FESP Faculdade de Engenharia São Paulo. Prof. Douglas Pereira Agnelo Prof. Dr. Alfonso Pappalardo Jr.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "FESP Faculdade de Engenharia São Paulo. Prof. Douglas Pereira Agnelo Prof. Dr. Alfonso Pappalardo Jr."

Transcrição

1 FESP Faculdade de Engenharia São Paulo Avaliação: A2 Data: 15/set/ 2014 CE2 Estabilidade das Construções II Prof. Douglas Pereira Agnelo Prof. Dr. Alfonso Pappalardo Jr. Duração: 85 minutos Nome: Matrícula ORIENTAÇÕES PARA PROVA a b c Os símbolos a, b e c são os três últimos algarismos da matrícula no formato xxabc e devem ser utilizados nas dimensões (das cargas, elementos, comprimentos, etc.) para resolução das questões da prova. Para a 0 adotar a 10; para b 0 adotar b 10; para c 0 adotar c 10; a b c 1 a QUESTÃO (valor: 3,0 pontos) Dimensione as condições de contorno mais econômicas que atendem aos critérios de resistência e estabilidade da haste de aço A-36 de 1,0 metro de comprimento. Sabe-se que não há custo por extremidade livre e que uma extremidade apoiada custa metade de uma extremidade engastada. Não devem ser dimensionados travamentos. Dados: Módulo de elasticidade: E MPa (NBR 8800, Item a) Resistência ao escoamento do aço: σ e 250 MPa (NBR 8800, Tabela A.2) CONDIÇÕES DE CONTORNO E FORMULÁRIO A π d2 4 I π d4 64 r I A λ K L r Tabela E1 (NBR 8800, ABNT 2008) σ cr π2 E λ 2 1

2 SOLUÇÃO As condições de contorno são determinadas pelo coeficiente de flambagem, portanto o valor de K será o parâmetro para o dimensionamento mais econômico. Raio de giração: r I π d 4 A 64 π d 2 d 4 4 Tensão crítica de flambagem: σ cr π2 E λ 2 e λ K L r temos σ cr π2 E (K L r ) 2 Isolando o valor de K: K 2 π2 E σ cr ( L 2 r ) K π 2 E σ cr ( 4 L d ) 2 A tensão de trabalho deve ser o valor de tensão limite antes que ocorra a flambagem, portanto: π 2 E K 2 P 4 L ( π d2 ( 4 ) d ) K máx π d2 8 L E π P O valor do coeficiente de flambagem encontrado é o valor máximo para dimensionar as condições de contorno devido à translação horizontal e rotação. A flambagem é influenciada apenas pelas restrições devido à translação horizontal (ortogonal ao eixo longitudinal da haste) e a rotação, portanto não devem ser impostas restrições devido à translação vertical. A partir do K máx, as condições de contorno a serem adotadas são: Para K máx 1,0 Para 1,0 > K máx 0,7 Adotar K 1,0 (restringir apenas translação horizontal nos dois apoios) Adotar K 0,7 (restringir translação horizontal nos dois apoios e rotação em um apoio) Para 0,7 > K máx 0,5 Para K máx < 0,5 Adotar K 0,5 (restringir translação horizontal e rotação nos dois apoios) Haste não atende ao critério de estabilidade sem travamentos Deve ser verificada se a tensão de escoamento é superior a tensão crítica de flambagem. A menor área possível, de acordo com o número de matrícula, ocorre quando temos c 1 com área igual a 2, m². A maior carga de trabalho ocorre quando temos b 0, pois assim b 10 e carga de trabalho será igual a 30 kn. Neste caso, a tensão de trabalho, a qual foi utilizada para tensão crítica de flambagem, será igual a 149,21 MPa. Portanto, a tensão crítica de flambagem será sempre inferior a tensão de escoamento. 2

3 2 a QUESTÃO (valor: 3,5 pontos) Desenhe a Linha de Influência de Momentos na Seção S da viga abaixo. Não é necessário demonstrar os cálculos intermediários, apenas preencha a Tabela e desenhe a LIM S. Divida cada vão em quatro partes para preencher a Tabela. Usar três casas decimais. Inércia constante. VÃO AB VÃO BC Posição da Carga Móvel P 1,0 kn a b Lvão E D MA MB MC MS [m] [m] [m] [m] [knm] [knm] [knm] [knm] [knm] [knm] (Coluna a e b da Tabela se referem às distâncias entre a posição da Carga Móvel e os apoios do vão carregado, conforme fórmulas dos Termos de Carga). FORMULÁRIO Coeficientes de Propagação: α AB L AB 2 (L AB + L BC ) α BC L BC α CB L CB 2 (L CB + L BA ) α BA L BA Momentos nos apoios do vão AB carregado: (Para obter os momentos do vão BC carregado, as fórmulas abaixo devem ser adaptadas conforme exposto em aula) M A α BA 1 (α BA α AB ) (α AB ) M B Termos de Carga α AB 1 (α AB α ) (α BA BA ) L 2 (L + b) 3 L 2 (L + a)

4 SOLUÇÃO Inicialmente deve-se calcular os Coeficientes de Propagação da viga. O apoio C não possui engastamento, assim a propagação do momento M B para M C, quando o vão AB está carregado, deve ser igual a zero, portanto: α BC 0 O apoio A não possui engastamento, assim a propagação do momento M B para M A, quando o vão BC está carregado, deve ser igual a zero, portanto: α BA 0 Os demais coeficientes devem ser calculados a partir da fórmula de Coeficiente de Propagação presente no formulário. Como exemplo adotaremos a matrícula a 0 7 b 0 5 c 0 8 Para a matrícula temos a seguinte dimensão da viga: Os coeficientes de propagação são: α AB L AB 4 b ,0 m L BC 4 c ,0 m L AB 2 (L AB + L BC ) α BC L BC 20 2 ( ) ,192 Portanto temos: α CB L CB 2 (L CB + L BA ) α BA L BA 32 2 ( ) ,308 4

5 Foi imposto que cada vão fosse dividido em quatro partes para determinação dos valores da Linha de Influência na seção S (LIM s ). Para o vão AB teremos as seguintes posições da carga móvel a partir do apoio A a cada 5,0 m ( L AB 4 Posições da Carga Móvel no Vão AB: 0, 5, 10, 15 e 20. 5,0 m) Para o vão BC teremos as seguintes posições da carga móvel a partir do apoio A a cada 8,0 m ( L BC 4 Posições da Carga Móvel no Vão BC: 20, 28, 36, 44 e 52. Portanto, a primeira coluna pode ser preenchida: 8,0 m) VÃO 1 VÃO 2 Posição da Carga Móvel Q 1,0 kn [m] Os valores a e b representam a distância entre a carga e os apoios do vão L carregado, conforme fórmula dos Termos de Carga. Assim os valores a, b e L podem ser preenchidos diretamente: VÃO 1 VÃO 2 Posição da Carga Móvel Q 1,0 kn a b Lvão [m] [m] [m] [m]

6 Termos de Carga e Momentos em B para vão AB carregado: Quando a carga está na posição 0 (sobre o apoio A) e na posição 20 (sobre o apoio B), ou o valor de a ou de b é igual a zero, desta forma os Termos de Cargas são nulos, e já estão preenchidos na Tabela. Posição 5: M B L 2 (L + b) ( ) 6,563 knm α AB 1 (α AB α ) (α BA BA L 2 (L + a) (20 + 5) 4,688 knm ) 0,192 (0 6,563 4,688) 0,900 knm 1 (0,192 0) Posição 10: M B α AB 1 (α AB α ) (α BA BA L 2 (L + b) 20 2 ( ) 7,500 knm L 2 (L + a) 20 2 ( ) 7,500 knm ) 0,192 (0 7,500 7,500) 1,440 knm 1 (0,192 0) Posição 15: M B α AB 1 (α AB α ) (α BA BA L 2 (L + b) (20 + 5) 4,688 knm L 2 (L + a) ( ) 6,563 knm ) 0,192 (0 4,688 6,563) 1,260 knm 1 (0,192 0) Preenchendo a Tabela, temos os seguintes Termos de Carga e Momentos em B quando o vão AB está carregado: VÃO 1 Posição da Carga Móvel Q 1,0 kn a b Lvão E D MA MB MC [m] [m] [m] [m] [knm] [knm] [knm] [knm] [knm] ,563 4, , ,500 7, , ,688 6, ,

7 Termos de carga para vão BC carregado: Quando a carga está na posição 20 (sobre o apoio B) e na posição 52 (sobre o apoio C), ou o valor de a ou de b é igual a zero, desta forma os Termos de Cargas são nulos, e já estão preenchidos na Tabela. Posição 28: L 2 (L + b) ( ) 10,500 knm M B α CB 1 (α CB α BC ) (α BC L 2 (L + a) (32 + 8) 7,500 knm ) 0,308 (0 7,500 10,500) 3,234 knm 1 (0,308 0) Posição 36: L 2 (L + b) 32 2 ( ) 12,000 knm M B α CB 1 (α CB α BC ) (α BC L 2 (L + a) 32 2 ( ) 12,000 knm ) 0,308 (0 12,000 12,000) 3,696 knm 1 (0,308 0) Posição 44: L 2 (L + b) (32 + 8) 7,500 knm M B α CB 1 (α CB α BC ) (α BC L 2 (L + a) ( ) 10,500 knm ) 0,308 (0 10,500 7,500) 2,310 knm 1 (0,308 0) Preenchendo a Tabela, temos os seguintes Termos de Carga e Momentos em B quando o vão BC está carregado: VÃO 1 VÃO 2 Posição da Carga Móvel Q 1,0 kn a b Lvão E D MA MB MC [m] [m] [m] [m] [knm] [knm] [knm] [knm] [knm] ,563 4, , ,500 7, , ,688 6, , ,500 7, , ,000 12, , ,500 10, ,

8 Para determinação dos Momentos na seção S, deve-se considerar dois casos: Caso 1: Quando Vão AB está carregado Nessa condição, o vão BC está descarregado, portanto o diagrama de Momentos no vão descarregado é uma reta. Desta forma o valor do Momento no vão BC será sempre: M(x) M B + ( M C M B ) x L BC Sendo x a seção de interesse, temos x 8,0 m (um quarto do vão) para a Seção S. Ou pela relação entre os triângulos M B BC e M s SC, temos: M S 3 4 M B Desta forma, podemos preencher os valores na do M s Tabela quando o vão AB está carregado. Caso 2: Quando Vão BC está carregado A partir da teoria de Estabilidade I, temos o equilíbrio da viga BC: Para equilíbrio à rotação no Ponto C, temos: +(V B,dir L BC ) M B P b 0 Portanto: Então o Momento em S é: V B,dir +M B + P b L BC M B + b 32 M S V B,dir 8,0 M B ( M B + b 32 ) 8,0 M B 8

9 Para posição 28 (b 24 e M B 3,234 )* M S ( M B + b 32 ) 8,0 M 3, B ( ) 8,0 3,234 3,575 knm 32 *Obs.: Os valores de M B e P devem ser inseridos na fórmula em valores absolutos, pois os sinais já foram considerados no cálculo do equilíbrio à rotação no ponto C devido ao sentido apresentado no esquema estrutural da viga BC. (Equilíbrio em C: +(V B,dir L BC ) M B P b 0) Para posição 36 (b 16 e M B 3,696 ) M S ( M B + b 32 ) 8,0 M 3, B ( ) 8,0 3,696 1,228 knm 32 Para posição 44 (b 8 e M B 2,310 ) M S ( M B + b 32 ) 8,0 M B ( 2, ) 8,0 2,310 0,268 knm 32 Preenchendo a Tabela com os valores obtidos, temos: VÃO 1 VÃO 2 Posição da Carga Móvel Q 1,0 kn a b Lvão E D MA MB MC MS [m] [m] [m] [m] [knm] [knm] [knm] [knm] [knm] [knm] ,563 4, , , ,500 7, , , ,688 6, , , ,500 7, , , ,000 12, , , ,500 10, , , Com os valores obtidos na Tabela, pode-se desenhar a Linha de Influência de Momentos em S: 9

10 3 a QUESTÃO (valor: 3,5 pontos) Pela Analogia de Mohr, determine o diagrama de momentos fletores da viga de inércia constante abaixo. Unidades SI. TABELA DE CONVERSÃO DAS CONDIÇÕES DE CONTORNO DA VIGA REAL PARA VIGA CONJUGADA 10

11 SOLUÇÃO Carregamento da viga conjugada: Equilíbrio à rotação em B: ( M B EI L BC 2 ) L BC 3 + (M C EI L BC 2 ) 2 L BC 0 3 M c M B 2 Portanto o valor do momento em C será sempre metade do valor do momento em B. Para o equilíbrio em A, como exemplo, adotaremos a matrícula a 0 7 b 0 5 c 0 8 Para a matrícula temos a seguinte dimensão da viga: L AB 5 + b ,0 m L BC 2 + b ,0 m P 5 c ,0 kn 11

12 Carregamento da viga conjugada: Equilíbrio em A + ( 64 EI 2,0 2 ) (2,0 2 3 ) + (64 EI 8,0 8,0 ) (2, ) + ( M B 2 EI 7,0 2 ) (10 + 7,0 2 3 ) ( M B EI 10,0 2 ) (10,0 2 3 ) (M B EI 7,0 7,0 ) (10, ) 0 +85, , ,67 M B 33,33 M B 43,17 M B ,00 50,83 M B 0 M B 25,18 knm Momento no ponto de aplicação da carga: M c M B 2 25,18 12,59 knm 2 M 64 25, ,96 knm 12

FESP Faculdade de Engenharia São Paulo Prof. Douglas Pereira Agnelo Prof. Dr. Alfonso Pappalardo Jr.

FESP Faculdade de Engenharia São Paulo Prof. Douglas Pereira Agnelo Prof. Dr. Alfonso Pappalardo Jr. CE2 Estabilidade das Construções II FESP Faculdade de Engenharia São Paulo Prof. Douglas Pereira Agnelo Prof. Dr. Alfonso Pappalardo Jr. Nome: Matrícula: Assinale a(s) avaliação(ões) que perdeu: A1 A2

Leia mais

1) Determine a energia de deformação (energia interna) da estrutura abaixo. Rigidez flexional = 4200 knm²

1) Determine a energia de deformação (energia interna) da estrutura abaixo. Rigidez flexional = 4200 knm² CE2 ESTABILIDADE DAS CONSTRUÇÕES II LISTA DE EXERCÍCIOS PREPARATÓRIA PARA O ENADE 1) Determine a energia de deformação (energia interna) da estrutura abaixo. Rigidez flexional 42 knm² Formulário: equação

Leia mais

FESP Faculdade de Engenharia São Paulo Prof. Douglas Pereira Agnelo Prof. Dr. Alfonso Pappalardo Jr.

FESP Faculdade de Engenharia São Paulo Prof. Douglas Pereira Agnelo Prof. Dr. Alfonso Pappalardo Jr. CE2 Estabilidade das Construções II FESP Faculdade de Engenharia São Paulo Prof. Douglas Pereira Agnelo Prof. Dr. Alfonso Pappalardo Jr. Nome: Matrícula ORIENTAÇÕES PARA PROVA Avaliação: S2 Data: 24/NOV/

Leia mais

FESP Faculdade de Engenharia São Paulo. Prof. Douglas Pereira Agnelo Prof. Alfonso Pappalardo Junior

FESP Faculdade de Engenharia São Paulo. Prof. Douglas Pereira Agnelo Prof. Alfonso Pappalardo Junior FESP Faculdade de Engenharia São Paulo Avaliação: S1 Data: 29/jun/ 2015 CE2 Estabilidade das Construções II Prof. Douglas Pereira Agnelo Prof. Alfonso Pappalardo Junior Duração: 85 minutos Nome: Matrícula

Leia mais

(NBR 8800, Tabela C.1)

(NBR 8800, Tabela C.1) CE Estabilidade das Construções II FESP Faculdade de Engenharia São Paulo Prof. Douglas Pereira Agnelo Prof. Dr. Alfonso Pappalardo Jr. Nome: Matrícula ORIENTAÇÕES PARA PROVA Avaliação: A1 Data: 13/abr/

Leia mais

FESP Faculdade de Engenharia São Paulo. CE2 Estabilidade das Construções II Prof. Douglas Pereira Agnelo Duração: 85 minutos

FESP Faculdade de Engenharia São Paulo. CE2 Estabilidade das Construções II Prof. Douglas Pereira Agnelo Duração: 85 minutos FESP Faculdade de Engenharia São Paulo Avaliação: A1 Data: 12/mai/ 2014 CE2 Estabilidade das Construções II Prof. Douglas Pereira Agnelo Duração: 85 minutos Nome: Matrícula ORIENTAÇÕES PARA PROVA a b c

Leia mais

CE2 ESTABILIDADE DAS CONSTRUÇÕES II LISTA DE EXERCÍCIOS - FLAMBAGEM

CE2 ESTABILIDADE DAS CONSTRUÇÕES II LISTA DE EXERCÍCIOS - FLAMBAGEM CE2 ESTBILIDDE DS CONSTRUÇÕES II LIST DE EXERCÍCIOS - FLMBGEM FONTE: HIBBELER, R. C. Resistência dos Materiais. 7. ed. São Paulo: Prentice Hall, 2010. SOLUÇÃO 13.3 ÁRE = (10 25) + 10 10 = 1100 mm² MOMENTOS

Leia mais

CE2 ESTABILIDADE DAS CONSTRUÇÕES II LISTA DE EXERCÍCIOS PREPARATÓRIA PARA PROVA A1

CE2 ESTABILIDADE DAS CONSTRUÇÕES II LISTA DE EXERCÍCIOS PREPARATÓRIA PARA PROVA A1 CE2 ESTABIIDADE DAS CONSTRUÇÕES II ISTA DE EXERCÍCIOS PREPARATÓRIA PARA PROVA A1 1) Qual material atende ao Critério de Deslocamentos Excessivos e é o mais econômico para execução da viga abaixo? Determine

Leia mais

RESISTÊNCIA DOS MATERIAIS II 6º CICLO (EEM 6NA) Profa. Ms. Grace Kelly Quarteiro Ganharul

RESISTÊNCIA DOS MATERIAIS II 6º CICLO (EEM 6NA) Profa. Ms. Grace Kelly Quarteiro Ganharul RESISTÊNCIA DOS MATERIAIS II 6º CICLO (EEM 6NA) Profa. Ms. Grace Kelly Quarteiro Ganharul gracekellyq@yahoo.com.br grace.ganharul@aedu.com Graduação em Engenharia Mecânica Disciplina: RESISTÊNCIA DOS MATERIAIS

Leia mais

Estruturas de Aço e Madeira Aula 05 Peças de Aço Comprimidas

Estruturas de Aço e Madeira Aula 05 Peças de Aço Comprimidas Estruturas de Aço e Madeira Aula 05 Peças de Aço Comprimidas - Compressão e Flambagem - Flambagem por Flexão (Global) - Dimensionamento conforme a Norma (Sem Flambagem Local) Prof. Juliano J. Scremin 1

Leia mais

Estruturas de Aço e Madeira Aula 14 Peças de Madeira em Compressão Simples Centrada

Estruturas de Aço e Madeira Aula 14 Peças de Madeira em Compressão Simples Centrada Estruturas de Aço e Madeira Aula 14 Peças de Madeira em Compressão Simples Centrada - Limites de Esbeltez; - Peças Curtas e Medianamente Esbeltas; - Peças Esbeltas; - Compressão Normal e Inclinada em Relação

Leia mais

Nota de aula 15 - Flambagem

Nota de aula 15 - Flambagem Nota de aula 15 - Flambagem Flávia Bastos (retirado da apostila do rof. Elson Toledo) MAC - Faculdade de Engenharia - UFJF 1o. semestre de 2011 Flávia Bastos RESMAT II 1/22 Informações sobre este documento:

Leia mais

Dimensionamento de Estruturas em Aço. Parte 1. Módulo. 2ª parte

Dimensionamento de Estruturas em Aço. Parte 1. Módulo. 2ª parte Dimensionamento de Estruturas em Aço Parte 1 Módulo 2 2ª parte Sumário Módulo 2 : 2ª Parte Dimensionamento de um Mezanino Estruturado em Aço 1º Estudo de Caso Mezanino página 3 1. Cálculo da Viga V2 =

Leia mais

E = 70GPA σ e = 215MPa. A = 7500mm 2 I x = 61,3x10 6 mm 4 I y = 23,2x10 6 mm 4

E = 70GPA σ e = 215MPa. A = 7500mm 2 I x = 61,3x10 6 mm 4 I y = 23,2x10 6 mm 4 Lista 1 1. A coluna de alumínio mostrada na figura é engastada em sua base e fixada em seu topo por meios de cabos de forma a impedir seu movimento ao longo do eixo x. Determinar a maior carga de compressão

Leia mais

RESISTÊNCIA DOS MATERIAIS I Curso de Eletromecânica

RESISTÊNCIA DOS MATERIAIS I Curso de Eletromecânica Centro Federal de Educação Tecnológica de Santa Catarina CEFET/SC Unidade Araranguá RESISTÊNCIA DOS MATERIAIS I Curso de Eletromecânica Prof. Fernando H. Milanese, Dr. Eng. milanese@cefetsc.edu.br Conteúdo

Leia mais

ESTRUTURAS DE CONCRETO ARMADO EXERCÍCIOS PARA A TERCEIRA PROVA PARCIAL

ESTRUTURAS DE CONCRETO ARMADO EXERCÍCIOS PARA A TERCEIRA PROVA PARCIAL ESTRUTURAS DE CONCRETO ARMADO EXERCÍCIOS PARA A TERCEIRA PROVA PARCIAL Questão 1 Dimensionar as armaduras das seções transversais abaixo (flexo-compressão normal). Comparar as áreas de aço obtidas para

Leia mais

ESTRUTURAS METÁLICAS E DE MADEIRAS PROF.: VICTOR MACHADO

ESTRUTURAS METÁLICAS E DE MADEIRAS PROF.: VICTOR MACHADO ESTRUTURAS METÁLICAS E DE MADEIRAS PROF.: VICTOR MACHADO UNIDADE II - ESTRUTURAS METÁLICAS VIGAS DE ALMA CHEIA INTRODUÇÃO No projeto no estado limite último de vigas sujeitas à flexão simples calculam-se,

Leia mais

Tensão. Introdução. Introdução

Tensão. Introdução. Introdução Capítulo 1: Tensão Adaptado pela prof. Dra. Danielle Bond Introdução A resistência dos materiais é um ramo da mecânica que estuda as relações entre as cargas externas aplicadas a um corpo deformável e

Leia mais

Figura 1 Viga poligonal de aço estrutural

Figura 1 Viga poligonal de aço estrutural PÓRTICO, QUADROS E ESTRUTURAS MISTAS MODELO 01 Para a viga poligonal contínua, indicada na Figura 1, determinar por Análise Matricial de Estruturas as rotações e as reações verticais nos apoios e. Dados:

Leia mais

ENG285 4ª Unidade 1. Fonte: Arquivo da resolução da lista 1 (Adriano Alberto), Slides do Prof. Alberto B. Vieira Jr., RILEY - Mecânica dos Materiais.

ENG285 4ª Unidade 1. Fonte: Arquivo da resolução da lista 1 (Adriano Alberto), Slides do Prof. Alberto B. Vieira Jr., RILEY - Mecânica dos Materiais. ENG285 4ª Unidade 1 Fonte: Arquivo da resolução da lista 1 (Adriano Alberto), Slides do Prof. Alberto B. Vieira Jr., RILEY - Mecânica dos Materiais. Momento de Inércia (I) Para seção retangular: I =. Para

Leia mais

Estruturas de concreto Armado II. Aula IV Flexão Simples Seção T

Estruturas de concreto Armado II. Aula IV Flexão Simples Seção T Estruturas de concreto Armado II Aula IV Flexão Simples Seção T Fonte / Material de Apoio: Apostila Fundamentos do Concreto e Projeto de Edifícios Prof. Libânio M. Pinheiro UFSCAR Apostila Projeto de Estruturas

Leia mais

Quarta Lista de Exercícios

Quarta Lista de Exercícios Universidade Católica de Petrópolis Disciplina: Resitência dos Materiais I Prof.: Paulo César Ferreira Quarta Lista de Exercícios 1. O tubo de aço (E s = 210 GPa) tem núcleo de alumínio (E a = 69 GPa)

Leia mais

Professor: José Junio Lopes

Professor: José Junio Lopes A - Deformação normal Professor: José Junio Lopes Lista de Exercício - Aula 3 TENSÃO E DEFORMAÇÃO 1 - Ex 2.3. - A barra rígida é sustentada por um pino em A e pelos cabos BD e CE. Se a carga P aplicada

Leia mais

FESP Faculdade de Engenharia São Paulo. CE2 Estabilidade das Construções II Prof. Douglas Pereira Agnelo Duração: 85 minutos

FESP Faculdade de Engenharia São Paulo. CE2 Estabilidade das Construções II Prof. Douglas Pereira Agnelo Duração: 85 minutos FESP Faculdade de Engenharia São Paulo Avaliação: S1 Data: 16/jun/ 2014 CE2 Estabilidade das Construções II Prof. Douglas Pereira Agnelo Duração: 85 minutos Nome: Matrícula ORIENTAÇÕES PARA PROVA a b c

Leia mais

Escola de Engenharia Universidade Presbiteriana Mackenzie Departamento de Engenharia Elétrica

Escola de Engenharia Universidade Presbiteriana Mackenzie Departamento de Engenharia Elétrica PROBLEMA 01 (Sussekind, p.264, prob.9.3) Determinar, pelo Método dos Nós, os esforços normais nas barras da treliça. vãos: 2m x 2m PROBLEMA 02 (Sussekind, p.264, prob.9.5) Determinar, pelo Método dos Nós,

Leia mais

4ª LISTA DE EXERCÍCIOS PROBLEMAS ENVOLVENDO ANÁLISE DE TENSÕES

4ª LISTA DE EXERCÍCIOS PROBLEMAS ENVOLVENDO ANÁLISE DE TENSÕES Universidade Federal da Bahia Escola Politécnica Departamento de Construção e Estruturas Disciplina: ENG285 - Resistência dos Materiais I-A Professor: Armando Sá Ribeiro Jr. www.resmat.ufba.br 4ª LISTA

Leia mais

1ª Lista de exercícios Resistência dos Materiais IV Prof. Luciano Lima (Retirada do livro Resistência dos materiais, Beer & Russel, 3ª edição)

1ª Lista de exercícios Resistência dos Materiais IV Prof. Luciano Lima (Retirada do livro Resistência dos materiais, Beer & Russel, 3ª edição) 11.3 Duas barras rígidas AC e BC são conectadas a uma mola de constante k, como mostrado. Sabendo-se que a mola pode atuar tanto à tração quanto à compressão, determinar a carga crítica P cr para o sistema.

Leia mais

DIMENSIONAMENTO DAS ARMADURAS LONGITUDINAIS DE VIGAS T

DIMENSIONAMENTO DAS ARMADURAS LONGITUDINAIS DE VIGAS T DIMENSIONAMENTO DAS ARMADURAS LONGITUDINAIS DE VIGAS T Prof. Henrique Innecco Longo e-mail longohenrique@gmail.com b f h f h d d Departamento de Estruturas Escola Politécnica da Universidade Federal do

Leia mais

DESENVOLVIMENTO DE PROGRAMA ANÁLISE DE TRELIÇAS ESPACIAIS

DESENVOLVIMENTO DE PROGRAMA ANÁLISE DE TRELIÇAS ESPACIAIS TRABALHO FINAL DA DISCIPLINA CE2 Estabilidade das Construções II DESENVOLVIMENTO DE PROGRAMA ANÁLISE DE TRELIÇAS ESPACIAIS Prof. Dr. Alfonso Pappalardo Jr. Prof. Douglas Pereira Agnelo São Paulo 2014 SUMÁRIO

Leia mais

Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio NECE. Experimento de ensino baseado em problemas. Módulo 01: Análise estrutural de vigas

Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio NECE. Experimento de ensino baseado em problemas. Módulo 01: Análise estrutural de vigas Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio NECE Experimento de ensino baseado em problemas Módulo 01: Análise estrutural de vigas Aula 03: Estruturas Submetidas à Flexão e Cisalhamento

Leia mais

Estruturas de Aço e Madeira Aula 06 Vigas de Alma Cheia (1)

Estruturas de Aço e Madeira Aula 06 Vigas de Alma Cheia (1) Estruturas de Aço e Madeira Aula 06 Vigas de Alma Cheia (1) - Introdução: Estados Limites Últimos para Vigas - Ideias Básicas para o Dimensionamento de Vigas em Aço - Classificação das Vigas Metálicas

Leia mais

UNIVERSIDADE FEDERAL DE SANTA MARIA

UNIVERSIDADE FEDERAL DE SANTA MARIA UNIVERSIDADE FEDERAL DE SANTA MARIA CENTRO DE TECNOLOGIA Departamento de Estruturas e Construção Civil Disciplina: ECC 1008 Estruturas de Concreto TRABALHO: 1 SEMESTRE DE 2015 Suponha que você esteja envolvido(a)

Leia mais

Para efeito de cálculo o engastamento deve ser substituído por um tramo adicional biapoiado (barra fictícia = Barra 3)

Para efeito de cálculo o engastamento deve ser substituído por um tramo adicional biapoiado (barra fictícia = Barra 3) Exercício 1 Determinar os diagramas de esforços solicitantes para a viga abaixo pelo Equação dos Três Momentos. Determinar todos os pontos de momentos máximos. Calcular também as reações de apoio. Solução:

Leia mais

Lista de Exercício 3 Elastoplasticidade e Análise Liimite 18/05/2017. A flexão na barra BC ocorre no plano de maior inércia da seção transversal.

Lista de Exercício 3 Elastoplasticidade e Análise Liimite 18/05/2017. A flexão na barra BC ocorre no plano de maior inércia da seção transversal. Exercício 1 Para o sistema estrutural da figura 1a, para o qual os diagramas de momento fletor em AB e força normal em BC da solução elástica são indicados na figura 1b, estudar pelo método passo-a-passo

Leia mais

Professora: Engª Civil Silvia Romfim

Professora: Engª Civil Silvia Romfim Professora: Engª Civil Silvia Romfim CRITÉRIOS DE DIMENSIONAMENTO Flexão simples reta Flexão oblíqua Flexão composta Flexo-tração Flexo-compressão Estabilidade lateral de vigas de seção retangular Flexão

Leia mais

Leandro Lima Rasmussen

Leandro Lima Rasmussen Resolução da lista 5 de exercícios de Resistência dos Materiais Exercício 1) Leandro Lima Rasmussen Para começar, calcula-se o CG, os momentos de inércia Iz e Iy e o raio de giração da seção. Instalando

Leia mais

RESISTÊNCIA DOS MATERIAIS CONTROLE DE QUALIDADE INDUSTRIAL RESISTÊNCIA À FLEXÃO RESISTÊNCIA À FLEXÃO. Claudemir Claudino Semestre

RESISTÊNCIA DOS MATERIAIS CONTROLE DE QUALIDADE INDUSTRIAL RESISTÊNCIA À FLEXÃO RESISTÊNCIA À FLEXÃO. Claudemir Claudino Semestre CONTROLE DE QUALIDADE INDUSTRIAL Claudemir Claudino 2014 1 Semestre TIPOS DE APOIOS Introdução: Agora vamos estudar o dimensionamento de estruturas sujeitas a esforços de flexão, considerando-se para tal

Leia mais

Princípio dos Trabalhos Virtuais Treliças e Vigas Isostáticas

Princípio dos Trabalhos Virtuais Treliças e Vigas Isostáticas Princípio dos Trabalhos Virtuais Treliças e Vigas Isostáticas Fonte: HIBBELER, R. C. Resistência dos Materiais. 5. ed. São Paulo: PEARSON, 2004. 14.20 /14.22 14.24 /14.26 Resposta: 11,72 mm Resposta: 33,68

Leia mais

FUNDAÇÕES RASAS DIMENSIONAMENTO GEOTÉCNICO

FUNDAÇÕES RASAS DIMENSIONAMENTO GEOTÉCNICO UNIVERSIDADE FEDERAL DOS VALES DO JEQUITINHONHA E MUCURI INSTITUTO DE CIÊNCIA, ENGENHARIA E TECNOLOGIA ENGENHARIA CIVIL ECV 114 FUNDAÇÕES E OBRAS DE TERRA FUNDAÇÕES RASAS DIMENSIONAMENTO GEOTÉCNICO ana.paula.moura@live.com

Leia mais

Estruturas de concreto Armado I. Aula II Pré-Dimensionamento

Estruturas de concreto Armado I. Aula II Pré-Dimensionamento Estruturas de concreto Armado I Aula II Pré-Dimensionamento Fonte / Material de Apoio: Apostila Fundamentos do Concreto e Projeto de Edifícios Prof. Libânio M. Pinheiro UFSCAR Apostila Projeto de Estruturas

Leia mais

8 FLAMBAGEM 8.1 ESTABILIDADE DE ESTRUTURAS

8 FLAMBAGEM 8.1 ESTABILIDADE DE ESTRUTURAS 8 FLAMBAGEM É o fenômeno que ocorre quando uma carga axial de compressão, atuando em uma barra, ocasiona uma flexão lateral, na direção do menor raio de giração de sua seção transversal, rompendo a peça

Leia mais

Exercícios de Resistência dos Materiais A - Área 3

Exercícios de Resistência dos Materiais A - Área 3 1) Os suportes apóiam a vigota uniformemente; supõe-se que os quatro pregos em cada suporte transmitem uma intensidade igual de carga. Determine o menor diâmetro dos pregos em A e B se a tensão de cisalhamento

Leia mais

ESTRUTURAS METÁLICAS VIGAS DE ALMA CHEIA. Prof. Alexandre Augusto Pescador Sardá

ESTRUTURAS METÁLICAS VIGAS DE ALMA CHEIA. Prof. Alexandre Augusto Pescador Sardá ESTRUTURAS METÁLICAS VIGAS DE ALMA CHEIA Prof. Alexandre Augusto Pescador Sardá Vigas de Alma Cheia Vigas de Alma Cheia Conceitos gerais: As almas das vigas metálicas servem principalmente para ligar as

Leia mais

UFJF - Professores Elson Toledo e Alexandre Cury MAC003 - Resistência dos Materiais II LISTA DE EXERCÍCIOS 03

UFJF - Professores Elson Toledo e Alexandre Cury MAC003 - Resistência dos Materiais II LISTA DE EXERCÍCIOS 03 UFJF - Professores Elson Toledo e Alexandre Cury MAC003 - Resistência dos Materiais II LISTA DE EXERCÍCIOS 03 1. Em um ponto crítico de uma peça de aço de uma máquina, as componentes de tensão encontradas

Leia mais

Professor: José Junio Lopes

Professor: José Junio Lopes Lista de Exercício Aula 3 TENSÃO E DEFORMAÇÃO A - DEFORMAÇÃO NORMAL 1 - Ex 2.3. - A barra rígida é sustentada por um pino em A e pelos cabos BD e CE. Se a carga P aplicada à viga provocar um deslocamento

Leia mais

ESTRUTURAS DE CONCRETO ARMADO Lista para a primeira prova. 2m 3m. Carga de serviço sobre todas as vigas: 15kN/m (uniformemente distribuída)

ESTRUTURAS DE CONCRETO ARMADO Lista para a primeira prova. 2m 3m. Carga de serviço sobre todas as vigas: 15kN/m (uniformemente distribuída) ESTRUTURS DE CONCRETO RMDO Lista para a primeira prova Questão 1) P1 V1 P2 V4 P3 V2 V3 4m 2m 3m V5 P4 h ' s s b d Seção das vigas: b=20cm ; h=40cm ; d=36cm Carga de serviço sobre todas as vigas: 15kN/m

Leia mais

Parte 4 Dimensionamento de vigas de madeira serrada

Parte 4 Dimensionamento de vigas de madeira serrada Parte 4 Dimensionamento de vigas de madeira serrada I. Critérios adotados: Quando do dimensionamento de uma viga de madeira serrada devemos adotar os critérios de: imitação de tensões imitação de deformações

Leia mais

Instabilidade e Efeitos de 2.ª Ordem em Edifícios

Instabilidade e Efeitos de 2.ª Ordem em Edifícios Universidade Estadual de Maringá Centro de Tecnologia Departamento de Engenharia Civil Capítulo Prof. Romel Dias Vanderlei Instabilidade e Efeitos de 2.ª Ordem em Edifícios Curso: Engenharia Civil Disciplina:

Leia mais

1. Flambagem Introdução

1. Flambagem Introdução 1. Flambagem 1.1. Introdução Flambagem ou encurvadura é um fenômeno que ocorre em peças esbeltas (peças onde a área de secção transversal é pequena em relação ao seu comprimento), quando submetidas a um

Leia mais

Mecânica Geral. Prof. Evandro Bittencourt (Dr.) Engenharia de Produção e Sistemas UDESC. 27 de fevereiro de 2008

Mecânica Geral. Prof. Evandro Bittencourt (Dr.) Engenharia de Produção e Sistemas UDESC. 27 de fevereiro de 2008 Mecânica Geral Prof Evandro Bittencourt (Dr) Engenharia de Produção e Sistemas UDESC 7 de fevereiro de 008 Sumário 1 Prof Evandro Bittencourt - Mecânica Geral - 007 1 Introdução 11 Princípios Fundamentais

Leia mais

Capítulo 5 Carga Axial

Capítulo 5 Carga Axial Capítulo 5 Carga Axial Resistência dos Materiais I SIDES 05 Prof. MSc. Douglas M. A. Bittencourt prof.douglas.pucgo@gmail.com Objetivos do capítulo Determinar a tensão normal e as deformações em elementos

Leia mais

Nspt = 25 Nspt = 13 σ a = 500 kpa σ a = 260 kpa Prova de carga, σ a = 500 kpa Prova de carga, σ a = 375 kpa

Nspt = 25 Nspt = 13 σ a = 500 kpa σ a = 260 kpa Prova de carga, σ a = 500 kpa Prova de carga, σ a = 375 kpa Questão 1. A Figura 1 apresenta alguns edifícios construídos em Santos, na década de 60. Por que eles inclinaram? Isto poderia ter sido evitado? Os edifícios apresentados na figura 1 inclinaram por terem

Leia mais

Carga axial. Princípio de Saint-Venant

Carga axial. Princípio de Saint-Venant Carga axial Princípio de Saint-Venant O princípio Saint-Venant afirma que a tensão e deformação localizadas nas regiões de aplicação de carga ou nos apoios tendem a nivelar-se a uma distância suficientemente

Leia mais

Construções Metálicas I AULA 5 Compressão

Construções Metálicas I AULA 5 Compressão Universidade Federal de Ouro Preto Escola de Minas Ouro Preto - MG Construções Metálicas I AULA 5 Compressão Introdução Denomina-se coluna uma peça vertical sujeita à compressão centrada. Exemplos de peças

Leia mais

Dimensionamento de Estruturas em Aço. Parte 1. Módulo. 2ª parte

Dimensionamento de Estruturas em Aço. Parte 1. Módulo. 2ª parte Dimensionamento de Estruturas em Aço Parte 1 Módulo 3 2ª parte Sumário Módulo 3 : 2ª Parte Dimensionamento de um Galpão estruturado em Aço Dados de projeto página 3 1. Definição página 5 2. Combinações

Leia mais

Exercícios de cargas axiais em barras rígidas - prof. Valério SA Universidade de São Paulo - USP

Exercícios de cargas axiais em barras rígidas - prof. Valério SA Universidade de São Paulo - USP São Paulo, dezembro de 015. 1. A barra rígida AC representa um muro de contenção de terra. Ela está apoiada em A e conectada ao tirante flexível BD em D. Esse tirante possui comprimento de 4 metros e módulo

Leia mais

Conteúdo. Resistência dos Materiais. Prof. Peterson Jaeger. 3. Concentração de tensões de tração. APOSTILA Versão 2013

Conteúdo. Resistência dos Materiais. Prof. Peterson Jaeger. 3. Concentração de tensões de tração. APOSTILA Versão 2013 Resistência dos Materiais APOSTILA Versão 2013 Prof. Peterson Jaeger Conteúdo 1. Propriedades mecânicas dos materiais 2. Deformação 3. Concentração de tensões de tração 4. Torção 1 A resistência de um

Leia mais

Teoria das Estruturas - Aula 06

Teoria das Estruturas - Aula 06 Teoria das Estruturas - Aula 06 Diagramas de Estado de Pórticos com Barras Inclinadas, Escoras e Tirantes Barras Inclinadas Pórticos Compostos Exemplo de Modelagem Estrutural Prof. Juliano J. Scremin 1

Leia mais

Resistência dos Materiais

Resistência dos Materiais Resistência dos Materiais Eng. Mecânica, Produção UNIME 2016.1 Lauro de Freitas, Maio, 2016. 5 Análise e projeto de vigas em flexão Conteúdo Introdução Diagramas de Força Cortante e Momento Fletor Problema

Leia mais

Características Geométricas de Figuras Planas PROF. ESP. DIEGO FERREIRA

Características Geométricas de Figuras Planas PROF. ESP. DIEGO FERREIRA Características Geométricas de Figuras Planas PROF. ESP. DIEGO FERREIRA A Figura abaixo ilustra uma barra reta de seção transversal constante, chamada barra prismática. O lado da barra que contém o comprimento

Leia mais

Caderno de Prova. Resistência dos Materiais. Universidade Federal Fronteira Sul. Edital n o 006/UFFS/ de maio. das 14 às 17 h.

Caderno de Prova. Resistência dos Materiais. Universidade Federal Fronteira Sul. Edital n o 006/UFFS/ de maio. das 14 às 17 h. Universidade Federal Fronteira Sul Edital n o 006/UFFS/2010 Caderno de Prova 23 de maio das 14 às 17 h 3 h* E6P14 Resistência dos Materiais Confira o número que você obteve no ato da inscrição com o que

Leia mais

O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal.

O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal. CENTRÓIDES E MOMENTO DE INÉRCIA Centróide O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal. De uma maneira bem simples: centróide

Leia mais

TEORIA DAS ESTRUTURAS II PROF.: VICTOR MACHADO

TEORIA DAS ESTRUTURAS II PROF.: VICTOR MACHADO TEORIA DAS ESTRUTURAS II PROF.: VICTOR MACHADO APRESENTAÇÃO Contatos: victor.silva@progeto.com.br victormsilva.com PLANO DE AULA Apresentação do Plano de Aula Forma de Avaliação Faltas e Atrasos UNIDADE

Leia mais

Construções Metálicas I AULA 6 Flexão

Construções Metálicas I AULA 6 Flexão Universidade Federal de Ouro Preto Escola de inas Ouro Preto - G Construções etálicas I AULA 6 Flexão Introdução No estado limite último de vigas sujeitas à flexão simples calculam-se, para as seções críticas:

Leia mais

Resistência dos Materiais IV Lista de Exercícios Capítulo 3 Flexão de Peças Curvas

Resistência dos Materiais IV Lista de Exercícios Capítulo 3 Flexão de Peças Curvas Observações: 1 ft 304,8 mm 1 ksi 1000 lb/in 1 in 5,4 mm 1 ksi 1000 psi 1 ft 1 in 1 kip 1000 lb 1 psi 1 lb/in 6.131 O elemento curvo mostrado na figura é simétrico e esta sujeito ao momento fletor M600lb.ft.

Leia mais

TENSÕES DE FLEXÃO e de CISALHAMENTO EM VIGAS

TENSÕES DE FLEXÃO e de CISALHAMENTO EM VIGAS DIRETORIA ACADÊMICA DE CONSTRUÇÃO CIVIL Tecnologia em Construção de Edifícios Disciplina: Construções em Concreto Armado TENSÕES DE FLEXÃO e de CISALHAMENTO EM VIGAS Notas de Aula: Edilberto Vitorino de

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. PME3210 Mecânica dos Sólidos I Primeira Prova 07/04/2015. Resolução. 50 N(kN)

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. PME3210 Mecânica dos Sólidos I Primeira Prova 07/04/2015. Resolução. 50 N(kN) PME3210 Mecânica dos Sólidos I Primeira Prova 07/04/2015 Resolução 1ª Questão (4,0 pontos) barra prismática da figura tem comprimento L=2m. Ela está L/2 L/2 engastada em e livre em C. seção transversal

Leia mais

Exercícios de Cortante. 7.1 Resolvidos

Exercícios de Cortante. 7.1 Resolvidos 7 Exercícios de Cortante 7.1 Resolvidos Ex. 7.1.1 Verificação perfil laminado ao Corte Verificação de perfil laminado ao cortante. A viga da figura utiliza um perfil I-15x18,6 de aço ASTM A-36. Verifique

Leia mais

Professor: José Junio Lopes. Lista de Exercícios - Aula 1a Revisão Equilíbrio de um Corpo Rígido Reação de Apoio

Professor: José Junio Lopes. Lista de Exercícios - Aula 1a Revisão Equilíbrio de um Corpo Rígido Reação de Apoio Lista de Exercícios - Aula 1a Revisão Equilíbrio de um Corpo Rígido Reação de Apoio A primeira condição para que um corpo rígido esteja em equilíbrio é que a somatória das forças que agem sobre o corpo

Leia mais

LISTA DE EXERCÍCIOS MECÂNICA DOS SÓLIDOS I

LISTA DE EXERCÍCIOS MECÂNICA DOS SÓLIDOS I LISTA DE EXERCÍCIOS MECÂNICA DOS SÓLIDOS I A - Tensão Normal Média 1. Ex. 1.40. O bloco de concreto tem as dimensões mostradas na figura. Se o material falhar quando a tensão normal média atingir 0,840

Leia mais

Aula 2 - Tensão Normal e de Cisalhamento.

Aula 2 - Tensão Normal e de Cisalhamento. Aula 2 - Tensão Normal e de Cisalhamento. A - TENSÃO NORMAL MÉDIA 1. Exemplo 1.17 - A luminária de 80 kg é sustentada por duas hastes, AB e BC, como mostra a figura 1.17a. Se AB tiver diâmetro de 10 mm

Leia mais

A AÇÃO DO VENTO NOS EDIFÍCIOS

A AÇÃO DO VENTO NOS EDIFÍCIOS 160x210 A AÇÃO DO VENTO NOS EDIFÍCIOS ARAÚJO, J. M. Projeto Estrutural de Edifícios de Concreto Armado. 3. ed., Rio Grande: Dunas, 2014. Prof. José Milton de Araújo FURG 1 1 O PROJETO ESTRUTURAL E A DEFINIÇÃO

Leia mais

RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE I

RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE I RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE I Prof. Dr. Daniel Caetano 2012-2 Objetivos Compreender o que é a deformação por torção Compreender os esforços que surgem devido à torção Determinar distribuição

Leia mais

Resistência dos Materiais

Resistência dos Materiais Aula 2 Tensão Normal Média e Tensão de Cisalhamento Média Tópicos Abordados Nesta Aula Definição de Tensão. Tensão Normal Média. Tensão de Cisalhamento Média. Conceito de Tensão Representa a intensidade

Leia mais

Flambagem PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL

Flambagem PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL ROF. ALEXANDRE A. CURY DEARTAMENTO DE MECÂNICA ALICADA E COMUTACIONAL O que é e por que estudar? Onde ocorre? Que fatores influenciam? Como evitar? or que, normalmente, é desejável que a diagonal das treliças

Leia mais

UNINOVE Universidade Nove de Julho. Aula 06 Continuação/Revisão Prof: João Henrique

UNINOVE Universidade Nove de Julho. Aula 06 Continuação/Revisão Prof: João Henrique 1 Aula 06 Continuação/Revisão Prof: João Henrique Sumário Pilares de Seção Transversal em forma de L e U... 1 Principais propriedades de figuras planas... 2 Área (A)... 2 Momento Estático (Me)... 2 Centro

Leia mais

Resistência dos Materiais Teoria 2ª Parte

Resistência dos Materiais Teoria 2ª Parte Condições de Equilíbrio Estático Interno Equilíbrio Estático Interno Analogamente ao estudado anteriormente para o Equilíbrio Estático Externo, o Interno tem um objetivo geral e comum de cada peça estrutural:

Leia mais

Exercícios de Compressão. 5.1 Resolvidos

Exercícios de Compressão. 5.1 Resolvidos 5 Exercícios de Compressão 5.1 Resolvidos Ex. 5.1.1 Comparação entre seções comprimidas A figura desse problema mostra diversas formas de seção transversal com a área da seção transversal aproximadamente

Leia mais

Revisão UNIVERSIDADE DO ESTADO DE MATO GROSSO CURSO DE ENGENHARIA CIVIL. SNP38D48 Estruturas de Concreto Armado II

Revisão UNIVERSIDADE DO ESTADO DE MATO GROSSO CURSO DE ENGENHARIA CIVIL. SNP38D48 Estruturas de Concreto Armado II UNIVERSIDADE DO ESTADO DE MATO GROSSO CURSO DE ENGENHARIA CIVIL SNP38D48 Estruturas de Concreto Armado II Prof.: Flavio A. Crispim (FACET/SNP-UNEMAT) SINOP - MT 2015 Compressão simples Flexão composta

Leia mais

EXERCÍCIO 4.3. CE2 Estabilidade das Construções II Linhas de Influência Vigas Contínuas. Página 1 de 8

EXERCÍCIO 4.3. CE2 Estabilidade das Construções II Linhas de Influência Vigas Contínuas. Página 1 de 8 EXERCÍCIO 4.3 Determinar, aproximadamente, os MOMENTOS FLETORES MÁXIMO E MÍNIMO NA SEÇÃO S1 da viga contínua, esquematizada na Figura 12, considerando os carregamentos uniformemente distribuídos permanente

Leia mais

LISTA DE EXRECÍCIOS PILARES

LISTA DE EXRECÍCIOS PILARES LISTA DE EXRECÍCIOS PILARES Disciplina: Estruturas em Concreto II 2585 Curso: Engenharia Civil Professor: Romel Dias Vanderlei 1- Dimensionar e detalhar as armaduras (longitudinal e transversal) para o

Leia mais

Estruturas de concreto Armado II. Aula IV Flexão Simples Equações de Equilíbrio da Seção

Estruturas de concreto Armado II. Aula IV Flexão Simples Equações de Equilíbrio da Seção Estruturas de concreto Armado II Aula IV Flexão Simples Equações de Equilíbrio da Seção Fonte / Material de Apoio: Apostila Fundamentos do Concreto e Projeto de Edifícios Prof. Libânio M. Pinheiro UFSCAR

Leia mais

Introdução cargas externas cargas internas deformações estabilidade

Introdução cargas externas cargas internas deformações estabilidade TENSÃO Introdução A mecânica dos sólidos estuda as relações entre as cargas externas aplicadas a um corpo deformável e a intensidade das cargas internas que agem no interior do corpo. Esse assunto também

Leia mais

AULA: TORÇÃO EM VIGAS DE CONCRETO ARMADO

AULA: TORÇÃO EM VIGAS DE CONCRETO ARMADO UNIVERSIDADE FEDERAL DOS VALES DO JEQUITINHONHA E MUCURI INSTITUTO DE CIÊNCIA, ENGENHARIA E TECNOLOGIA ENGENHARIA CIVIL ECV 313 ESTRUTURAS DE CONCRETO AULA: TORÇÃO EM VIGAS DE CONCRETO ARMADO ana.paula.moura@live.com

Leia mais

São as vigas que são fabricadas com mais de um material.

São as vigas que são fabricadas com mais de um material. - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Tensões em Vigas Tópicos

Leia mais

P-Δ deslocamentos horizontais dos nós da estrutura ou efeitos globais de segunda ordem;

P-Δ deslocamentos horizontais dos nós da estrutura ou efeitos globais de segunda ordem; 3 Estabilidade e Análise Estrutural O objetivo da análise estrutural é determinar os efeitos das ações na estrutura (esforços normais, cortantes, fletores, torsores e deslocamentos), visando efetuar verificações

Leia mais

RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE III

RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE III RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE III Prof. Dr. Daniel Caetano 2012-2 Objetivos Conceituar e capacitar paa a resolução de problemas estaticamente indeterminados na torção Compreender as limitações

Leia mais

Engenharia Civil Avaliação Bimestral: 4 / 2014 Disciplina: Teoria das Estruturas

Engenharia Civil Avaliação Bimestral: 4 / 2014 Disciplina: Teoria das Estruturas Engenharia Civil Avaliação Bimestral: 4 / 2014 Disciplina: Teoria das Estruturas TE14-AB-B4b Nota: Turma: Aluno: Matrícula: Orientações: Leia atentamente todas as instruções da prova. Não é permitida a

Leia mais

Leitura obrigatória Mecânica Vetorial para Engenheiros, 5ª edição revisada, Ferdinand P. Beer, E. Russell Johnston, Jr.

Leitura obrigatória Mecânica Vetorial para Engenheiros, 5ª edição revisada, Ferdinand P. Beer, E. Russell Johnston, Jr. PUC - Goiás Curso: Engenharia Civil Disciplina: Mecânica Vetorial Corpo Docente: Geisa Pires Turma:----------- Plano de Aula Data: ------/--------/---------- Leitura obrigatória Mecânica Vetorial para

Leia mais

Várias formas da seção transversal

Várias formas da seção transversal Várias formas da seção transversal Seções simétricas ou assimétricas em relação à LN Com o objetivo de obter maior eficiência (na avaliação) ou maior economia (no dimensionamento) devemos projetar com

Leia mais

TC 071 PONTES E ESTRUTURAS ESPECIAIS II

TC 071 PONTES E ESTRUTURAS ESPECIAIS II TC 071 PONTES E ESTRUTURAS ESPECIAIS II 16ª AULA (19/10/2.010) MEZOESTRUTURA DE PONTES A mezoestrutura de ponte é a parte da estrutura (pilares) responsável por transmitir as cargas da superestrutura à

Leia mais

DIMENSIONAMENTO DE BARRA COMPRIMIDAS

DIMENSIONAMENTO DE BARRA COMPRIMIDAS UNIVERSIDADE FEDERAL DOS VALES DO JEQUITINHONHA E MUCURI INSTITUTO DE CIÊNCIA, ENGENHARIA E TECNOLOGIA ENGENHARIA CIVIL ECV 113 ESTRUTURAS DE CONCRETO, METÁLICAS E DE MADEIRA DIMENSIONAMENTO DE BARRA COMPRIMIDAS

Leia mais

Análise de Elementos Finitos para Estudo de Reforços Estruturais em Pontes Ferroviárias de Concreto Armado

Análise de Elementos Finitos para Estudo de Reforços Estruturais em Pontes Ferroviárias de Concreto Armado Análise de Elementos Finitos para Estudo de Reforços Estruturais em Pontes Ferroviárias de Concreto Armado Resumo Carlos Alberto Medeiros 1 1 Universidade de Mogi das Cruzes / Departamento de Engenharia

Leia mais

CONSTRUÇÕES EM CONCRETO ARMADO

CONSTRUÇÕES EM CONCRETO ARMADO TECNOLOGIA EM CONSTRUÇÃO DE EDIFÍCIOS CONSTRUÇÕES EM CONCRETO ARMADO LAJES Parte 2 Laje Maciça Viga Pilar Cinta Bloco de Coroamento Fundação Apostila desenvolvida pelo professor: Edilberto Vitorino de

Leia mais

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Pato Branco. Lista de Exercícios - Sapatas

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Pato Branco. Lista de Exercícios - Sapatas Lista de Exercícios - Sapatas 1 Dimensione uma sapata rígida para um pilar de dimensões 30 x 40, sendo dados: N k = 1020 kn; M k = 80 kn.m (em torno do eixo de maior inércia); A s,pilar = 10φ12,5 σ adm

Leia mais

ESTRUTURAS DE BETÃO ARMADO I 12 EFEITOS DE SEGUNDA ORDEM PROVOCADOS POR ESFORÇO AXIAL

ESTRUTURAS DE BETÃO ARMADO I 12 EFEITOS DE SEGUNDA ORDEM PROVOCADOS POR ESFORÇO AXIAL fct - UL EFEITOS DE SEGUDA ORDE PROVOCADOS POR ESFORÇO AXIAL EFEITOS DE SEGUDA ORDE PROVOCADOS POR ESFORÇO AXIAL PROGRAA. Introdução ao betão armado. Bases de Projecto e Acções 3. Propriedades dos materiais:

Leia mais

RESISTÊNCIA DOS MATERIAIS AULAS 02

RESISTÊNCIA DOS MATERIAIS AULAS 02 Engenharia da Computação 1 4º / 5 Semestre RESISTÊNCIA DOS MATERIAIS AULAS 02 Prof Daniel Hasse Tração e Compressão Vínculos e Carregamentos Distribuídos SÃO JOSÉ DOS CAMPOS, SP Aula 04 Vínculos Estruturais

Leia mais

ALVENARIA ESTRUTURAL. Adriano Maboni Alex Pimentel Arléia Teixeira Fabrício Machado Liliane Trombini Pereira

ALVENARIA ESTRUTURAL. Adriano Maboni Alex Pimentel Arléia Teixeira Fabrício Machado Liliane Trombini Pereira ALVENARIA ESTRUTURAL Adriano Maboni Alex Pimentel Arléia Teixeira Fabrício Machado Liliane Trombini Pereira DADOS DO TRABALHO Edifício de 9 pavimentos tipo e 1 térreo Térreo apoiado diretamente sobre a

Leia mais

DIMENSIONAMENTO DE LAJES MACIÇAS RETANGULARES A FLEXÃO SIMPLES DIMENSIONAMENTO ATRAVÉS DA TABELA DE CZERNY APLICAÇÃO DE ESTRUTURAS DE CONCRETO ARMADO

DIMENSIONAMENTO DE LAJES MACIÇAS RETANGULARES A FLEXÃO SIMPLES DIMENSIONAMENTO ATRAVÉS DA TABELA DE CZERNY APLICAÇÃO DE ESTRUTURAS DE CONCRETO ARMADO 1 DIMENSIONAMENTO DE LAJES MACIÇAS RETANGULARES A FLEXÃO SIMPLES DIMENSIONAMENTO ATRAVÉS DA TABELA DE CZERNY APLICAÇÃO DE ESTRUTURAS DE CONCRETO ARMADO Professor: Cleverson Arenhart 2 1) Tipos de lajes.

Leia mais

1 Introdução 3. 2 Estática de partículas Corpos rígidos: sistemas equivalentes SUMÁRIO. de forças 67. xiii

1 Introdução 3. 2 Estática de partículas Corpos rígidos: sistemas equivalentes SUMÁRIO. de forças 67. xiii SUMÁRIO 1 Introdução 3 1.1 O que é a mecânica? 4 1.2 Conceitos e princípios fundamentais mecânica de corpos rígidos 4 1.3 Conceitos e princípios fundamentais mecânica de corpos deformáveis 7 1.4 Sistemas

Leia mais