Resolução prova de matemática UDESC

Tamanho: px
Começar a partir da página:

Download "Resolução prova de matemática UDESC"

Transcrição

1 Resolução prova de matemática UDESC 00. Prof. Guilherme Sada Ramos Guiba ) Pelo enunciado, devemos pressupor que todos os itens que o jovem puder escolher para o carro, ele escolherá. Feito isso, percebemos que: Para o carro de duas portas, ele pode escolher entre os 5 itens opcionais, tendo C 5 maneiras diferentes de proceder na escolha, uma vez que a ordem dessa escolha é irrelevante. Para cada uma dessas C 5, ele opta ou por roda de liga leve, ou por equipamento de som. p n! 5! 5! 5..! 5. Como Cn, então C5 0. Para cada p! n p!! 5!!!!! uma dessas 0, duas possibilidades, logo o total é de 0 possibilidades, para o caso de carro duas portas. Para o carro de quatro portas, ele pode escolher entre os 5 itens opcionais, tendo maneiras diferentes de proceder na escolha, uma vez que a ordem dessa escolha é irrelevante. Para cada uma dessas C 5, ele opta ou por roda de liga leve, ou por equipamento de som. p n! 5! 5! 5..! 5. Como Cn, então C5 0. Para cada p! n p!! 5!!!!! uma dessas 0, duas possibilidades, logo o total é de 0 possibilidades, para o caso de carro quatro portas. C 5 Somando as possibilidades totais nos dois casos, concluímos que ele pode escolher o carro de (0 + 0), ou 0, maneiras distintas. ) A soma S é tal que logs log log7. Como n logba nlogba `, então afirmamos que: logb ac logb a logb c logs log log7 log log7 log log7 log8 GABARITO: D Como a função f(x) = log b (x) é injetora, então não podemos ter dois logaritmos de números diferentes, na mesma base, que sejam iguais. Logo, concluímos que logs log8 S 8. Então, temos uma PG de seis termos, em que: o A soma S n = 8 o O número de termos n = 6 o A razão q =. Lembrando que da progressão: S n n a q q, então podemos calcular o valor de a, primeiro termo

2 a S n n a q q 6 a 8 a a a ) A matriz A é da forma det A a.a a.a. Já a matriz A I é é a A a a a GABARITO: E, e seu determinante é dado por a a 0 a a AI, e seu determinante a a 0 a a det A I a. a a.a. I) Pela propriedade produto de determinante é determinante do produto, temos: det A I det A I 5 5 Considerando que o produto de matrizes é distributivo, que AI = I A (I é a matriz identidade de ordem ), e que (I )² = I, vamos ter também: det A I det A I A I det A AI IA I det A A A I det A A I Se det A I 5 e det A A I 5 ITEM VERDADEIRO! II) Pelo enunciado, produto entre parênteses, temos: det A I det A A I, então det A I a. a a.a 5. Desenvolvendo o

3 a. a a.a 5 a.a a a a.a 5 a.a a.a a a 5 a.a a.a a a 5 det A det(a) 5 a a det(a) a a Note que não precisamos de que a seja igual a a para que a igualdade acima seja válida! ITEM VERDADEIRO! III) a a 0 m Neste caso, vemos que A a a m 0 0 m 0 m AI m 0 0 m det A I 5, então m 5 m deta e det A, e m. Também, det A I m. Como. Assim, det A m. ITEM FALSO! GABARITO: B ) Tetraedros são nada mais que pirâmides de base triangular. Volume de pirâmide é Área base.altura dado sempre por Vpirâmide. Já volume de prisma é calculado pela fórmula V prisma Área base.altura. Como informação dada, ocorre altura tetraedro.altura prisma. Denominemos as alturas de pirâmide e prisma por h t e h p, respectivamente. Precisamos calcular a área da base dos dois sólidos. Sendo um triângulo retângulo isósceles de hipotenusa cm, calculamos a medida dos catetos. Para achar a área, basta fazer um cateto vezes o outro e dividir por dois, já que este triângulo é retângulo. Façamo-nos: x x x 8 x 9 x A área da base será dada por A base. 9 cm². Agora, vamos lembrar que a diferença entre o volume do prisma, V p, e do tetraedro, V t, é 8 cm³. Equacionando, teremos a altura do prisma, que é questionada...

4 V V 8 p p Área base.hp Área base.hp 8 9.h t 9. h p 8 9 hp hp 8 h 8 p p h GABARITO: E 5) Para um contribuinte que pague alíquota 7,5%, o mínimo a pagar de imposto mensal seria 7,5% de R$.7,5 menos R$ 58,8, que é o valor da dedução tributária mensal nessa faixa salarial. Tudo isto no exercício de 009. Verificamos que: 7,5.7,6 05,9 75,9 58,8 05,57 00 Como ele pagou menos que isso em imposto de renda, é impossível o contribuinte estar na faixa salarial que sofre esta tributação, logo seu salário tem alíquota de 5%. Assim, podemos afirmar que o seu salário é tal que 5% dele, menos a dedução correspondente de R$ 05,9 resulta em R$ 09,08, que é o valor da restituição para o seu salário. Vamos calcular este último: 5 x 05,9 09, x 5 00 x Seu salário é de R$ 00,00. No exercício de 00, a alíquota para seu salário é de 7,5% e a dedução equivale a R$ 07,59. Sua despesa mensal de imposto de renda será de: 7, ,59 7,5. 07,59 9,9 Lendo as alternativas, temos que perceber que R$ 9,9 é R$ 59,7 a menos que R$ 09,08. 6) A resolução da equação logx log8x pode ser dividida em duas etapas: No primeiro caso, logx log8x. Resolvendo, temos: GABARITO: D

5 log x x log 8x 8x x 8x 0 x x 8 0 x 0 ou x 8 Como x = 0 zera logaritmandos, e log 0 não existe, então neste caso, x = 8. No segundoo caso, logx log8x. Resolvendo, temos: log x log x x log 8x x.8x 8x x x log 8x 8x 8 8 O valor encontrado não infringe a condição de existência dos logaritmos (logaritmando maior que zero e base maior que zero e diferente de ), logo o valor ½ também é solução da equação. Somando as duas soluções, temos GABARITO: A 0 0 x x y y R, 7) Convertendo a equação da circunferência ao modo determinamos o ponto (x 0, y 0 ) o centro da circunferência e R o raio da mesma. Vamos fazê-lo: x y x y 0 x x y y 0 x x y x x y y y x y x y x y Nota: Os valores destacados foram somados aos dois lados da equação, para que a conversão à forma reduzida fosse possível (método de completar quadrados ). O centro da circunferência é o ponto (, ) e o raio é.

6 O ponto R de intersecção da circunferência com o eixo das abscissas (eixo x) é o ponto (, 0). Considerando este ponto, mais os pontos P(0, ) e Q(, ), podemos calcular tanto o perímetro, quanto a área do triângulo formado por estes três pontos. O perímetro é dado pela soma das distâncias entre os pontos P e R, P e Q e R e Q. Vamos calculá-las, lembrando: M,N M N M N d x x y y : P,R P R P R d x x y y P,R P,R d 0 0 d d x x y y P,Q P Q P Q P,Q P,Q d 0 d 5 6 d x x y y R,Q R Q R Q R,Q R,Q d 0 d Neste caso, o perímetro é 6 6. Para calcular a área, basta calcularmos D, em que D é o módulo do determinante xp yp da matriz D xr yr. Para calcular este determinante, aplicamos regra de xq yq Sarrus: 0 0 D ( )..( ).(0).( ) 0..( ).. 6 Logo, a área dada é D. GABARITO: D 8) O gráfico da função f é uma parábola, que corta o eixo das ordenadas no ponto (0, ) e tem vértice ; 8. Sendo a função f x ax bx c, vamos calcular a, b e c. Temos as seguintes informações: o c = (ordenada do ponto em que intercepta o eixo y) b o xv a o yv a a a a 8 b ac b a b

7 b a Resolvendo o sistema, obteremos os valores de a e b: b a 8 b a.a a b b a 8 Substituindo na segunda equação: Neste caso, a a 8 9a a 8 9a 6 8 9a a 6 9a 8 a b b b b. () Determinamos que f x x x. Assim, de fogx 0, no intervalo fog x g x g x cos x cos x. Falta calcular as raízes 0,. Vamos fazê-lo, com cos(x) = t: cos x cos x 0 t t 0 Resolvendo a equação do segundo grau, vamos obter t ou t. Ou seja, cosx ou cos x

8 No ciclo trigonométrico o eixo horizontal é o eixo dos cossenos. O arco da primeira volta (sem o zero) que tem cosseno igual a é. No caso de cosseno igual a, os 5 arcos são 60 ( ) e 00 ( ). Multiplicando os três possíveis arcos, obtemos ) Devemos lembrar das seguintes identidades trigonométricas: cosx cos x sen x cos a b cos a.cos b sen a.sen b sen a b sen a.cos b sen b.cos a cos sec x, sen x 0 senx cosx senx sen x cos x sen x cos x cos x sen x cotg x, sen x 0 7 cos cos 0 7 sen sen a b b a Agora, podemos desenvolver a expressão colocada: GABARITO: C

9 7 cosx sen x.cos x x x cotg cos x sen x cos sec 7 cos x cos x sen x sen x. cos.cos x sen sen x x 7 sen.senx cosx senx.cos cosx.sen cos x cos x cos x sen x sen x cos x cos x sen x sen x. sen x cos x sen x sen x cos x sen x cos x sen x.cos x sen x sen x x cotg x x cos x sen x cos x.cos x cos sen 0) A figura ao lado representa o triângulo cuja revolução gera o cone circular reto da questão. Girando o trapézio BACD em torno de AC, obtemos o tronco de cone, cujo volume é 8π m³. O ângulo α é tal que tg α = 6. Esse volume é a diferença entre o volume do cone gerado pela revolução do triângulo ABE (cone maior) em torno de AE, e o volume do cone gerado pela revolução do triângulo CDE (cone menor), em torno de CE. Temos que AB = R, CD = AH = r, AC = DH = R. Como ocorre tg α = 6 (a razão entre o cateto oposto ao ângulo α e o cateto adjacente ao mesmo α é 6), então DH = 6.HB. Concluímos que HB = R. O ângulo CDE é também igual a α, logo CE = 6.CD = 6r. O cone menor tem raio da base r e altura 6r. O cone maior tem raio da base R e altura R + 6r. GABARITO: A

10 O volume de qualquer cone é dado por sólido. V cone Raio base.h, em que h é altura do Para podermos efetuar os cálculos, ainda falta estabelecer uma relação entre R e r. Se pensarmos que AH = r, HB = R R r. Assim: R, e AB = R, então podemos dizer ainda que R R r R r R 6. 6r R 6r R r Nota: Vamos nos fazer valer das duas igualdades anteriores nos cálculos a seguir. Com isso, deduzimos que a altura AE do cone maior é R + 6r = R + R = 6R. Agora sim, vamos igualar a diferença entre os volume dos cones (volume do tronco) a 8π. Nessa igualdade, calcularemos R. Feito isso, aplicaremos teorema de Pitágoras no triângulo HBD. V V 8 cone maior cone menor R.6R r.6r 8 6 R 6 r 8 9 R r 8 R r 9 R R R 9 7 R 7 R R 9 R 7 Feito isso, basta calcularmos a hipotenusa BD, sendo que os catetos DH e HB medem, respectivamente, 6 (R) m e (um terço de R) m. Teorema de Pitágoras: BD 6 BD 7 BD 7 GABARITO: B

11 ) Pelo enunciado, se o ângulo A vale x, então o ângulo B vale x. Assim, o ângulo C vale x x 5x x. Sendo a soma dos três ângulos internos de qualquer triângulo , podemos também afirmar que: Assim, dizemos que: A x 0 B x. 0 0 C x 0 x x x 80 6x 80 x 0 Devemos lembrar também que sen sen 80 cos cos 80, para I) O triângulo é isósceles, pois tem dois ângulos congruentes, o que implica em dois lados congruentes. ITEM VERDADEIRO! II) O triângulo está representado na figura abaixo. Uma das várias maneiras de se calcular a área de um triângulo é multiplicar a metade do produto de dois lados pelo seno do ângulo que eles formam, ou seja, a área neste BC.AB.sen0 caso pode ser obtida por Atriângulo. Efetuando os cálculos, temos: A triângulo sen sen ITEM VERDADEIRO! III) Pela lei dos cossenos, podemos determinar a medida do segmento AC, lembrando que, se a e α são ângulos opostos num triângulo, e os outros dois lados são b e c, temos a relação a b c bc.cos. Após isto, substituímos o valor na equação dada.

12 Na equação, teremos: AC cos0 AC cos 80 0 AC cos AC AC AC x! x 0 0 x! x! x x x x! x x x x x 00 x x x x x x Resolvendo a equação do segundo grau, vamos ter x ou x, valor que não serve como resposta pois não existe fatorial de número negativo, nem de número nãointeiro. ITEM VERDADEIRO! GABARITO: E ) Numa matriz x qualquer, todos os termos da diagonal principal são tais que i = j. Acima dessa diagonal, i < j, e abaixo, i > j. Com isso, determinamos a matriz descrita no enunciado da questão: a a a A a a a x a a a x x O determinante dessa matriz é calculado pela regra de Sarrus, em função de x. det A x x x det A x x x x x x det A 8 x x x x x x 5x 8 Ao final das contas, resta-nos resolver situações, que devem ocorrer simultaneamente. 5x 8 x 5x 8, considerando duas

13 5x 8 x 5x 8 x 5x 8 5x 8 0 x 0x 6 A parábola y = x² + 0x + 6 está acima (ou em cima) do eixo x para valores de x no conjunto solução S =, 8,. 5x 8 x 5x 8 0 x Nesse caso, x pode assumir qualquer valor real. A solução desta inequação é o próprio conjunto. Fazendo a intersecção de com S, calculamos a solução da inequação modular, que, no caso, é o próprio conjunto S. GABARITO: B ) Consideremos os seis ângulos desse polígono convexo, a, a, a, a, a 5 e a 6, em ordem crescente. Pelo enunciado, são seis termos de uma progressão aritmética. Assim, sendo, podemos exprimir, utilizando a fórmula do termo geral de uma PA, todos os termos da PA em função do primeiro termo e da razão r. a a n r n a a r ; a a r ; a a r ; a5 a 5r ; a6 a 5r Lembrando que a soma dos ângulos internos de um polígono é dada, em função do S 80 n, podemos dizer que a soma dos seis termos da número n de lado, por PA é igual a: n 6 S Também temos a informação que a razão entre o menor ângulo (designado por a ) e r é igual a 5. Logo temos o seguinte sistema de equações: a 5 r a a a a a5 a6 70 a 5 r a a r a r a r a r a 5r 70 a 5 r 6a 5r 70 Resolvendo...

14 a 5 r a 6a 5r 70 6a a 70 8a 70 5r 70 a 90 8 Calculamos a, o menor ângulo do polígono, que vale 90. GABARITO: B ) Para sabermos a razão da PG infinita, devemos calcular a medida do lado do segundo quadrado e dividi-la pelo lado do primeiro quadrado. Como a soma limite de uma PG a infinita é dada por S. O primeiro termo foi dado, é o lado do quadrado maior, q que vale. A partir deste lado, podemos calcular o lado do quadrado seguinte, visualizando um triângulo retângulo cujos catetos valem ½ (metade do lado do quadrado) e a hipotenusa é a medida do lado do quadrado seguinte. º quadrado º quadrado. Com isso, º quadrado º quadrado q, razão da PG infinita. Esta razão tem módulo menor que, logo podemos aplicar a fórmula da soma infinita. Calculando-a, temos: S a q S. Agora, temos o coeficiente angular da reta r. O ponto de encontro dessa reta com o eixo das ordenadas tem ordenada igual ao coeficiente linear (n) dessa reta. A abscissa é zero. Para determinarmos a reta em questão, temos o coeficiente angular (m) da mesma e um ponto(x 0, y 0 ) pelo qual ela passa. A forma da equação da reta que permite calculála, neste caso, é y y mx x 0 0. O ponto em questão é,0.

15 y y mx x 0 0 y 0 x y x y x x y x y x A reta em questão está exibida ao lado, sendo,. Nesse caso, o ponto procurado tem abscissa 0 e ordenada. GABARITO: A 5) Qualquer gráfico de função fornece o domínio e a imagem da mesma, uma vez projetado no eixo x e eixo y, respectivamente. Assim, podemos determinar os quatro conjuntos envolvidos. Vamos lembrar a definição de intervalos reais: Df Imf, Img, Imh 0, [a,b] x / a x b [a,b[ x / a x b ]a,b] x / a x b ]a,b[ x / a x b [a, [ x / x a ]a, [ x / x a ],a] x / x a ],a[ x / x a Devemos lembrar que a intersecção entre os conjuntos X e Y são os elementos comuns aos conjuntos X e Y. Além disso, a diferença do conjunto X para o conjunto Y é constituída por todos os elementos que pertencem a X, e não pertencem a Y. Comentários sobre a prova: Imf Img Df Imh,, 0,, 0,,0 GABARITO: C Grau de dificuldade absurdo. Muitos conteúdos requisitados na mesma questão foram o estilo da prova, que, assim, oferece tempo reduzidíssimo, induzindo o candidato até mesmo ao chute, o que entendo ser negativo no processo de avaliação de conhecimento. Muitas fórmulas precisavam ser ou consultadas no formulário ou mesmo lembradas. Quem fez pelo menos 5 acertos, dependendo do seu curso, fez uma boa prova. Grande abraço, Prof. Guiba

26 A 30 D 27 C 31 C 28 B 29 B

26 A 30 D 27 C 31 C 28 B 29 B 26 A O total de transplantes até julho de 2015 é de 912 transplantes. Destes, 487 são de córnea. Logo 487/912 53,39% transplantes são de córnea. 27 C O número de subnutridos caiu de 1,03 bilhões de pessoas

Leia mais

Resolução prova de matemática UDESC

Resolução prova de matemática UDESC Resolução prova de matemática UDESC 009. Prof. Guilherme Sada Ramos Guiba 1. O enunciado da questão omite a palavra, mas quer dizer que 0% dos aprovados passaram somente na disciplina A, 50% passaram somente

Leia mais

Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b. a) a = 3, b, b R. b) a = 3 e b = 1. c) a = 3 e b 1. d) a 3

Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b. a) a = 3, b, b R. b) a = 3 e b = 1. c) a = 3 e b 1. d) a 3 01 Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b a) a = 3, b, b R b) a = 3 e b = 1 c) a = 3 e b 1 d) a 3 1 0 y = 3x + 1 m = 3 A equação que apresenta uma reta com o mesmo coeficiente angular

Leia mais

MATEMÁTICA COMENTÁRIO DA PROVA DE MATEMÁTICA

MATEMÁTICA COMENTÁRIO DA PROVA DE MATEMÁTICA COMENTÁRIO DA PROVA DE MATEMÁTICA A prova manteve a característica dos anos anteriores quanto à boa qualidade, contextualização e originalidade nos enunciados. Boa abrangência: 01) Funções (relação entre

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA - UFRGS 2019

RESOLUÇÃO DA PROVA DE MATEMÁTICA - UFRGS 2019 RESOLUÇÃO DA PROVA DE MATEMÁTICA - UFRGS 2019 26. Resposta (D) I. Falsa II. Correta O número 2 é o único primo par. Se a é um número múltiplo de 3, e 2a sendo um número par, logo múltiplo de 2. Então 2a

Leia mais

1 35. b) c) d) 8. 2x 1 8x 4. 3x 3 8x 8. 4 tgα ˆ MAN é igual a 4. . e) Sendo x a medida do segmento CN, temos a seguinte figura:

1 35. b) c) d) 8. 2x 1 8x 4. 3x 3 8x 8. 4 tgα ˆ MAN é igual a 4. . e) Sendo x a medida do segmento CN, temos a seguinte figura: 7. Considere um retângulo ABCD em que o comprimento do lado AB é o dobro do comprimento do lado BC. Sejam M o ponto médio de BC e N o ponto médio de CM. A tangente do ângulo MAN ˆ é igual a a) 5. b) 5.

Leia mais

ITA º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

ITA º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR ITA - 2006 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Seja E um ponto externo a uma circunferência. Os segmentos e interceptam essa circunferência nos pontos B e A, e, C

Leia mais

MATEMÁTICA SARGENTO DA FAB

MATEMÁTICA SARGENTO DA FAB MATEMÁTICA BRUNA PAULA 1 COLETÂNEA DE QUESTÕES DE MATEMÁTICA DA EEAr (QUESTÕES RESOLVIDAS) QUESTÃO 1 (EEAr 2013) Se x é um arco do 1º quadrante, com sen x a e cosx b, então é RESPOSTA: d QUESTÃO 2 (EEAr

Leia mais

MATEMÁTICA MÓDULO 10 EQUAÇÕES E INEQUAÇÕES TRIGONOMÉTRICAS 1. EQUAÇÕES TRIGONOMÉTRICAS BÁSICAS 1.1. EQUAÇÃO EM SENO. sen a arcsena 2k, k arcsena 2k, k

MATEMÁTICA MÓDULO 10 EQUAÇÕES E INEQUAÇÕES TRIGONOMÉTRICAS 1. EQUAÇÕES TRIGONOMÉTRICAS BÁSICAS 1.1. EQUAÇÃO EM SENO. sen a arcsena 2k, k arcsena 2k, k EQUAÇÕES E INEQUAÇÕES TRIGONOMÉTRICAS. EQUAÇÕES TRIGONOMÉTRICAS BÁSICAS Vamos mostrar como resolver equações trigonométricas básicas, onde temos uma linha trigonométrica aplicada sobre uma função e igual

Leia mais

MATEMÁTICA FORMULÁRIO 11) A = onde. 13) Para z = a + bi, z = z = z (cosθ + i senθ) 14) (x a) 2 + (y b) 2 = r 2

MATEMÁTICA FORMULÁRIO 11) A = onde. 13) Para z = a + bi, z = z = z (cosθ + i senθ) 14) (x a) 2 + (y b) 2 = r 2 [ MATEMÁTICA FORMULÁRIO 0 o 45 o 60 o cosec x =, sen x 0 sen x sen cos tg sec x =, cos x 0 cos x sen x tg x =, cos x 0 cos x cos x cotg x =, sen x 0 sen x sen x + cos x = ) a n = a + (n ) r ) A = onde

Leia mais

1. Arcos de mais de uma volta. Vamos generalizar o conceito de arco, admitindo que este possa dar mais de uma volta completa na circunferência.

1. Arcos de mais de uma volta. Vamos generalizar o conceito de arco, admitindo que este possa dar mais de uma volta completa na circunferência. UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Trigonometria II Prof.: Rogério

Leia mais

Soluções Comentadas Matemática Processo Seletivo da Escola de Formação de Oficiais da Marinha Mercante

Soluções Comentadas Matemática Processo Seletivo da Escola de Formação de Oficiais da Marinha Mercante CURSO MENTOR Soluções Comentadas Matemática Processo Seletivo da Escola de Formação de Oficiais da Marinha Mercante Versão.8 05/0/0 Este material contém soluções comentadas das questões de matemática do

Leia mais

1.1. Expressão geral de arcos com uma mesma extremidade Expressão geral de arcos com uma mesma extremidade

1.1. Expressão geral de arcos com uma mesma extremidade Expressão geral de arcos com uma mesma extremidade UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA 1.1. Expressão geral de arcos

Leia mais

MATEMÁTICA - CEFET2013 Professor Marcelo QUESTÃO 01

MATEMÁTICA - CEFET2013 Professor Marcelo QUESTÃO 01 MATEMÁTICA - CEFET013 Professor Marcelo QUESTÃO 01 Em um plano, uma reta que passa pelo ponto P(8,10) tangencia a circunferência x +y 4x 6y 3 = 0 no ponto A. A medida do segmento PA, em unidades de comprimento,

Leia mais

RESUMÃO DE MATEMÁTICA PARA EsPCEx

RESUMÃO DE MATEMÁTICA PARA EsPCEx Prof. Arthur Lima, RESUMÃO DE MATEMÁTICA PARA EsPCEx Olá! Veja abaixo um resumo com os principais assuntos para a prova da EsPCEx! Bons estudos! Prof. Arthur Lima Equação de 1º grau b é do tipo ax b 0.

Leia mais

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial 178 Capítulo 10 Equação da reta e do plano no espaço 1. Equações paramétricas da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que

Leia mais

Matemática B Extensivo V. 6

Matemática B Extensivo V. 6 GRITO Matemática Etensivo V. 6 Eercícios 0) E 0) 0) omo essas retas são perpendiculares, temos que o coeficiente angular de uma das retas é o oposto e inverso da outra, ou seja, m reta. m reta a + a a

Leia mais

3 x + y y 17) V cilindro = πr 2 h

3 x + y y 17) V cilindro = πr 2 h MATEMÁTICA FORMULÁRIO 0 o 45 o 60 o cosec x =, sen x 0 sen x sen sec x =, cos x 0 cos x cos sen x tg x =, cos x 0 cos x tg cos x cotg x =, sen x 0 sen x ) a n = a + (n ). r 0) A = onde b h D = sen x +

Leia mais

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON PROFJWPS@GMAIL.COM DEFINIÇÕES GEOMETRIA PLANA Ponto: Um elemento do espaço que define uma posição. Reta: Conjunto infinito de pontos. Dois pontos são

Leia mais

MATEMÁTICA CADERNO 3 CURSO E. FRENTE 1 Álgebra. n Módulo 11 Módulo de um Número Real. 5) I) x + 1 = 0 x = 1 II) 2x 7 + x + 1 0

MATEMÁTICA CADERNO 3 CURSO E. FRENTE 1 Álgebra. n Módulo 11 Módulo de um Número Real. 5) I) x + 1 = 0 x = 1 II) 2x 7 + x + 1 0 MATEMÁTICA CADERNO CURSO E ) I) + 0 II) 7 + + 0 FRENTE Álgebra n Módulo Módulo de um Número Real ) 6 + < não tem solução, pois a 0, a ) A igualdade +, com + 0, é verificada para: ọ ) + 0 ou ọ ) + + + +

Leia mais

ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. Questão 01 [ 1,25 ]

ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. Questão 01 [ 1,25 ] MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 017 Gabarito Questão 01 [ 1,5 ] Encontre as medidas dos lados e ângulos de dois triângulos ABC diferentes tais que AC = 1, BC = e A BC = 0 Considere

Leia mais

PROVA 3 conhecimentos específicos

PROVA 3 conhecimentos específicos PROVA conhecimentos específicos MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Central do Vestibular Unificado GABARITO

Leia mais

Colégio Nossa Senhora de Lourdes. Matemática - Professor: Leonardo Maciel

Colégio Nossa Senhora de Lourdes. Matemática - Professor: Leonardo Maciel Colégio Nossa Senhora de Lourdes Matemática - Professor: Leonardo Maciel 1. (Pucrj 015) Uma pesquisa realizada com 45 atletas, sobre as atividades praticadas nos seus treinamentos, constatou que 15 desses

Leia mais

Exercícios de Aprofundamento Mat Geom Espacial

Exercícios de Aprofundamento Mat Geom Espacial 1. (Fuvest 015) No cubo ABCDEFGH, representado na figura abaixo, cada aresta tem medida 1. Seja M um ponto na semirreta de origem A que passa por E. Denote por θ o ângulo BMH e por x a medida do segmento

Leia mais

UPE/VESTIBULAR/2002 MATEMÁTICA

UPE/VESTIBULAR/2002 MATEMÁTICA UPE/VESTIBULAR/00 MATEMÁTICA 01 Os amigos Neto, Maria Eduarda, Daniela e Marcela receberam um prêmio de R$ 1000,00, que deve ser dividido, entre eles, em partes inversamente proporcionais às respectivas

Leia mais

UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE

UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE www.elitecampinas.com.br Fone: (19) -71 O ELITE RESOLVE IME 004 PORTUGUÊS/INGLÊS Você na elite das universidades! UNICAMP 004 SEGUNDA FASE MATEMÁTICA www.elitecampinas.com.br Fone: (19) 51-101 O ELITE

Leia mais

Assinale as proposições verdadeiras some os resultados e marque na Folha de Respostas.

Assinale as proposições verdadeiras some os resultados e marque na Folha de Respostas. PROVA DE MATEMÁTICA a AVALIAÇÃO UNIDADE 8 a SÉRIE E M _ COLÉGIO ANCHIETA-A ELAORAÇÃO DA PROVA: PROF OCTAMAR MARQUES PROFA MARIA ANTÔNIA CONCEIÇÃO GOUVEIA QUESTÕES DE A 8 Assinale as proposições verdadeiras

Leia mais

BANCO DE EXERCÍCIOS - 24 HORAS

BANCO DE EXERCÍCIOS - 24 HORAS BANCO DE EXERCÍCIOS - HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº GABARITO COMENTADO ) A função será y,5x +, onde y (preço a ser pago) está em função de x (número de quilômetros

Leia mais

RESPOSTAS ESPERADAS MATEMÁTICA

RESPOSTAS ESPERADAS MATEMÁTICA Questão 1 O trapézio em questão tem,8 m de base maior e m de base menor A diferença entre as bases é de 0,8 m, o que, dada a simetria do trapézio, implica uma diferença de 0,4 m de cada lado, como mostrado

Leia mais

PROVA 3 conhecimentos específicos

PROVA 3 conhecimentos específicos PROVA conhecimentos específicos MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Central do Vestibular Unificado GABARITO

Leia mais

PROVA 3 conhecimentos específicos

PROVA 3 conhecimentos específicos PROVA conhecimentos específicos MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Central do Vestibular Unificado GABARITO

Leia mais

PROVA 3 conhecimentos específicos

PROVA 3 conhecimentos específicos PROVA conhecimentos específicos MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Central do Vestibular Unificado GABARITO

Leia mais

Soluções Comentadas Matemática Curso Mentor Escola de Especialistas da Aeronáutica. Barbosa, L.S.

Soluções Comentadas Matemática Curso Mentor Escola de Especialistas da Aeronáutica. Barbosa, L.S. Soluções Comentadas Matemática Curso Mentor Escola de Especialistas da Aeronáutica Barbosa, L.S. leonardosantos.inf@gmail.com 4 de junho de 014 Sumário I Provas 5 1 Matemática 013 1 7 II Soluções 11 Matemática

Leia mais

REVISÃO DOS CONTEÚDOS

REVISÃO DOS CONTEÚDOS REVISÃO DOS CONTEÚDOS Prof. Patricia Caldana Seno, Cosseno e Tangente de um arco Dado um arco trigonométrico AP de medida α, chamam-se cosseno e seno de α a abscissa e a ordenada do ponto P, respetivamente.

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Fase

Prova final de MATEMÁTICA - 3o ciclo a Fase Prova final de MATEMÁTICA - 3o ciclo 015-1 a Fase Proposta de resolução Caderno 1 1. 1.1. Os alunos que têm uma altura inferior a 155 cm são os que medem 150 cm ou 15 cm. Assim, o número de alunos com

Leia mais

Capítulo 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 é assim definido:

Capítulo 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 é assim definido: Capítulo 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r é assim definido: (r1, r ) 0o se r1 e r são coincidentes, se as retas são concorrentes, isto é, r1

Leia mais

5) [log 5 (25 log 2 32)] 3 = [log 5 (5 2 log )] 3 = = [log 5 (5 2 5)] 3 = [log ] 3 = 3 3 = 27

5) [log 5 (25 log 2 32)] 3 = [log 5 (5 2 log )] 3 = = [log 5 (5 2 5)] 3 = [log ] 3 = 3 3 = 27 MATEMÁTICA CADERNO CURSO D ) [log ( log )] = [log ( log )] = = [log ( )] = [log ] = = 7 FRENTE ÁLGEBRA n Módulo Logaritmos: Definição e Eistência ) a) log 8 = = 8 = = b) log 8 = = 8 = = c) log = = ( )

Leia mais

= a = x x ) Se a 75%b então. x x 3x + 12 x 12 e x Logo, a divisão deverá ser feita a partir de 01/01/2016.

= a = x x ) Se a 75%b então. x x 3x + 12 x 12 e x Logo, a divisão deverá ser feita a partir de 01/01/2016. MATEMÁTICA 1 c Um supermercado adquiriu detergentes nos aromas limão e coco. A compra foi entregue, embalada em 10 caixas, com 4 frascos em cada caixa. Sabendo-se que cada caixa continha frascos de detergentes

Leia mais

GEOMETRIA ANALI TICA PONTO MEDIANA E BARICENTRO PLANO CARTESIANO DISTÂNCIA ENTRE DOIS PONTOS CONDIÇÃO DE ALINHAMENTO DE TRÊS PONTOS

GEOMETRIA ANALI TICA PONTO MEDIANA E BARICENTRO PLANO CARTESIANO DISTÂNCIA ENTRE DOIS PONTOS CONDIÇÃO DE ALINHAMENTO DE TRÊS PONTOS GEOMETRIA ANALI TICA PONTO PLANO CARTESIANO Vamos representar os pontos A (-2, 3) e B (4, -3) num plano cartesiano. MEDIANA E BARICENTRO A mediana é o segmento que une o ponto médio de um dos lados do

Leia mais

Matemática B Intensivo V. 2

Matemática B Intensivo V. 2 Matemática Intensivo V. Eercícios ) ) C ( ) (5 7) Usando a fórmula do ponto médio: X + X Y + Y C + 5 + 7 6 8 ( ) ERRT: considere (6 ). Temos d () d (C). ssim: ( 6) + ( b ) ( ) + ( 6 b) 9 + b 9 + b b +

Leia mais

NOTAÇÕES. Observação: Os sistemas de coordenadas considerados são os cartesianos retangulares.

NOTAÇÕES. Observação: Os sistemas de coordenadas considerados são os cartesianos retangulares. MATEMÁTICA NOTAÇÕES : conjunto dos números reais : conjunto dos números complexos i : unidade imaginária i = det M : determinante da matriz M M : inversa da matriz M MN : produto das matrizes M e N AB

Leia mais

SIMULADO 3 INSTITUTO TECNOLÓGICO DE AERONÁUTICA VESTIBULAR 2018 GABARITO

SIMULADO 3 INSTITUTO TECNOLÓGICO DE AERONÁUTICA VESTIBULAR 2018 GABARITO SIMULADO 3 INSTITUTO TECNOLÓGICO DE AERONÁUTICA VESTIBULAR 018 GABARITO Física Inglês Português Matemática 1 C 1 * 1 D 1 B B B E C 3 B 3 B 3 D 3 D 4 E 4 C 4 A 4 E 5 A 5 B 5 C 5 C 6 C 6 E 6 E 6 A 7 E 7

Leia mais

PROVAS DE NÍVEL MÉDIO DA FUNDATEC

PROVAS DE NÍVEL MÉDIO DA FUNDATEC PROVAS DE NÍVEL MÉDIO DA FUNDATEC Obs: Algumas questões das provas abaixo continham questões que não estavam de acordo com o edital atual da Câmara/POA. Nesses casos, cada questão foi retirada ou adaptada.

Leia mais

( ) ( ) FUVEST 08/01/ /11/2008 Seu pé direito nas melhores Faculdades MATEMÁTICA

( ) ( ) FUVEST 08/01/ /11/2008 Seu pé direito nas melhores Faculdades MATEMÁTICA FUVEST 08/0/009 //008 Seu pé direito nas melhores Faculdades MTEMÁTIC 0. Na figura, a reta r tem equação y x + no plano cartesiano Oxy. lém disso, os pontos 0,,, estão na reta r, sendo 0 0,). Os pontos

Leia mais

MATEMÁTICA I A) R$ 4 500,00 B) R$ 6 500,00 C) R$ 7 000,00 D) R$ 7 500,00 E) R$ 6 000,00

MATEMÁTICA I A) R$ 4 500,00 B) R$ 6 500,00 C) R$ 7 000,00 D) R$ 7 500,00 E) R$ 6 000,00 MATEMÁTCA 0. Pedro devia a Paulo uma determinada importância. No dia do vencimento, Pedro pagou 30% da dívida e acertou para pagar o restante no final do mês. Sabendo que o valor de R$ 3 500,00 corresponde

Leia mais

Relembrando: Ângulos, Triângulos e Trigonometria...

Relembrando: Ângulos, Triângulos e Trigonometria... Relembrando: Ângulos, Triângulos e Trigonometria... Este texto é apenas um resumo. Procure estudar esses assuntos em um livro apropriado. Ângulo é a região de um plano delimitada pelo encontro de duas

Leia mais

LISTA DE REVISÃO PROVA MENSAL 2º ANO 1º TRIMESTRE

LISTA DE REVISÃO PROVA MENSAL 2º ANO 1º TRIMESTRE ÁLGEBRA LISTA DE REVISÃO PROVA MENSAL º ANO 1º TRIMESTRE 1) O pêndulo de um relógio tem comprimento 0 cm e faz o movimento ilustrado na figura. Qual a medida do arco AB? A) 10 cm 0 cm 0π cm 0 D) cm E)

Leia mais

Questão 01 EB EA = EC ED. 6 x = 3. x =

Questão 01 EB EA = EC ED. 6 x = 3. x = Questão 0 Seja E um ponto eterno a uma circunferência. Os segmentos EA e ED interceptam essa circunferência nos pontos B e A, e, C e D, respectivamente. A corda AF da circunferência intercepta o segmento

Leia mais

1 = 0,20, teremos um aumento percentual de 20% no gasto com

1 = 0,20, teremos um aumento percentual de 20% no gasto com 6ROXomR&RPHQWDGDURYDGH0DWHPiWLFD 0. Suponha que o gasto com a manutenção de um terreno, em forma de quadrado, seja diretamente proporcional à medida do seu lado. Se uma pessoa trocar um terreno quadrado

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Chamada

Prova final de MATEMÁTICA - 3o ciclo a Chamada Prova final de MATEMÁTICA - 3o ciclo 013 - a Chamada Proposta de resolução 1. 1.1. Como se escolhe um aluno do primeiro turno, ou seja, um aluno com um número ímpar, existem 1 escolhas possíveis (1, 3,

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Fase

Prova final de MATEMÁTICA - 3o ciclo a Fase Prova final de MATEMÁTICA - o ciclo 015 - a Fase Proposta de resolução Caderno 1 1. Calculando o valor médio das temperaturas registadas, temos Resposta: Opção B 19 + 0 + + + 5 7 0 = 5 0 =,6..1. O triângulo

Leia mais

3º trimestre SALA DE ESTUDOS Data: 11/17 Ensino Médio 3º ano A, B e C. Prof. Maurício Nome: nº

3º trimestre SALA DE ESTUDOS Data: 11/17 Ensino Médio 3º ano A, B e C. Prof. Maurício Nome: nº º trimestre SALA DE ESTUDOS Data: 11/17 Ensino Médio º ano A, B e C. Prof. Maurício Nome: nº CONTEÚDOS: EQUAÇÃO DA RETA E EQUAÇÃO DA CIRCUNFERÊNCIA. 1. (Eear 017) O triângulo ABC a) escaleno b) isósceles

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Fase

Prova final de MATEMÁTICA - 3o ciclo a Fase Prova final de MATEMÁTICA - 3o ciclo 017-1 a Fase Proposta de resolução Caderno 1 1. Como 9 =,5 e 5,, temos que 5 < 9 indicados na definição do conjunto, vem que: e assim, representando na reta real os

Leia mais

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A Funções e Gráficos Generalidades. Funções polinomiais. Função módulo.

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A Funções e Gráficos Generalidades. Funções polinomiais. Função módulo. Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A Funções e Gráficos Generalidades. Funções polinomiais. Função módulo. Trabalho de casa nº 10 1. Na figura está representado, num referencial

Leia mais

1. A imagem da função real f definida por f(x) = é a) R {1} b) R {2} c) R {-1} d) R {-2}

1. A imagem da função real f definida por f(x) = é a) R {1} b) R {2} c) R {-1} d) R {-2} 1. A imagem da função real f definida por f(x) = é R {1} R {2} R {-1} R {-2} 2. Dadas f e g, duas funções reais definidas por f(x) = x 3 x e g(x) = sen x, pode-se afirmar que a expressão de (f o g)(x)

Leia mais

Prova Vestibular ITA 2000

Prova Vestibular ITA 2000 Prova Vestibular ITA Versão. ITA - (ITA ) Sejam f, g : R R definidas por f ( ) = e g cos 5 ( ) =. Podemos afirmar que: f é injetora e par e g é ímpar. g é sobrejetora e f é bijetora e g é par e f é ímpar

Leia mais

04) 4 05) 2. ˆ B determinam o arco, portanto são congruentes, 200π 04)

04) 4 05) 2. ˆ B determinam o arco, portanto são congruentes, 200π 04) RESOLUÇÃO DA PROVA FINAL DE MATEMÁTICA - ANO 007 a SÉRIE DO E.M. _ COLÉGIO ANCHIETA BA ELABORAÇÃO: PROF. OCTAMAR MARQUES. PROFA. MARIA ANTÔNIA GOUVEIA. QUESTÃO 0) Na figura, o raio do círculo é igual a

Leia mais

TD GERAL DE MATEMÁTICA 2ª FASE UECE

TD GERAL DE MATEMÁTICA 2ª FASE UECE Fundação Universidade Estadual do Ceará - FUNECE Curso Pré-Vestibular - UECEVest Fones: 3101.9658 / E-mail: uecevest_itaperi@yahoo.com.br Av. Dr. Silas Munguba, 1700 Campus do Itaperi 60714-903 Fone: 3101-9658/Site:

Leia mais

RETA E CIRCUNFERÊNCIA

RETA E CIRCUNFERÊNCIA RETA E CIRCUNFERÊNCIA - 016 1. (Unifesp 016) Na figura, as retas r, s e t estão em um mesmo plano cartesiano. Sabe-se que r e t passam pela origem desse sistema, e que PQRS é um trapézio. a) Determine

Leia mais

EXTENSIVO APOSTILA 03 EXERCÍCIOS DE SALA MATEMÁTICA A

EXTENSIVO APOSTILA 03 EXERCÍCIOS DE SALA MATEMÁTICA A EXTENSIVO APOSTILA 03 EXERCÍCIOS DE SALA MATEMÁTICA A AULA 07 01) f(x) = (x) + f(x) = 4x + f(x) g(x) = (x) g(x) = 4x = g(x) h(x) = (x) h(x) = 4x h(x) 0) Se é uma função linear, pode-se escreer como f(x)

Leia mais

No triângulo formado pelos ponteiros do relógio e pelo seguimento que liga suas extremidades apliquemos a lei dos cossenos: 3 2

No triângulo formado pelos ponteiros do relógio e pelo seguimento que liga suas extremidades apliquemos a lei dos cossenos: 3 2 COLÉGIO ANCHIETA-BA a AVALIAÇÃO de MATEMÁTICA _UNIDADE IV_ o ANO EM PROVA ELABORADA POR PROF OCTAMAR MARQUES. PROFA. MARIA ANTONIA CONCEIÇÃO GOUVEIA 0. Os ponteiros de um relógio têm comprimentos iguais

Leia mais

III CAPÍTULO 21 ÁREAS DE POLÍGONOS

III CAPÍTULO 21 ÁREAS DE POLÍGONOS 1 - RECORDANDO Até agora, nós vimos como calcular pontos, retas, ângulos e distâncias, mas não vimos como calcular a área de nenhuma figura. Na aula de hoje nós vamos estudar a área de polígonos: além

Leia mais

Resolução do Vestibular UDESC 2019/1. Logo o dado foi jogado 8 vezes

Resolução do Vestibular UDESC 2019/1. Logo o dado foi jogado 8 vezes As faces do cubo são os primos: 2, 3, 5, 7, 11 e 13 Fatorando 1171170 temos: 1171170 2 585585 3 195195 3 65065 5 13013 7 1859 11 169 13 13 13 1 Logo o dado foi jogado 8 vezes 1 2 A 1 3 1 1 4 2 0 1 2 0

Leia mais

MATEMÁTICA COMENTÁRIO DA PROVA. Professores de Matemática do Curso Positivo.

MATEMÁTICA COMENTÁRIO DA PROVA. Professores de Matemática do Curso Positivo. COMENTÁRIO DA PROVA Na intenção de estabelecer um comentário mais abranjente, vamos analisar a prova sob a luz de 5 critérios: I. Correção dos enunciados: A prova comete duas imprecisões: na questão nº

Leia mais

Matemática B Semi-Extensivo V. 3

Matemática B Semi-Extensivo V. 3 GRITO Matemática Semi-Etensivo V. (, e (, M, Então: M = M = M = M = Eercícios D Substituindo em I, temos: = =. = = Então, = ( = 8 M(, (, (, M = M = 8 M = M = D Sabendo que o eio é o da abcissa e que o

Leia mais

NOTAÇÕES. Obs.: São cartesianos ortogonais os sistemas de coordenadas considerados

NOTAÇÕES. Obs.: São cartesianos ortogonais os sistemas de coordenadas considerados ITA006 NOTAÇÕES : conjunto dos números complexos : conjunto dos números racionais i: unidade imaginária; i z = x+ iy, x, y = 1 : conjunto dos números reais : conjunto dos números inteiros = {0, 1,, 3,...

Leia mais

NOTAÇÕES. R N C i z. ]a, b[ = {x R : a < x < b} (f g)(x) = f(g(x)) n. = a 0 + a 1 + a a n, sendo n inteiro não negativo.

NOTAÇÕES. R N C i z. ]a, b[ = {x R : a < x < b} (f g)(x) = f(g(x)) n. = a 0 + a 1 + a a n, sendo n inteiro não negativo. R N C i z det A d(a, B) d(p, r) AB Â NOTAÇÕES : conjunto dos números reais : conjunto dos números naturais : conjunto dos números complexos : unidade imaginária: i = 1 : módulo do número z C : determinante

Leia mais

Resolvendo inequações: expressões com desigualdades (encontrar os valores que satisfazem a expressão)

Resolvendo inequações: expressões com desigualdades (encontrar os valores que satisfazem a expressão) R é ordenado: Se a, b, c R i) a < b se e somente se b a > 0 (a diferença do maior com o menor será positiva) ii) se a > 0 e b > 0 então a + b > 0 (a soma de dois números positivos é positiva) iii) se a

Leia mais

a k. x a k. : conjunto dos números complexos i: unidade imaginária; i 2 = 1 z : módulo do número z z: conjugado do número z M m n

a k. x a k. : conjunto dos números complexos i: unidade imaginária; i 2 = 1 z : módulo do número z z: conjugado do número z M m n ITA MATEMÁTICA NOTAÇÕES = {,,,...} : conjunto dos números reais [a, b] = {x ; a x b} [a, b[ = {x ; a x < b} ]a, b[ = {x ; a < x < b} A\B = {x; x A e x B} k a n = a + a +... + a k, k n = k a n x n = a 0

Leia mais

MATEMÁTICA. 01. Um polígono convexo que possui todos os lados congruentes e todos os ângulos internos congruentes é chamado de...

MATEMÁTICA. 01. Um polígono convexo que possui todos os lados congruentes e todos os ângulos internos congruentes é chamado de... Página 1 de 12 MATEMÁTICA 01. Um polígono convexo que possui todos os lados congruentes e todos os ângulos internos congruentes é chamado de... ( a ) Excêntrico. ( b ) Côncavo. ( c ) Regular. ( d ) Isósceles.

Leia mais

a) b) 5 3 sen 60 o = x. 2 2 = 5. 3 x = x = No triângulo da figura abaixo, o valor do x é igual a: a) 7 c) 2 31 e) 7 3 b) 31 d) 31 3

a) b) 5 3 sen 60 o = x. 2 2 = 5. 3 x = x = No triângulo da figura abaixo, o valor do x é igual a: a) 7 c) 2 31 e) 7 3 b) 31 d) 31 3 Matemática a. série do Ensino Médio Frentes e Eercícios propostos AULA FRENTE Num triângulo ABC em que AB = 5, B^ = º e C^ = 5º, a medida do lado AC é: a) 5 b) 5 c) 5 d) 5 e) 5 Sabendo-se que um dos lados

Leia mais

Exemplo Aplicando a proporcionalidade existente no Teorema de Tales, determine o valor dos segmentos AB e BC na ilustração a seguir:

Exemplo Aplicando a proporcionalidade existente no Teorema de Tales, determine o valor dos segmentos AB e BC na ilustração a seguir: GEOMETRIA PLANA TEOREMA DE TALES O Teorema de Tales pode ser determinado pela seguinte lei de correspondência: Se duas retas transversais são cortadas por um feixe de retas paralelas, então a razão entre

Leia mais

Plano de Aulas. Matemática. Módulo 10 Ciclo trigonométrico (1 volta)

Plano de Aulas. Matemática. Módulo 10 Ciclo trigonométrico (1 volta) Plano de Aulas Matemática Módulo 0 Ciclo trigonométrico ( volta) Resolução dos exercícios propostos Retomada dos conceitos CAPÍTULO 0,07 rad _ 80 rad x? x. 0, 07 rad _ x rad 80 a), rad C x C x C 0 x C

Leia mais

ADA 1º BIMESTRE CICLO I MATEMÁTICA 3ª SÉRIE DO ENSINO MÉDIO. (B)y = x + 3 (C)y = 2x + 3 (D)y = 3x - 3 (E)y = 5x + 5 Gabarito: D.

ADA 1º BIMESTRE CICLO I MATEMÁTICA 3ª SÉRIE DO ENSINO MÉDIO. (B)y = x + 3 (C)y = 2x + 3 (D)y = 3x - 3 (E)y = 5x + 5 Gabarito: D. ADA 1º BIMESTRE CICLO I MATEMÁTICA ª SÉRIE DO ENSINO MÉDIO ITEM 1 DA ADA Observe as equações da reta a seguir: I) y = x 1 II) y 4x = III) y 4x + = 0 IV) y + 1 = x V) y + 1 = (x 1 ) Dessas equações, a que

Leia mais

Simulado ITA. 3. O número complexo. (x + 4) (1 5x) 3x 2 x + 5

Simulado ITA. 3. O número complexo. (x + 4) (1 5x) 3x 2 x + 5 Simulado ITA 1. E m relação à teoria dos conjuntos, considere as seguintes afirmativas relacionadas aos conjuntos A, B e C: I. Se A B e B C então A C. II. Se A B e B C então A C. III. Se A B e B C então

Leia mais

MATEMÁTICA Professores: Andrey, Cristiano e Julio

MATEMÁTICA Professores: Andrey, Cristiano e Julio MATEMÁTICA Professores: Andrey, Cristiano e Julio Questões Substituindo os valores dados na fórmula teremos: x 1 = x 0+1 = (x 0 )2 +a 2.x 0 = (2)2 +5 = 9 2.2 4 e x 2 = x 1+1 = (x 1 )2 +a = ( 9 4 )2 +5

Leia mais

Questão 1. Considere os conjuntos S = {0, 2, 4, 6}, T = {1, 3, 5} e U = {0, 1} e as. A ( ) apenas I. B ( ) apenas IV. C ( ) apenas I e IV.

Questão 1. Considere os conjuntos S = {0, 2, 4, 6}, T = {1, 3, 5} e U = {0, 1} e as. A ( ) apenas I. B ( ) apenas IV. C ( ) apenas I e IV. NOTAÇÕES C : conjunto dos números complexos. [a, b] = {x R ; a x b}. Q : conjunto dos números racionais. ]a, b[= {x R ; a < x < b}. R : conjunto dos números reais. i : unidade imaginária ; i = 1. Z : conjunto

Leia mais

Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira:

Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira: Aula 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r se define da seguinte maneira: (r1, r ) 0o se r1 e r são coincidentes, Se as retas são concorrentes, isto

Leia mais

LISTA DE REVISÃO PROVA MENSAL 2º ANO 1º TRIMESTRE

LISTA DE REVISÃO PROVA MENSAL 2º ANO 1º TRIMESTRE ÁLGEBRA LISTA DE REVISÃO PROVA MENSAL º ANO 1º TRIMESTRE 1) O pêndulo de um relógio tem comprimento 0 cm e faz o movimento ilustrado na figura. Qual a medida do arco AB? A) 10 cm 0 cm 0π cm 0 D) cm E)

Leia mais

:: Matemática :: 1 lâmpada incandescente a cada 16,3 dias aproximadamente 1 lâmpada fluorescente a cada 128,6 dias aproximadamente 128,6 7,9 16,3

:: Matemática :: 1 lâmpada incandescente a cada 16,3 dias aproximadamente 1 lâmpada fluorescente a cada 128,6 dias aproximadamente 128,6 7,9 16,3 Questão 26 - Alternativa D Proporcionalidade Dados: Em 24 horas temos: 25 0,2 = 5 ml por minuto 25 gotas por minuto 0,2 ml por gota 24. 60 = 1440 minutos 5 ml _ 1 minuto x _ 1.440 minutos x = 5 1.440 =

Leia mais

PROFESSOR ARTHUR LIMA ESTRATÉGIA CONCURSOS

PROFESSOR ARTHUR LIMA ESTRATÉGIA CONCURSOS TÉCNICO(A) DE ADMINISTRAÇÃO E CONTROLE JÚNIOR TÉCNICO(A) DE COMERCIALIZAÇÃO E LOGÍSTICA JÚNIOR PROFESSOR ARTHUR LIMA ESTRATÉGIA CONCURSOS CESGRANRIO PETROBRÁS 2018) Uma mercadoria no valor A será comprada

Leia mais

Prova 3 Matemática. N ọ DE INSCRIÇÃO:

Prova 3 Matemática. N ọ DE INSCRIÇÃO: Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta

Leia mais

Prova 3 Matemática. N ọ DE INSCRIÇÃO:

Prova 3 Matemática. N ọ DE INSCRIÇÃO: Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta

Leia mais

Prova 3 Matemática. N ọ DE INSCRIÇÃO:

Prova 3 Matemática. N ọ DE INSCRIÇÃO: Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta

Leia mais

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial 76 Capítulo 4 Distâncias no plano e regiões no plano 1. Distância de um ponto a uma reta Dados um ponto P e uma reta r no plano, já sabemos calcular a distância de P a cada ponto P r. Definição 1 Definimos

Leia mais

NOTAÇÕES. : inversa da matriz M : produto das matrizes M e N : segmento de reta de extremidades nos pontos A e B

NOTAÇÕES. : inversa da matriz M : produto das matrizes M e N : segmento de reta de extremidades nos pontos A e B NOTAÇÕES R C : conjunto dos números reais : conjunto dos números complexos i : unidade imaginária i = 1 det M : determinante da matriz M M 1 MN AB : inversa da matriz M : produto das matrizes M e N : segmento

Leia mais

Prova 3 Matemática. N ọ DE INSCRIÇÃO:

Prova 3 Matemática. N ọ DE INSCRIÇÃO: Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta

Leia mais

Plano cartesiano, Retas e. Alex Oliveira. Circunferência

Plano cartesiano, Retas e. Alex Oliveira. Circunferência Plano cartesiano, Retas e Alex Oliveira Circunferência Sistema cartesiano ortogonal O sistema cartesiano ortogonal é formado por dois eixos ortogonais(eixo x e eixo y). A intersecção dos eixos x e y é

Leia mais

Provas de Acesso ao Ensino Superior Para Maiores de 23 Anos

Provas de Acesso ao Ensino Superior Para Maiores de 23 Anos Provas de Acesso ao Ensino Superior Para Maiores de 23 Anos Candidatura de 207 EXAME DE MATEMÁTICA Tempo para realização da prova: 2 horas Tolerância: 30 minutos Material admitido: material de escrita

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web 1 (Ita 018) Uma progressão aritmética (a 1, a,, a n) satisfaz a propriedade: para cada n, a soma da progressão é igual a n 5n Nessas condições, o determinante da matriz a1 a a a4 a5 a 6 a a a 7 8 9 a)

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Chamada

Prova final de MATEMÁTICA - 3o ciclo a Chamada Prova final de MATEMÁTICA - 3o ciclo 013-1 a Chamada Proposta de resolução 1. Como o João escolhe 1 de entre 9 bolas, o número de casos possíveis para as escolhas do João são 9. Como os números, 3, 5 e

Leia mais

Matemática GEOMETRIA PLANA. Professor Dudan

Matemática GEOMETRIA PLANA. Professor Dudan Matemática GEOMETRIA PLANA Professor Dudan Ângulos Geometria Plana Ângulo é a região de um plano concebida pelo encontro de duas semirretas que possuem uma origem em comum, chamada vértice do ângulo. A

Leia mais

TIPO-A. Matemática. 03. Considere os números naturais a = 25, b = 2, c = 3, d = 4 e analise as afirmações seguintes:

TIPO-A. Matemática. 03. Considere os números naturais a = 25, b = 2, c = 3, d = 4 e analise as afirmações seguintes: 2 Matemática 01. Recorde que uma função f: R R diz-se par quando f( x) = f(x) para todo x real, e que f diz-se ímpar quando f( x) = f(x) para todo x real. Com base nessas definições, analise a veracidade

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Fase

Prova final de MATEMÁTICA - 3o ciclo a Fase Prova final de MATEMÁTICA - 3o ciclo 2016-2 a Fase Proposta de resolução Caderno 1 1. Calculando a diferença entre 3 1 e cada uma das opções apresentadas, arredondada às centésimas, temos que: 3 1 2,2

Leia mais

Teste Intermédio de MATEMÁTICA - 9o ano 11 de maio de 2010

Teste Intermédio de MATEMÁTICA - 9o ano 11 de maio de 2010 Teste Intermédio de MATEMÁTICA - 9o ano de maio de 200 Proposta de resolução. Como são 0 autocolantes no total (número de casos possíveis), dos quais têm imagens de aves (retirando ao número total o número

Leia mais

Módulo de Círculo Trigonométrico. Relação Fundamental da Trigonometria. 1 a série E.M.

Módulo de Círculo Trigonométrico. Relação Fundamental da Trigonometria. 1 a série E.M. Módulo de Círculo Trigonométrico Relação Fundamental da Trigonometria a série EM Círculo Trigonométrico Relação Fundamental da Trigonometria Exercícios Introdutórios Exercício Se sen x /, determine Exercício

Leia mais

( )( ) = =

( )( ) = = GABARITO IME MATEMÁTICA Questão Assinale a alternativa verdadeira: (A) 06 0 < 07 06

Leia mais

2 Uma caixa d'água cúbica, de volume máximo, deve ser colocada entre o telhado e a laje de uma casa, conforme mostra a figura ao lado.

2 Uma caixa d'água cúbica, de volume máximo, deve ser colocada entre o telhado e a laje de uma casa, conforme mostra a figura ao lado. MATEMÁTICA Uma pessoa possui a quantia de R$7.560,00 para comprar um terreno, cujo preço é de R$5,00 por metro quadrado. Considerando que os custos para obter a documentação do imóvel oneram o comprador

Leia mais