DISPOSITIVOS ELECTRÓNICOS. Problemas Resolvidos

Tamanho: px
Começar a partir da página:

Download "DISPOSITIVOS ELECTRÓNICOS. Problemas Resolvidos"

Transcrição

1 DISPOSITIVOS ELECTRÓNICOS Probleas Resolvdos

2 CAPÍTULO 1 SEMICONDUTORES HOMOGÉNEOS

3 Ca. 1 1 Problea SH1 Cosderar ua resstêca de gerâo de to co 1 de secção e 1 c de coreto que a 300 K areseta ua resstêca de 0 Ω. a) Calcular o valor da desdade de urezas, suodo que estas se ecotra todas ozadas. b) Suodo que o rto de geração de ares electrão-buraco assa ara o dobro, calcular os ovos valores de equlíbro das desdades e o ovo valor da resstêca. c) Partdo da stuação b), se o rto de geração assar stataeaete ara o seu valor e a), ao f de quato teo a evolução da desdade de buracos dfere eos de 1% do ovo valor estacoáro. Dados Ge(300K) 19 3 =,4 1 1 µ = 0, V s 1 1 µ = 0,4 V s W = 0,66 ev G τ = µ s Resolução 1 R= 0 = σ= Ω σa a) Da exressão da codutvdade de u secodutor: ( 0 0 ) σ = q µ + µ 1 1 e da exressão que relacoa as cocetrações de electrões e de buracos e equlíbro terodâco: 0 0 =

4 Ca. 1 obté-se: 0 0 = 1,56 = 3, O secodutor é forteete extríseco do to ( 0 N D e N + D >> 4 ), elo que 1 3 ND = 0 = 1,56, adtdo que todas as urezas se ecotra ozadas. b) Nua ova stuação estacoára te-se 0 0 = G r sedo G' o ovo rto de geração de ares electrão-buraco. Adtdo que r ão varou (o que ão é teraete verdade se houver alteração da teeratura), te-se: co Obté-se: D = 1,56 = = + N + D N, adtdo que ão houve alteração da ozação de urezas ,56 e 7,36 Ua vez que o secodutor eraece forteete extríseco do to, a codutvdade ( σ= µ + µ ) q q ratcaete ão vara, o eso sucededo co a resstêca ( = 1 σ ) R A. Nota: Se o rto G varou or alteração da teeratura é ossível deterar, adtdo coo aroxação que r se até, qual a ova teeratura. = = G r e 0 0 G T WG T = = = = ex r T ktt ' ' ' sedo T = T T e T = 300 k. A codutvdade do ateral será dada or σ = ( µ + µ ) q sedo: = = = + 1, cuja solução é = 1,56 e 0 = 7,36.

5 Ca. 1 3 µ e µ e σ rereseta as obldades à ova teeratura T. Pode ser deteradas se se cohecer a le de varação µ(t). A ova resstêca é etão obtda de ( ) R = 1 σ A. Coo o secodutor se até forteete extríseco à ova teeratura verfca-se a segute relação: c) Da equação da cotudade: obté-se: R R σ µ = = σ µ d () = G R= t dt τ () 0 ( 0) ex t t = + τ sedo 0 é a cocetração de buracos calculada e a) e calculada e b) (ver Fgura). 0 a cocetração de buracos 0 τ t O valor de t eddo, desgado or τ, é dado ela solução da equação da cotudade quado: τ 0,01 ( τ ) 0 = 0,01 0,01= ( 0) ex τ= τ l τ 0 ( ) τ= τ l 0,005 5,3 µ s

6 Ca. 1 4 Problea SH Cosderar ua resstêca de gerâo co 3 c de coreto e 1 de secção que a 300 K areseta o valor de 00 Ω. a) Calcular o valor das desdades de ortadores a 300 K suodo que se trata de u crstal do to. b) Deterar a que teeratura a resstêca areseta o valor de 40 Ω, suodo que a varação das desdades co a teeratura é aeas devda a factores exoecas e que a varação das obldades é desrezável. c) Suodo que u dos teras da resstêca se estabelece u excesso de ortadores a que corresode u fluxo de dfusão de buracos co u rto, juto a essa suerfíce, de 0 1 s, deterar o valor desse fluxo a 0,1 da suerfíce. Suor todo o crstal a 300K. Dados: Ge(300K) τ = µ s 19 3 =, µ = 0,15 V s µ = 0,3 V s WG = 0,66 ev Resolução A artr da exressão da resstêca calcula-se o valor da codutvdade. a) De: l R= 00 = σ= 30 Ω σa ( 0 0 ) σ = q µ + µ 1 1 obtê-se duas soluções: 0 0 =

7 Ca. 1 5 = 6, = 9, = 4,6 = 1, Coo se trata de u crstal do to, ota-se ela solução 1, 1 b) Sedo R a resstêca aresetada elo secodutor à teeratura T, te-se: R σ µ + µ = = = 5 R σ µ + µ Nu secodutor forteete extríseco as aoras são aroxadaete dadas ela cocetração de urezas ozadas, e estas ão se altera co o aueto da teeratura a artr de 300 K, desde que se adta que a esta teeratura já se ecotra todas ozadas. Atededo a que a resstêca assou ara u valor 5 vezes eor e as obldades ão varara, a cocetração das aoras fo alterada. Deste odo o resultado só é ossível se a subda de teeratura trasforou o secodutor de forteete extríseco à teeratura T ara u secodutor co coortaeto ratcaete tríseco à teeratura T. Sedo ass: Nessas codções: ( ) 3 R µ +µ = = 5 = 1,04 R µ + µ O resultado cofra o facto de se ter adtdo u coortaeto tríseco ara o ateral à teeratura T. Co efeto >> N. Atededo à le de varação da cocetração tríseca co a teeratura: WG T ex ktt obté-se T = 575 K, sedo T = T T. D c) A varação da cocetração das oras ao logo do crstal e rege estacoáro é dada ela equação da cotudade ode se desrezou o tero devdo à codução: D 0 = 0 τ d cuja solução é ara u crstal se-fto (ver Fgura) dada or: dx

8 Ca. 1 6 ( ) 0 ( 1 0) ex x x = + L ode 1 rereseta o valor de ara x = 0; 0 é o valor de equlíbro terodâco da cocetração de buracos, = ( τ ) 1/ L D é o coreto de dfusão de buracos e D = u Tµ é o coefcete de dfusão de buracos. 1 0 L x Obté-se ass: 4 ( x ) 4 =+ ex 0,6 x= ( ) ( ) L Por outro lado, o fluxo de artículas é dado or: d D ( ) 0 ( ) [ ( ) 0] (0) x = = = C x D x C dx L 1 0 Atededo a que 0 1 C (0) = s, obté-se: 0 1 C ( x ) 0,6 (0) 1, 4 C s = = x=

6. Inferência para Duas Populações USP-ICMC-SME 2013

6. Inferência para Duas Populações USP-ICMC-SME 2013 6. Iferêca ara Duas Poulações UP-ICMC-ME 3 8.. Poulações deedetes co dstrbução oral Poulação Poulação,,,, ~ N, ~ N, ~ N, Obs. e a dstrbução de e/ou ão for oral, os resultados são váldos aroxadaete. Testes

Leia mais

SOLUÇÃO DE EQUAÇÕES DIFERENCIAIS POR DIFERENÇAS FINITAS-JM Balthazar- Maio Resolvendo um Problema de Condução de Calor

SOLUÇÃO DE EQUAÇÕES DIFERENCIAIS POR DIFERENÇAS FINITAS-JM Balthazar- Maio Resolvendo um Problema de Condução de Calor SOLUÇÃO DE EQUAÇÕES DIFERENCIAIS POR DIFERENÇAS FINIAS-JM Balthazar- Mao 3 Resolvedo u Problea de Codução de Calor Para troduzr o étodo das dfereças ftas de ua fora prátca vaos cosderar u problea de codução

Leia mais

CAPÍTULO III. Aproximação de funções pelo método dos Mínimos Quadrados

CAPÍTULO III. Aproximação de funções pelo método dos Mínimos Quadrados Métodos Nuércos CAPÍULO III C. Balsa & A. Satos Aproxação de fuções pelo étodo dos Míos Quadrados. Algus cocetos fudaetas de Álgebra Lear Relebraos esta secção algus cocetos portates da álgebra Lear que

Leia mais

Centro de massa Dinâmica do corpo rígido

Centro de massa Dinâmica do corpo rígido Cetro de assa Dâca do corpo rígdo Nota: As fotografas assaladas co () fora retradas do lvro () A. Bello, C. Portela e H. Caldera Rtos e Mudaça, Porto edtora. As restates são retradas de Sears e Zeasky

Leia mais

QUESTÕES DISCURSIVAS Módulo

QUESTÕES DISCURSIVAS Módulo QUESTÕES DISCURSIVAS Módulo 0 009 D (FUVEST-SP 008 A fgura ao lado represeta o úero + o plao coplexo, sedo a udade agára Nessas codções, a detere as partes real e agára de e b represete e a fgura a segur

Leia mais

16 - PROBLEMA DO TRANSPORTE

16 - PROBLEMA DO TRANSPORTE Prof. Volr Wlhel UFPR TP05 Pesqusa Operacoal 6 - PROBLEMA DO TRANSPORTE Vsa zar o custo total do trasporte ecessáro para abastecer cetros cosudores (destos) a partr de cetros forecedores (orges) a, a,...,

Leia mais

Consideremos a fórmula que nos dá a área de um triângulo: = 2

Consideremos a fórmula que nos dá a área de um triângulo: = 2 6. Cálculo Derecal e IR 6.. Fução Real de Varáves Reas Cosdereos a órula que os dá a área de u trâulo: b h A( b h) Coo podeos vercar a área de u trâulo depede de duas varáves: base (b) e altura (h) Podeos

Leia mais

3- Autovalores e Autovetores.

3- Autovalores e Autovetores. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS 3- Autovalores e Autovetores. 3.- Autovetores e Autovalores de ua Matrz. 3.- Métodos para ecotrar os Autovalores e Autovetores de ua Matrz. 3.- Autovetores

Leia mais

CAPÍTULO III MÉTODOS DE RUNGE-KUTTA

CAPÍTULO III MÉTODOS DE RUNGE-KUTTA PMR 40 Mecâca Coputacoal CAPÍTULO III MÉTODOS DE RUNGE-KUTTA São étodos de passo sples requere apeas dervadas de prera orde e pode forecer aproxações precsas co erros de trucaeto da orde de, 3, 4, etc.

Leia mais

SUBSTITUIÇÕES ENVOLVENDO NÚMEROS COMPLEXOS Diego Veloso Uchôa

SUBSTITUIÇÕES ENVOLVENDO NÚMEROS COMPLEXOS Diego Veloso Uchôa Nível Avaçado SUBSTITUIÇÕES ENVOLVENDO NÚMEROS COMPLEXOS Dego Veloso Uchôa É bastate útl e probleas de olpíada ode teos gualdades ou quereos ecotrar u valor de u soatóro fazeros substtuções por úeros coplexos

Leia mais

PROVA DE FÍSICA 2º ANO - 2ª MENSAL - 2º TRIMESTRE TIPO A

PROVA DE FÍSICA 2º ANO - 2ª MENSAL - 2º TRIMESTRE TIPO A PROA DE FÍSCA º ANO - ª MENSAL - º RMESRE PO A ) Cosidere as seguites roosições referetes a u gás erfeito.. O gás é costituído de u úero uito elevado de éculas que tê diesões desrezíveis e coaração co

Leia mais

Aula Condições para Produção de Íons num Gás em Equilíbrio Térmico

Aula Condições para Produção de Íons num Gás em Equilíbrio Térmico Aula 2 Nesta aula, remos formalzar o coceto de plasma, rever osso etedmeto sobre temperatura de um gás e falmete, cohecer algus processos de ozação. 1.3 Codções para Produção de Íos um Gás em Equlíbro

Leia mais

Cálculo Numérico Interpolação Polinomial Ajuste de Curvas (Parte II)

Cálculo Numérico Interpolação Polinomial Ajuste de Curvas (Parte II) Cálulo Nuéro Iterpolação Poloal Ajuste de Curvas (Parte II) Pro Jore Cavalat joreavalat@uvasedubr MATERIAL ADAPTADO DOS SLIDES DA DISCIPLINA CÁLCULO NUMÉRICO DA UFCG - wwwdsuedubr/~u/ Ajuste de Curvas

Leia mais

LEIS DAS COLISÕES. ' m2. p = +, (1) = p1 ' 2

LEIS DAS COLISÕES. ' m2. p = +, (1) = p1 ' 2 LEIS DAS COLISÕES. Resuo Faze-se colidir, elástica e inelasticaente, dois lanadores que se ove quase se atrito nua calha de ar. Mede-se as velocidades resectivas antes e deois das colisões. Verifica-se,

Leia mais

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Fatorial [ ] = A. Exercícios Resolvidos. Exercícios Resolvidos ( ) ( ) ( ) ( )! ( ).

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Fatorial [ ] = A. Exercícios Resolvidos. Exercícios Resolvidos ( ) ( ) ( ) ( )! ( ). OSG: / ENSINO PRÉ-UNIVERSITÁRIO T MATEMÁTIA TURNO DATA ALUNO( TURMA Nº SÉRIE PROFESSOR( JUDSON SANTOS ITA-IME SEDE / / Ftorl Defção h-se ftorl de e dc-se or o úero turl defdo or: > se ou se A A A A Eercícos

Leia mais

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS No caítulo ateror estudamos uma forma de ldar com fuções matemátcas defdas or taelas de valores. Frequetemete, estas taelas são otdas com ase em

Leia mais

Programação Paralela

Programação Paralela rograação aralela FEU 4. Avalação de steas aralelos Defções Razão etre a velocdade de processaeto coseguda o sstea paralelo e a velocdade coseguda co u processador (pouca foração...) Efcêca Quocete do

Leia mais

ESTATÍSTICA MÓDULO 3 MEDIDAS DE TENDÊNCIA CENTRAL

ESTATÍSTICA MÓDULO 3 MEDIDAS DE TENDÊNCIA CENTRAL ESTATÍSTICA MÓDULO 3 MEDIDAS DE TEDÊCIA CETRAL Ídce. Meddas de Tedêca Cetral...3 2. A Méda Artmétca Smles ( μ, )...3 3. A Méda Artmétca Poderada...6 Estatístca Módulo 3: Meddas de Tedêca Cetral 2 . MEDIDAS

Leia mais

2- Resolução de Sistemas Não-lineares.

2- Resolução de Sistemas Não-lineares. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS - Resolução de Sisteas Não-lieares..- Método de Newto..- Método da Iteração. 3.3- Método do Gradiete. - Sisteas Não Lieares de Equações Cosidere u

Leia mais

Capítulo 2. Aproximações de Funções

Capítulo 2. Aproximações de Funções EQE-358 MÉTODOS NUMÉRICOS EM ENGENHARIA QUÍMICA PROFS. EVARISTO E ARGIMIRO Capítulo Aproações de Fuções Há bascaete dos tpos de probleas de aproações: ) ecotrar ua fução as sples, coo u polôo, para aproar

Leia mais

PROVA DE FÍSICA 2º ANO - 3ª MENSAL - 3º TRIMESTRE TIPO A

PROVA DE FÍSICA 2º ANO - 3ª MENSAL - 3º TRIMESTRE TIPO A PROVA DE FÍSICA º ANO - ª MENSAL - º TRIMESTRE TIPO A 0) Aalise as afirativas abaixo. I. A lete atural do osso olho (cristalio) é covergete, ois gera ua iage virtual, eor e direita a retia. II. Istruetos

Leia mais

Departamento de Física - Universidade do Algarve LEIS DAS COLISÕES

Departamento de Física - Universidade do Algarve LEIS DAS COLISÕES Deartaento de Física - Universidade do Algarve LEIS DAS COLISÕES. Resuo Faz-se colidir, elástica e inelasticaente, dois lanadores que se ove se atrito nua calha de ar. Mede-se as velocidades resectivas

Leia mais

CAPÍTULO VIII DIFERENCIAIS DE ORDEM SUPERIOR FÓRMULA DE TAYLOR E APLICAÇÕES

CAPÍTULO VIII DIFERENCIAIS DE ORDEM SUPERIOR FÓRMULA DE TAYLOR E APLICAÇÕES CAPÍTULO VIII DIFERENCIAIS DE ORDEM SUPERIOR FÓRMULA DE TAYLOR E APLICAÇÕES. Dferecas de orde superor Tratareos apeas o caso das fuções de A R e R sedo que o caso geral das fuções de A R e R se obté a

Leia mais

Revisão de Estatística X = X n

Revisão de Estatística X = X n Revsão de Estatístca MÉDIA É medda de tedêca cetral mas comumete usada ara descrever resumdamete uma dstrbução de freqüêca. MÉDIA ARIMÉTICA SIMPLES São utlzados os valores do cojuto com esos guas. + +...

Leia mais

4ª Aula do cap. 09 Colisões

4ª Aula do cap. 09 Colisões 4ª Aula do ca. 09 Colsões Cratera no Arzona roocado or choque de u Meteoro (00 dâetro x 00 rounddade). Colsão que ocorreu há cerca de 0.000 anos. Colsões, Colsões elástcas e nelástcas, Coecente de resttução,

Leia mais

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø.

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø. Professor Maurco Lutz 1 EGESSÃO LINEA SIMPLES A correlação lear é uma correlação etre duas varáves, cujo gráfco aproma-se de uma lha. O gráfco cartesao que represeta essa lha é deomado dagrama de dspersão.

Leia mais

Cap. 7 - Corrente elétrica, Campo elétrico e potencial elétrico

Cap. 7 - Corrente elétrica, Campo elétrico e potencial elétrico Cap. - Corrente elétrica, Capo elétrico e potencial elétrico.1 A Corrente Elétrica S.J.Troise Disseos anteriorente que os elétrons das caadas ais externas dos átoos são fracaente ligados ao núcleo e por

Leia mais

F-128 Física Geral I. Aula Exploratória 09 Unicamp - IFGW. F128 2o Semestre de 2012

F-128 Física Geral I. Aula Exploratória 09 Unicamp - IFGW. F128 2o Semestre de 2012 F-8 Físca Geral I Aula Exploratóra 09 Uncap - IFGW F8 o Seestre de 0 C ext a F ) ( C C C z z z z z y y y y y x x x x x r C r C ext a dt r d dt r d dt r d F ) ( (esta é a ª le de ewton para u sstea de partículas:

Leia mais

Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira INEP Ministério da Educação MEC. Índice Geral de Cursos (IGC)

Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira INEP Ministério da Educação MEC. Índice Geral de Cursos (IGC) Isttuto Nacoal de Estudos e Pesqusas Educacoas Aíso exera INEP stéro da Educação EC Ídce Geral de Cursos (IGC) O Ídce Geral de Cursos (IGC) é ua éda poderada dos cocetos dos cursos de graduação e pós-graduação

Leia mais

Momento Linear duma partícula

Momento Linear duma partícula umáro Udade I MECÂNICA 2- Cetro de massa e mometo lear de um sstema de partículas - Mometo lear de uma partícula e de um sstema de partículas. - Le fudametal da dâmca para um sstema de partículas. - Impulso

Leia mais

Departamento de Informática. Modelagem Analítica. Modelagem Analítica do Desempenho de Sistemas de Computação. Disciplina: Algumas Distribuições

Departamento de Informática. Modelagem Analítica. Modelagem Analítica do Desempenho de Sistemas de Computação. Disciplina: Algumas Distribuições Deartameto de Iformática Discilia: do Desemeho de Sistemas de Comutação Algumas Distribuições Algumas Distribuições Discretas Prof. Sérgio Colcher colcher@if.uc-rio.br Coyright 999-8 by TeleMídia Lab.

Leia mais

Matemática FUVEST ETAPA QUESTÃO 1. b) Como f(x) = = 0 + x = 1 e. Dados m e n inteiros, considere a função f definida por m

Matemática FUVEST ETAPA QUESTÃO 1. b) Como f(x) = = 0 + x = 1 e. Dados m e n inteiros, considere a função f definida por m Mateática FUVEST QUESTÃO 1 Dados e iteiros, cosidere a fução f defiida por fx (), x para x. a) No caso e que, ostre que a igualdade f( ) se verifica. b) No caso e que, ache as iterseções do gráfico de

Leia mais

Métodos tipo quadratura de Gauss

Métodos tipo quadratura de Gauss COQ-86 Métodos Numércos ara Sstemas Algébrcos e Dferecas Métodos to quadratura de Gauss Cosderado a tegração: Método de quadratura de Gauss com otos teros I f d a ser comutada com a maor recsão ossível

Leia mais

Desafio em Física 2013 PUC-Rio 05/10/2013

Desafio em Física 2013 PUC-Rio 05/10/2013 Desafio e Física 2013 PUC-Rio 05/10/2013 Noe: GABARITO Idetidade: Nº iscrição o vestibular: Questão Nota 1 2 3 4 5 6 7 8 Total O teo de duração da rova é de 3 horas É eritido o uso de calculadora eletrôica;

Leia mais

O MÉTODO DE VARIAÇÃO DAS CONSTANTES

O MÉTODO DE VARIAÇÃO DAS CONSTANTES O MÉTODO DE VARIAÇÃO DAS CONSTANTES HÉLIO BERNARDO LOPES O tea das equações difereciais está resete a esagadora aioria dos laos de estudos dos cursos de liceciatura ode se estuda teas ateáticos. E o eso

Leia mais

ANÁLISE DE ERROS. Todas as medidas das grandezas físicas deverão estar sempre acompanhadas da sua dimensão (unidades)! ERROS

ANÁLISE DE ERROS. Todas as medidas das grandezas físicas deverão estar sempre acompanhadas da sua dimensão (unidades)! ERROS Físca Arqutectura Pasagístca Análse de erros ANÁLISE DE ERROS A ervação de u fenóeno físco não é copleta se não puderos quantfcá-lo Para é sso é necessáro edr ua propredade físca O processo de edda consste

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 7 e 8 06/204 Ajuste de Curvas AJUSTE DE CURVAS Cálculo Nuérco 3/64 INTRODUÇÃO E geral, experentos gera ua gaa de dados que

Leia mais

Quinta aula de estática dos fluidos. Primeiro semestre de 2012

Quinta aula de estática dos fluidos. Primeiro semestre de 2012 Quinta aula de estática dos fluidos Prieiro seestre de 01 Vaos rocurar alicar o que estudaos até este onto e exercícios. .1 No sistea da figura, desrezando-se o desnível entre os cilindros, deterinar o

Leia mais

Resolução. Capítulo 32. Força Magnética. 6. C Para que não haja desvio devemos garantir que as forças magnética ( F M. ) e elétrica ( F E

Resolução. Capítulo 32. Força Magnética. 6. C Para que não haja desvio devemos garantir que as forças magnética ( F M. ) e elétrica ( F E esolução orça Magnétca E D 3 C 4 D 5 Capítulo 3 Dos vetores são antparalelos quando suas dreções são concdentes (paralelos) e seus sentdos são opostos, sto é, θ 8º, coo ostra a fgura adante: E Deste odo,

Leia mais

8. INFERÊNCIA PARA DUAS POPULAÇÕES

8. INFERÊNCIA PARA DUAS POPULAÇÕES 8. INFERÊNCIA PARA DUAS POPULAÇÕES 8.. Poulações ideedetes co distribuição oral Poulação Poulação X,, X Y,,Y X ~ N, Y ~ N, X Y ~ N, Obs. Se a distribuição de X e/ou Y ão for oral, os resultados são válidos

Leia mais

Física 1 - Experiência 4 Lei de Hooke Prof.: Dr. Cláudio S. Sartori INTRODUÇÃO: Forma Geral dos Relatórios. Referências:

Física 1 - Experiência 4 Lei de Hooke Prof.: Dr. Cláudio S. Sartori INTRODUÇÃO: Forma Geral dos Relatórios. Referências: Físca 1 - Experêca 4 Le de Hooe Prof.: Dr. Cláudo S. Sartor ITRODUÇÃO: Fora Geral dos Relatóros É uto desejável que seja u cadero grade (forato A4) pautada co folhas eueradas ou co folhas eueradas e quadrculadas,

Leia mais

Centro de massa, momento linear de sistemas de partículas e colisões

Centro de massa, momento linear de sistemas de partículas e colisões Cetro de massa, mometo lear de sstemas de partículas e colsões Prof. Luís C. Pera stemas de partículas No estudo que temos vdo a fazer tratámos os objectos, como, por exemplo, blocos de madera, automóves,

Leia mais

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS No caítulo IV, Iterolação Polomal, estudamos uma forma de ldar com fuções matemátcas defdas or taelas de valores. Frequetemete, estas taelas são

Leia mais

PÊNDULO ELÁSTICO. Fig. 1. Considere o sistema da figura 1. Quando se suspende uma massa, m, na mola, o seu comprimento aumenta de l 0

PÊNDULO ELÁSTICO. Fig. 1. Considere o sistema da figura 1. Quando se suspende uma massa, m, na mola, o seu comprimento aumenta de l 0 PÊNDULO ELÁSTICO. Resuo U corpo lgado a ua ola é posto e ovento osclatóro. Deterna-se as característcas do ovento e estuda-se a conservação da energa ecânca.. Tópcos teórcos Y l 0 l Fg. F r el P r X Consdere

Leia mais

Termodinâmica Exercícios resolvidos Quasar. Termodinâmica. Exercícios resolvidos

Termodinâmica Exercícios resolvidos Quasar. Termodinâmica. Exercícios resolvidos erodnâca Exercícos resolvdos Quasar erodnâca Exercícos resolvdos. Gases peretos Cp e Cv a) Mostre que a relação entre o calor especíco olar a pressão constante Cp e a volue constante Cv é dada por Cp Cv

Leia mais

Física. Física Módulo 1. Sistemas de Partículas e Centro de Massa. Quantidade de movimento (momento) Conservação do momento linear

Física. Física Módulo 1. Sistemas de Partículas e Centro de Massa. Quantidade de movimento (momento) Conservação do momento linear Físca Módulo 1 Ssteas de Partículas e Centro de Massa Quantdade de ovento (oento) Conservação do oento lnear Partículas e ssteas de Partículas Átoos, Bolnhas de gude, Carros e até Planetas... Até agora,

Leia mais

Capítulo 2 Circuitos Resistivos

Capítulo 2 Circuitos Resistivos EA53 Crcutos Elétrcos I DECOMFEECUICAMP Caítulo Crcutos esstos EA53 Crcutos Elétrcos I DECOMFEECUICAMP. Le de Ohm esstor: qualquer dsosto que exbe somete uma resstêca. a resstêca está assocada ao úmero

Leia mais

CAPÍTULO 5. Ajuste de curvas pelo Método dos Mínimos Quadrados

CAPÍTULO 5. Ajuste de curvas pelo Método dos Mínimos Quadrados CAPÍTULO Ajuste de curvas pelo Método dos Mímos Quadrados Ajuste Lear Smples (ou Regressão Lear); Ajuste Lear Múltplo (ou Regressão Lear Múltpla); Ajuste Polomal; Regressão Não Lear Iterpolação polomal

Leia mais

São ondas associadas com elétrons, prótons e outras partículas fundamentais.

São ondas associadas com elétrons, prótons e outras partículas fundamentais. NOTA DE AULA 0 UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA Disciplina: FÍSICA GERAL E EXPERIMENTAL II (MAF 0) Coordenação: Prof. Dr. Elias Calixto Carrijo CAPÍTULO 7 ONDAS I. ONDAS

Leia mais

Exercícios Complementares 1.2

Exercícios Complementares 1.2 Exercícios Comlemetares 1. 1.A Dê exemlo de uma seqüêcia fa g ; ão costate, ara ilustrar cada situação abaixo: (a) limitada e crescete (c) limitada e ão moótoa (e) ão limitada e ão moótoa (b) limitada

Leia mais

Sumário. Mecânica. Sistemas de partículas

Sumário. Mecânica. Sistemas de partículas umáro Udade I MECÂNICA 2- Cetro de massa e mometo lear de um sstema de partículas - stemas de partículas e corpo rígdo. - Cetro de massa. - Como determar o cetro de massa dum sstema de partículas. - Vetor

Leia mais

CCI-22 CCI-22 DEFINIÇÃO REGRA DO RETÂNGULO FÓRMULAS DE NEWTON-COTES CCI - 22 MATEMÁTICA COMPUTACIONAL INTEGRAÇÃO NUMÉRICA.

CCI-22 CCI-22 DEFINIÇÃO REGRA DO RETÂNGULO FÓRMULAS DE NEWTON-COTES CCI - 22 MATEMÁTICA COMPUTACIONAL INTEGRAÇÃO NUMÉRICA. CCI - MATMÁTICA COMPUTACIONAL INTGRAÇÃO NUMÉRICA CCI- Fórulas de Newto-Cotes Regras de Sipso Regra de Sipso de / Regra de Sipso de / Fórula geral de Newto-Cotes stiativas de erros DFINIÇÃO deteriadas situações,

Leia mais

Dinâmica de Estruturas MEC-EG, MIEC

Dinâmica de Estruturas MEC-EG, MIEC Dnâca de Estruturas EC-EG, IEC Atenção: As questões abaxo deve ser resolvdas se consulta, excepto do Foruláro fornecdo. É portante que as respostas seja fundaentadas de odo sntétco, as rgoroso; Resolver

Leia mais

1- RESPOSTA TEMPORAL EM FUNÇÃO DA POSIÇÃO DOS POLOS

1- RESPOSTA TEMPORAL EM FUNÇÃO DA POSIÇÃO DOS POLOS - RESPOSTA TEMPORAL EM FUNÇÃO DA POSIÇÃO DOS POLOS Seja R( F( E( a repota de u tea lear, cocetrado e varate. Se F ( e E () ão fuçõe rea racoa, etão R ( é real racoal e pode er exprea coo: N() R( a / b

Leia mais

Secção 3. Aplicações das equações diferenciais de primeira ordem

Secção 3. Aplicações das equações diferenciais de primeira ordem 3 Aplicações das equações diferenciais de prieira orde Secção 3 Aplicações das equações diferenciais de prieira orde (Farlow: Sec 23 a 26) hegou a altura de ilustrar a utilidade prática das equações diferenciais

Leia mais

GABARITO. Resposta: Teremos:

GABARITO. Resposta: Teremos: Cetro Uiversitário Achieta Egeharia Quíica Físico Quíica I Prof. Vaderlei I Paula Noe: R.A. a lista de exercícios/ Data: /08/04 // gabarito /08/04 GABARITO 0 - E u rocesso idustrial, u reator de 50 L é

Leia mais

7 Análise de covariância (ANCOVA)

7 Análise de covariância (ANCOVA) Plejameto de Expermetos II - Adlso dos Ajos 74 7 Aálse de covarâca (ANCOVA) 7.1 Itrodução Em algus expermetos, pode ser muto dfícl e até mpossível obter udades expermetas semelhtes. Por exemplo, pode-se

Leia mais

Como primeiro exemplo de uma relação de recorrência, consideremos a seguinte situação:

Como primeiro exemplo de uma relação de recorrência, consideremos a seguinte situação: Relações de Recorrêcas - Notas de aula de CAP Prof. José Carlos Becceer. Ao 6. Ua Relação de Recorrêca ou Equação de Recorrêca defe ua fução por eo de ua epressão que clu ua ou as stâcas (eores) dela esa.

Leia mais

As propriedades de um experimento binomial são resumidas a seguir:

As propriedades de um experimento binomial são resumidas a seguir: Probabilidade e Estatística I Atoio Roue Aula 9 A Distribuição Bioial Muitas alicações de robabilidade ode ser reduzidas a u odelo e ue u exerieto é reetido várias vezes, cada ua ideedeteete da outra,

Leia mais

Curso de Dinâmica das Estruturas 25. No exemplo de três graus de liberdade (GLs) longitudinais, para cada uma das partículas, temos:

Curso de Dinâmica das Estruturas 25. No exemplo de três graus de liberdade (GLs) longitudinais, para cada uma das partículas, temos: Crso de iâica das Esrras 5 III ESTRUTURAS COM VÁRIOS GRAUS E LIBERAE III. Eqações do Movieo No exelo de rês gras de liberdade (GLs) logidiais, ara cada a das aríclas, eos: x F x F x F As orças elásicas

Leia mais

MATEMÁTICA APLICADA RESOLUÇÃO E RESPOSTA

MATEMÁTICA APLICADA RESOLUÇÃO E RESPOSTA GRADUAÇÃO EM ADMINISTRAÇÃO DE EMPRESAS - SP 4/6/7 A Deostre que, se escolheros três úeros iteiros positivos quaisquer, sepre eistirão dois deles cuja difereça é u úero últiplo de. B Cosidere u triâgulo

Leia mais

INFERÊNCIA ESTATÍSTICA: ESTIMAÇÂO PONTUAL E INTERVALOS DE CONFIANÇA

INFERÊNCIA ESTATÍSTICA: ESTIMAÇÂO PONTUAL E INTERVALOS DE CONFIANÇA INFRÊNCIA STATÍSTICA: STIMAÇÂO PONTUAL INTRVALOS D CONFIANÇA 0 Problemas de iferêcia Iferir sigifica faer afirmações sobre algo descohecido. A iferêcia estatística tem como objetivo faer afirmações sobre

Leia mais

Combinações simples e com repetição - Teoria. a combinação de m elementos tomados p a p. = (*) (a divisão por p! desconta todas as variações.

Combinações simples e com repetição - Teoria. a combinação de m elementos tomados p a p. = (*) (a divisão por p! desconta todas as variações. obiações siles - Defiição obiações siles e co reetição - Teoria osidereos u cojuto X co eleetos distitos. No artigo Pricíios Multilicativos e Arrajos - Teoria, aredeos a calcular o úero de arrajos de eleetos

Leia mais

Resoluções dos exercícios propostos

Resoluções dos exercícios propostos da físca 3 Undade C Capítulo 4 Força agnétca esoluções dos exercícos propostos P.33 Característcas da força agnétca : dreção: perpendcular a e a, sto é: da reta s C u D r sentdo: deternado pela regra da

Leia mais

EFEITOS DE CAMPOS EXTERNOS EM SEMICONDUTORES

EFEITOS DE CAMPOS EXTERNOS EM SEMICONDUTORES 1. Itrodução 2. Efeito da Temeratura em Semicodutores a. Efeito da Temeratura em Semicodutores Itrísecos b. Efeito da Temeratura em Semicodutores Extrísecos 3. Efeito de Camos Magéticos em Semicodutores

Leia mais

(c) Para essa nova condição de operação, esboce o gráfico da variação da corrente no tempo.

(c) Para essa nova condição de operação, esboce o gráfico da variação da corrente no tempo. CONVERSÃO ELETROMECÂNICA DE ENERGIA Lsta de exercícos sobre crcutos magétcos Questão A fgura 1(a mostra um acoador projetado para produzr força magétca. O mesmo possu um úcleo em forma de um C e uma armadura

Leia mais

n. A densidade de corrente associada a esta espécie iônica é J n. O modelo está ilustrado na figura abaixo.

n. A densidade de corrente associada a esta espécie iônica é J n. O modelo está ilustrado na figura abaixo. Equlíbro e o Potecal de Nerst 5910187 Bofísca II FFCLRP USP Prof. Atôo Roque Aula 11 Nesta aula, vamos utlzar a equação para o modelo de eletrodfusão o equlíbro obtda a aula passada para estudar o trasporte

Leia mais

Agregação das Demandas Individuais

Agregação das Demandas Individuais Deanda Agregada Agregação da Deanda Indvdua A curva de deanda agregada é a oa horzontal da curva de deanda. Deve-e ter e ente que a deanda ndvdua (, ) ão ua função do reço e da renda. A, a curva de deanda

Leia mais

Universidade Estadual do Sudoeste da Bahia

Universidade Estadual do Sudoeste da Bahia Universidade Estadual do Sudoeste da Bahia Departaento de Estudos Básicos e Instruentais 5 Oscilações Física II Ferreira 1 ÍNDICE 1. Alguas Oscilações;. Moviento Harônico Siples (MHS); 3. Pendulo Siples;

Leia mais

Introdução aos estudos de instalações hidráulicas. Inicia-se considerando a instalação hidráulica denominada de instalação de

Introdução aos estudos de instalações hidráulicas. Inicia-se considerando a instalação hidráulica denominada de instalação de Introdução aos estudos de nstalações hdráulcas. Inca-se consderando a nstalação hdráulca denonada de nstalação de recalque reresentada ela oto a seur. Foto 1 1 Dene-se nstalação de recalque toda a nstalação

Leia mais

tica ou tica como Rui Vilela Mendes CMAF, ICC, CFN dos TPC s

tica ou tica como Rui Vilela Mendes CMAF, ICC, CFN dos TPC s O oder da matemátca tca ou A matemátca tca como metáfora Ru Vlela Medes CMAF, ICC, CFN Soluções dos TPC s Curso o Mestrado de Comlexdade,, ISCTE, Ivero 007 07-03 03-007 TPC Dados ( I(I(,,, N ( I(/N, /N,,,

Leia mais

Física Geral I. 1º semestre /05. Indique na folha de teste o tipo de prova que está a realizar: A, B ou C

Física Geral I. 1º semestre /05. Indique na folha de teste o tipo de prova que está a realizar: A, B ou C Física Geral I 1º seestre - 2004/05 1 TESTE DE AVALIAÇÃO 2668 - ENSINO DE FÍSICA E QUÍMICA 1487 - OPTOMETRIA E OPTOTÉCNIA - FÍSICA APLICADA 8 de Novebro, 2004 Duração: 2 horas + 30 in tolerância Indique

Leia mais

Mecânica e Ondas 1º Ano -2º Semestre 1º Teste 04/05/ :00h

Mecânica e Ondas 1º Ano -2º Semestre 1º Teste 04/05/ :00h Lcencatura e Engenhara Geológca e de Mnas Lcencatura e Mateátca Aplcada e Coputação Mestrado Integrado e Engenhara Boédca Mecânca e Ondas 1º Ano -º Seestre 1º Teste 04/05/017 19:00h Duração do teste: 1:30h

Leia mais

Matrizes e Polinômios

Matrizes e Polinômios Matrizes e oliôios Duas atrizes A, B Mat R) são seelhates quado existe ua atriz ivertível Mat R) tal que B = A Matrizes seelhates possue o eso poliôio característico, já que: det A λ ) = det A λ ) ) =

Leia mais

Representação dos padrões. Tipos de atributos. Etapas do processo de agrupamento. 7.1 Agrupamento clássico. 7. Agrupamento fuzzy (fuzzy clustering)

Representação dos padrões. Tipos de atributos. Etapas do processo de agrupamento. 7.1 Agrupamento clássico. 7. Agrupamento fuzzy (fuzzy clustering) 7. Agrupaeto fuzzy (fuzzy clusterg) 7. Agrupaeto clássco Agrupaeto é a classfcação ão-supervsoada de padrões (observações, dados, objetos, eeplos) e grupos (clusters). Itutvaete, padrões seelhates deve

Leia mais

CUFSA - FAFIL. Análise Combinatória (Resumo Teórico)

CUFSA - FAFIL. Análise Combinatória (Resumo Teórico) A) CONCEITOS: CUFSA - FAFIL Aálise Combiatória (Resumo Teórico) Regras Simles de Cotagem: é a maeira de determiar o úmero de elemetos de um cojuto. Na maioria das vezes é mais imortate cohecer a quatidade

Leia mais

Modelagem, similaridade e análise dimensional

Modelagem, similaridade e análise dimensional Modelage, siilaridade e análise diensional Alguns robleas e MF não ode ser resolvidos analiticaente devido a: iitações devido às silificações necessárias no odelo ateático o Falta da inforação coleta (turbulência);

Leia mais

Média. Mediana. Ponto Médio. Moda. Itabira MEDIDAS DE CENTRO. Prof. Msc. Emerson José de Paiva 1 BAC011 - ESTATÍSTICA. BAC Estatística

Média. Mediana. Ponto Médio. Moda. Itabira MEDIDAS DE CENTRO. Prof. Msc. Emerson José de Paiva 1 BAC011 - ESTATÍSTICA. BAC Estatística BAC 0 - Estatístca Uversdade Federal de Itajubá - Campus Itabra BAC0 - ESTATÍSTICA ESTATÍSTICA DESCRITIVA MEDIDAS DE CENTRO Méda Medda de cetro ecotrada pela somatóra de todos os valores de um cojuto,

Leia mais

Exercícios Complementares 1.2

Exercícios Complementares 1.2 Exercícios Comlemetares..A Dê exemlo de uma sequêcia fa g ; ão costate, ara ilustrar cada situação abaixo: (a) limitada e crescete (c) limitada e ão moótoa (e) ão limitada e ão moótoa (b) limitada e decrescete

Leia mais

LFEB notas de apoio às aulas teóricas

LFEB notas de apoio às aulas teóricas LFEB notas de apoio às aulas teóricas 1. Resolução de equações diferenciais lineares do segundo grau Este tipo de equações aparece frequenteente e sisteas oscilatórios, coo o oscilador harónico (livre

Leia mais

ESTATÍSTICA Exame Final 1ª Época 3 de Junho de 2002 às 14 horas Duração : 3 horas

ESTATÍSTICA Exame Final 1ª Época 3 de Junho de 2002 às 14 horas Duração : 3 horas Faculdade de cooma Uversdade Nova de Lsboa STTÍSTIC xame Fal ª Época de Juho de 00 às horas Duração : horas teção:. Respoda a cada grupo em folhas separadas. Idetfque todas as folhas.. Todas as respostas

Leia mais

CAPÍTULO 3 MEDIDAS DE TENDÊNCIA CENTRAL E VARIABILIDADE PPGEP Medidas de Tendência Central Média Aritmética para Dados Agrupados

CAPÍTULO 3 MEDIDAS DE TENDÊNCIA CENTRAL E VARIABILIDADE PPGEP Medidas de Tendência Central Média Aritmética para Dados Agrupados 3.1. Meddas de Tedêca Cetral CAPÍTULO 3 MEDIDA DE TENDÊNCIA CENTRAL E VARIABILIDADE UFRG 1 Há váras meddas de tedêca cetral. Etre elas ctamos a méda artmétca, a medaa, a méda harmôca, etc. Cada uma dessas

Leia mais

CAPÍTULO 7. Seja um corpo rígido C, de massa m e um elemento de massa dm num ponto qualquer deste corpo. v P

CAPÍTULO 7. Seja um corpo rígido C, de massa m e um elemento de massa dm num ponto qualquer deste corpo. v P 63 APÍTLO 7 DINÂMIA DO MOVIMENTO PLANO DE ORPOS RÍGIDOS - TRABALHO E ENERGIA Neste capítulo será analisada a lei de Newton apresentada na fora de ua integral sobre o deslocaento. Esta fora se baseia nos

Leia mais

Aula nº 32. Aula Teórica de Flexão Composta

Aula nº 32. Aula Teórica de Flexão Composta ula nº ula Teórica de 9 Fleão Coposta Estruturas sujeitas à fleão coposta ou à acção aial ecêntrica (continuação). úcleo central de ua secção. rincipais propriedades. Eeplos de aplicação. rofessor Luís

Leia mais

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento.

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento. Prof. Lorí Val, Dr. val@pucrs.r http://www.pucrs.r/famat/val/ Em mutas stuações duas ou mas varáves estão relacoadas e surge etão a ecessdade de determar a atureza deste relacoameto. A aálse de regressão

Leia mais

Lista 7.3 Optimização com Restrições de Igualdade

Lista 7.3 Optimização com Restrições de Igualdade Faculdade de Ecooia da Uiversidade Nova de Lisboa Apotaetos Cálculo II Lista 7.3 Optiização co Restrições de Igualdade. Problea de optiização de ua ução escalar, de variáveis reais, co restrições de igualdade:

Leia mais

Exercícios de Matemática Binômio de Newton

Exercícios de Matemática Binômio de Newton Exercícios de Mateática Biôio de Newto ) (ESPM-995) Ua lachoete especializada e hot dogs oferece ao freguês 0 tipos diferetes de olhos coo tepero adicioal, que pode ser usados à votade. O tipos de hot

Leia mais

Terceira aula de estática dos fluidos. Primeiro semestre de 2012

Terceira aula de estática dos fluidos. Primeiro semestre de 2012 Terceira aula de estática dos fluidos Prieiro seestre de 0 Ne sere os objetivos idealizados no lanejaento são alcançados. E coo odeos avaliar o que realente entendeos? Esta avaliação ode ser feita resondendo

Leia mais

Problemas de Contagem

Problemas de Contagem Problemas de Cotagem Cotar em semre é fácil Pricíio Fudametal de Cotagem Se um certo acotecimeto ode ocorrer de 1 maeiras diferetes e se, aós este acotecimeto, um segudo ode ocorrer de 2 maeiras diferetes

Leia mais

Módulo 4 Sistema de Partículas e Momento Linear

Módulo 4 Sistema de Partículas e Momento Linear Módulo 4 Sstea de Partículas e Moento Lnear Moento lnear Moento lnear (quantdade de oento) de ua partícula: Grandeza etoral Undades S.I. : kg./s p Moento lnear e ª Le de ewton: Se a assa é constante: F

Leia mais

TEORIA DE SISTEMAS LINEARES

TEORIA DE SISTEMAS LINEARES Ageda. Algebra Liear (Parte I). Ativadades IV Profa. Dra. Letícia Maria Bolzai Poehls /0/00 Potifícia Uiversidade Católica do Rio Grade do Sul PUCRS Faculdade de Egeharia FENG Programa de Pós-Graduação

Leia mais

Exemplo: Controlo digital de um motor de corrente contínua

Exemplo: Controlo digital de um motor de corrente contínua Modelação, Identificação e Controlo Digital 5-Controlo co técnicas polinoiais 5 Exeplo: Controlo digital de u otor de corrente contínua Pretende-se projectar u controlador digital para a posição de u pequeno

Leia mais

Distribuições Amostrais. Estatística. 8 - Distribuições Amostrais UNESP FEG DPD

Distribuições Amostrais. Estatística. 8 - Distribuições Amostrais UNESP FEG DPD Dstrbuções Amostras Estatístca 8 - Dstrbuções Amostras 08- Dstrbuções Amostras Dstrbução Amostral de Objetvo: Estudar a dstrbução da população costtuída de todos os valores que se pode obter para, em fução

Leia mais

MT DEPARTAMENTO NACIONAL DE ESTRADAS DE RODAGEM. Norma Rodoviária DNER-PRO 277/97 Procedimento Página 1 de 8

MT DEPARTAMENTO NACIONAL DE ESTRADAS DE RODAGEM. Norma Rodoviária DNER-PRO 277/97 Procedimento Página 1 de 8 Norma Rodoviária DNER-PRO 77/97 Procedimeto Págia de 8 RESUMO Este documeto estabelece o úmero de amostras a serem utilizadas o cotrole estatístico, com base em riscos refixados, em obras e serviços rodoviários.

Leia mais

AULA Espaços Vectoriais Estruturas Algébricas.

AULA Espaços Vectoriais Estruturas Algébricas. Note bem: a letura destes apotametos ão dspesa de modo algum a letura ateta da bblografa prcpal da cadera Chama-se a ateção para a mportâca do trabalho pessoal a realzar pelo aluo resolvedo os problemas

Leia mais

Aplicações de Equações Diferenciais de Segunda Ordem

Aplicações de Equações Diferenciais de Segunda Ordem Aplicações de Equações Diferenciais de Segunda Orde Fernanda de Menezes Ulgui Filipi Daasceno Vianna Cálculo Diferencial e Integral B Professor Luiz Eduardo Ourique Porto Alegre, outubro de 2003. Escolha

Leia mais

Capítulo 7 ESCOAMENTO PERMANENTE DE FLUIDO INCOMPRESSÍVEL EM CONDUTOS FORÇADOS

Capítulo 7 ESCOAMENTO PERMANENTE DE FLUIDO INCOMPRESSÍVEL EM CONDUTOS FORÇADOS Caítulo 7 ESCOMEO PERMEE E FUIO ICOMPRESSÍVE EM COUOS FORÇOS o Caítulo areentou-e a equação a energia co ea iótee, reultano: : M, Ea equação erite eterinar ao longo o ecoaento algua a ariáei que conté,

Leia mais

Momento Linear duma partícula

Momento Linear duma partícula umáro Udade I MECÂNICA 2- Cetro de massa e mometo lear de um sstema de partículas - Mometo lear de uma partícula e de um sstema de partículas. - Le fudametal da dâmca para um sstema de partículas. - Impulso

Leia mais

Restricao Orcamentaria

Restricao Orcamentaria Fro the SelectedWorks of Sergio Da Silva January 008 Restricao Orcaentaria Contact Author Start Your Own SelectedWorks Notify Me of New Work Available at: htt://works.beress.co/sergiodasilva/5 Restrição

Leia mais