Módulo 03. Determinantes. [Poole 262 a 282]
|
|
|
- Luiz Fernando Jardim Fialho
- 8 Há anos
- Visualizações:
Transcrição
1 Móulo Not m, ltur sts potmtos ão sps moo lum ltur tt lor prpl r Cm-s à tção pr mportâ o trlo pssol rlzr plo luo rsolvo os prolms prstos lor, sm osult prév s soluçõs proposts, áls omprtv tr s sus rspost rsposts proposts, postror xposção juto o ot tos s úvs ssos. [Pool 8] Dtrmts Sumtrz. Mor. Dtrmt ª ª orm. Cotor. Expsão m otors. Dtrmt orm. Proprs os rmts. Dtrmt um mtrz trulr. Oprçõs sor ls. Métoo Cosção.
2 D E E R M I N E S G E R U R M R D Sumtz. Mor. Dtrmt ª ª orm.. Sumtrz p q um mtrz j m, é mtrz orm plos lmtos omus p ls q olus, ão ssrmt osutvs, mtrz.. D um mtrz qur j -s o mor o lmto j, srvmos j, omo sumtz ot por lmção -ésm l j -ésm olu. j M M O j M j M j O M M. D um mtz om um úo lmto, [], mos o rmt omo D um mtrz qur, j, mos o rmt omo Exmplo. Sjm s suts mtrzs:, o mor o lmto é, o mor o lmto é O rmt mtrz é Pro. José mrl G M - --
3 D E E R M I N E S G E R U R M R D Cotor. Dtrmt orm. Expsão m otors. Exmplo. Sjm s suts mtrzs: O otor o lmto é. D um mtrz qur j -s o otor o lmto j, srvmos ã j, omo j j j, ou sj, ms ou mos, oorm j sj pr ou mpr, M M M M O vzs o rmt o mor o lmto j. Um mtrz qur j tm um rmt ul à som os proutos os lmtos um qulqur l ou olu, plos sus otors. Ou sj, o rmt po sr lulo m trmos xpsão m otors - ésm l, ou j - ésm olu, j j j j j O rmt mtrz, rorro, por xmplo, à xpsão m otors ª l, é j j j j j j Pro. José mrl G M - --
4 D E E R M I N E S G E R U R M R D Pro. José mrl G M Pr mtrz, to o uo, xpsão m otors, solr m psso l ou olu om mor úmro zros, moo ruzr o sorço álulo, tmos o rmt - Expsão m otors ª olu. Expsão m otors ª l. Expsão m otors ª l.
5 D E E R M I N E S G E R U R M R D Proprs os Dtrmts.. α α Not m: m rl. S mtrz j tm us ls ou us olus proporos, tão.. S mtrz j tm um l ou um olu zros, tão.. Um mtrz qur é rulr ss.. S um l ou olu mtrz j lmto é som m prls, tão o é som os m rmts qu s otêm susttuo os lmtos ss l ou olu, sussvmt, pls vrs prls mto s outrs l ou olus ltrs. Exmplo. to às proprs os rmts, xprssão po sr smpl, rsulto to às proprs os rmts, so tmos os t s t os t s t s t os t os t s t os s s os t t t t os t s t os t s t os s s os t t t t os ts t os ts t os t s t Pro. José mrl G M - --
6 D E E R M I N E S G E R U R M R D Pro. José mrl G M - -- Dtrmt um Mtrz rulr. Oprçõs sor s. Métoo Cosção.. O rmt um mtrz trulr é ul o prouto os lmtos ol prpl.. S mtrz s otém mtrz troo tr s us ls ou us olus, tão 8. S mtrz s otém mtrz multplo um l ou um olu por um slr α, tão α 9. S mtrz s otém mtrz susttuo um l ou um olu por ss msm l ou olu som um múltplo slr um outr l ou olu, tão. Com s s oprçõs lmtrs sor ls, é possívl trsormr um mtrz,, um mtrz trulr,, ujo rmt é ál lulr rlor om o rmt. Est métoo álulo o rmt um mtrz é so por métoo osção. Exmplo. Sjm s suts mtrzs:, 9 8 O rmt mtrz, rorro, por xmplo, à xpsão m otors ª l, é Ms lmt, roo qu é um mtrz trulr, o álulo o rmt é mto prtr o prouto os lmtos ol prpl O rmt mtrz, rorro o métoo osção, é
7 D E E R M I N E S G E R U R M R D Pro. José mrl G M
8 D E E R M I N E S G E R U R M R D Pro. José mrl G M Exríos.. D mtrz, lulr o mor o otor o lmto. mos, por ção, qu o mor o lmto é o otor o lmto é. Clul o rmt mtrz, rorro à xpsão m otors ª l ª olu. mos, pr xpsão m otors ª l, j j j j j j - -
9 D E E R M I N E S G E R U R M R D Pro. José mrl G M , pr xpsão m otors ª olu, j j Otmos, ovmt, o msmo vlor.. Clul o rmt mtrz, rorro o métoo osção. mos - -
10 D E E R M I N E S G E R U R M R D Pro. José mrl G M So um mtrz qur orm tl qu j j, prov qu, s or mpr, o su rmt é ulo. S j j tão mtrz é t-smétr,, plo qu, om s s proprs os rmts. So mtrzs qurs orm, tl qu, lul. Com s s proprs os rmts. Mostr qu mos
11 D E E R M I N E S G E R U R M R D Mt. Rorro o Mtl, pomos lulr o rmt um mtrz utlzo ução.. Clulr o rmt mtrz o xmplo mos >> [ ; ; ]; >> s 9. Clulr o rmt mtrz o xmplo mos os t os t s t s t s t os t >> syms t >> [ost st; *ost-*st *st*ost]; >> *ost^*st^ >> smply. Em Mt o rmt um mtrz é lulo prtr mtrz trulr supror. Não xstm m Mt uçõs prs pr rmr um mor, um otor, ou zr xpsão m otors lulr o rmt por st métoo. D omplx o lortmo álulo um rmt por xpsão m otors, é prmtur su prstção st momto. Voltrmos à qustão ms tr. O álulo um mor ou um otor é trvl: lulr o mor o lmto mtrz o xmplo,, >> [ ; ; ]; >> [m ]sz; >> ; j; >> M[:- :m],[:j- j:] M, o rsptvo otor,, >> -^j*m - Pro. José mrl G M - --
RESOLUÇÃO DE EQUAÇÕES POR MEIO DE DETERMINANTES
RESOLUÇÃO DE EQUAÇÕES POR EIO DE DETERINANTES Dtrmt um mtrz su orm Sj mtrz: O trmt st mtrz é: Emlo: Vmos suor o sstm us quçõs om us óts y: y y Est sstm quçõs o sr srto orm mtrl: y Est qução r três mtrzs:.
Lista 3 - Resolução. 1. Verifique se os produtos abaixo estão bem definidos e, em caso afirmativo, calcule-os.
GN7 Introução à Álgr Linr Prof n Mri Luz List - Rsolução Vrifiqu s os proutos ixo stão m finios, m so firmtivo, lul-os ) [ / ] / ) / [ / ] ) ) Solução ) orm primir mtriz é x sgun é x, logo o prouto stá
Lista de Exercícios 9 Grafos
UFMG/ICEx/DCC DCC111 Mtmáti Disrt List Exríios 9 Gros Ciênis Exts & Engnhris 1 o Smstr 2018 1. O gro intrsção um olção onjuntos A 1, A 2,..., A n é o gro qu tm um vérti pr um os onjuntos olção tm um rst
TÓPICOS. Números complexos. Plano complexo. Forma polar. Fórmulas de Euler e de Moivre. Raízes de números complexos.
Not m: litur dsts potmtos ão disps d modo lgum litur tt d iliogrfi pricipl d cdir Chm-s tção pr importâci do trlho pssol rlir plo luo rsolvdo os prolms prstdos iliogrfi, sm cosult prévi ds soluçõs proposts,
Problema do Caixeiro Viajante. Solução força bruta. Problema do Caixeiro Viajante. Projeto e Análise de Algoritmos. Problema do Caixeiro Viajante
Projto Anális Aloritmos Prolm o Cixiro Vijnt Altirn Sors Silv Univrsi Frl o Amzons Instituto Computção Prolm o Cixiro Vijnt Um vim (tour) m um ro é um ilo qu pss por toos os vértis. Um vim é simpls quno
AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Geometria Ficha de Trabalho Nº 02 10º Ano
AGUPAMENO DE EOLA DE MOÁGUA Gomti Fih lho Nº 0 0º Ano Osv igu o lo... Ini so istm: ois plnos ppniuls us ts plls um t post um plno um t snt o plno FIH us ts não omplns. s oons os vétis... Qul posição ltiv
TÓPICOS. Integração complexa. Integral de linha. Teorema de Cauchy. Fórmulas integrais de Cauchy.
No m, liur dss pomos ão disps d modo lgum liur d iliogri pricipl d cdir hm-s à ção pr imporâci do rlho pssol rlir plo luo rsolvdo os prolms prsdos iliogri, sm ul prévi ds soluçõs proposs, ális compriv
Código PE-ACSH-2. Título:
CISI Ctro Itrção Srvços Iformtc rão Excução Atv Itr o CISI Cóo Emto por: Grêc o Stor 1. Objtvo cmpo plcção Est ocumto tm como fl fr o prão brtur chmos suport o CISI. A brtur chmos é rlz o sstm hlpsk, qu
CAPÍTULO 3. Exercícios é contínua, decrescente e k 2 positiva no intervalo [ 3, [. De ln x 1 para x 3, temos. dx 3.
CAPÍTULO Exrcícios.. b) Sj séri. A fução f( x) é cotíu, dcrsct l x l x positiv o itrvlo [, [. D l x pr x, tmos dx dx. x l x x dx x covrgt Þ l x covrgt. l d) Sj séri 0 m [ 0, [. Tmos: x 4. A fução f( x)
Adição dos antecedentes com os consequentes das duas razões
Adição dos ntcdnts com os consqunts ds dus rzõs Osrv: 0 0 0 0, ou sj,, ou sj, 0 Otnh s trnsformds por mio d dição dos ntcdnts com os consqünts: ) ) ) 0 0 0 0 0 0 0 0 ) 0 0 0 0 ) 0 0 0 0 ) Osrv gor como
Matrizes - Teoria ...
Mrzs - Tor Mrz Rgulr Mrz Rgulr d ord por é u qudro fordo por los dsposos lhs olus ou s Rprsros u rz d lhs olus por Os los d rz srão dfdos por u lr o dos íds o prro íd d lh o sgudo íd olu à qu pr o lo Iguldd
Grafos. Luís Antunes. Grafos dirigidos. Grafos não dirigidos. Definição: Um grafo em que os ramos não são direccionados.
Luís Antuns Grfos Grfo: G=(V,E): onjunto vértis/nós V um onjunto rmos/ros E VxV. Rprsntção visul: Grfos não irigios Dfinição: Um grfo m qu os rmos não são irionos. Grfos irigios Dfinição: Um grfo m qu
# D - D - D - - -
1 [ \ 2 3 4 5 Tl Como um Fcho 6 7 8 # Willim W Phlps (Ltr) nónimo / Erik Sti (Músic) rrnj por J shly Hll, 2007 9 10 11 12 [ \ [ \ # (Sopr) # (lto) # # Q Q [ \ # # # # # # # # # # # # 13 14 15 16# 17 18
LEGENDA DE CORES NIAGARA CARVALHO HANOVER
670 mm 8 m m 1200mm 5005548 -. M. SUPRM ÉRO 1.20 /GRRRO 559 - GR - RVLO OVR / 560 - RVLO OVR - GR / 582 - UMO - LO icha técnica 5005548 -. M. SUPRM ÉRO 1.20 /GRRRO SRÇÃO UO MOR UO SUP. PORT SQ. 03 UO.
DIAGRAMA DE INTERLIGAÇÃO DE AUTOMAÇÃO NESS P2 COM SENSORES NESS P2 SEM SENSORES
0 QUIPMTOS OTROLOS OMPRSSOR PRUSO IRM ITRLIÇÃO UTOMÇÃO 0.0.. SS P OM SSORS 0.0..0 SS P SM SSORS /0/ ILUSÃO O MOLO SM SSORS 0/0/ LTRÇÃO MR O TRSUTOR ORRT URO URO /0/ RVISÃO S IMSÕS O LYOUT /0/ LTRÇÃO O
VAGA VIVA 3 ESTRATÉGIA. GARAGEM (1º e 2ºpav) LUCAS PICCOLI WEINMANN. parking loft em Porto Alegre. Avenida Mauá. Rua General Câmara 02.
Trss rso Loro Tr R rl âmr R sso o Nsmto R Sqr mpos 1:250 STUÇÃO TUL 20m PLNTÇÃO prk lot m Porto lr LOLZÇÃO 1 LUS POL WNNN Urs rl o Ro r o Sl Trlho olsão rso 2014.1 Ortor rt Pxoto Púlo pês Sls rm Lojs r
QUESTIONÁRIO DO DIRETOR. Senhor(a) Diretor(a),
2013 QUSTONÁRO O RTOR Senhor(a) iretor(a), s avaliações do Sistema Nacional de valiação da ducação ásica (S) são compostas por dois tipos de instrumentos de avaliação: as provas aplicadas aos estudantes
BANCO DE FÓRMULAS PROF. FRED MOURA. Movimento Circular 1 T. a cp. = velocidade angular. = espaço angular. Unidades de medida
O D ÓMUL O. D MOU MU & MU Moo ul Lço Oblíuo p = lo ul * opo l - MU y y y y y s y y y = lo é = ção spço = spço ul = o H s = Ilo po = üê * opo hozol - MU = spço (l) = píoo x os = spço Il = lo = lo l = lção
MAC0328 Algoritmos em Grafos. Administração. MAC328 Algoritmos em Grafos. Página da disciplina: ~ am/328. Livro:
MAC0328 Algoritmos m Gros MAC328 Algoritmos m Gros Arnlo Mnl 1º Smstr 2012 http://spikmth.om/250.html Algoritmos m Gros 1º sm 2012 1 / 1 Págin isiplin: Aministrção Algoritmos m Gros 1º sm 2012 2 / 1 Liro:
Aula 1. Apontamentos Teórico-Práticos de Algoritmia Avançada LEI/ISEP Métodos de Pesquisa Carlos Ramos
Méts Psqus u 1 1 Prr Pru qu stá rt ét Prr Pru é ttr vçr st r st té qu s tr suçã É u ét qu s s çõs ts r rçã rrt, s sr qu s rçã t r squ O ét Prr Pru rst vt tr us rqusts trs ór O ét é té qu r rs qu t várs
/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P
26 a Aula 20065 AMIV 26 Exponncial d matrizs smlhants Proposição 26 S A SJS ntão Dmonstração Tmos A SJS A % SJS SJS SJ % S ond A, S J são matrizs n n ", (com dt S 0), # S $ S, dond ; A & SJ % S SJS SJ
ELECTROMAGNETISMO. TESTE 1 17 de Abril de 2010 RESOLUÇÕES. campo eléctrico apontam ambas para a esquerda, logo E 0.
LTROMAGNTIMO TT 7 d Ail d 00 ROLUÇÕ Ao longo do io dos yy, o vcto cmpo léctico é pllo o io dos pont p squd Isto dv-s o fcto qu qulqu ponto no io dos yy stá quidistnt d dus ptículs cujs cgs são iguis m
= 1, independente do valor de x, logo seria uma função afim e não exponencial.
6. Função Eponncil É todo função qu pod sr scrit n form: f: R R + = Em qu é um númro rl tl qu 0
CASA DE DAVI CD VOLTARÁ PARA REINAR 1. DEUS, TU ÉS MEU DEUS. E B C#m A DEUS, TU ÉS MEU DEUS E SENHOR DA TERRA
S VI VOLTRÁ PR RINR 1. US, TU ÉS MU US #m US, TU ÉS MU US SNHOR TRR ÉUS MR U T LOUVRI #m SM TI NÃO POSSO VIVR M HGO TI OM LGRI MOR NST NOV NÇÃO #m #m OH...OH...OH LVNTO MINH VOZ #m LVNTO MINHS MÃOS #m
TÉCNICAS DE INTEGRAÇÃO. 1.1 Integrais por Substituição Mudança de Variáveis
UFP VIRTUL Liccitr m Mtmátic Distâci Discipli: álclo Difrcil Irl II Prof Jorg ost Drt Filho Ttor: Moisés Vi F d Olivir TÉNIS DE INTEGRÇÃO Técics d Irção Iris por Sbstitição Mdç d Vriávis Sjm f g fçõs tis
Dualidade. Fernando Nogueira Dualidade 1
Dldd Frnndo Nogr Dldd Todo prolm d P.L. pod sr ssttído por m modlo qvlnt dnomndo Dl. O modlo orgnl é chmdo Prml. Prolm Prml M Sjto j n j n c j j j j j j {... n} {... m} Prolm Dl Sjto W m m j c {... m}
Clustering Hierárquico Aglomerativo. Matriz de proximidade: NxN D(i,j): medida de proximidade ou similaridade entre os padrões i e j
lustermg lusterg Herárquco Aglomertvo Mtrz e roxme: NxN D: me e roxme ou smlre etre os rões e. Atrbur um rão or cluster N clusters. Ecotrr o r e clusters e ms semelhtes mtrz e smlre e utálos um úco cluster.
P PÓ P P. ss rt çã str r s t r r Pós r çã st t t r s r r r q s t r à t çã tít str. r t r
P PÓ P P P P P Ó r P PÓ P P P P P Ó ss rt çã str r s t r r Pós r çã st t t r s r r r q s t r à t çã tít str r t r r FICHA CATALOGRÁFICA S113 Saboia, Maria Cláudia Pinto Sales Uma análise do Impacto das
ATIVIDADES PARA SALA. Capítulo 11 FÍSICA 2. Associação de resistores Associação mista. 2? a série Ensino Médio Livro 3? B Veja a figura.
soluçõs apítulo 11 ssociação d rsistors ssociação mista TVES SL 01 Vja a figura. 3 ss modo, vrifica-s qu os rsistors stão associados m parallo. Obtém-s a rsistência, qui- 5 valnt à associação dos rsistors,
Exercícios de Cálculo Numérico - Erros
Ercícios d Cálculo Numérico - Erros. Cosidr um computador d bits com pot máimo ( a rprstação m aritmética lutuat a bas. (a Dtrmi o mor úmro positivo rprstávl sta máquia a bas. (b Dtrmi o maior úmro positivo
ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã str Pr ss t át r t çã tít st r t
P P ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã str Pr ss t át r t çã tít st r t Ficha catalográfica preparada pela Biblioteca Central da Universidade Federal de Viçosa - Câmpus Viçosa T B591e 2015
TÓPICOS. Sinais contínuos e sinais discretos. Função impulso unitário discreto.
Not bm: a litura dsts apotamtos ão dispsa d modo algum a litura atta da bibliografia pricipal da cadira hama-s a atção para a importâcia do trabalho pssoal a ralizar plo aluo rsolvdo os problmas aprstados
MAC0328 Algoritmos em Grafos AULA 1. Edição MAC0328 Algoritmos em Grafos. Administração MAC0328 MAC0328
MAC0328 Algoritmos m Gros AULA 1 Eição 2011 MAC0328 Algoritmos m Gros Aministrção Págin isiplin: uls, stro, órum,... http://p.im.usp.r/ Liro: PF = Pulo Folo, Algoritmos pr Gros m C i Sgwik www.im.usp.r/
P PÓ P. P r r P P Ú P P. r ó s
P PÓ P P r r P P Ú P P r ó s P r r P P Ú P P ss rt çã s t à rs r t t r rt s r q s t s r t çã r str ê t çã r t r r P r r Pr r r ó s Ficha de identificação da obra elaborada pelo autor, através do Programa
2.1. Integrais Duplos (definição de integral duplo)
Análise Mtemáti II- no letivo 6/7.. Integris uplos (efinição e integrl uplo) Pr melhor ompreener efinição e integrl uplo vmos omeçr por olor o seguinte esfio: Tene eterminr o volume o sólio que está im
Soluções E-Procurement
Soluçõs -Procurm Móulos Vgs Aprsção Dspss Tomé A. Gl Jro/2003 Sumáro: Soluçõs - Procurm 2 Soluçõs - Procurm m xrp 3 Prcps Vgs 4 Solução 5 Móulo vgs 7 Móulo Rlóros Aprsção spss 8 Cls 9 Cocos Ús 10 www.scrgl.com
RESOLUÇÃO DA PROVA DE MATEMÁTICA UNICAMP-FASE 2. 2014 RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA
RESOLUÇÃO D PROV DE MTEMÁTIC UNICMP-FSE. PROF. MRI NTÔNI C. GOUVEI. é, sem úv, o lmento refero e mutos ulsts. Estm-se que o onsumo áro no Brsl sej e, mlhão e s, seno o Esto e São Pulo resonsável or % esse
ELECTROTECNIA TEÓRICA. Transparências das aulas teóricas. Maria Inês Barbosa de Carvalho
LCTROTCNI TÓRIC Tspêis ds uls tóis Mi Iês os d Cvlo 4/5 LCTROTCNI TÓRIC Ods ltomgétis Lis d tsmissão Guis d od ilídios o Guis mtálios Pls plls Rtguls Ciuls o Guis dilétios Pls Fis Óptis GUIS D OND CILÍNDRICOS
Prof. Waldery Rodrigues Júnior.
Mroonom Prof. Wldry Rodrus Júnor [email protected] Exríos Qustõs: Prnps modlos mroonômos: modlo lásso, modlo kynsno, polít ntíl d urto przo. Modlo kynsno/mroonom kynsn: Hpótss báss d mroonom kynsn.
1 Instituto de Geografia e Ordenamento do Território da Universidade de Lisboa (IGOT-UL) 2 Instituto Superior de Agronomia Universidade de Lisboa
MODELOS ESPACIALMENTE EXPLÍCITOS DE ANÁLISE DE DINÂMICAS LOCAIS: O CASO DA VEGETAÇÃO NATURAL POTENCIAL NO APOIO AO PLANEAMENTO E ORDENAMENTO TERRITORIAL Frncsco Gutrrs1, Eusébo Rs1, Crlos Nto1 José Crlos
FOI DEUS QUEM FEZ VOCÊ
FOI DEUS QUEM FEZ OCÊ AMELINHA Arr Neton W Mcedo Crmo Gregory c c c Deus que fez vo - Deus quem fez vo - Deus quem fez vo- c Deus quem fez vo - J De-us 4 Deus quem fez vo - Deus quem fez vo - J Deus quem
TÓPICOS. EDO de variáveis separadas. EDO de variáveis separáveis. EDO homogénea. 2. Equações Diferenciais de 1ª Ordem.
ot bm a litura dsts apontamntos não dispnsa d modo algum a litura atnta da bibliograia principal da cadira Cama-s à atnção para a importância do trabalo pssoal a ralizar plo aluno rsolvndo os problmas
MATRIZES. Matriz é uma tabela de números formada por m linhas e n colunas. Dizemos que essa matriz tem ordem m x n (lê-se: m por n), com m, n N*
MTRIZES DEFINIÇÃO: Mtriz é um tl d númros formd por m linhs n coluns. Dizmos qu ss mtriz tm ordm m n (lê-s: m por n), com m, n N* Grlmnt dispomos os lmntos d um mtriz ntr prêntss ou ntr colchts. m m m
Lista de Exercícios 9: Soluções Grafos
UFMG/ICEx/DCC DCC111 Mtmáti Disrt List Exríios 9: Soluçõs Gros Ciênis Exts & Engnhris 2 o Smstr 2016 1. O gro intrsção um olção onjuntos A 1, A 2,..., A n é o gro qu tm um vérti pr um os onjuntos olção
QUESTIONÁRIO. Senhor(a) Professor(a),
2013 QUSTIONÁRIO O PROSSOR Senhor(a) Professor(a), O Sistema Nacional de valiação da ducação ásica, S, é composto por dois tipos de instrumentos de avaliação: as provas aplicadas aos estudantes e os questionários
a) 1. b) 0. c) xnw. d) q (Espm 2014) Se a matriz 7. (Pucrs 2014) Dadas as matrizes A = [ 1 2 3] a) 18 b) 21 c) 32 d) 126 e) 720 Se a matriz M=
Dtrminant. (Upg 4) Considrando as matrizs abaixo, sndo dt A = 5, dtb= dtc=, assinal o qu for orrto. x z x y x A =,B= 4 5 x+ z y C= ) x+ y+ z= 4 ) A C= 4) B C= 4 8) y = x 6) 6 4 A+ B= 6 5 T. (Uds 4) S A
Razão e Proporção. Noção de Razão. 3 3 lê-se: três quartos lê-se: três para quatro ou três está para quatro
Razão Proporção Noção d Razão Suponha qu o profssor d Educação Física d su colégio tnha organizado um tornio d basqutbol com quatro quips formadas plos alunos da ª séri. Admita qu o su tim foi o vncdor
Capitulo 5 Resolução de Exercícios
Captulo 5 Rsolução Exrcícos FORMULÁRIO Dscoto Racoal Smpls D ; D ; ; D R R R R R R Dscoto Comrcal Smpls D ; ; D C C C C Dscoto Bacáro Smpls D s ; s ; D b b b b s Db ; b Rlaçõs tr o Dscoto Racoal Smpls
Método de Detecção de Massas em Mamas Densas usando Análise de Componentes Independentes
Universidade Federal do Maranhão Centro de Ciências Exatas e Tecnologia Programa de Pós-graduação em Engenharia de Eletricidade Luis Claudio de Oliveira Silva Método de Detecção de Massas em Mamas Densas
Catalogação na fonte Universidade Federal de Alagoas Biblioteca Central Divisão de Tratamento Técnico Bibliotecário: Valter dos Santos Andrade
P P PÓ st r t s é s Pr çã t çã s ss ê s st t s r t rs s Pr r çã tr tór ó r t st r t s é s Pr çã t çã s ss ê s st t s r t rs s Pr r çã tr tór ss rt çã r s t r q s t r r t çã r str Pr r Pós r çã r át st
5(6,67Ç1&,$(&$3$&,7Æ1&,$
59 5(6,67Ç&,$(&$3$&,7Æ&,$ ÃÃ5(6,67Ç&,$Ã(Ã/(,Ã'(Ã+0 No pítulo 6 efinimos ução J σ omo seno um ensie e oente e onução. Multiplino mos os los po um áe S, el fiá: J.S σs (A (8. σs (A (8. Se o mpo elétio fo
O MAIOR HUB DE ESQUETES DE HUMOR SOCIAL E COLABORATIVO DA INTERNET IDENTIFICAÇÃO E REFLEXÃO ATRAVÉS DO HUMOR
rs o d i r c n u s qu t u q s d l l i c o s r o m O mior cn u h zr f r p t n r d int ENTO M A T R O P M ICAÇÃO, CO ENTIF D I, O T N E M I ENTRETEN flxão. r d id s r são, div r iv d, o ã ç ssos. p O DR
Módulo 14. Exercícios. 1. Determine a região de convergência da série. Sendo. , a série tem coeficientes. a n. Pelo que o seu raio de convergência é
Not bm a litra sts apotamtos ão ispsa moo algm a litra atta a bibliograia pricipal a caira hama-s à atção para a importâcia o trabalho pssoal a raliar plo alo rsolo os problmas aprstaos a bibliograia sm
