ( + o qe pro qe estes + ectores são lerete depedetes á qe qel gldde é possíel exstdo coefcete ão lo: o últo coefcete é gl ( Teore Se os ectores cobção ler de são lerete depedetes e se ão é etão são tbé lerete depedetes Este teore pode ser deostrdo pelo étodo de redção o bsrdo Deostrção Spohos qe são lerete depedetes Etão relção ser possíel pr ão todos los É edete qe te qe ser destes porqe se tl ão cotecesse e relção teror redzr-se- + + tedo + codção de ão sere todos los Isto cotr ds hpóteses do teore ql dz qe são lerete depedetes Se pelo cotráro pder ser relção le scessete dode coclr-se- qe er cobçãoler de cotrdz otr hpótese Os ectores depedetes s s depedetes o qe ão pode ser lerete 5 Prof Alzr Ds

10 Cpítlo II Espços Vectors Bse e Desão Os ectores V for bse do espço ectorl V se: B - gerre V B - fore lerete depedetes Os ectores ( ( ( qe ger V - qlqer ector de V pode ser escrto coo cobção ler destes e são lerete depedetes coo se for bse de {( ( } é bse cóc de cóc de 4 R etc É chd bse cóc de Do eso odo { } ( ( ( ( é bse Exeplo Verfcr se os ectores ( ( ( for bse de B - Os ectores ddos dee gerr R sto é qlqer qe se ( x y z R dee exstr R ts qe relção ( xyz ( + ( + ( se erfqe o qe eqle + x x + y Resoledo eqção: y z z x 5 y x 4 z x possíel qsqer qe se x 5 y x O sste é sepre x y + z x y z o qe sgfc qe exste sepre B - qe stsfze relção Os ectores são lerete depedetes N erdde gldde: ( + ( + ( ( perte obter o sste + + qe só dfere os teros depedetes gor todos los A codesção d trz à seelhç d teror reslt trz 6 Prof Alzr Ds

11 Cpítlo II Espços Vectors 5 o qe pro qe o sste é possíel e deterdo exstdo pes solção l: Ass os três ectores são lerete depedetes e tededo tbé B for bse de Teore Tods s bses de ddo espço ectorl tê o eso úero de eleetos Deostrção Cosdereos ds bses de ddo espço ectorl e os spor qe o úero de ectores de cd dels é respectete e co Adtos qe > Represeteos prer bse por { } segd por { } e Coo qlqer ector de espço ectorl V é cobção ler dos ectores de qlqer bse de V - por defção de bse podeos escreer: os coefcetes ds cobções leres sedo ( ; Fços gor se for bse de V tê qe ser lerete depedetes o qe ão cotece Veos ds + glddes terores obté-se: ( ( ( sto é: te-se ss ( ( ( Coo for bse de V eles são lerete depedetes e dí teos: U sste hoogéeo - teros depedetes todos los é sepre possíel s este cso é deterdo pos tedo ós dtdo o íco ser > o úero de 7 Prof Alzr Ds

12 Cpítlo II Espços Vectors cols é or qe o úero de lhs e há cógts defds à cst de otrs ão deterds Exeplo - z + t z t Etão y + z + t y z t ( t x + y + z + t x + x t Sgfc etão qe lé d solção l exste tbé solções ão ls o qe pro qe relção é erdder pr ão são ão todos los Os ectores lerete depedetes e por sso ão for bse de V Se > fr-se- deostrção álog só qe represetríos os ectores coo cobção ler de - dtdo qe estes ectores for bse de V Sedo ss e podeos ter < As ds bses terão o eso úero de ectores > e Ch-se desão de espço ectorl V o úero de ectores de bse qlqer de V Se este úero é gl escree-se d V Coo os ectores ( ( ( for bse de R terá sepre três ectores e d R qlqer bse de Costrção de U Bse A costrção de bse pode fzer-se ector ector tededo o peúlto teore e qe qlqer ector ão lo é lerete depedete se pel ot propredde dos espços ectors Exeplo Costr bse do espço ectorl {( x y x + y : x y R} V Qlqer ector ão lo de V por exeplo ( stsfz ª codção de defção de bse Veos gor se erfc ª codção sto é se ger V Pr 8 Prof Alzr Ds

13 Cpítlo II Espços Vectors sso qsqer qe fosse x y deer exstr R tl qe ( x y x + y ( o se: x y x + y É edete qe ão há qlqer qe é tl qe y stsfç o sste teror qdo o ector ( x y x + y V Ass e todos os ectores de V são cobção ler de ( e portto este ector ão costt bse de V U dos ectores qe ão é cobção ler de ( é por exeplo ( y Pelo peúlto teore podeos coclr qe estes dos ectores são lerete depedetes stsfzedo ss ª codção d defção de bse Veos se tbé stsfze ª: x x x e ss y y + x + y x + y ( y x + y ( + ( ss x y y x y O sste é sepre possíel e deterdo Sedo x y R R pos ( x y x + y x( + y( ts qe ( x y x + y ( + ( lerete depedetes for bse de V Os dos ectores ger V e coo lé dsso são 9 Prof Alzr Ds

Espaços Vectoriais. Sérgio Reis Cunha. Outubro de Faculdade de Engenharia da Universidade do Porto

Espaços Vectoriais. Sérgio Reis Cunha. Outubro de Faculdade de Engenharia da Universidade do Porto APONTAMENTOS DE ÁLGEBRA Espços Vectors Sérgo Res Ch Otbro de Fcldde de Egehr d Uersdde do Porto Lcectr em Egehr Electrotécc e de Comptdores Espços Vectors Defção de Espço Vectorl / Defção de Espço Vectorl

Leia mais

1- Resolução de Sistemas Lineares.

1- Resolução de Sistemas Lineares. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS - Resolução de Sstes Leres..- Mtrzes e Vetores..2- Resolução de Sstes Leres de Equções Algébrcs por Métodos Extos (Dretos)..3- Resolução de Sstes Leres

Leia mais

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Fatorial [ ] = A. Exercícios Resolvidos. Exercícios Resolvidos ( ) ( ) ( ) ( )! ( ).

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Fatorial [ ] = A. Exercícios Resolvidos. Exercícios Resolvidos ( ) ( ) ( ) ( )! ( ). OSG: / ENSINO PRÉ-UNIVERSITÁRIO T MATEMÁTIA TURNO DATA ALUNO( TURMA Nº SÉRIE PROFESSOR( JUDSON SANTOS ITA-IME SEDE / / Ftorl Defção h-se ftorl de e dc-se or o úero turl defdo or: > se ou se A A A A Eercícos

Leia mais

Vitamina A Vitamina B Vitamina C Alimento 1 50 30 20 Alimento 2 100 40 10 Alimento 3 40 20 30

Vitamina A Vitamina B Vitamina C Alimento 1 50 30 20 Alimento 2 100 40 10 Alimento 3 40 20 30 Motvção: O prole d det Itrodução os Sstes Leres U pesso e det ecesst dgerr drete s segutes qutddes de vts: g de vt A 6 g de vt B 4 g de vt C El deve suprr sus ecessddes prtr do cosuo de três letos dferetes

Leia mais

Convergência de Cadeia de Markov Não-Homogênea e Aplicações

Convergência de Cadeia de Markov Não-Homogênea e Aplicações Cetro Uerstáro de Brsíl UCEUB Coergêc de Cde de rko Não-Hoogêe e plcções Bolsst: gdl les Cstódo Oretdor: J lberto Ros Crz Crso: teátc Brsíl, o seestre de 006 SUÁRIO Itrodção 0 Cpítlo Nors e Prodtos terores

Leia mais

Faculdade de Economia Universidade Nova de Lisboa 2º Semestre 2007 / Cálculo II. - Aulas Práticas

Faculdade de Economia Universidade Nova de Lisboa 2º Semestre 2007 / Cálculo II. - Aulas Práticas Fcldde de Ecoo Uversdde Nov de Lso º Seestre 007 / 008 Cálclo II - ls Prátcs 0 Espço R - Revsões de lógc oções áscs Deção: U proposção é rção qe o é verdder o é ls Deção: proposção plc proposção B solcete

Leia mais

Espaços Vetoriais. Profª Cristiane Guedes. Bibliografia: Algebra Linear Boldrini/Costa/Figueiredo/Wetzler

Espaços Vetoriais. Profª Cristiane Guedes. Bibliografia: Algebra Linear Boldrini/Costa/Figueiredo/Wetzler Espços Vetoriis Profª Cristie Gedes iliogrfi: Alger Lier oldrii/cost/figeiredo/wetzler Itrodção Ddo m poto P(,,z o espço, temos m etor ssocido esse poto: OP (,, z pode ser escrito d segite form: z z V

Leia mais

1.6- MÉTODOS ITERATIVOS DE SOLUÇÃO DE SISTEMAS LINEARES PRÉ-REQUISITOS PARA MÉTODOS ITERATIVOS

1.6- MÉTODOS ITERATIVOS DE SOLUÇÃO DE SISTEMAS LINEARES PRÉ-REQUISITOS PARA MÉTODOS ITERATIVOS .6- MÉTODOS ITRATIVOS D SOLUÇÃO D SISTMAS LINARS PRÉ-RQUISITOS PARA MÉTODOS ITRATIVOS.6.- NORMAS D VTORS Defção.6.- Chm-se orm de um vetor,, qulquer fução defd um espço vetorl, com vlores em R, stsfzedo

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear NOTAS D AULA Geoetr Alít e Álger Ler Vetores o sço Professor: Lz Ferdo Nes Dr. 08/Se_0 Geoetr Alít e Álger Ler Íde Vetores o sço Trdesol.... Defção.... Oerções o etores.... Proeção ortogol de etor sore

Leia mais

Faculdade de Economia Universidade Nova de Lisboa 2º Semestre 2007 / Cálculo II. - Aulas Práticas

Faculdade de Economia Universidade Nova de Lisboa 2º Semestre 2007 / Cálculo II. - Aulas Práticas Fcldde de Ecoo Uversdde Nov de Lso º Seestre 007 / 008 Cálclo II - ls Prátcs Versão /0/008 Dvd Herqes º Seestre 007 / 008 0 Espço - Revsões de lógc oções áscs Deção: U proposção é rção qe o é verdder o

Leia mais

Fórmulas de quadratura do tipo Gauss associadas aos polinômios similares: propriedades e exemplos

Fórmulas de quadratura do tipo Gauss associadas aos polinômios similares: propriedades e exemplos Fórls de qdrr do po Gss ssocds os polôos slres: propreddes e exeplos Algcoe Sr Rg Depo de Cêcs de Copção e Esísc IILCE UNESP 554- São José do Ro Preo SP E-l: rg@lceespr Del Olver Veroe Uversdde Federl

Leia mais

Objetivo: Conceituar espaço vetorial; Realizar mudança de base; Conhecer e calcular transformações Lineares

Objetivo: Conceituar espaço vetorial; Realizar mudança de base; Conhecer e calcular transformações Lineares Alger Lier oldrii/cost/figeiredo/wetzler Ojetio: Coceitr espço etoril; Relizr mdç de se; Cohecer e clclr trsformções Lieres Itrodção Defiição de Espço Vetoril Sespço Comição Lier Represetção dos etores

Leia mais

EQUAÇÕES LINEARES E DECOMPOSIÇÃO DOS VALORES SINGULARES (SVD)

EQUAÇÕES LINEARES E DECOMPOSIÇÃO DOS VALORES SINGULARES (SVD) EQUAÇÕES LINEARES E DECOMPOSIÇÃO DOS VALORES SINGULARES (SVD) 1 Equções Leres Em otção mtrcl um sstem de equções leres pode ser represetdo como 11 21 1 12 22 2 1 x1 b1 2 x2 b2. x b ou A.X = b (1) Pr solução,

Leia mais

3.1 Introdução Forma Algébrica de S n Forma Matricial de Sn Matriz Aumentada ou Matriz Completa do Sistema

3.1 Introdução Forma Algébrica de S n Forma Matricial de Sn Matriz Aumentada ou Matriz Completa do Sistema Cálculo Numérco Resolução de sstems de equções leres - Resolução de sstems de equções leres. Itrodução Város prolems, como cálculo de estruturs de redes elétrcs e solução de equções dferecs, recorrem resolução

Leia mais

PROPRIEDADE E EXERCICIOS RESOLVIDOS.

PROPRIEDADE E EXERCICIOS RESOLVIDOS. PROPRIEDADE E EXERCICIOS RESOLVIDOS. Proprieddes:. Epoete Igul u(. Cosiderdo d coo se osse qulquer uero ou o d u letr que pode tor qulquer vlor. d d d e: d 9 9 9. Epoete Mior que U(. De u or gerl te-se:...

Leia mais

PESQUISA OPERACIONAL Dualidade. Professor Volmir Wilhelm Professora Mariana Kleina

PESQUISA OPERACIONAL Dualidade. Professor Volmir Wilhelm Professora Mariana Kleina PESQUISA OPERACIOAL Duldde Professor Volr Wlhel Professor Mr Kle Duldde A d prole de progrção ler (prole de progrção ler prl) orrespode u outro (dul) fordo o pr de proles dus: pl prl pl dul Prof. Volr

Leia mais

Sumário. Cálculo do juros compostos. Juros compostos conceitos. Cálculo do juros compostos. Exemplos. Engenharia Econômica e Finanças

Sumário. Cálculo do juros compostos. Juros compostos conceitos. Cálculo do juros compostos. Exemplos. Engenharia Econômica e Finanças Suáro Udde 3 ptlzção opost Professor: Fábo de Olver Alves ottos: fboolves@yhoo.de fbo@ptgors.co.br oceto de cptlzção copost Fóruls de cálculo oprtvo Juros Sples x Juros opostos Equvlêc de pts Equvlêc de

Leia mais

Sumário. Cálculo dos juros compostos. Juros compostos conceitos. Exemplos. Cálculo dos juros compostos. Engenharia Econômica e Finanças

Sumário. Cálculo dos juros compostos. Juros compostos conceitos. Exemplos. Cálculo dos juros compostos. Engenharia Econômica e Finanças Suáro Udde 3 ptlzção opost Professor: Fábo de Olver Alves ottos: fboolves@yhoo.de fbo@ptgors.co.br oceto de cptlzção copost Fóruls de cálculo oprtvo Juros Sples x Juros opostos Equvlêc de pts Equvlêc de

Leia mais

Método de Gauss- Seidel

Método de Gauss- Seidel .7.- Método de Guss- Sedel Supohmos D = I, como fo feto pr o método de Jco-Rchrdso. Trsformmos o sstem ler A = como se segue: (L + I + R) = (L + I) = - R + O processo tertvo defdo por: é chmdo de Guss-Sedel.

Leia mais

5 - VETORES. Usamos a notação de matriz-coluna v. ou a identificação v = (x, y, z), para

5 - VETORES. Usamos a notação de matriz-coluna v. ou a identificação v = (x, y, z), para 5 - VETORES 5.- Crcterizção U etor pode ser etedido coo estrtr de ddos ford por cojto de lores o otros eleetos de eso tipo o es estrtr. Sibolicete, deotos etores por letrs iúscls e egrito (por eeplo,,

Leia mais

3- Autovalores e Autovetores.

3- Autovalores e Autovetores. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS 3- Autovalores e Autovetores. 3.- Autovetores e Autovalores de ua Matrz. 3.- Métodos para ecotrar os Autovalores e Autovetores de ua Matrz. 3.- Autovetores

Leia mais

Capítulo V ESPAÇOS EUCLIDIANOS

Capítulo V ESPAÇOS EUCLIDIANOS Cpítlo V EPAÇO EUCLIDIANO Cpítlo V Espços Eclidios Cpítlo V Prodto Esclr em Espços Vectoriis Chm-se prodto esclr o espço ectoril E m plicção E E R qe todo o pr rel ( ) de ectores de E ssoci m úmero rel

Leia mais

Determinação dos Momentos de Encastramento Perfeito. Um membro de secção constante ligando os nós i e j está representado na figura.

Determinação dos Momentos de Encastramento Perfeito. Um membro de secção constante ligando os nós i e j está representado na figura. eternção os oentos e Encstrento Perfeto U ebro e secção constnte gno os nós e está represento n fgur. A su trz e rgez reconr s forçs eercs ns etrees co os esocentos que í surge. y, sto é, = y A eor Resstênc

Leia mais

5 REVISÃO: SISTEMA DE EQUAÇÕES LINEARES

5 REVISÃO: SISTEMA DE EQUAÇÕES LINEARES Prf. Vlr Wlhel UFPR TP5 Pesus Oercl 5 REVISÃO: SISTEM DE EQUÇÕES LIERES Sste de Euções Leres 5 8 8 c (sete udrd) e tl ue T ' 5 T T 5 I sluçã gerl T T 5 8 T 8 T é ded de sluçã ásc Sej u sste c euções e

Leia mais

CAP. IV INTERPOLAÇÃO POLINOMIAL

CAP. IV INTERPOLAÇÃO POLINOMIAL CAP. IV INTERPOLAÇÃO POLINOMIAL INTRODUÇÃO Muts fuções são cohecds es um cojuto fto e dscreto de otos de um tervlo [,b]. Eemlo: A tbel segute relco clor esecífco d águ e temertur: temertur (ºC 5 3 35 clor

Leia mais

Conceitos fundamentais. Prof. Emerson Passos

Conceitos fundamentais. Prof. Emerson Passos Cocetos fudmets Prof. Emerso Pssos 1. Espço dos vetores de estdo. Operdores leres. Represetção de vetores de estdo e operdores. 2. Observáves. Autovlores e utovetores de um observável. Medd Mecâc Quâtc.

Leia mais

Capítulo III TRANSFORMAÇÕES LINEARES

Capítulo III TRANSFORMAÇÕES LINEARES Capítlo III RANSFORAÇÕES LINEARES Capítlo III rasforações Lieares Capítlo III rasforações o Aplicações Seja dois cojtos A e B Se a cada eleeto a A for associado e só eleeto b B dir-se-á qe foi defiida

Leia mais

Sequências Teoria e exercícios

Sequências Teoria e exercícios Sequêcs Teor e exercícos Notção forml Defmos um dd sequêc de úmeros complexos por { } ( ) Normlmete temos teresse em descobrr um fórmul fechd que sej cpz de expressr o -ésmo termo d sequêc como fução de

Leia mais

No que segue, apresentamos uma definição formal para a exponenciação. Se a 0, por definição coloca-se a a a, a a a a e assim por diante. Ou.

No que segue, apresentamos uma definição formal para a exponenciação. Se a 0, por definição coloca-se a a a, a a a a e assim por diante. Ou. MAT Cálculo Diferecil e Itegrl I RESUMO DA AULA TEÓRICA 3 Livro do Stewrt: Seções.5 e.6. FUNÇÃO EXPONENCIAL: DEFINIÇÃO No ue segue, presetos u defiição forl pr epoecição uisuer R e., pr 2 3 Se, por defiição

Leia mais

4 SISTEMAS DE EQUAÇÕES LINEARES. 4.1 Equação Linear

4 SISTEMAS DE EQUAÇÕES LINEARES. 4.1 Equação Linear SISTEMAS DE EQUAÇÕES INEARES. Eqção ier U eqção do tipo = qe epress vriável e fção d vriável e d costte, é chd eqção lier. A plvr lier é tilid tedo e vist qe o gráfico dess eqção é lih ret. D es for, eqção

Leia mais

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento.

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento. Prof. Lorí Vl, Dr. vll@mt.ufrgs.r http://www.mt.ufrgs.r/~vll/ Em muts stuções dus ou ms vráves estão relcods e surge etão ecessdde de determr turez deste relcometo. A álse de regressão é um técc esttístc

Leia mais

SUBSTITUIÇÕES ENVOLVENDO NÚMEROS COMPLEXOS Diego Veloso Uchôa

SUBSTITUIÇÕES ENVOLVENDO NÚMEROS COMPLEXOS Diego Veloso Uchôa Nível Avaçado SUBSTITUIÇÕES ENVOLVENDO NÚMEROS COMPLEXOS Dego Veloso Uchôa É bastate útl e probleas de olpíada ode teos gualdades ou quereos ecotrar u valor de u soatóro fazeros substtuções por úeros coplexos

Leia mais

127$%5(9(62%5(2&21&(,72'(0e',$

127$%5(9(62%5(2&21&(,72'(0e',$ 27$%5(9(62%5(2&2&(,72'(0e',$ +OLR%HUQDUGR/RSHV O coceto de éd surge de odo budte dscl de Métodos Esttístcos, resete e utos cursos de lcectur de sttuções de eso sueror. Surge, de gul odo, e doíos ode oção

Leia mais

Otimização Linear curso 1. Maristela Santos (algumas aulas: Marcos Arenales) Solução Gráfica

Otimização Linear curso 1. Maristela Santos (algumas aulas: Marcos Arenales) Solução Gráfica Otmzção Ler curso Mrstel Stos (lgums uls: Mrcos Areles) Solução Gráfc Otmzção Ler Modelo mtemátco c c c ) ( f Mmzr L fução obetvo sueto : m m m m b b b L M L L restrções ( ) 0 0 0. codção de ão-egtvdde

Leia mais

4- Método de Diferenças Finitas Aplicado às Equações Diferenciais Parciais.

4- Método de Diferenças Finitas Aplicado às Equações Diferenciais Parciais. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS 4- Métoo e Dereçs Fts Aplco às Equções Derecs Prcs. 4.- Aproção e Fuções. 4..- Aproção por Polôos. 4..- Ajuste e Dos: Míos Quros. 4.- Dervs e Itegrs

Leia mais

Unesp. Sistemas de Equações Lineares. Cálculo Numérico. Prof. Dr. G. J. de Sena CAMPUS DE GUARATINGUETÁ FACULDADE DE ENGENHARIA

Unesp. Sistemas de Equações Lineares. Cálculo Numérico. Prof. Dr. G. J. de Sena CAMPUS DE GUARATINGUETÁ FACULDADE DE ENGENHARIA Uesp UNIVERIDADE ETADUAL PAULITA CAMPU DE GUARATINGUETÁ FACULDADE DE ENGENHARIA Cálculo Nuérco stes de Equções Leres Prof. Dr. G. J. de e Deprteto de Mteátc Edção CAPÍTULO ITEMA DE EQUAÇÕE LINEARE.. INTRODUÇÃO

Leia mais

Consideremos a fórmula que nos dá a área de um triângulo: = 2

Consideremos a fórmula que nos dá a área de um triângulo: = 2 6. Cálculo Derecal e IR 6.. Fução Real de Varáves Reas Cosdereos a órula que os dá a área de u trâulo: b h A( b h) Coo podeos vercar a área de u trâulo depede de duas varáves: base (b) e altura (h) Podeos

Leia mais

ALGUMAS CONSIDERAÇÕES TEORICAS 1. Sistema de equações Lineares

ALGUMAS CONSIDERAÇÕES TEORICAS 1. Sistema de equações Lineares LGUMS CONSIDERÇÕES TEORICS. Siste de equções Lieres De fo gerl, podeos dier que u siste de equções lieres ou siste lier é u cojuto coposto por dus ou is equções lieres. U siste lier pode ser represetdo

Leia mais

MÉTODOS NUMÉRICOS. Prof. Ionildo José Sanches Prof. Diógenes Cogo Furlan. Universidade Federal do Paraná Departamento de Informática CI-202

MÉTODOS NUMÉRICOS. Prof. Ionildo José Sanches Prof. Diógenes Cogo Furlan. Universidade Federal do Paraná Departamento de Informática CI-202 Uversdde Federl do Prá Deprteto de Iforátc CI- MÉTODOS NUMÉRICOS Prof. Ioldo José Sches Prof. Dógees Cogo Furl E-Ml: oldo@oldo.cjb.et URL: http://www.oldo.cjb.et/etodos/ CURITIBA 7 SUMÁRIO INTRODUÇÃO...

Leia mais

CAPÍTULO III MÉTODOS DE RUNGE-KUTTA

CAPÍTULO III MÉTODOS DE RUNGE-KUTTA PMR 40 Mecâca Coputacoal CAPÍTULO III MÉTODOS DE RUNGE-KUTTA São étodos de passo sples requere apeas dervadas de prera orde e pode forecer aproxações precsas co erros de trucaeto da orde de, 3, 4, etc.

Leia mais

CAP. IV INTERPOLAÇÃO POLINOMIAL

CAP. IV INTERPOLAÇÃO POLINOMIAL CAP. IV INTERPOLAÇÃO POLINOMIAL INTRODUÇÃO Muts fuções são cohecds es um cojuto fto e dscreto de otos de um tervlo [,b]. Eemlo: A tbel segute relco clor esecífco d águ e temertur: temertur (ºC 5 3 35 clor

Leia mais

CENTROS DE MASSA I. Cabrita Neves Setembro de 2005

CENTROS DE MASSA I. Cabrita Neves Setembro de 2005 CENTR DE AA I. Crt Neves etero de 005 Ídce. Cetro de vectores preos... 3. Cetro de grvdde... 4 3. Cetro de ss... 5 4. stes co trução cotíu de ss... 6 4. Desdde ássc 6 4. Cetro de ss de sstes co trução

Leia mais

CAP. IV INTERPOLAÇÃO POLINOMIAL

CAP. IV INTERPOLAÇÃO POLINOMIAL CAP. IV INTERPOLAÇÃO POLINOMIAL INTRODUÇÃO Muts uções são cohecds pes um cojuto to e dscreto de potos de um tervlo [,b]. Eemplo: A tbel segute relco clor especíco d águ e tempertur: tempertur (ºC 5 5 clor

Leia mais

2. POTÊNCIAS E RAÍZES

2. POTÊNCIAS E RAÍZES 2 2. POTÊNCIAS E RAÍZES 2.. POTÊNCIAS COM EXPOENTES INTEIROS Vios teriorete lgus sectos históricos ds otêcis e dos logritos, e coo lgus rocessos ue levr à costrução dos esos. Pssreos seguir u desevolvieto

Leia mais

y vetores do R 2. Então:

y vetores do R 2. Então: ESPAÇOS VETORIAIS Espços Vetoriis Estdremos o coceito de espço etoril, qe é m cojto mido de certs operções, gozm de proprieddes ligds áris plicções mtemátics, s ciêcis bem como egehri Sej V m cojto ão

Leia mais

6.2 Sabendo que as matrizes do exercício precedente representam transformações lineares 2 2

6.2 Sabendo que as matrizes do exercício precedente representam transformações lineares 2 2 Cpítulo Vlores própros e vectores própros. Encontrr os vlores e vectores própros ds seguntes mtrzes ) e) f). Sendo que s mtrzes do exercíco precedente representm trnsformções lneres R R, represente s rects

Leia mais

CAPÍTULO 9 OPERADORES DIAGONALIZÁVEIS

CAPÍTULO 9 OPERADORES DIAGONALIZÁVEIS INRODUÇÃO AO ESUDO DA ÁGERA INERAR i Frcisco d Cr Deprtmeto de Mtemátic Uesp/r CAÍUO 9 OERADORES DIAGONAIZÁVEIS No cpítlo 8 vi-se qe é possível determir mtri de m trsformção o de m operdor lier em relção

Leia mais

ões Lineares todos de resolução Métodos de resolu Sistemas de Equações Lineares Sistemas de Equa as em uma treliça lculo das forças em uma treli

ões Lineares todos de resolução Métodos de resolu Sistemas de Equações Lineares Sistemas de Equa as em uma treliça lculo das forças em uma treli CCI- CCI- teátic Coptciol Rízes de Sistes ieres Crlos lerto loso Sches Eliição de Gss Gss-Jord Decoposição U Gss-Jcoi Gss-Seidel Itrodção étodos diretos Regr de Crer Eliição de Gss Gss-Jord Decoposição

Leia mais

CAPÍTULO III. Aproximação de funções pelo método dos Mínimos Quadrados

CAPÍTULO III. Aproximação de funções pelo método dos Mínimos Quadrados Métodos Nuércos CAPÍULO III C. Balsa & A. Satos Aproxação de fuções pelo étodo dos Míos Quadrados. Algus cocetos fudaetas de Álgebra Lear Relebraos esta secção algus cocetos portates da álgebra Lear que

Leia mais

PROPRIEDADES DAS POTÊNCIAS

PROPRIEDADES DAS POTÊNCIAS EXPONENCIAIS REVISÃO DE POTÊNCIAS Represetos por, potêci de bse rel e epoete iteiro. Defiios potêci os csos bio: 0) Gráfico d fução f( ) 0 Crescete I ]0, [.....,, ftores 0, se 0 PROPRIEDADES DAS POTÊNCIAS

Leia mais

Capítulo III - Resolução de Sistemas. Como sabemos os sistemas podem ser classificados em possíveis. (determinados ou indeterminados) e impossíveis.

Capítulo III - Resolução de Sistemas. Como sabemos os sistemas podem ser classificados em possíveis. (determinados ou indeterminados) e impossíveis. Cpítulo III - Resolução de Sstems Vmos estudr métodos umércos pr: - resolver sstems de equções leres ão leres (; - Resolução de Sstems de Equções eres Cosdere-se o sstem ler de equções cógts:............

Leia mais

... Capítulo III - Resolução de Sistemas. Vamos estudar métodos numéricos para: - resolver sistemas lineares

... Capítulo III - Resolução de Sistemas. Vamos estudar métodos numéricos para: - resolver sistemas lineares Cpítulo III - Resolução de Sstems Vmos estudr métodos umércos pr: - resolver sstems leres ão leres (; - Resolução de Sstems de Equções eres Cosdere-se o sstem ler de equções cógts:............ b b b usdo

Leia mais

AUTOVALORES E AUTOVETORES

AUTOVALORES E AUTOVETORES UTOLOES E UTOETOES Defnção Sej T : um operdor lner Um vetor v, v, é dto utovetor, vetor própro ou vetor crcterístco do operdor T, se exstr λ tl que T v) = λ v O esclr λ é denomndo utovlor, vlor própro

Leia mais

TP062-Métodos Numéricos para Engenharia de Produção Sistemas Lineares Métodos Iterativos

TP062-Métodos Numéricos para Engenharia de Produção Sistemas Lineares Métodos Iterativos TP6-Métodos Numércos pr Egehr de Produção Sstems Leres Métodos Itertvos Prof. Volmr Wlhelm Curt, 5 Resolução de Sstems Leres Métodos Itertvos Itrodução É stte comum ecotrr sstems leres que evolvem um grde

Leia mais

Operadores Lineares e Matrizes

Operadores Lineares e Matrizes Operadores Lieares e Matrizes Ua Distição Fudaetal e Álgebra Liear Prof Carlos R Paiva Operadores Lieares e Matrizes Coeceos por apresetar a defiição de operador liear etre dois espaços lieares (ou vectoriais)

Leia mais

Métodos Numéricos Sistemas Lineares Métodos Iterativos. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Sistemas Lineares Métodos Iterativos. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numércos Sstems Leres Métodos Itertvos Professor Volmr Eugêo Wlhelm Professor Mr Kle Resolução de Sstems Leres Métodos Itertvos Itrodução É stte comum ecotrr sstems leres que evolvem um grde porcetgem

Leia mais

Método de Eliminação de Gauss

Método de Eliminação de Gauss étodo de Elmção de Guss A de ásc deste método é trsformr o sstem A um sstem equvlete A () (), ode A () é um mtrz trgulr superor, efectudo trsformções elemetres sore s lhs do sstem ddo. Cosdere-se o sstem

Leia mais

Atividades relacionadas à ManjarBrancoG

Atividades relacionadas à ManjarBrancoG Atdades relacoadas à MajarBracoG Neste cojto de atdades está oblzado o estdo da ção ajar braco, sto é, a ção qe o doío é o teralo echado [0,] e asse alores o cojto dos úeros reas. Essa ção é deda coo o

Leia mais

Máximos, Mínimos e Pontos de Sela de funções f ( x,

Máximos, Mínimos e Pontos de Sela de funções f ( x, Vsco Smões ISIG 3 Mámos Mímos e otos de Sel de uções ( w). Forms Qudrátcs Chm-se orm qudrátc em Q ) se: ( Q ) ( T ode.. é um vector colu e um mtr qudrd dt mtr d orm qudrátc sto é: Q( ) T [ ] s orms qudrátcs

Leia mais

Capítulo 2. Aproximações de Funções

Capítulo 2. Aproximações de Funções EQE-358 MÉTODOS NUMÉRICOS EM ENGENHARIA QUÍMICA PROFS. EVARISTO E ARGIMIRO Capítulo Aproações de Fuções Há bascaete dos tpos de probleas de aproações: ) ecotrar ua fução as sples, coo u polôo, para aproar

Leia mais

Econometria ANÁLISE DE REGRESSÃO MÚLTIPLA

Econometria ANÁLISE DE REGRESSÃO MÚLTIPLA Ecoometr ANÁLISE DE REGRESSÃO MÚLTIPLA Tópcos osderr otudde do Progrm Mstrdo pelo Prof Alceu Jom Modelo de Regressão Múltpl Aordgem Mtrcl ) Pressupostos; ) Iferêc versão Mtrcl; c) Iferêc o Método de rmmer;

Leia mais

CAPÍTULO VIII DIFERENCIAIS DE ORDEM SUPERIOR FÓRMULA DE TAYLOR E APLICAÇÕES

CAPÍTULO VIII DIFERENCIAIS DE ORDEM SUPERIOR FÓRMULA DE TAYLOR E APLICAÇÕES CAPÍTULO VIII DIFERENCIAIS DE ORDEM SUPERIOR FÓRMULA DE TAYLOR E APLICAÇÕES. Dferecas de orde superor Tratareos apeas o caso das fuções de A R e R sedo que o caso geral das fuções de A R e R se obté a

Leia mais

Resolução Numérica de Sistemas Lineares Parte I

Resolução Numérica de Sistemas Lineares Parte I Cálclo Nérico Resolção Néric de Sistes ineres Prte I Prof. Jorge Cvlcnti jorge.cvlcnti@nivsf.ed.br ATERIA ADAPTADO DOS SIDES DA DISCIPINA CÁCUO NUÉRICO DA UFCG - www.dsc.fcg.ed.br/~cn/ Sistes ineres itos

Leia mais

Métodos Computacionais em Engenharia DCA0304 Capítulo 3

Métodos Computacionais em Engenharia DCA0304 Capítulo 3 Métodos Comutcos em Egehr DCA4 Cítulo. Iterolção.. Itrodução Qudo se trblh com sstems ode ão é cohecd um fução que descrev seu comortmeto odemos utlzr o coceto de terolção. Há csos tmbém em que form lítc

Leia mais

Aula 11. Regressão Linear Múltipla.

Aula 11. Regressão Linear Múltipla. Aul. Regressão Ler Múltpl.. C.Doughert Itroducto to Ecoometrcs. Cpítulo 6. Buss&Morett Esttístc Básc 7ª Edção Regressão ler smples - Resumo Modelo N E[ ] E[ ] E[ N. Ser como oter fórmuls pr coefcetes de

Leia mais

Departamento de Informática. Modelagem Analítica do Desempenho de Sistemas de Computação. Modelagem Analítica. P x t i x t i x t i x t i

Departamento de Informática. Modelagem Analítica do Desempenho de Sistemas de Computação. Modelagem Analítica. P x t i x t i x t i x t i Departaeto de Iforátca Dscpla: do Desepeho de Ssteas de Coputação Cadeas de Marov I Processos de Marov (ou PE Marovao) Sea u processo estocástco caracterzado pela seüêca de v.a s X(t ),,,, Sea X(t ) a

Leia mais

Álgebra Linear e Geometria Analítica. Espaços Vectoriais

Álgebra Linear e Geometria Analítica. Espaços Vectoriais Álgebr Liner e Geometri Anlític Espços Vectoriis O que é preciso pr ter um espço vectoril? Um conjunto não vzio V Um operção de dição definid nesse conjunto Um produto de um número rel por um elemento

Leia mais

CCI-22 CCI-22. 6) Ajuste de Curvas. Matemática Computacional

CCI-22 CCI-22. 6) Ajuste de Curvas. Matemática Computacional CCI- CCI- eá Copuol Ajuse de Curvs éodo dos íos Qudrdos Regressão er Irodução CCI- éodo dos íos Qudrdos Regressão ler Ajuse u polôo Ajuse ours urvs Quldde do juse Irodução CCI- éodo dos íos Qudrdos Regressão

Leia mais

ANÁLISE DE ERROS. Todas as medidas das grandezas físicas deverão estar sempre acompanhadas da sua dimensão (unidades)! ERROS

ANÁLISE DE ERROS. Todas as medidas das grandezas físicas deverão estar sempre acompanhadas da sua dimensão (unidades)! ERROS Físca Arqutectura Pasagístca Análse de erros ANÁLISE DE ERROS A ervação de u fenóeno físco não é copleta se não puderos quantfcá-lo Para é sso é necessáro edr ua propredade físca O processo de edda consste

Leia mais

CAPÍTULO 1 SEMICONDUTORES HOMOGÉNEOS

CAPÍTULO 1 SEMICONDUTORES HOMOGÉNEOS CAPÍTULO 1 SEMICONDUTORES HOMOGÉNEOS Ca. 1 1 Problea SH1 Cosderar ua resstêca de gerâo de to co 1 de secção e 1 c de coreto que a 300 K areseta ua resstêca de 0 Ω. a) Calcular o valor da desdade de urezas,

Leia mais

DISPOSITIVOS ELECTRÓNICOS. Problemas Resolvidos

DISPOSITIVOS ELECTRÓNICOS. Problemas Resolvidos DISPOSITIVOS ELECTRÓNICOS Probleas Resolvdos CAPÍTULO 1 SEMICONDUTORES HOMOGÉNEOS Ca. 1 1 Problea SH1 Cosderar ua resstêca de gerâo de to co 1 de secção e 1 c de coreto que a 300 K areseta ua resstêca

Leia mais

AULA Produto interno em espaços vectoriais reais ou complexos Produto Interno. Norma. Distância.

AULA Produto interno em espaços vectoriais reais ou complexos Produto Interno. Norma. Distância. Note bem: a letura destes apotametos ão dspesa de modo algum a letura ateta da bblografa prcpal da cadera Chama-se a ateção para a mportâca do trabalho pessoal a realzar pelo aluo resoledo os problemas

Leia mais

RESOLUÇÃO DE MODELOS FÍSICOS COM O MÉTODO DOS ELEMENTOS FINITOS MÓVEIS

RESOLUÇÃO DE MODELOS FÍSICOS COM O MÉTODO DOS ELEMENTOS FINITOS MÓVEIS Cogreso de Métodos Nércos e Igeería 005 Graada, 4 a 7 de Jlo, 005 SEMNI, España 005 RESOLUÇÃO DE MODELOS FÍSICOS COM O MÉTODO DOS ELEMENTOS FINITOS MÓVEIS Mara do Caro Cobra 1 *, Carlos Sereo e Alíro E.

Leia mais

Profª Cristiane Guedes VETORES. Cristianeguedes.pro.br/cefet

Profª Cristiane Guedes VETORES. Cristianeguedes.pro.br/cefet VETORES Cristinegedesprobr/cefet Espço R 3 Exercício: Sej P m prlelepípedo com fces prlels os plnos coordendos Sbendo qe A = () e B = (345) são dois dos ses értices determine os otros értices 3 Distânci

Leia mais

Matriz-coluna dos segundos membros das restrições técnicas. Matriz-linha dos coeficientes das variáveis de decisão, em f(x) = [ c c ] [ 6 8] e C a

Matriz-coluna dos segundos membros das restrições técnicas. Matriz-linha dos coeficientes das variáveis de decisão, em f(x) = [ c c ] [ 6 8] e C a Versão Mtrcl do Splex VI Versão Mtrcl do Splex Introdução onsdere-se o segunte odelo de PL: Mx () 6x + 8x 2 sujeto : 3x + 2x 2 3 5x + x 2 x, x 2 Mtrzes ssocds o odelo: Mtrz Tecnológc 3 5 2 Mtrz-colun ds

Leia mais

3- Autovalores e Autovetores.

3- Autovalores e Autovetores. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS - Autovalores e Autovetores..- Autovetores e Autovalores de ua Matrz..- Métodos para ecotrar os Autovalores e Autovetores de ua Matrz. Cotuação da

Leia mais

EAE Modelo de Insumo-Produto

EAE Modelo de Insumo-Produto EAE 598 Modelo de sumo-produto Modelo de sumo-produto Costruído prtr de ddos observáves fluxos terdustrs (us, $) Estrutur mtemátc equções cógts j f j EAE 598 Modelo de sumo-produto Setor Setor (Demd Fl)

Leia mais

ANÁLISE NUMÉRICA. Sistemas Lineares (1) 5º P. ENG. DE Biomédica FUNORTE / Prof. Rodrigo Baleeiro Silva

ANÁLISE NUMÉRICA. Sistemas Lineares (1) 5º P. ENG. DE Biomédica FUNORTE / Prof. Rodrigo Baleeiro Silva NÁLISE NUMÉRIC Sistems Lieres () º P. ENG. DE Biomédic FUNORTE / Prof. Rodrigo Beeiro Siv Sistems Lieres Coceitos Fdmetis Mtriz (m ) Eemetos: ij ode i =...m e j =... m m m m Sistems Lieres Coceitos Fdmetis

Leia mais

Gabarito Sistemas Lineares

Gabarito Sistemas Lineares Gbrito Sistes ineres Eercício : () rieir inh :. > Segund inh :. > Terceir inh :. Qurt inh :. α á( α ) > ogo, não stisfz o Critério ds inhs. (b) rieir inh : > Segund inh : 6 > Terceir inh : > Qurt inh :

Leia mais

Aula 1 Conceituação das equações diferenciais parciais

Aula 1 Conceituação das equações diferenciais parciais Uiersidde Federl do AC Al Coceitção ds eqções diereciis prciis EN34 Diâmic de Flidos Comptciol EN34 Diâmic de Flidos Comptciol Porqê? Eqções de Nier-Stokes pr m lido compressíel e iscoso t t E t p g Coserção

Leia mais

QUESTÕES DISCURSIVAS Módulo

QUESTÕES DISCURSIVAS Módulo QUESTÕES DISCURSIVAS Módulo 0 009 D (FUVEST-SP 008 A fgura ao lado represeta o úero + o plao coplexo, sedo a udade agára Nessas codções, a detere as partes real e agára de e b represete e a fgura a segur

Leia mais

Exemplo: As funções seno e cosseno são funções de período 2π.

Exemplo: As funções seno e cosseno são funções de período 2π. 4. Séries de Fourier 38 As séries de Fourier têm váris plicções, como por eemplo resolução de prolems de vlor de cotoro. 4.. Fuções periódics Defiição: Um fução f() é periódic se eistir um costte T> tl

Leia mais

Capítulo V INTEGRAIS DE SUPERFÍCIE

Capítulo V INTEGRAIS DE SUPERFÍCIE Cpítulo V INTEAIS DE SUPEFÍCIE Cpítulo V Iters de Superfíce Cpítulo V Vmos flr sobre ters sobre superfíces o espço tr-dmesol Estes ters ocorrem em problems evolvedo fluídos e clor electrcdde metsmo mss

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear NOTS E U Geoetri lític e Álger ier Cpítulo - Prte Professor: ui Ferdo Nues Geoetri lític e Álger ier ii Ídice Sistes de Equções ieres efiições Geris Iterpretção Geoétric de Sistes de Equções Iterpretção

Leia mais

Proposta de resolução do Exame Nacional de Matemática A 2017 (1 ạ fase) GRUPO I (Versão 1)

Proposta de resolução do Exame Nacional de Matemática A 2017 (1 ạ fase) GRUPO I (Versão 1) Propost de resolução do Exme Ncol de Mtemátc A 07 ( ạ fse) GRUPO I (Versão ). Pretede-se determr qutos úmeros turs de qutro lgrsmos, múltplos de, se podem formr com os lgrsmos de 9. Nests codções, só exste

Leia mais

Cálculo I 3ª Lista de Exercícios Limites

Cálculo I 3ª Lista de Exercícios Limites Cálculo I ª List de Eercícios Liites Clcule os liites: 9 / /8 Resp.: 6 li li li li li li e d c e d c Clcule os liites io: Clcule: 8 6 li 8 li e d li li c li li / /.: Resp e d c Resp.: li li li li li li

Leia mais

Busca. Busca. Exemplo. Exemplo. Busca Linear (ou Seqüencial) Busca em Vetores

Busca. Busca. Exemplo. Exemplo. Busca Linear (ou Seqüencial) Busca em Vetores Busc e etores Prof. Dr. José Augusto Brnusks DFM-FFCP-USP Est ul ntroduz busc e vetores que está entre s trefs s freqüenteente encontrds e progrção de coputdores Serão borddos dos tpos de busc: lner (ou

Leia mais

1.3 O método da Decomposição LU A Decomposição LU. Teorema ( Teorema da Decomposição LU)

1.3 O método da Decomposição LU A Decomposição LU. Teorema ( Teorema da Decomposição LU) . O método d Decomposção U.. A Decomposção U Teorem.. ( Teorem d Decomposção U) Sej A m mtrz qdrd de ordem n, e A k o menor prncp, consttído ds prmers nhs e cons. Assmmos qe det(a k ) pr k,,..., n. Então

Leia mais

Bioestatística Curso de Saúde. Linha Reta 2 Parábola ou curva do segundo grau. terceiro grau curva do quarto. grau curva de grau n Hipérbole

Bioestatística Curso de Saúde. Linha Reta 2 Parábola ou curva do segundo grau. terceiro grau curva do quarto. grau curva de grau n Hipérbole Teora da Correlação: Probleas relatvos à correlação são aqueles que procura estabelecer quão be ua relação lear ou de outra espéce descreve ou eplca a relação etre duas varáves. Se todos os valores as

Leia mais

ANÁLISE NUMÉRICA. Sistemas Lineares (2) Prof. Rodrigo Baleeiro Silva

ANÁLISE NUMÉRICA. Sistemas Lineares (2) Prof. Rodrigo Baleeiro Silva ANÁLISE NUMÉRICA Sistems Lieres () Prof. Rodrigo Beeiro Siv Sistems Lieres Eimição de Gss Csses de métodos pr resoção de sistems de eqções ieres Métodos diretos: soção et do sistem é obtid teoricmete com

Leia mais

MÉTODOS GRÁFICOS 1. INTRODUÇÃO:

MÉTODOS GRÁFICOS 1. INTRODUÇÃO: MÉTODO GRÁFICO. INTRODUÇÃO: Um gráfco é um mer coveete de se represetr um relção etre vlores epermets ou vlores teórcos) de dus ou ms grdezs, de form fcltr vsulzção, terpretção e obteção d fução mtemátc

Leia mais

DERIVADAS DAS FUNÇÕES SIMPLES12

DERIVADAS DAS FUNÇÕES SIMPLES12 DERIVADAS DAS FUNÇÕES SIMPLES2 Gil d Cost Mrques Fundentos de Mteátic I 2. Introdução 2.2 Derivd de y = n, n 2.2. Derivd de y = / pr 0 2.2.2 Derivd de y = n, pr 0, n =,, isto é, n é u núero inteiro negtivo

Leia mais

Material Teórico - Módulo Triângulo Retângulo, Leis dos Cossenos e dos Senos, Poĺıgonos Regulares. Lei dos Senos e Lei dos Cossenos - Parte 3

Material Teórico - Módulo Triângulo Retângulo, Leis dos Cossenos e dos Senos, Poĺıgonos Regulares. Lei dos Senos e Lei dos Cossenos - Parte 3 Mteril Teório - Módulo Triâgulo Retâgulo, Leis dos osseos e dos Seos, Poĺıgoos Regulres Lei dos Seos e Lei dos osseos - Prte 3 Noo o utor: Prof Ulisses Li Prete Revisor: Prof toio ih M Neto 3 de julho

Leia mais

Representação dos padrões. Tipos de atributos. Etapas do processo de agrupamento. 7.1 Agrupamento clássico. 7. Agrupamento fuzzy (fuzzy clustering)

Representação dos padrões. Tipos de atributos. Etapas do processo de agrupamento. 7.1 Agrupamento clássico. 7. Agrupamento fuzzy (fuzzy clustering) 7. Agrupaeto fuzzy (fuzzy clusterg) 7. Agrupaeto clássco Agrupaeto é a classfcação ão-supervsoada de padrões (observações, dados, objetos, eeplos) e grupos (clusters). Itutvaete, padrões seelhates deve

Leia mais

a é dita potência do número real a e representa a

a é dita potência do número real a e representa a IFSC / Mteátic Básic Prof. Júlio Césr TOMIO POTENCIAÇÃO [ou Expoecição] # Potêci co Expoete Nturl: Defiição: Ddo u úero iteiro positivo, expressão ultiplicção do úero rel e questão vezes. é dit potêci

Leia mais

INTRODUÇÃO AOS MÉTODOS NUMÉRICOS

INTRODUÇÃO AOS MÉTODOS NUMÉRICOS Uversdde Federl Fluese UFF Volt Redod RJ INTRODUÇÃO AOS MÉTODOS NUMÉRICOS Prof. Dor Cesr Lobão Trblo orgl preprdo por: Prof. Ioldo José Sces e Prof. Dógees Lgo Furl Uversdde Federl do Prá. Deprteto de

Leia mais

LOGARÍTMOS 1- DEFINIÇÃO. log2 5

LOGARÍTMOS 1- DEFINIÇÃO. log2 5 -(MACK) O vlor de o, é : 00 LOGARÍTMOS - DEFINIÇÃO ) -/ b)-/6 c) /6 d) / e) -(UFPA) O vlor do ( 5 5 ) é: ) b) - c) 0 d) e) 0,5 -( MACK) Se y= 5 :. ( 0,0),etão 00 y vle : 5 )5 b) c)7 d) e)6 - ( MACK) O

Leia mais

Limites. Consideremos a função f(x)=2x+1 e vamos analisar o seu comportamento quando a variável x se aproxima cada vez mais de 1.

Limites. Consideremos a função f(x)=2x+1 e vamos analisar o seu comportamento quando a variável x se aproxima cada vez mais de 1. Liites Noção ituitiv Cosidereos fução f() e vos lisr o u coporteto qudo vriável proi cd vez is de. o ) tede, ssuido vlores iferiores.,6,7,8,9,9,99,999,9999 f(),,,6,8,9,98,998,9998 ) tede, ssuido vlores

Leia mais

PROGRAD / COSEAC ENGENHARIAS MECÂNICA E PRODUÇÃO VOLTA REDONDA - GABARITO

PROGRAD / COSEAC ENGENHARIAS MECÂNICA E PRODUÇÃO VOLTA REDONDA - GABARITO Prov de Cohecietos Especíicos QUESTÃO:, poto Deterie os vlores de e pr os quis ução dd sej cotíu e R. =,,, é cotíu e :.. li li li li. li li é cotíu e :.. li li li li Obteos Resolvedo equções θ e β: Respost:.

Leia mais