Suavização de Isolinhas por Meio de Spline de Catmull-Rom

Tamanho: px
Começar a partir da página:

Download "Suavização de Isolinhas por Meio de Spline de Catmull-Rom"

Transcrição

1 Suvição e Isolinhs por Meio e Spline e Cull-Ro LAÉRCIO MASSARU NAMIKAWA INPE - Insiuo Nionl e Pesquiss Espiis Ci Posl São José os Cpos - SP, Brsil lerio@pi.inpe.r Asr This pper esries he use of Cull-Ro spline urve o sooh onour lines. Conour lines nee soohing when genere uoi proeures hus wih non-nurl shrp eges. Cull-Ro spline is usefull inepoling hrough he poins oppose o os oon splines. In orer o es he proeure, soohing is pplie o wo onour lines ses, one ere uoill fro rengulr gris wih eer resoluion, n oher fro rengulr gri wih 5 eer resoluion. Kewors: onour lines, inerpolion, urve fiing, Cull-Ro spline. Inroução Isolinhs e sio uilis ese o séulo 6 pr represenr relevos Ihof, 98. Uss iniilene pr represenr o relevo suerso e lgos, o uso e isolinhs pr superfíies for águ oeçou no séulo 8 e seu uso foi generlio no séulo 9. As isolinhs são por prinípio enies fiíis s possue vnge e regisrr e neir sisfóri inforções sore o erreno, is oo for geoéri o erreno, s elevções, s iferençs e elevção e os ângulos e ireções s verenes Ihof, 98. Isolinhs poe ser efinis oo seno linhs sore u p que ini posição geográfi e u seqüêni e ponos n superfíie o es elevção. O erreno poe ser fio e neir fiíi por plnos horionis e s linhs e inerseção enre eses plnos e superfíie for s isolinhs. Deve-se lerr que urvur Terr não é onsier, esno inorpor no sise e projeção rográfio uilio. erlene são presenos nos ps regiões e onorno, ou sej, não são presens isolinhs iniviuis, s si isolinhs one iferenç e elevção enre els é onsne e h e inervlo e onorno. A esolh o inervlo e onorno e u p epene elivie ái que se esej, esl e presenção e enor isâni que se onsegue isinguir enre us linhs. Consierno-se que u linh poe ser presen o espessur íni e u éio e ilíero e isâni neessári pr isernir us linhs é e quro éios e ilíero, o ior núero e isolinhs que se poe presenr por ilíero é ois. Ese o lev seguine fórul pr lulr o enor inervlo e onorno Ihof, 98: M nα A 000 one: A é o inervlo e onorno e eros, M é esl o p e, é elivie ái ser represen.

2 Os vlores e inervlo e onorno são n prái vlores o núeros siples, que poe ser soos e iviios filene e que é fore núeros siples quno grupos e quro e quro ou e ino e ino. E gerl e u p n esl :000, o inervlo é e ero, seno possível usr é 5 eníeros pr áres uio plns. Es relção é ni pr esls éis, é : A Figur eeplifi u p e isolinhs n esl :50000, o inervlo e onorno e 0 eros. Figur. Eeplo e p e isolinhs n esl : Isolinhs poe ser erís uilino u equipeno que us us foos irs sore o eso erreno. As foogrfis são ois por eio e foogreri ére, éni onhei oo erofoogreri, one s igens são os verilene por eio e ârs espeiis insls e eronves. Durne o vôo foogrfis que se sorepõe são purs e quno pres e foogrfis são posiions e oo reprouir posição e one for os, oservção e s foogrfis e esereosópio reprou o oelo o erreno. O oelo é liro uilino lvos onheios no erreno e one for ois s oorens XY e posição e Z e liue. O oelo poe ser vrrio uilino u ror fluune.quno o ror fluune é rvo e u posição veril, o liere e ovieno horionl, ps e isolinhs são oios.

3 O éoo esrio i e pulição o p e isolinhs erío lev gerção e isolinhs que e visulene propriee e sere suves, iso é, não oné ors rups quno oservos o lgu plição. A epeiv os usuários eses ps é não enonrr s ors rups, s quno ps e isolinhs são geros por eio e proeienos uoio, e foro igil, ess ors esão presenes. Suvição e Isolinhs As ors esris i são resulnes os proeienos e erção e isolinhs epregos sore s lhs regulres rengulres ou lhs irregulres ringulres uilis pr oelr o erreno. A suvie s linhs erís uoiene epene o nho s éluls que for o oelo. O nho s éluls não poe ser efinio pens e função suvie que se esej pr s isolinhs, s é e função pie e proesseno e e renge. A Figur osr u eeplo e p e isolinhs n esl :0000, o inervlo e onorno e 5 eros, erío e u gre rengulr o resolução e 5 eros. Figur. Eeplo e p e isolinhs n esl :0000 erí e gre rengulr. U éoo e suvição e isolinhs poe epregr lgorios uilios pr rir proições e urvs. O uso prinipl eses lgorios é e sises e esenho ssisio por opuor CAD Copuer Aie Design, one urvs suves são neessáris, o reneno efiiene, ou sej, se er que espeifir epliiene oos os ponos urv, s pens lguns ponos prir os quis urv suve poe ser reproui. A represenção is uili pr urvs é represenção préri, por Fole e l., 99:,,

4 A urv é proi por u urv polinoil por segenos pieewise, segeno Q urv é por funções, u pr, our pr e our pr. C função, é e gerl, u polinoil úi no prâero. As polinoiis úis são is uilis porque grus enores perie pou fleiilie no onrole for urv e grus iores poe inrouir osilções inesejs. A polinoil úi que efine o segeno [ ] Q é for: 0,,, O núero e oefiienes es equção é quro, porno o núero e equções neessário pr resolver polinoil é é quro, que são o pono iniil e o finl o segeno e s erivs neses ponos. As erivs no ereos o segeno são efinis e oo ner oninuie o os segenos viinhos. A equção polinoil Q poe ser re-esri n for riil Q T. C, one C é ri e oefiienes e T é o veor o vriável préri, os por: [ ] T C A ri e oefiienes C poe ser epni e ois eleenos, M e. M é u ri e 4 linhs por 4 oluns, h ri se, e é u veor e 4 oluns, ho veor e geoeri. O ojeivo es epnsão é seprr ri se, que é onsne pr u ipo e urv polinoil úi, pre e resrições geoéris, ou sej que efine u urv. A equção epni e Q T. M. é o por: [ ] [ ] Q Curvs B-splines são fors por segenos e urvs o oefiienes polinoil epeneno soene e lguns ponos e onrole. As vngens prinipis e se usr B-splines são o onrole lol e sipliie o álulo requerio. O veor e geoeri e u B-spline é opos pelos ponos e onrole, s eses não são inerpolos, ou sej, urv não pss sore eses ponos. Suvição por Curvs Spline A urv spline h Cull-Ro inerpol os ponos P P - prir seqüêni P 0 P Fole, 99. O segeno e urv Q i, enre os ponos P i- e P i- é efinio usno ri se M CR e ri e geoeri e o por:

5 i Q T M CR T Pr o prieiro segeno não eise o pono P i- e pr o úlio segeno não eise P i. U ipleenção poe uilir pr o segeno enre o prieiro e o seguno pono, P i- e P i- iguis o prieiro pono, e pr o segeno enre o penúlio e o úlio pono, P i- e P i poe ser iguis o úlio pono. A spline Cull-Ro foi seleion pr suvir s isolinhs evio s sus propriees e inerpolção os ponos e onrole e sipliie e álulo. A suvição foi efeu sore onjunos e isolinhs erís e gre regulr. O prieiro onjuno oné isolinhs n esl :5000 erís prir e gre regulr o resolução horionl e veril e ero. O inervlo e onorno nese o é e ero. A Figur presen s isolinhs nes e epois suvição. Pi Pi Pi Pi Figur. Isolinhs n esl :5000 nes suvição e epois suvição. O seguno onjuno oné isolinhs n esl :5000 erís prir e gre regulr o resolução horionl e veril e 0 eros, o inervlo e onorno e 0 eros. A Figur 4 presen s isolinhs nes e epois suvição.

6 Figur 4. Isolinhs n esl :5000 nes suvição e epois suvição. Sore o onjuno e isolinhs n esl :5000, no-se que plição suvição ger isolinhs o speo is próio o gero pelos proeienos riionis e gerção e pulição e isolinhs. Sore u plição, presen n Figur 5, poe ser esos lguns efeios inesejáveis, inios pels ses. Figur 5. Aplição e isolinhs n esl :5000 nes suvição e epois.

7 4 Conlusões e Coenários Os rifíios rios pel suvição ns áres ess pels ses n Figur 5 são epenenes geoeri isolinh ns regiões próis. Eise ours urvs spline oo s splines L Lver, 000, s são e ifíil plição pel opleie e efinição os oefiienes urv. E função iso, o uso spline Cull-Ro pr suvição e isolinhs poe ser onsier oo u s ieis. Ao suvir isolinhs, poe oorrer ruenos enre isolinhs. Os ruenos poe ser evios o o uso e riérios e fseno os ponos urv e relção o segeno originl. Des neir, se uiliros inforção e que us isolinhs esão fss enre si e pelo enos 0.4 ilíeros n esl o p, u riério e fseno áio e 0. ilíeros e relção o segeno originl previne oorrêni os ruenos. Melhoris no proeieno preseno sere ess inlue o ese e fseno eniono i. N ipleenção is siples poe-se siplesene eluir os ponos urv que se fs is e 0. ilíeros n esl o p, o esvnge e poer gerr segenos e re ness áres. Ipleenções is sofisis poe uilir ouros ipos e spline, oo s β-splines,que e os prâeros e pr juse for urv e áres próis os ereos e segeno Fole, 99, s se inerpolr os ponos originis. A plição spline Cull-Ro pr suvir isolinhs se osrou, nos os e ese, equ, pesr os rifíios rios, u ve que ior pre s linhs não presen os rifíios ios e são, visulene, uio próis s isolinhs que se oé prir os proeienos nlógios riionis. Referênis Fole, J.D., A. vn D, S.K. Feiner n J.F. Hughes. Copuer rphis: Priniples n Prie. n eiion. Aison-Wesle, Reing, MA, USA, 99. Ihof, E. Crogrphi relief presenion. Wler e ruer, New York, 98. Lver, L.E. Univrie ui Lp splines n shpe-preserving, ulisle inerpolion univrie ui L splines. Copuer Aie eoeri 7, 9-6, 000.

CCI-22 CCI-22. Ajuste de Curvas. Matemática Computacional. Regressão Linear. Ajuste de Curvas

CCI-22 CCI-22. Ajuste de Curvas. Matemática Computacional. Regressão Linear. Ajuste de Curvas CCI- CCI- eá Copuol Ause e Curvs Crlos Herque Q. Forser Nos opleeres Ause e Curvs Apl-se os seues sos: Erpolção: vlores or o ervlo elo Vlores o erros proveees e oservções Cosse e: Deerr prâeros que ee

Leia mais

Cinemática de uma Partícula Cap. 12

Cinemática de uma Partícula Cap. 12 MECÂNIC - DINÂMIC Cinemáti e um Prtíul Cp. Objetios Introuzir os oneitos e posição, eslomento, eloie e elerção Estur o moimento e um ponto mteril o longo e um ret e representr grfimente esse moimento Inestigr

Leia mais

Torção. Tensões de Cisalhamento

Torção. Tensões de Cisalhamento orção O esuo ese cpíulo será iviio em us pres: 1) orção e brrs circulres ) orção e brrs não circulres. OÇÃO E BS CICULES Sej um brr circulr com iâmero e comprimeno., solici por um momeno e orção, como

Leia mais

2.1. Integrais Duplos (definição de integral duplo)

2.1. Integrais Duplos (definição de integral duplo) Análise Mtemáti II- no letivo 6/7.. Integris uplos (efinição e integrl uplo) Pr melhor ompreener efinição e integrl uplo vmos omeçr por olor o seguinte esfio: Tene eterminr o volume o sólio que está im

Leia mais

Curvas Planas. Sumário COMPUTAÇÃO GRÁFICA E INTERFACES. Introdução. Introdução. Carlos Carreto

Curvas Planas. Sumário COMPUTAÇÃO GRÁFICA E INTERFACES. Introdução. Introdução. Carlos Carreto Sumáro COMUTAÇÃO GRÁFICA E INTERFACES Curvs lns Crlos Crreo Inroução Curvs prmérs Curv Bèzer Curv Herme Curv B-Splne Curv Cmull-Rom Curso e Engenhr Informá Ano levo /4 Esol Superor e Tenolog e Gesão Gur

Leia mais

4/10/2015. Prof. Marcio R. Loos. Bombeamento de cargas. FEM ε. Como podemos criar uma corrente elétrica num resistor?

4/10/2015. Prof. Marcio R. Loos. Bombeamento de cargas. FEM ε. Como podemos criar uma corrente elétrica num resistor? 4//5 Físi Gerl III Aul Teóri (Cp. 9): ) Forç elemoriz ) Cálulo orrene em um iruio e um mlh: Méoo Energi e Méoo o Poenil ) esisênis em série 4) Ciruios om mis e um mlh 5) esisênis em prlelo 6) Ciruios C:

Leia mais

O T E O R E M A F U N D A M E N TA L D O C Á L C U L O. Prof. Benito Frazão Pires

O T E O R E M A F U N D A M E N TA L D O C Á L C U L O. Prof. Benito Frazão Pires 4 O T E O R E M A F U N D A M E N TA L D O C Á L C U L O Prof. Benio Frzão Pires Conforme foi viso n Aul, se f : [, b] R for conínu, enão inegrl b f() eisirá e será igul à áre líqui (conbilizno o sinl)

Leia mais

Gabarito da 2 a lista de MAT )u.v = Este produto interno representa o valor do estoque representado pelo vetor u.

Gabarito da 2 a lista de MAT )u.v = Este produto interno representa o valor do estoque representado pelo vetor u. Grio lis e MAT A forç resle em iesie N ireção o prir o semi-eio posiio os A eloie resle é m/h m âglo e -6 o sese O ião ee segir ireção -6 o soese Ese proo iero represe o lor o esoqe represeo pelo eor m

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL II INTEGRAIS MÚLTIPLAS

CÁLCULO DIFERENCIAL E INTEGRAL II INTEGRAIS MÚLTIPLAS CÁLCULO IFEENCIAL E INTEGAL II INTEGAIS MÚLTIPLAS A ierenç prinipl entre Integrl eini F ) F ) e s Integris Múltipls resie no to e que, em lugr e omeçrmos om um prtição o intervlo [, ], suiviimos um região

Leia mais

Breve Nota Sobre Polinômios e Modelos ARIMA

Breve Nota Sobre Polinômios e Modelos ARIMA Breve Noa Sobre Polinôios e Moelos ARIMA Rogério Silva e Maos 0/05/017 1. Polinôios Definição e Polinôio Seja: o a 0, a 1,, a núeros reais o x variável real P ( a a xa x a x, a 0. 0 1 é o grau o polinôio

Leia mais

MATEMÁTICA II - Engenharias/Itatiba. 1 o Semestre de 2009 Prof. Maurício Fabbri RELAÇÕES TRIGONOMÉTRICAS NO TRIÂNGULO RETÂNGULO.

MATEMÁTICA II - Engenharias/Itatiba. 1 o Semestre de 2009 Prof. Maurício Fabbri RELAÇÕES TRIGONOMÉTRICAS NO TRIÂNGULO RETÂNGULO. MTEMÁTIC II - Engenhris/Ii o Semesre de 09 Prof. Muríio Fri 04-9 Série de Exeríios RELÇÕES TRIGONOMÉTRICS NO TRIÂNGULO RETÂNGULO sen = os = n = se = os os e = sen sen n = os o n = n ÂNGULOS NOTÁVEIS grus

Leia mais

MÉTODOS MATEMÁTICOS 2 a Aula. Claudia Mazza Dias Sandra Mara C. Malta

MÉTODOS MATEMÁTICOS 2 a Aula. Claudia Mazza Dias Sandra Mara C. Malta MÉTODOS MATEMÁTICOS Aul Clui Mzz Dis Snr Mr C. Mlt Introução o Conceito e Derivs Noção: Velocie Méi Um utomóvel é irigio trvés e um estr cie A pr cie B. A istânci s percorri pelo crro epene o tempo gsto

Leia mais

CAPÍTULO EXERCÍCIOS pg. 127

CAPÍTULO EXERCÍCIOS pg. 127 CAPÍTULO. EXERCÍCIOS pg.. Deerinr equção d re ngene às seguines curvs, nos ponos indicdos. Esboçr o gráico e cd cso..,,, ; R.. As igurs que segue osr s res ngenes pr os ponos e. Coo o vlor de é genérico

Leia mais

PROVA MATRIZ DE MATEMÁTICA EFOMM-2009

PROVA MATRIZ DE MATEMÁTICA EFOMM-2009 PROVA MATRIZ DE MATEMÁTICA EFOMM-009 ª Questão: Qul é o número inteiro ujo prouto por 9 é um número nturl omposto pens pelo lgrismo? (A) 459 4569 (C) 45679 (D) 45789 (E) 456789 ª Questão: O logotipo e

Leia mais

1. Completa as frases A, B, C e D utilizando as palavras-chave seguintes:

1. Completa as frases A, B, C e D utilizando as palavras-chave seguintes: Fich e Trblho Moieno e forçs. COECÇÃO Escol Básic e Secunári Gonçles Zrco Ciêncis Físico-Quíics, 9º no Ano lecio / 7 Noe: n.º luno: Tur: 1. Cople s frses A, B, C e D uilizno s plrs-che seguines: ecoril

Leia mais

c) S = S = log 4 (log 3 9) + log 2 (log 81 3) + log 0,8 (log 16 32) 8. Calcule:

c) S = S = log 4 (log 3 9) + log 2 (log 81 3) + log 0,8 (log 16 32) 8. Calcule: Aulão Esprtno Os 00 e Logritmo Prof Pero Felippe Definição Clule pel efinição os seguintes ritmos: ) (/8) ) 8 ) 0,5 Clule pel efinição os seguintes ritmos: ) 6 ) 7 (/7) ) 9 (/7) ) (/9) e) 7 8 f) 0,5 8

Leia mais

2.) O grafo de interseção de uma coleção de conjuntos A1;A2;...;An é o grafo que tem um vértice para cada um dos conjuntos da coleção e

2.) O grafo de interseção de uma coleção de conjuntos A1;A2;...;An é o grafo que tem um vértice para cada um dos conjuntos da coleção e UDESC DCC BCC DISCIPLINA : TEG0001 Teori os Grfos PRIMEIRA LISTA DE EXERCÍCIOS 1.) Ientifique pr um os três grfos ixo:. número e nós e ros;. o gru e nó;. Compre som e toos os grus os nós e grfo om o número

Leia mais

1a) QUESTÃO: ciclos 2a) QUESTÃO: estado inicial indefinidamente travar 4a) QUESTÃO: Anel 1ª) Questão

1a) QUESTÃO: ciclos 2a) QUESTÃO: estado inicial indefinidamente travar 4a) QUESTÃO: Anel 1ª) Questão 1 ) QUSTÃO: (3, pontos) Pr máquin e esto efini pel su tel e fluo io, pee-se: y\ 1 1 ) nontre um tel e fluo mínim; / /- /- / ) onstru um tel e eitção livre e /- /1 / /- orris ríti (rir ilos quno neessário);

Leia mais

Adriano Pedreira Cattai. Universidade Federal da Bahia UFBA Semestre

Adriano Pedreira Cattai.   Universidade Federal da Bahia UFBA Semestre Cálculo II A, MAT Adrino Pedreir Ci hp://www.lunospgm.uf.r/drinoci/ Universidde Federl d Bhi UFBA Semesre 6. Inrodução No Teorem Fundmenl do Cálculo TFC, os ies de inegrção, e em, são números reis e f

Leia mais

Matemática Básica. A.1. Trigonometria. Apêndice A - Matemática Básica. A.1.1. Relações no triângulo qualquer. Leis Fundamentais:

Matemática Básica. A.1. Trigonometria. Apêndice A - Matemática Básica. A.1.1. Relações no triângulo qualquer. Leis Fundamentais: Apênice A - Mtemátic Básic A.. Trigonometri A... Relções no triângulo qulquer A Mtemátic Básic C A α c β B γ Figur A. - Triângulo qulquer Leis Funmentis: c sen = sen = sen c A- Lei os cossenos: = + c -

Leia mais

Exercícios 3. P 1 3 cm O Q

Exercícios 3. P 1 3 cm O Q Eercícios 3 1) um ponto e um cmpo elétrico, o vetor cmpo elétrico tem ireção horizontl, sentio ireit pr esquer e intensie 10 5 /C. Coloc-se, nesse ponto, um crg puntiforme e -2C. Determine intensie, ireção

Leia mais

GGE RESPONDE IME 2012 MATEMÁTICA 1

GGE RESPONDE IME 2012 MATEMÁTICA 1 0. O segundo, o sétio e o vigésio sétio teros de u Progressão Aritéti () de núeros inteiros, de rzão r, for, nest orde, u Progressão Geoétri (PG), de rzão q, o q e r IN* (nturl diferente de zero). Deterine:

Leia mais

Funções Exponenciais e Logaritmicas Chiang, cap. 10. Matemática Aplicada à Economia LES 201. Aulas 19 e 20. Márcia A.F.

Funções Exponenciais e Logaritmicas Chiang, cap. 10. Matemática Aplicada à Economia LES 201. Aulas 19 e 20. Márcia A.F. Meáic Aplicd à Econoi LES Auls e Funções eponenciis e logríics Márci A.F. Dis de Mores Funções Eponenciis e Logriics Ching, cp. Funções eponenciis e logríics váris plicções e econoi : vriável de escolh

Leia mais

Se entregar em papel, por favor, prenda esta folha de rosto na sua solução desta lista, deixando-a em branco. Ela será usada na

Se entregar em papel, por favor, prenda esta folha de rosto na sua solução desta lista, deixando-a em branco. Ela será usada na 1 2 Cálculo Numérico List numero 04 Curvs com gnuplot trcisio.prcino@gmil.com T. Prcino-Pereir Dep. e Computção lun@: 17 e bril e 2013 Univ. Estul Vle o Acrú Documento escrito com L A TEX sis. op. Debin/Gnu/Linux

Leia mais

Assíntotas verticais. lim f lim lim. x x x. x 2 x 2. e e e e e. lim lim

Assíntotas verticais. lim f lim lim. x x x. x 2 x 2. e e e e e. lim lim 1. 1.1. Assínos vericis 0 0 1 ) lim f lim lim 4 6 1 i 6 1 1 6 14 i) é riz dos polinómios e 4 6 1. Uilizndo regr de Ruffini pr os decompor, conclui-se que: 1 e que 4 6 1 1 6 e e e e e lim f lim 0 e e 1

Leia mais

DERIVADAS DAS FUNÇÕES SIMPLES12

DERIVADAS DAS FUNÇÕES SIMPLES12 DERIVADAS DAS FUNÇÕES SIMPLES2 Gil d Cost Mrques Fundentos de Mteátic I 2. Introdução 2.2 Derivd de y = n, n 2.2. Derivd de y = / pr 0 2.2.2 Derivd de y = n, pr 0, n =,, isto é, n é u núero inteiro negtivo

Leia mais

4.2. Veio Cilíndrico de Secção Circular

4.2. Veio Cilíndrico de Secção Circular Cpíulo IV Torção de Peçs Lineres 1 CPÍTULO IV TORÇÃO DE PEÇS LINERES.1. Inrodução. sorção ou rnsmissão de esforços de orção: o Veios ou árvores de rnsmissão o Brrs de orção; ols; Esruurs uulres (veículos

Leia mais

Lista de Exercícios 4 Cinemática

Lista de Exercícios 4 Cinemática Lis de Eercícios 4 Cinemáic. Fís1 633303 04/1 G.1 E.4 p. 14 IF UFRJ 2004/1 Físic 1 IFA (prof. Mr) 1. Um objeo em elocidde ~ ± consne. No insne ± = 0, o eor posição do objeo é ~r ±. Escre equção que descree

Leia mais

Aula. Transformações lineares hlcs

Aula. Transformações lineares hlcs UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE Aul Álger Liner Trnsformções lineres hls Resumo Trnsformções lineres Definição Núleo Imgem Definição Relção entre espços vetoriis Preservção e operções* Aplição

Leia mais

Sólidos semelhantes. Segmentos proporcionais Área Volume

Sólidos semelhantes. Segmentos proporcionais Área Volume Sólios semelntes Segmentos proporcionis Áre olume Sólios semelntes Consiere um pirâmie cuj se é um polígono qulquer: Se seccionrmos ess pirâmie por um plno prlelo à se, iiiremos pirâmie em ois outros sólios:

Leia mais

Índice. Disciplina: Matemática Segundo Ano do Ensino Médio Matrizes Arquivo: Matrizes.doc 17/11/03, 17:13 h

Índice. Disciplina: Matemática Segundo Ano do Ensino Médio Matrizes Arquivo: Matrizes.doc 17/11/03, 17:13 h CCeenn rroo FFeeeerrl ll ee EEuuççããoo TTeennoo llóóggi l ii hhi ii. Disiplin: Memái Seguno no o Ensino Méio Mrizes rquivo: Mrizes.o //, : h Ínie Mrizes. Definição.. Noção e um mriz Mriz Qur. Mriz Digonl

Leia mais

Sumário Conjuntos Nebulosos - Introdução. Conjuntos Clássicos. Conjuntos Clássicos. Problemas/Conjuntos Clássicos. Operações com conjuntos clássicos

Sumário Conjuntos Nebulosos - Introdução. Conjuntos Clássicos. Conjuntos Clássicos. Problemas/Conjuntos Clássicos. Operações com conjuntos clássicos Sumário Conjuntos Neulosos - Introução rino Joquim e O Cruz NCE e IM UFRJ rino@ne.ufrj.r Se voê tem um mrtelo tuo irá preer um prego triuío Dinísio e gpunt (3 C) Conjuntos Clássios Função e Inlusão em

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear NOTAS DE AULA Geomeri Alíi e Álger Lier Espços Veoriis Professor: Luiz Fero Nues Dr 8/Sem_ Geomeri Alíi e Álger Lier ii Íie 5 Espços Veoriis 5 Defiição e Espços Veoriis 5 Suespços Veoriis 5 Suespços Geros

Leia mais

Confiabilidade Estrutural

Confiabilidade Estrutural Profeor Univerie e Bríli Progr e Pó grução e Integrie Etruturl Ínice e Confibilie Outro Etiore Confibilie Etruturl Jorge Luiz A. erreir Univerie e Bríli Progr e Pó grução e Integrie Etruturl Ínice e Confibilie

Leia mais

3. Equações diferenciais parciais 32

3. Equações diferenciais parciais 32 . Eqções diferenciis prciis.. Definição de eqção diferencil prcil Definição: Chm-se eqção diferencil prcil m eqção qe coném m o mis fnções desconhecids de ds o mis vriáveis e s ss derivds prciis em relção

Leia mais

Matemática. Atividades. complementares. ENSINO FUNDAMENTAL 7- º ano. Este material é um complemento da obra Matemática 7. uso escolar. Venda proibida.

Matemática. Atividades. complementares. ENSINO FUNDAMENTAL 7- º ano. Este material é um complemento da obra Matemática 7. uso escolar. Venda proibida. 7 ENSINO FUNMENTL 7- º no Memáic ividdes complemenres Ese meril é um complemeno d or Memáic 7 Pr Viver Junos. Reprodução permiid somene pr uso escolr. Vend proiid. Smuel sl píulo 9 Polígonos 1. Oserve

Leia mais

ÁLGEBRA LINEAR - 1. MATRIZES

ÁLGEBRA LINEAR - 1. MATRIZES ÁLGEBRA LINEAR - 1. MATRIZES 1. Conceios Básicos Definição: Chmmos de mriz um el de elemenos disposos em linhs e coluns. Por exemplo, o recolhermos os ddos populção, áre e disânci d cpil referenes à quros

Leia mais

AULA: Superfícies Quádricas

AULA: Superfícies Quádricas AULA: Superfíies Quádris Definição : Um equção gerl do gru em três vriáveis é um equção do tipo: A B C D E F G H I J (I), om pelo menos um ds onstntes A, B, C, D, E ou F é diferente de ero. Definição :

Leia mais

Prof. Dr. Lucas Barboza Sarno da Silva

Prof. Dr. Lucas Barboza Sarno da Silva Prof. Dr. Lus Bro Srno d Silv Superfíies Quádris Chm-se quádri qulquer suonjunto de 3 que poss ser desrito, em relção um sistem ortogonl de oodernds, por um equção de segundo gru, ns três vriáveis, e :

Leia mais

Física Teórica II. 2ª Lista 2º semestre de 2015 ALUNO TURMA PROF. NOTA:

Física Teórica II. 2ª Lista 2º semestre de 2015 ALUNO TURMA PROF. NOTA: Físic Teóric 2ª List 2º semestre e 2015 LUNO TURM PROF NOT: 01) O fio mostro n figur consiste e ois seguimentos com iâmetros iferentes, ms são feitos o mesmo metl corrente no seguimento 1 é 1 ) Compre

Leia mais

FADIGA. Ex.: Pontes, aeronaves e componentes de máquinas.

FADIGA. Ex.: Pontes, aeronaves e componentes de máquinas. FADIGA É um form e flh que ocorre em estruturs sujeits flutuções inâmics e tensão. Ex.: Pontes, eronves e componentes e máquins. Nests circunstâncis há possibilie flh ocorrer sob níveis e tensão consiervelmente

Leia mais

Cargas devidas ao Rolamento

Cargas devidas ao Rolamento ITA Insiuo Tenológio de Aeronáui rgs devids o Rolmeno rgs em Aviões Pr 5 5.349 - Rolling ondiions. The irlne mus be designed for lods resuling from he rolling ondiions seified in rgrhs () nd (b) of his

Leia mais

Física D Semiextensivo V. 3

Física D Semiextensivo V. 3 GBIO Físic D Seietensivo V Eercícios 01) E I Fls O eslocento é istânci entre crist (ou vle) té o ponto e equilíbrio on II Fls plitue ientific energi trnsport pel on III Fls O oviento hrônico siples ocorre

Leia mais

20/04/2012. Estudo de Caso-ControleControle. Estudo de Coorte. Estudo de Coorte. Estudo de Caso Controle. Exposição. Doença. Exposição.

20/04/2012. Estudo de Caso-ControleControle. Estudo de Coorte. Estudo de Coorte. Estudo de Caso Controle. Exposição. Doença. Exposição. Estuo e Coorte Exposição Doenç Estuo e Coorte SIM Cso Cso NÃO Cso Cso Estuo e Coorte Exposição Doenç Populção livre e oenç SIM Cso Cso Estuo e Cso-ControleControle Pr Frente Cso exposto NÃO Cso Estuo e

Leia mais

Universidade Federal de Viçosa DEPARTAMENTO DE MATEMÁTICA MAT Cálculo Dif. e Int. I PRIMEIRA LISTAA

Universidade Federal de Viçosa DEPARTAMENTO DE MATEMÁTICA MAT Cálculo Dif. e Int. I PRIMEIRA LISTAA Universidde Federl de Viços DEPARTAMENTO DE MATEMÁTICA MAT - Cálculo Dif e In I PRIMEIRA LISTAA Memáic básic Professors: Gbriel e Crin Simplifique: ) b ) 9 c ) d ) ( 9) e ) 79 f ) g ) ) ) i j ) Verddeiro

Leia mais

EQUAÇÕES E INEQUAÇÕES POLINOMIAIS

EQUAÇÕES E INEQUAÇÕES POLINOMIAIS EQUAÇÕES E INEQUAÇÕES POLINOMIAIS Um dos grndes problems de mtemátic n ntiguidde er resolução de equções polinomiis. Encontrr um fórmul ou um método pr resolver tis equções er um grnde desfio. E ind hoje

Leia mais

MODELOS DE EQUILÍBRIO DE FLUXO EM REDES. Prof. Sérgio Mayerle Depto. Eng. Produção e Sistemas UFSC/CTC

MODELOS DE EQUILÍBRIO DE FLUXO EM REDES. Prof. Sérgio Mayerle Depto. Eng. Produção e Sistemas UFSC/CTC MODELOS DE EQUILÍBRIO DE FLUXO EM REDES Pro. Sérgio Myerle Depo. Eng. Produção e Sisems UFSC/CTC Deinição Bási A rede é deinid por um gro ( N A onde: { } N...n G é um onjuno de nós { m} A... é um onjuno

Leia mais

Kalecki: Investimento e ciclo. Profa. Maria Isabel Busato

Kalecki: Investimento e ciclo. Profa. Maria Isabel Busato Klek: nvesmeno e lo Prof. Mr sel Buso Klek: nvesmeno e lo A nálse íl é sed n nerção do po mulpldor e elerdor Onde: = sensldde do nvesmeno à S; = sensldde do nvesmeno à vrção no luro; = sensldde do nvesmeno

Leia mais

Matemática Régis Cortes FUNÇÃO DO 2 0 GRAU

Matemática Régis Cortes FUNÇÃO DO 2 0 GRAU FUNÇÃO DO 2 0 GRAU 1 Fórmul de Bháskr: x 2 x 2 4 2 Utilizndo fórmul de Bháskr, vmos resolver lguns exeríios: 1) 3x²-7x+2=0 =3, =-7 e =2 2 4 49 4.3.2 49 24 25 Sustituindo n fórmul: x 2 7 25 2.3 7 5 7 5

Leia mais

1.4 A grandeza vetor deslocamento

1.4 A grandeza vetor deslocamento 1.4 A grnez vetor eslocmento Estmos em conições e efinir um primeir grnez multiimensionl entro o espço e um referencil. Chmá-l-emos e eslocmento ou vetor eslocmento, escreveno- como D, one o ínice inic

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear NOTAS DE AULA Geometri Anlíti e Álger Liner Cônis Professor: Luiz Fernndo Nunes Dr 8/Sem_ Geometri Anlíti e Álger Liner ii Índie 9 Curvs Cônis 9 Elipse 9 Hipérole 9 Práol 8 9 Eeríios propostos: Referênis

Leia mais

Medidas de Associação.

Medidas de Associação. Meis e Assoição. O álulo e meis propris frequêni e um oenç é bse pr omprção e populções, e, onsequentemente, pr ientifição e eterminntes oenç. Pr fzer isto e mneir mis efiz e informtiv, s us frequênis

Leia mais

Resolução: a) o menor valor possível para a razão r ; b) o valor do décimo oitavo termo da PA, para a condição do item a.

Resolução: a) o menor valor possível para a razão r ; b) o valor do décimo oitavo termo da PA, para a condição do item a. O segundo, o sétimo e o vigésimo sétimo termos de um Progressão Aritmétic (PA) de números inteiros, de rzão r, formm, nest ordem, um Progressão Geométric (PG), de rzão q, com qer ~ (nturl diferente de

Leia mais

Medida das características de um material dieléctrico com uma cavidade ressonante

Medida das características de um material dieléctrico com uma cavidade ressonante Mei s crcerísics e um meril ielécrico com um cvie ressonne. Inroução Nese rblho esum-se s crcerísics e um cvie ressonne em ui recnulr: frequênci e ressonânci f e fcor e qulie. Meem-se in s crcerísics ielécrics:

Leia mais

TÓPICOS DE REVISÃO MATEMÁTICA I MÓDULO 4 : Álgebra Elementar 3 a Série Ensino Médio Prof. Rogério Rodrigues. NOME :... Número :...Turma :...

TÓPICOS DE REVISÃO MATEMÁTICA I MÓDULO 4 : Álgebra Elementar 3 a Série Ensino Médio Prof. Rogério Rodrigues. NOME :... Número :...Turma :... TÓPICOS DE REVISÃO MATEMÁTICA I MÓDULO Álger Eleentr Série Ensino Médio Prof Rogério Rodrigues NOME Núero Tur I) PRODUTOS NOTÁVEIS ) Qudrdo d so de dois teros ( ) ) Qudrdo d diferenç ( ) c) Produto d so

Leia mais

Modulação Angular. Telecomunicações. Modulação em Frequência (FM) - 1

Modulação Angular. Telecomunicações. Modulação em Frequência (FM) - 1 Teleouniações Modulação e Frequênia (FM) - 1 Modulação Angular o Nos siseas de odulação e apliude a saída do odulador onsise nua poradora o ariações de apliude. o Na odulação e frequênia o sinal à saída

Leia mais

Problemas de Electromagnetismo e Óptica LEAN + MEAer

Problemas de Electromagnetismo e Óptica LEAN + MEAer Pobls d logniso Ópi AN MA 7 Ópi P 7 (Pobl 3 do píulo do livo nodução à Físi d Dis d Dus l) O spo d opinos d ond p luz visívl vi n d 4x -9 (viol) 75x -9 (vlho) n qu vlos vi fquêni d luz visívl? n 75x 4

Leia mais

IFUSP PSub 03/12/2013

IFUSP PSub 03/12/2013 Físi IV p ngni léi IFSP - 9 PSub // pov ução inuos. Rsolv qusão n fol osponn. s o vso s nssáio. sv fo lgívl lápis ou in. É piio o uso lulo. Jusifiqu sus sposs. Não bs opi fóul o fouláio. Sj éio: pov é

Leia mais

16.4. Cálculo Vetorial. Teorema de Green

16.4. Cálculo Vetorial. Teorema de Green ÁLULO VETORIAL álculo Vetoril pítulo 6 6.4 Teorem de Green Nest seção, prenderemos sore: O Teorem de Green pr váris regiões e su plicção no cálculo de integris de linh. INTROUÇÃO O Teorem de Green fornece

Leia mais

CCI-22 CCI-22. 6) Ajuste de Curvas. Matemática Computacional

CCI-22 CCI-22. 6) Ajuste de Curvas. Matemática Computacional CCI- CCI- eá Copuol Ajuse de Curvs éodo dos íos Qudrdos Regressão er Irodução CCI- éodo dos íos Qudrdos Regressão ler Ajuse u polôo Ajuse ours urvs Quldde do juse Irodução CCI- éodo dos íos Qudrdos Regressão

Leia mais

Análise de Algoritmos Gabarito da Primeira Prova

Análise de Algoritmos Gabarito da Primeira Prova Análise e Algoritmos Gbrito Primeir Prov Tópios: Funmentos e nálise e lgoritmos e lgoritmos pr orenção Instituto e Ciênis Exts, Universie e Brsíli 22 e bril e 2009 Prof. Muriio Ayl-Rinón Funmentos: relções

Leia mais

RELAÇÕES MÉTRICAS E TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO

RELAÇÕES MÉTRICAS E TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO Mtemáti RELÇÕES MÉTRIS E TRIGONOMETRI NO TRIÂNGULO RETÂNGULO 1. RELÇÕES MÉTRIS Ddo o triângulo retângulo io:. RELÇÕES TRIGONOMÉTRIS Sej o triângulo retângulo io: n m Temos: e são os tetos; é ipotenus;

Leia mais

e b ij = , se i = j i 2 + j 2 i 3 j 3 b ij =

e b ij = , se i = j i 2 + j 2 i 3 j 3 b ij = Universie Feerl e Ouro Preto List e GAAL/MTM730 Professor: Antônio Mros Silv Oservção: Muitos os exeríios ixos form retiros s lists o professor Wenerson 0 Revej os exemplos feitos em sl e ul Sejm ij e

Leia mais

Matrizes 2. Notação de uma matriz 2 Matriz Quadrada 2 Matriz Diagonal 2 Matriz linha 2 Matriz coluna 2 Matrizes iguais 2. Matriz Transposta 3

Matrizes 2. Notação de uma matriz 2 Matriz Quadrada 2 Matriz Diagonal 2 Matriz linha 2 Matriz coluna 2 Matrizes iguais 2. Matriz Transposta 3 //, :: Mrizes Defiição Noção de u riz Mriz Qudrd Mriz Digol Mriz lih Mriz colu Mrizes iguis Eercício Mriz Trspos Proprieddes d riz rspos Mriz Opos Mriz Nul Mriz ideidde ou Mriz uidde dição de Mrizes Eercício

Leia mais

6 Cálculo Integral (Soluções)

6 Cálculo Integral (Soluções) 6 Cálculo Inegrl (Soluções). () Sej d {,..., n } um decomposição de [, ]. Podemos ssumir que d (cso conrário, om-se d d {}, e em-se S d ( f ) S d ( f ), s d ( f ) s d ( f )). Sej k, pr lgum k {,..., n

Leia mais

ATIVIDADES PARA SALA PÁG. 7

ATIVIDADES PARA SALA PÁG. 7 Resouções píuo 8 Pirâide 0 TIIDDES PR SL PÁG. 7 Se 0 do d se. Te-se é que. picndo o Teore de Piáors, é possíve enconrr o póe d pirâide (): 0 Se-se que ur é dd por, e que é res do eredro. ssi, 0 0. 0 É

Leia mais

Valoração de Grafos. Fluxo em Grafos. Notas. Teoria dos Grafos - BCC 204, Fluxo em Grafos. Notas. Exemplos. Fluxo em Grafos. Notas.

Valoração de Grafos. Fluxo em Grafos. Notas. Teoria dos Grafos - BCC 204, Fluxo em Grafos. Notas. Exemplos. Fluxo em Grafos. Notas. Teori o Grfo - BCC 204 Fluxo em Grfo Hrolo Gmini Sno Univerie Feerl e Ouro Preo - UFOP 19 e ril e 2011 1 / 19 Vlorção e Grfo Exemplo vlore eáio: iâni roovi que lig ie e ie é e 70 kilômero vlore inâmio:

Leia mais

Capítulo 2 Movimento Retilíneo

Capítulo 2 Movimento Retilíneo Cpíulo Moimeno Reilíneo. Deslocmeno, empo e elocidde médi Eemplo: Descreer o moimeno de um crro que nd em linh re Anes de mis nd, emos que: - Modelr o crro como um prícul - Definir um referencil: eio oriendo

Leia mais

ALGUMAS CONSIDERAÇÕES TEORICAS 1. Sistema de equações Lineares

ALGUMAS CONSIDERAÇÕES TEORICAS 1. Sistema de equações Lineares LGUMS CONSIDERÇÕES TEORICS. Siste de equções Lieres De fo gerl, podeos dier que u siste de equções lieres ou siste lier é u cojuto coposto por dus ou is equções lieres. U siste lier pode ser represetdo

Leia mais

# D - D - D - - -

# D - D - D - - - 1 [ \ 2 3 4 5 Tl Como um Fcho 6 7 8 # Willim W Phlps (Ltr) nónimo / Erik Sti (Músic) rrnj por J shly Hll, 2007 9 10 11 12 [ \ [ \ # (Sopr) # (lto) # # Q Q [ \ # # # # # # # # # # # # 13 14 15 16# 17 18

Leia mais

MATEMÁTICA. Questões de 01 a 12

MATEMÁTICA. Questões de 01 a 12 GRUPO TIPO A MAT. MATEMÁTICA Questões e. Consiere seqüênci e funções f sen, f sen, n fn sen,... e s áres gráficos no intervlo,. A, A, A,..., f sen,..., A n,..., efinis pelos respectivos Um luno e Cálculo,

Leia mais

A potenciação indica multiplicações de fatores iguais. Por exemplo, o produto

A potenciação indica multiplicações de fatores iguais. Por exemplo, o produto POTENCIAÇÃO E RADICIAÇÃO POTENCIAÇÃO A potecição idic ultiplicções de ftores iguis. Por eeplo, o produto... pode ser idicdo for. Assi, o síolo, sedo u úero iteiro e u úero turl ior que, sigific o produto

Leia mais

Unidade: 2) Dê a fração de ano correspondente a: a) 9 meses b) 5 trimestres. c) 2 semestres d) 3 meses e 10 dias

Unidade: 2) Dê a fração de ano correspondente a: a) 9 meses b) 5 trimestres. c) 2 semestres d) 3 meses e 10 dias EXERCÍCIOS DE MATEMÁTICA Prof Mário e-mil: mrioffer@yhooomr - Números riois É too pr e úmeros turis ujos termos e são esritos form om 0 ( Lei : sore Oe: = umeror e ii quts prtes tommos uie = eomior e ii

Leia mais

COMPENSAÇÃO ANGULAR E REMOÇÃO DA COMPONENTE DE SEQÜÊNCIA ZERO NA PROTEÇÃO DIFERENCIAL DE TRANSFORMADORES

COMPENSAÇÃO ANGULAR E REMOÇÃO DA COMPONENTE DE SEQÜÊNCIA ZERO NA PROTEÇÃO DIFERENCIAL DE TRANSFORMADORES SHWETZER ENGNEERNG LORTORES, OMERL LTD OMPENSÇÃO NGULR E REMOÇÃO D OMPONENTE DE SEQÜÊN ZERO N PROTEÇÃO DFERENL DE TRNSFORMDORES Por Rfel rdoso. NTRODUÇÃO O prinípio d proteção diferenil é de que som ds

Leia mais

Trigonometria FÓRMULAS PARA AJUDÁ-LO EM TRIGONOMETRIA

Trigonometria FÓRMULAS PARA AJUDÁ-LO EM TRIGONOMETRIA Trigonometri é o estudo dos triângulos, que contêm ângulos, clro. Conheç lgums regrs especiis pr ângulos e váris outrs funções, definições e trnslções importntes. Senos e cossenos são dus funções trigonométrics

Leia mais

A B C Para colocar letras nas figuras, escrevem-se as letras segundo o sentido contrário ao dos ponteiros do relógio.

A B C Para colocar letras nas figuras, escrevem-se as letras segundo o sentido contrário ao dos ponteiros do relógio. Ângulos e triângulos Unidde 6 PLIR 1. Oserv figur. Nos pontos e estão plntds árvores. Pretende-se plntr um árvore num ponto de modo que os pontos, e pertençm à mesm ret. z três desenhos indindo o ponto

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adrino Pedreir Ctti pctti@hoocomr Universidde Federl d Bhi UFBA, MAT A01, 006 Superfícies de Revolução 1 Introdução Podemos oter superfícies não somente por meio de um equção do tipo F(,, ), eistem muitos

Leia mais

PROCESSO SELETIVO TURMA DE 2014 FASE 1 PROVA DE FÍSICA E SEU ENSINO

PROCESSO SELETIVO TURMA DE 2014 FASE 1 PROVA DE FÍSICA E SEU ENSINO PROCEO ELEIVO URMA DE 4 FAE PROVA DE FÍICA E EU ENINO Cro professor, r professor est prov tem prtes; primeir prte é ojetiv, onstituí por 4 questões e múltipl esolh, um vleno,5 pontos; segun prte, om vlor

Leia mais

Olimpíada Brasileira de Matemática X semana olímpica 21 a 28 de janeiro de Eduardo Poço. Integrais discretas Níveis III e U

Olimpíada Brasileira de Matemática X semana olímpica 21 a 28 de janeiro de Eduardo Poço. Integrais discretas Níveis III e U Olipíd Brsileir de Mteátic X se olípic 8 de jeiro de 007 Edurdo Poço Itegris discrets Níveis III e U Itegrl discret: dizeos que F é itegrl discret de F F f f se e soete se:, pr iteiro pricípio D es for,

Leia mais

Determinação dos Momentos de Encastramento Perfeito. Um membro de secção constante ligando os nós i e j está representado na figura.

Determinação dos Momentos de Encastramento Perfeito. Um membro de secção constante ligando os nós i e j está representado na figura. eternção os oentos e Encstrento Perfeto U ebro e secção constnte gno os nós e está represento n fgur. A su trz e rgez reconr s forçs eercs ns etrees co os esocentos que í surge. y, sto é, = y A eor Resstênc

Leia mais

ESCOAMENTOS VARIÁVEIS EM PRESSÃO (Choque Hidráulico)

ESCOAMENTOS VARIÁVEIS EM PRESSÃO (Choque Hidráulico) ESCOAMENTOS ARIÁEIS EM PRESSÃO (Choque idráulico Méodo de Allievi 8-5-3 Méodo de Allievi 1 8-5-3 Méodo de Allievi Choque idráulico Equções Dierenciis: Equilíbrio Dinâmico Conservção d Mss riáveis dependenes:

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica SCOLA POLITÉCNICA DA UNIVSIDAD D SÃO PAULO Deprmeno de ngenhri Mecânic PM-50MCÂNICA DOS SÓLIDOS II Profs.: Celso P. Pesce e. mos Jr. Prov /0/0 Durção: 00 minuos Quesão (5,0 ponos): A figur io ilusr um

Leia mais

Matrizes Resolução de sistemas de equações lineares por eliminação Gauss e Gauss-Jordan

Matrizes Resolução de sistemas de equações lineares por eliminação Gauss e Gauss-Jordan No epliciv grdeço os professores João lves José Lís Fchd mrino Lere Roger Picken e Pedro Snos qe me fclrm mvelmene eercícios d s ori e recolhs de emes d cdeir. revemene (ind ese no) serão crescends solções

Leia mais

Figura 3.17: circuito do multivibrador astável com integrador. -20V 0s 100us 200us 300us 400us 500us V(C8: 1) V(U9B: OUT) Ti me

Figura 3.17: circuito do multivibrador astável com integrador. -20V 0s 100us 200us 300us 400us 500us V(C8: 1) V(U9B: OUT) Ti me ... Mulivirdor Asável com Inegrdor Análise gráfic: Figur.7: circuio do mulivirdor sável com inegrdor. - - s us us us 4us 5us (8: (U9B: OU i me Figur.8: Gráfico ds ensões de síd principl (qudrd e do inegrdor

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear NOS DE UL Geometri nlíti e Álger Liner rnsformções Lineres Professor: Lui Fernndo Nunes Dr 8/Sem_ Geometri nlíti e Álger Liner ii Índie 6 rnsformções Lineres 6 Definição 6 Imgem de um trnsformção liner

Leia mais

02. Resolva o sistema de equações, onde x R. x x Solução: (1 3 1) Faça 3x + 1 = y 2, daí: 02. Resolva o sistema de equações, onde x R e y R.

02. Resolva o sistema de equações, onde x R. x x Solução: (1 3 1) Faça 3x + 1 = y 2, daí: 02. Resolva o sistema de equações, onde x R e y R. GGE ESPONDE 7 ATEÁTICA Prov Disursiv. Sej um mtriz rel. Defin um função n qul element mtriz se eslo pr posição seguinte no sentio horário, sej, se,impli que ( ) f. Enontre tos s mtrizes simétris reis n

Leia mais

4.2 Modulação de Amplitude em Banda Lateral Dupla

4.2 Modulação de Amplitude em Banda Lateral Dupla 4. Modulação de Apliude e Banda Laeral Dupla ipos de odulação e apliude o banda laeral dupla (DSB ou Double SideBand): AM (Apliude Modulaion) = odulação e apliude padrão. DSB-SC (Double SideBand Supressed

Leia mais

MATEMÁTICA. Equações do Segundo Grau. Professor : Dêner Rocha. Monster Concursos 1

MATEMÁTICA. Equações do Segundo Grau. Professor : Dêner Rocha. Monster Concursos 1 MATEMÁTICA Equções do Segundo Gru Professor : Dêner Roh Monster Conursos 1 Equções do segundo gru Ojetivos Definir equções do segundo gru. Resolver equções do segundo gru. Definição Chm-se equção do º

Leia mais

MECÂNICA CLÁSSICA. AULA N o 5. Aplicações do Lagrangeano Trajetória no Espaço de Fases para o Pêndulo Harmônico

MECÂNICA CLÁSSICA. AULA N o 5. Aplicações do Lagrangeano Trajetória no Espaço de Fases para o Pêndulo Harmônico 1 MECÂNICA CLÁSSICA AULA N o 5 Aplicações o Lagrangeano Trajetória no Espaço e Fases para o Pênulo Harônico Vaos ver três eeplos, para ostrar a aior faciliae a aplicação o Lagrangeano, quano coparaa ao

Leia mais

Vimos, no capítulo anterior, que uma forma de se trabalhar com uma função definida por uma tabela de valores é a interpolação polinomial.

Vimos, no capítulo anterior, que uma forma de se trabalhar com uma função definida por uma tabela de valores é a interpolação polinomial. 4.7 - AJUSTE DE CURVAS PELO MÉTODO DOS QUADRADOS MÍNIMOS Introdução Vios, no cpítulo nterior, que u for de se trlhr co u função definid por u tel de vlores é interpolção polinoil. Contudo, interpolção

Leia mais

Universidade de São Paulo Escola Politécnica - Engenharia Civil PEF - Departamento de Engenharia de Estruturas e Fundações

Universidade de São Paulo Escola Politécnica - Engenharia Civil PEF - Departamento de Engenharia de Estruturas e Fundações Universidde de São ulo Esol oliténi - Engenhri Civil EF - Deprtmento de Engenhri de Estruturs e Fundções - Coneitos Fundmentis de Dimensionmento de Estruturs de Conreto: Vigs, Ljes e ilres ILARES DE CONTRAVENTAMENTO

Leia mais

Simulado 7: matrizes, determ. e sistemas lineares

Simulado 7: matrizes, determ. e sistemas lineares Simulo 7 Mtrizes, eterminntes e sistems lineres. b... e 6. 7. 8.. 0. b.. e. Simulo 8 Cirunferêni / Projeções / Áres. b 6. e 7. 8.. 0. Simulo Análise ombintóri / Probbilie / Esttísti. e.. e.. b... e.....

Leia mais

Exemplos relativos à Dinâmica (sem rolamento)

Exemplos relativos à Dinâmica (sem rolamento) Exeplos reltivos à Dinâic (se rolento) A resultnte ds forçs que ctu no corpo é iul o produto d ss pel celerção por ele dquirid: totl Cd corpo deve ser trtdo individulente, escrevendo u equção vectoril

Leia mais

PROVA DE FÍSICA 2º ANO - 4ª MENSAL - 1º TRIMESTRE TIPO A

PROVA DE FÍSICA 2º ANO - 4ª MENSAL - 1º TRIMESTRE TIPO A PROVA DE FÍSICA º ANO - 4ª MENSAL - 1º TRIMESTRE TIPO A 01) Um esudne coloc pedços de esnho, que esão um emperur de 5 C, num recipiene o qul coném um ermômero e os quece sob pressão consne. Depois de váris

Leia mais

RADIAÇÕES SOLARES UV, PAR E IV: II-ESTIMATIVA DAS FRAÇÕES EM FUNÇÃO DE K T.

RADIAÇÕES SOLARES UV, PAR E IV: II-ESTIMATIVA DAS FRAÇÕES EM FUNÇÃO DE K T. ASADES Avnes en Energís Renovles y Meio Amiene Vol. 1, 26. Impreso en l Argenin. ISSN 329-5184 RADIAÇÕES SOLARES, E : II-ESIMAA DAS FRAÇÕES EM FUNÇÃO DE. João F. Esoeo 1, Euro N. Gomes 2, Amuri P. e Oliveir

Leia mais

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I scol Secundári com º ciclo. inis 0º no de Mtemátic TM MTRI N PLN N SPÇ I s questões 5 são de escolh múltipl TP nº 5 entregr no di 0 ª prte Pr cd um dels são indicds qutro lterntivs, ds quis só um está

Leia mais

11.4 ANÁLISE TRIDIMENSIONAL DE EDIFÍCIOS - MODELO DE 3 GRAUS DE LIBERDADE POR PISO

11.4 ANÁLISE TRIDIMENSIONAL DE EDIFÍCIOS - MODELO DE 3 GRAUS DE LIBERDADE POR PISO .4 ANÁLISE RIDIMENSIONAL DE EDIFÍCIOS - MODELO DE 3 RAUS DE LIBERDADE POR PISO RIIDEZ INFINIA NO PLANO 3 grus e lbere / so v u z.4. ANÁLISE ESÁICA. DESLOCAMENOS, FORÇAS E EUAÇÕES DE EUILÍBRIO u v Desloceo

Leia mais

F-128 Física Geral I. Aula exploratória-09b UNICAMP IFGW F128 2o Semestre de 2012

F-128 Física Geral I. Aula exploratória-09b UNICAMP IFGW F128 2o Semestre de 2012 F-8 Físic Gerl I Aul exlortóri-09b UNICAMP IFGW userne@ifi.unic.br F8 o Seestre e 0 Forçs e interção O resulto líquio forç e interção é fzer rir o oento liner s rtículs. Pel t f t f lei e Newton: f Ft

Leia mais

MATRIZES. Neste caso, temos uma matriz de ordem 3x4 (lê-se três por quatro ), ou seja, 3 linhas e 4

MATRIZES. Neste caso, temos uma matriz de ordem 3x4 (lê-se três por quatro ), ou seja, 3 linhas e 4 A eori ds mrizes em cd vez mis plicções em áres como Economi, Engenhris, Memáic, Físic, enre ours. Vejmos um exemplo de mriz: A bel seguir represen s nos de rês lunos do primeiro semesre de um curso: Físic

Leia mais