COMPENSAÇÃO ANGULAR E REMOÇÃO DA COMPONENTE DE SEQÜÊNCIA ZERO NA PROTEÇÃO DIFERENCIAL DE TRANSFORMADORES
|
|
|
- Benedito Cortês Ferreira
- 9 Há anos
- Visualizações:
Transcrição
1 SHWETZER ENGNEERNG LORTORES, OMERL LTD OMPENSÇÃO NGULR E REMOÇÃO D OMPONENTE DE SEQÜÊN ZERO N PROTEÇÃO DFERENL DE TRNSFORMDORES Por Rfel rdoso. NTRODUÇÃO O prinípio d proteção diferenil é de que som ds orrentes que entrm n zon de proteção deve ser igul à som ds orrentes que sem dest zon. zon de proteção é definid omo região entre os trnsformdores de orrente, omo ilustr figur : p.u. p.u. Dispositivo Protegido p.u. p.u. op p.u. Figur - Zon de proteção No so de um trnsformdor omo dispositivo protegido, orret operção d proteção diferenil requer que s orrentes do primário e seundário medids pelo relé diferenil estejm em fse. Por exemplo, em um trnsformdor onetdo em delt/estrel, s orrentes dos enrolmentos estrão defsds entre si. Se não houver um ompensção deste defsmento, o relé entenderá omo um ondição de flt e irá portnto operr. orreção do defsmento deve sempre ser onsiderd.. OMPENSÇÃO NGULR Em lgums onexões de trnsformdores de potêni, s orrentes do ldo primário não estão em fse om s orrentes do seundário. Por exemplo, figur mostr um trnsformdor om onexão delt no primário (enrolmento e onexão estrel no seundário (enrolmento. R. n Mri de Souz, 6 mpins/sp EP: Tel: (9. 8 Fx: (9.8 Pág. - / emil: [email protected] NPJ: /- ns. Estdul:
2 SHWETZER ENGNEERNG LORTORES, OMERL LTD Figur - Trnsformdor Delt-Estrel orrente no enrolmento, -, está dintd em d orrente do enrolmento. om relés eletromeânios, ompensção d diferenç ngulr er feit n onexão dos Ts, ou sej, os Ts do ldo estrel do trnsformdor erm onetdos em delt e os Ts do ldo delt do trnsformdor erm onetdos em estrel. No enrolmento s orrentes que hegm o relé são: W W W TR TR TR Pr o enrolmento, s orrentes são: W TR W TR W TR ( ( ( Verifi-se portnto que onexão delt dos Ts no seundário ompensrm o defsmento ngulr no trnsformdor, omo mostr figur : R. n Mri de Souz, 6 mpins/sp EP: Tel: (9. 8 Fx: (9.8 Pág. - / emil: [email protected] NPJ: /- ns. Estdul:
3 SHWETZER ENGNEERNG LORTORES, OMERL LTD ntes d ompensção pós ompensção -,, enrol.,, enrol. Figur - Digrms fsoriis Hoje om os relés miroproessdos, ests ompensções podem ser feits trvés de softwre, estndo os Ts onetdos de qulquer mneir. Os relés pr proteção diferenil mtemtimente rim um onexão delt. s equções seguir mostrm s três orrentes de linh do ldo primário do trnsformdor n figur : olondo num form mtriil, vem: Renomendo OMP, ompletmos s relções entre s orrentes d onexão Dy (dividido por riz de pr orrigir mgnitude. OMP OMP OMP Por exemplo, pr lulr os vlores ompensdos ds três orrentes do sistem (tomndo omo referêni, multipli-se s três orrentes que entrm no relé pel mtriz de ompensção M: R. n Mri de Souz, 6 mpins/sp EP: Tel: (9. 8 Fx: (9.8 Pág. - / emil: [email protected] NPJ: /- ns. Estdul:
4 SHWETZER ENGNEERNG LORTORES, OMERL LTD R. n Mri de Souz, 6 mpins/sp EP: Tel: (9. 8 Fx: (9.8 Pág. - 4/4 emil: [email protected] NPJ: /- ns. Estdul: M OMP OMP OMP 5,7 9,7,7 OMP OMP OMP 5 9 OMP OMP OMP.. justes nos relés trvés do juste WnT m, o relé seleion um de sus mtrizes pr fzer ompensção. Os vlores que m pode ssumir são vlores disretos de que fisimente representm o número de inrementos de no sentido nti-horário pr sistem om rotção de fses ou no sentido horário pr o sistem. s orrentes que entrm no terminl n do relé (Wn, Wn e Wn são ompensds trvés d multiplição por lgum ds mtrizes (T(m originndo s orrentes ompensds (Wn, Wn e Wn. s mtrizes de ompensção são: (] [T (] [T (] [T (] [T (4] [T (5] [T
5 SHWETZER ENGNEERNG LORTORES, OMERL LTD [T (6] [T (7] [T (8] [T (9] [T (] [T (] [T (].. Proesso pr determinr mtriz de ompensção Psso : dote o enrolmento omo referêni. Pr o enrolmento esolh entre s mtrizes ou, s quis não plim nenhum defsmento ns orrentes de entrd. Esolh se já houver lgum onexão delt té o relé, ou sej, se este ldo do trnsformdor estiver onetdo em delt ou então se os Ts estiverem fehdos dest mneir. Se mos, enrolmento e Ts, estiverem fehdos em onexão estrel, esolh mtriz pr remoção d omponente de seqüêni zero. Psso : Verifique em quntos grus o seundário está trsdo om relção o primário e esolh mtriz de ompensção onforme figur 4: ( ( ( ( ( (6 9 (7 (9 8 (4 7 ( 6 (8 5 (5 4 ( Figur 4 Rotção Os: om sentido de rotção de fses s mtrizes ompensm os ângulos no sentido nti-horário. Se o sentido de rotção for orreção é feit no sentido horário. Exemplo: R. n Mri de Souz, 6 mpins/sp EP: Tel: (9. 8 Fx: (9.8 Pág. - 5/5 emil: [email protected] NPJ: /- ns. Estdul:
6 SHWETZER ENGNEERNG LORTORES, OMERL LTD Figur 5 - Trnsformdor Yd e Ts em estrel Neste exemplo o enrolmento do trnsformdor está onetdo em estrel e os Ts deste ldo form tmém fehdos em estrel. Portnto, dot-se pr o enrolmento mtriz fim de remover omponente de seqüêni zero. Pel onexão Yd, o seundário (neste so em delt se trs do primário em. Se o sentido de rotção do sistem for dot-se mtriz (dintr orrente em. gor se o sentido de rotção for, utiliz-se mtriz (trsr orrente em. Os: ver rotção n figur. Enrolmento Enrolmento T ( T ( Figur 6 - ompensção om rotção R. n Mri de Souz, 6 mpins/sp EP: Tel: (9. 8 Fx: (9.8 Pág. - 6/6 emil: [email protected] NPJ: /- ns. Estdul:
7 SHWETZER ENGNEERNG LORTORES, OMERL LTD Enrolmento Enrolmento T ( T ( Figur 7 - ompensção om rotção. PORQUE ELMNR ORRENTE DE SEQÜÊN ZERO? figur 8 mostr um trnsformdor delt-estrel terrdo. Flts envolvendo terr no ldo de lt do trnsformdor resultm em orrentes de linh e onseqüentemente orrentes no seundário dos Ts de lt. No ldo de ix do trnsformdor orrente de flt de seqüêni zero irul dentro d onexão delt do trnsformdor ms não irul no seundário dos Ts de ix. Pr o relé diferenil, orrente de flt heg pens no enrolmento o que pode usr operção indevid, ou sej, um tução pr flt for d zon de proteção. Figur 8 - Flt for d zon de proteção R. n Mri de Souz, 6 mpins/sp EP: Tel: (9. 8 Fx: (9.8 Pág. - 7/7 emil: [email protected] NPJ: /- ns. Estdul:
8 SHWETZER ENGNEERNG LORTORES, OMERL LTD Vê-se lrmente neessidde de remover orrente de seqüêni zero que heg o relé por um dos enrolmentos, um vez que no outro enrolmento est orrente será filtrd no delt do próprio trnsformdor. Pr demonstrr remoção d omponente de seqüêni zero pel onexão delt pode-se utilizr orrente de linh em termos de omponentes simétris, omo segue: Figur 9 - Digrms ds omponentes simétris olondo em termos ds omponentes d fse, vem:.... onde, j e j4 e Se-se que: -.( (.( (.. De fto onexão delt elimin omponente de seqüêni zero, ms lém disso el tmém resent um defsmento. Os relés miroproessdos são pzes de mtemtimente remover seqüêni zero e não rir nenhum defsmento. É o so d mtriz d págin 5.Vej: OMP ( O onde, ( R. n Mri de Souz, 6 mpins/sp EP: Tel: (9. 8 Fx: (9.8 Pág. - 8/8 emil: [email protected] NPJ: /- ns. Estdul:
9 SHWETZER ENGNEERNG LORTORES, OMERL LTD R. n Mri de Souz, 6 mpins/sp EP: Tel: (9. 8 Fx: (9.8 Pág. - 9/9 emil: [email protected] NPJ: /- ns. Estdul: (. OMP (. OMP ( OMP D mesm mneir pr s demis fses: (. OMP (. OMP E de form mtriil: OMP OMP OMP V. ONLUSÃO omo presentdo neste rtigo, é neessário o se utilizr proteção diferenil em um trnsformdor tentr-se pr form de onexão de seus enrolmentos. Se est onexão originr lgum defsmento entre s fses do enrolmento primário e seundário será preiso um ompensção. Pr todos os sos, os relés difereniis miroproessdos são pzes de ompensr mtemtimente estes defsmentos e de form stnte simples de ser justd.
COMPENSAÇÃO ANGULAR E REMOÇÃO DA COMPONENTE DE SEQÜÊNCIA ZERO NA PROTEÇÃO DIFERENCIAL
SHWETZER ENGNEERNG LORTORES, OMERL LTD OMPENSÇÃO NGULR E REMOÇÃO D OMPONENTE DE SEQÜÊN ZERO N PROTEÇÃO DFERENL RFEL RDOSO ntrodução O prinípio d proteção diferenil é de que som ds orrentes que entrm n
4. APLICAÇÃO DA PROTEÇÃO DIFERENCIAL À PROTEÇÃO DE TRANSFORMADORES DE POTÊNCIA
lever Pereir 4. PLÇÃO D PROTEÇÃO DFEREL À PROTEÇÃO DE TRSFORMDORES DE POTÊ 4.. Prinípio ásio s orrentes primáris e seundáris de um trfo de potêni gurdm entre si um relção onheid em ondições de operção
Laboratório de Circuitos Polifásicos e Magnéticos
ortório de Ciruitos Polifásios e Mgnétios PÁTICA 3 CICUITOS TIFÁSICOS EQUIIBADOS E DESEQUIIBADOS OBJETIVOS: O ojetivo d práti é lulr orrentes/tensões em iruitos trifásios equilirdos e desequilirdos efetundo
MATEMÁTICA. Equações do Segundo Grau. Professor : Dêner Rocha. Monster Concursos 1
MATEMÁTICA Equções do Segundo Gru Professor : Dêner Roh Monster Conursos 1 Equções do segundo gru Ojetivos Definir equções do segundo gru. Resolver equções do segundo gru. Definição Chm-se equção do º
Hewlett-Packard O ESTUDO DO PONTO. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz
Hewlett-Pkrd O ESTUDO DO PONTO Auls 0 05 Elson Rodrigues, Griel Crvlho e Pulo Luiz Sumário INTRODUÇÃO AO PLANO CARTESIANO... Alguns elementos do plno rtesino... Origem... Eios... Qudrntes... Bissetrizes
Circuitos Elétricos II Experimento 1 Experimento 1: Sistema Trifásico
Circuitos Elétricos Experimento 1 Experimento 1: Sistem Trifásico 1. Objetivo: Medição de tensões e correntes de linh e de fse em um sistem trifásico. 2. ntrodução: As tensões trifásics são normlmente
Circuitos Elétricos II Experimento 1 Experimento 1: Sistema Trifásico
Circuitos Elétricos Experimento 1 Experimento 1: Sistem Trifásico 1. Objetivo: Medição de tensões e correntes de linh e de fse em um sistem trifásico. 2. ntrodução: As tensões trifásics são normlmente
Trigonometria FÓRMULAS PARA AJUDÁ-LO EM TRIGONOMETRIA
Trigonometri é o estudo dos triângulos, que contêm ângulos, clro. Conheç lgums regrs especiis pr ângulos e váris outrs funções, definições e trnslções importntes. Senos e cossenos são dus funções trigonométrics
EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c.
EQUAÇÃO DO GRAU Você já estudou em série nterior s equções do 1 gru, o gru de um equção é ddo pelo mior expoente d vriável, vej lguns exemplos: x + = 3 equção do 1 gru já que o expoente do x é 1 5x 8 =
16.4. Cálculo Vetorial. Teorema de Green
ÁLULO VETORIAL álculo Vetoril pítulo 6 6.4 Teorem de Green Nest seção, prenderemos sore: O Teorem de Green pr váris regiões e su plicção no cálculo de integris de linh. INTROUÇÃO O Teorem de Green fornece
Prova de Aferição de Matemática e Estudo do Meio Prova 26 2.º Ano de Escolaridade Braille/Entrelinha 1,5 sem figuras Critérios de Classificação
Prov de Aferição de Mtemáti e Estudo do Meio Prov 26 2.º Ano de Esolridde 2018 Dereto-Lei n.º 17/2016, de 4 de ril Brille/Entrelinh 1,5 sem figurs Critérios de Clssifição 12 Págins Prov 26/Adp CC Págin
Eletrotécnica TEXTO Nº 7
Eletrotécnic TEXTO Nº 7 CIRCUITOS TRIFÁSICOS. CIRCUITOS TRIFÁSICOS EQUILIBRADOS E SIMÉTRICOS.. Introdução A quse totlidde d energi elétric no mundo é gerd e trnsmitid por meio de sistems elétricos trifásicos
Resumo com exercícios resolvidos do assunto: Aplicações da Integral
www.engenhrifcil.weely.com Resumo com exercícios resolvidos do ssunto: Aplicções d Integrl (I) (II) (III) Áre Volume de sólidos de Revolução Comprimento de Arco (I) Áre Dd um função positiv f(x), áre A
ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II
ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 1º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tem II Introdução o Cálulo Diferenil II Tref nº 1 do plno de trlho nº 7 Pr levr o est tref pode usr su luldor ou o sketh fmilis.gsp
C Sistema destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET RACIOCÍNIO LÓGICO
Pr Ordendo RACIOCÍNIO LÓGICO AULA 06 RELAÇÕES E FUNÇÕES O pr ordendo represent um ponto do sistem de eixos rtesinos. Este sistem é omposto por um pr de rets perpendiulres. A ret horizontl é hmd de eixo
3. CÁLCULO INTEGRAL EM IR
3 CÁLCULO INTEGRAL EM IR A importâni do álulo integrl em IR reside ns sus inúmers plições em vários domínios d engenhri, ms tmém em ísi, em teori ds proiliddes, em eonomi, em gestão 3 Prtição de um intervlo
Substituição Trigonométrica. Substituição Trigonométrica. Se a integral fosse. a substituição u = a 2 x 2 poderia ser eficaz, mas, como está,
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I. Introdução Se integrl
Hewlett-Packard O ESTUDO DA RETA. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz
Hewlett-Pkrd O ESTUDO DA RETA Auls 01 05 Elson Rodrigues, Griel Crvlho e Pulo Luiz Sumário EQUAÇÃO GERAL DA RETA... 2 Csos espeiis... 2 Determinção d equção gerl de um ret prtir de dois de seus pontos...
Teoria de Linguagens 2 o semestre de 2014 Professor: Newton José Vieira Primeira Lista de Exercícios Entrega: até 16:40h de 23/10.
Pós-Grdução em Ciênci d Computção DCC/ICEx/UFMG Teori de Lingugens 2 o semestre de 2014 Professor: Newton José Vieir Primeir List de Exercícios Entreg: té 16:40h de 23/10. Oservções: O uso do softwre JFLAP,
(x, y) dy. (x, y) dy =
Seção 7 Função Gm A expressão n! = 1 3... n (1 está definid pens pr vlores inteiros positivos de n. Um primeir extensão é feit dizendo que! = 1. Ms queremos estender noção de ftoril inclusive pr vlores
Álgebra Linear e Geometria Analítica D
3 Deprtmento de Mtemáti Álgebr Liner e Geometri Anlíti D Segundo Teste 6 de Jneiro de 2 PREENCHA DE FORMA BEM LEGÍVEL Nome: Número de derno: Grelh de Resposts A B C D 2 3 4 5 Atenção Os primeiros 5 grupos
Conversão de Energia I
Deprtmento de Engenhri Elétric Conversão de Energi I Aul 5.2 Máquins de Corrente Contínu Prof. Clodomiro Unsihuy Vil Bibliogrfi FITZGERALD, A. E., KINGSLEY Jr. C. E UMANS, S. D. Máquins Elétrics: com Introdução
Área entre curvas e a Integral definida
Universidde de Brsíli Deprtmento de Mtemátic Cálculo Áre entre curvs e Integrl definid Sej S região do plno delimitd pels curvs y = f(x) e y = g(x) e s rets verticis x = e x = b, onde f e g são funções
Elementos de Análise - Lista 6 - Solução
Elementos de Análise - List 6 - Solução 1. Pr cd f bixo considere F (x) = x f(t) dt. Pr quis vlores de x temos F (x) = f(x)? () f(x) = se x 1, f(x) = 1 se x > 1; F (x) = se x 1, F (x) = x 1 se x > 1. Portnto
Formas Quadráticas. FUNÇÕES QUADRÁTICAS: denominação de uma função especial, definida genericamente por: 1 2 n ij i j i,j 1.
Forms Qudrátics FUNÇÕES QUADRÁTICAS: denominção de um função especil, definid genericmente por: Q x,x,...,x x x x... x x x x x... x 1 n 11 1 1 1 1n 1 n 3 3 nn n ou Qx,x,...,x 1 n ij i j i,j1 i j n x x
Seu pé direito nas melhores faculdades
MTMÁTI Seu pé direito ns melhores fculddes 0. João entrou n lnchonete OG e pediu hmbúrgueres, suco de lrnj e cocds, gstndo $,0. N mes o ldo, lgums pessos pedirm 8 hmbúrgueres, sucos de lrnj e cocds, gstndo
Bhaskara e sua turma Cícero Thiago B. Magalh~aes
1 Equções de Segundo Gru Bhskr e su turm Cícero Thigo B Mglh~es Um equção do segundo gru é um equção do tipo x + bx + c = 0, em que, b e c são números reis ddos, com 0 Dd um equção do segundo gru como
FUNÇÕES. Mottola. 1) Se f(x) = 6 2x. é igual a (a) 1 (b) 2 (c) 3 (d) 4 (e) 5. 2) (UNIFOR) O gráfico abaixo. 0 x
FUNÇÕES ) Se f() = 6, então f ( 5) f ( 5) é igul () (b) (c) 3 (d) 4 (e) 5 ) (UNIFOR) O gráfico bio 0 () não represent um função. (b) represent um função bijetor. (c) represent um função não injetor. (d)
Manual de Utilização do UpLoad BR
Mnul_UpLo_BR_20121128.o Mnul e Utilizção o UpLo BR Mnul_UpLo_BR_20121128.o ÍNDICE INFORMAÇÕES IMPORTANTES DA OPERADORA... 3 ACESSANDO O APLICATIVO... 3 MENU SELEÇÃO DE OPERADORA... 4 MENU CADASTROS...
Prova de Aferição de Matemática e Estudo do Meio Prova 26 2.º Ano de Escolaridade Braille, Entrelinha 1,5 sem figuras Critérios de Classificação
Prov de Aferição de Mtemáti e Estudo do Meio Prov 26 2.º Ano de Esolridde 2017 Dereto-Lei n.º 17/2016, de 4 de ril Brille, Entrelinh 1,5 sem figurs Critérios de Clssifição 12 Págins Prov 26/Adp CC Págin
Todos os exercícios sugeridos nesta apostila se referem ao volume 2. MATEMÁTICA III 1 DETERMINANTES
INTRODUÇÃO... DETERMINANTE DE MATRIZ DE ORDEM... DETERMINANTE DE MATRIZ DE ORDEM... DETERMINANTE DE MATRIZ DE ORDEM... PROPRIEDADES DOS DETERMINANTES... 8 REGRA DE CHIÓ... MENOR COMPLEMENTAR... COFATOR...
INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?
INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois
INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?
INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois
Desigualdades - Parte II. n (a1 b 1 +a 2 b a n b n ) 2.
Polos Olímpicos de Treinmento Curso de Álgebr - Nível Prof. Mrcelo Mendes Aul 9 Desigulddes - Prte II A Desiguldde de Cuchy-Schwrz Sejm,,..., n,b,b,...,b n números reis. Então: + +...+ ) n b +b +...+b
2 Patamar de Carga de Energia
2 Ptmr de Crg de Energi 2.1 Definição Um série de rg de energi normlmente enontr-se em um bse temporl, ou sej, d unidde dess bse tem-se um informção d série. Considerndo um bse horári ou semi-horári, d
A Lei das Malhas na Presença de Campos Magnéticos.
A Lei ds Mlhs n Presenç de mpos Mgnéticos. ) Revisão d lei de Ohm, de forç eletromotriz e de cpcitores Num condutor ôhmico n presenç de um cmpo elétrico e sem outrs forçs tundo sore os portdores de crg
Lista de Exercícios Vetores Mecânica da Partícula
List de Eeríios Vetores Meâni d Prtíul 01) Ddos os vetores e, ujos módulos vlem, respetivmente, 6 e 8, determine grfimente o vetor som e lule o seu módulo notções 0) Ddos os vetores, e, represente grfimente:
UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, utilizaremos o Teorema Fundamental do Cálculo (TFC) para o cálculo da área entre duas curvas.
CÁLCULO L1 NOTAS DA DÉCIMA SÉTIMA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nest ul, utilizremos o Teorem Fundmentl do Cálculo (TFC) pr o cálculo d áre entre dus curvs. 1. A áre entre dus curvs A
- Departamento de Matemática Aplicada (GMA) Notas de aula Prof a. Marlene Dieguez Fernandez. Integral definida
Interl Deinid Nots de ul - pro. Mrlene - 28-2 1 - Deprtmento de Mtemáti Aplid (GMA) Nots de ul - 28-2 Pro. Mrlene Dieuez Fernndez Interl deinid Oservção: esse teto ontém pens prte teóri desse ssunto, não
Aula 27 Integrais impróprias segunda parte Critérios de convergência
Integris imprópris segund prte Critérios de convergênci MÓDULO - AULA 7 Aul 7 Integris imprópris segund prte Critérios de convergênci Objetivo Conhecer dois critérios de convergênci de integris imprópris:
Marcus Vinícius Dionísio da Silva (Angra dos Reis) 9ª série Grupo 1
Mrcus Vinícius Dionísio d Silv (Angr dos Reis) 9ª série Grupo 1 Tutor: Emílio Ruem Btist Júnior 1. Introdução: Este plno de ul tem o ojetivo gerl de mostrr os lunos um processo geométrico pr resolução
V ( ) 3 ( ) ( ) ( ) ( ) { } { } ( r ) 2. Questões tipo exame Os triângulos [ BC Da figura ao lado são semelhantes, pelo que: BC CC. Pág.
António: c ; Diogo: ( ) i e ; Rit: e c Pág Se s firmções dos três migos são verddeirs, firmção do António é verddeir, pelo que proposição c é verddeir e, consequentemente, proposição c é fls Por outro
Recordando produtos notáveis
Recordndo produtos notáveis A UUL AL A Desde ul 3 estmos usndo letrs pr representr números desconhecidos. Hoje você sbe, por exemplo, que solução d equção 2x + 3 = 19 é x = 8, ou sej, o número 8 é o único
PROVA MATRIZ DE MATEMÁTICA EFOMM-2009
PROVA MATRIZ DE MATEMÁTICA EFOMM-009 ª Questão: Qul é o número inteiro ujo prouto por 9 é um número nturl omposto pens pelo lgrismo? (A) 459 4569 (C) 45679 (D) 45789 (E) 456789 ª Questão: O logotipo e
GRANDEZAS PROPORCIONAIS
Hewlett-Pkrd GRANDEZAS PROPORCIONAIS Auls 01 03 Elson Rodrigues, Griel Crvlho e Pulo Luiz Sumário GRANDEZAS... 1 O QUE É UMA GRANDEZA?... 1 PRELIMINAR 1... 1 PRELIMINAR 2... 1 GRANDEZAS DIRETAMENTE PROPORCIONAIS
Aula 1 - POTI = Produtos Notáveis
Aul 1 - POTI = Produtos Notáveis O que temos seguir são s demonstrções lgébrics dos sete principis produtos notáveis e tmbém prov geométric dos três primeiros. 1) Qudrdo d Som ( + b) = ( + b) * ( + b)
Bateria de Exercícios Matemática II. 1 Determine os valores de x e y, sabendo que os triângulos ABC e DEF são semelhantes:
Colégio: Nome: nº Sem limite pr reser Professor(): Série: 1ª EM Turm: Dt: / /2013 Desonto Ortográfio: Not: Bteri de Exeríios Mtemáti II 1 Determine os vlores de x e y, sendo que os triângulos ABC e DEF
Diogo Pinheiro Fernandes Pedrosa
Integrção Numéric Diogo Pinheiro Fernndes Pedros Universidde Federl do Rio Grnde do Norte Centro de Tecnologi Deprtmento de Engenhri de Computção e Automção http://www.dc.ufrn.br/ 1 Introdução O conceito
1 Assinale a alternativa verdadeira: a) < <
MATEMÁTICA Assinle lterntiv verddeir: ) 6 < 7 6 < 6 b) 7 6 < 6 < 6 c) 7 6 < 6 < 6 d) 6 < 6 < 7 6 e) 6 < 7 6 < 6 Pr * {} temos: ) *, * + e + * + ) + > + + > ) Ds equções (I) e (II) result 7 6 < ( 6 )
INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana.
INTEGRAL DEFINIDO O oneito de integrl definido está reliondo om um prolem geométrio: o álulo d áre de um figur pln. Vmos omeçr por determinr áre de um figur delimitd por dus rets vertiis, o semi-eio positivo
RESUMO DE INTEGRAIS. d dx. NOTA MENTAL: Não esquecer a constante para integrais indefinidas. Fórmulas de Integração
RESUMO DE INTEGRAIS INTEGRAL INDEFINIDA A rte de encontrr ntiderivds é chmd de integrção. Desse modo, o plicr integrl dos dois ldos d equção, encontrmos tl d ntiderivd: f (x) = d dx [F (x)] f (x)dx = F
As fórmulas aditivas e as leis do seno e do cosseno
ul 3 s fórmuls ditivs e s leis do MÓDULO 2 - UL 3 utor: elso ost seno e do cosseno Objetivos 1) ompreender importânci d lei do seno e do cosseno pr o cálculo d distânci entre dois pontos sem necessidde
RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 2. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA
RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 6 FASE. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA. O gráfico de brrs bixo exibe distribuição d idde de um grupo de pessos. ) Mostre que, nesse grupo,
TÓPICOS. Equação linear. Sistema de equações lineares. Equação matricial. Soluções do sistema. Método de Gauss-Jordan. Sistemas homogéneos.
Note bem: leitur destes pontmentos não dispens de modo lgum leitur tent d bibliogrfi principl d cdeir ÓPICOS Equção liner. AUA 4 Chm-se tenção pr importânci do trblho pessol relizr pelo luno resolvendo
Resolução Numérica de Sistemas Lineares Parte I
Cálculo Numérico Módulo V Resolução Numéric de Sistems ineres Prte I Profs.: Bruno Correi d Nóbreg Queiroz José Eustáquio Rngel de Queiroz Mrcelo Alves de Brros Sistems ineres Form Gerl... n n b... n n
Após encontrar os determinantes de A. B e de B. A, podemos dizer que det A. B = det B. A?
PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - ª SÉRIE - ENSINO MÉDIO ============================================================================================= Determinntes - O vlor
Prova elaborada pelo prof. Octamar Marques. Resolução da profa. Maria Antônia Conceição Gouveia.
ª AVALIAÇÃO DA ª UNIDADE ª SÉRIE DO ENSINO MÉDIO DISCIPLINA: MATEMÁTICA Prov elord pelo prof. Otmr Mrques. Resolução d prof. Mri Antôni Coneição Gouvei.. Dispondo de livros de mtemáti e de físi, qunts
Aula de solução de problemas: cinemática em 1 e 2 dimensões
Aul de solução de problems: cinemátic em 1 e dimensões Crlos Mciel O. Bstos, Edurdo R. Azevedo FCM 01 - Físic Gerl pr Químicos 1. Velocidde instntâne 1 A posição de um corpo oscil pendurdo por um mol é
81,9(56,'$'( )('(5$/ '2 5,2 '( -$1(,52 &21&8562 '( 6(/(d 2 0$7(0É7,&$
81,9(56,'$'( )('(5$/ ' 5, '( -$1(,5 &1&856 '( 6(/(d 0$7(0É7,&$ -867,),48( 7'$6 $6 68$6 5(667$6 De um retângulo de 18 cm de lrgur e 48 cm de comprimento form retirdos dois qudrdos de ldos iguis 7 cm, como
EXERCÍCIOS RESOLVIDOS DE TEORIA DOS GRAFOS
EXERCÍCIOS RESOLVIDOS DE TEORIA DOS GRAFOS.) Considere tbel de trefs seguir pr construção de um cs de mdeir: TAREFAS PRÉ-REQUISITOS DIAS. Limpez do terreno Nenhum. Produção e colocção d fundção. Produção
QUESTÃO 01. O lado x do retângulo que se vê na figura, excede em 3cm o lado y. O valor de y, em centímetros é igual a: 01) 1 02) 1,5 03) 2
PROV ELBORD PR SER PLICD ÀS TURMS DO O NO DO ENSINO MÉDIO DO COLÉGIO NCHIET-B EM MIO DE. ELBORÇÃO: PROFESSORES OCTMR MRQUES E DRINO CRIBÉ. PROFESSOR MRI NTÔNI C. GOUVEI QUESTÃO. O ldo x do retângulo que
5) Para b = temos: 2. Seja M uma matriz real 2 x 2. Defina uma função f na qual cada elemento da matriz se desloca para a posição. e as matrizes são:
MATEMÁTIA Sej M um mtriz rel x. Defin um função f n qul cd elemento d mtriz se desloc pr posição b seguinte no sentido horário, ou sej, se M =, c d c implic que f (M) =. Encontre tods s mtrizes d b simétrics
GEOMETRIA DESCRITIVA PASSO A PASSO PROF. JAIR ROBERTO BÄCHTOLD UDESC
GEOMETRIA DESCRITIVA PASSO A PASSO PROF. JAIR ROBERTO BÄCHTOLD UDESC Tópio 01 Tópio 02 Tópio 03 Tópio 04 Tópio 05 Tópio 06 Tópio 07 Tópio 08 Tópio 09 Tópio 10 Tópio 11 ÍNDICE Sistems de Projeções Estudo
Introdução à Integral Definida. Aula 04 Matemática II Agronomia Prof. Danilene Donin Berticelli
Introdução à Integrl Definid Aul 04 Mtemátic II Agronomi Prof. Dnilene Donin Berticelli Áre Desde os tempos mis ntigos os mtemáticos se preocupm com o prolem de determinr áre de um figur pln. O procedimento
