Resolução prova de matemática UDESC

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Resolução prova de matemática UDESC"

Transcrição

1 Resolução prova de matemática UDESC 009. Prof. Guilherme Sada Ramos Guiba 1. O enunciado da questão omite a palavra, mas quer dizer que 0% dos aprovados passaram somente na disciplina A, 50% passaram somente na C e 5% somente nas disciplinas A e C. O número de aprovados na disciplina A é 50% de 40, ou seja, 0; na B, 70% de 40, ou 8; e na C, 65% de 40, quer dizer, 6. Como 5% dos aprovados passaram somente nas disciplinas A e C, o número de aprovados deve ser múltiplo de 0. Isto ocorre pois 5% deste número deverá ser inteiro, já que se refere à quantidade de aprovados nas disciplinas. Como temos mais de 0 alunos aprovados nas disciplinas B e C, a o total de alunos é 40, o número de aprovados deverá ser 40 (múltiplo de 0 que não ultrapassa 40). Logo, 4 alunos passaram nas disciplinas (10% de 40). Além disso, alunos (5% de 40) passaram somente nas disciplinas A e C. Como 1 (0% de 40) passaram somente na disciplina A, restam aprovados somente em A e B. Como 0 (50% de 40) alunos foram aprovados somente na C, então nenhum foi aprovado apenas em B e C. Restam aprovados somente na disciplina B, para fecharmos o total de 40 aprovados. x+ y+ z = 15 x y + z =. Resolvendo o sistema, temos. y+ z = z=-y Substituindo a expressão de z nas duas primeiras equações: ( ) ( ) x+ y+ y = 15 x y + y = x+ y+ y = 15 x y + 9 6y = x y = 1 x 7y = 7 GABARITO: E Resolvendo o sistema de duas equações, obtemos x = 7 e y =. Substituindo y na expressão, obtemos. I) ERRADO! II) CORRETO!, número par III) ERRADO! IV) ERRADO!, número não-primo

2 ( ) ( ) ( ) ( ) s = = = = = = = = 8 8 GABARITO: B 4. Pelo enunciado, p(x) é da forma p(x) = (x c)³(x )²x. Logo, GABARITO: C ( ) ( ) ( ) ( ) ( c) ( ) ( 1) = 16 = ( 1 c) p x = x c x x p 1 = 16 = p ( c) ( c) 8= 1 8 = 1 = 1 c 1= c c = 1 GABARITO: A 5. Seja x o número de alunos e y o preço que cada um deve pagar. Ficamos com o sistema (não-linear) de equações ( x )( y ) equação, obtemos xy = 450. Desenvolvendo a segunda +, 5 = 450 ( x )( y ) +, 5 = 450 xy y +, 5x 5 = y+, 5x 5 = 450, 5x y 5 = Isolando y na primeira equação do sistema, temos y =. Substituindo esta x expressão de y na equação obtida anteriormente, vamos ter:, 5x y 5 = 0 450, 5x 5 = 0 x 900,5x 5 = 0 (multiplicando os dois lados por x) x x x = ( 10) ( 10) 4( 5)( 1800) 5 ( ) ± x = 10 ± ± 6100 x = x = ± 190 x = 10 Como solução negativa não interessa, temos x = = =

3 GABARITO: D 6. A matriz em questão é A = = I) ERRADO! Como a soma das duas primeiras linhas resulta na terceira linha da matriz, o determinante da mesma é nulo. Sendo assim, a matriz não é inversível. II) CORRETO! De fato, a primeira linha é uma PA de razão e primeiro termo iguais a 1. De modo análogo, a segunda é PA de razão e primeiro termo iguais a, e a terceira é uma PA de razão e primeiro termos iguais a. III) ERRADO! As três colunas da matriz estão em progressão aritmética, iguais às do item (II), e não em progressão geométrica. GABARITO: C 7. Aplicando as propriedades de PA ( ) e PG ( ) de termos, ( y 1) x 7x ( x+ 1) = y( x 1) = + obtemos o sistema. Isolando y na primeira equação, temos ( y 1) = 8x y 1= 4x y = 4x+ 1. Substituindo esta expressão na segunda, vamos ter: ( x 1) ( 4x 1)( x 1) + = + x + x+ 1= 4x 4x+ x 1 x + 5x+ = 0 5 ± 5 4. ( ). x =. ( ) 5 ± x = 6 5 ± 49 5 ± 7 x = = x = = = ou x = = = Queremos calcular o produto da razão da PA ( ) pela razão da PG ( ). x + 1 Fazendo rq =. x e substituindo x tanto por como por 1, teremos rq =. 4 x + 1 Observe como não foi necessário calcularmos o y do sistema. GABARITO: E 8. O volume de um cilindro é dado por V =, a área da base, A B = e a área lateral, por A L =. Logo, pelos dados do enunciado:

4 π rh= πr h= π rh = πr h r =. = = 4 4 O triângulo em questão é retângulo, com catetos medindo 4 (valor de h) e (duas vezes o valor de r). I)..4 1 ERRADO! A área do triângulo retângulo é 6 II) CORRETO! Calculando a hipotenusa do triângulo retângulo temos: hip = cat + cat = + 4 = = 5 hip = 5 = 5 E, de fato, o perímetro do triângulo é = 1 unidades de comprimento. III) ERRADO! Como cosseno de qualquer arco é menor ou igual a 1, a soma de dois cossenos quaisquer deverá ser sempre menor ou igual a, jamais maior. GABARITO: B 9. Veja o desenho: Para calcularmos a equação da circunferência, precisamos saber o centro (x 0, y 0 ) das duas curvas, e o raio da circunferência, que será igual ao semi-eixo real da hipérbole. Acompanhe: x x y = 16 x x+ 16 9y 18 = (somando 16 dos dois lados) 16( x 1) ( x ) ( x ) y = 144 (dividindo os dois lados por 144) y 144 = ( x 1) y = Esta hipérbole, da forma ( x x ) ( y y ) 0 0 a 1 b =, possui centro (1, 0) e semi-eixo real igual a, já que ² = 9. Logo, o centro da circunferência procurada é o ponto (1, 0) e o raio da mesma,.

5 Sabendo que uma circunferência é representada por uma equação da forma ( ) ( ) 0 0 x x + y y = r, teremos que: ( x ) ( y ) = x x+ 1+ y = 9 x y x + 8= 0 GABARITO: B 10. O domínio é dado pelos valores reais x tais que x 0. Então, deve ocorrer: x + x 0 x + (x 0 x 0) e ( x+ > 0 x > ) x 0 ou (x 0 x 0) e ( x+ < 0 x< ) x < Assim, ou x 0, ou x <. E esta é a solução correta. Note que, no desenvolvimento mostrado, não consta a possibilidade de as expressões x e (x + ) serem negativas. Portanto, o desenvolvimento é incorreto. 11. Vamos sobrepor os gráficos das funções f e g. GABARITO: A Os valores de x em que o gráfico de f está acima de g (é isto que a questão pede) são todos os valores reais menores que a abscissa do ponto A ou maiores que a abscissa do ponto B. Vamos calcular as duas abscissas. Para isto, calculamos as raízes da equação f(x) = g(x). Mas, cuidado: como estamos falando de um módulo maior que

6 g(x), então g(x) não pode ser negativa, nem nula. Assim, podemos afirmar que x 6> 0 x > 6 x >. Assim, da equação f(x) = g(x), só interessarão raízes maiores que. ( ) ( ) f x = g x 4 = 6 x x x 4 = 6 x x x x 7x+ 6 = 0 (por soma e produto) x = 1 ou x = 6 ( ) ( ) ou f x = g x x 4x = x 6 x 4x = ( x 6) x 4x = x+ 6 x x 6 = 0 (por soma e produto) x = ou x = Assim, as abscissas procuradas são e 6. Logo, todos os valores reais menores que, ou maiores que 6, satisfazem a inequação dada. GABARITO: E 1. O lucro do filme Quem quer ser um milionário? é determinado pela diferença entre o valor da bilheteria e o do orçamento. Neste caso, L = = = Ou seja, o lucro é aproximadamente 1167% do valor do orçamento do filme. GABARITO: D 1. Os valores de x devem ser tais que x > 0 e x > 0, para satisfazer a condição de existência dos logaritmos. Logo, x deverá ser maior que. Quer dizer, vamos ter que resolver a inequação no conjunto dos números reais maiores que. log x = log x. Calculando o Lembre-se de que, como é o inverso de, ( ) ( ) determinante, temos: ( x ) ( x ) 1 log log 1 log 1 ( x ) log ( x ) = = ( x ) ( x ) ( x ) ( x ) = 1 log + log 1 = log + log = 1 ( x )( x ) = log

7 Substituindo o determinante do enunciado pelo logaritmo encontrado chegamos a ( x )( x ) ( x )( x ) log 1 = log x 5x+ 6 x 5x+ 4 0 Resolvendo a inequação, obtemos, por soma e produto ou Bháskara, as raízes 1 e 4 para a função y = x² - 5x + 4. Como o gráfico está abaixo, ou sobre o eixo x nos pontos de abscissa 1 a 4, então a solução da inequação seria o intervalo [ 1, 4 ]. Porém, como só queremos soluções maiores que, então, nosso conjunto solução será o intervalo (, 4 ]. GABARITO: C 14. Acompanhe os cálculos 1 log ( cos x) + log ( sen x) = log log ( x x) sen x 1 = log cos.sen log log log ( cos x.sen x) = log 4 cos x.sen x = (multiplicando os dois lados por ) 4 cos x.sen x =. 4 sen x = π Como x 0,, então x ( 0, ) iguais a são π π e. Assim, π. Nos dois primeiros quadrantes, os arcos de seno

8 π π x = x = 6 ou π π x = x = Somando as soluções, π π π+ π π π + = = = GABARITO: C 15. É importante notar que temos cidades do sudeste, 4 do nordeste, do norte, do sul e 4 do centro-oeste. Pelo enunciado, temos 4 cenários possíveis das escolhas das cidades. Não importando a ordem das cidades vamos calcular combinações, além de aplicar o Princípio Fundamental da Contagem. Lembre-se de que. do sudeste, do nordeste, do norte, 1 do sul e 4 do centro-oeste 1 4 São C. C. C. C. C = = 54 possibilidades. 4 4 do sudeste, do nordeste, do norte, do sul e do centro-oeste São C. C. C. C. C = = 16 possibilidades. 4 4 do sudeste, do nordeste, do norte, 1 do sul e do centro-oeste 1 São C. C. C. C. C = = 7 possibilidades. 4 4 do sudeste, do nordeste, do norte, do sul e do centro-oeste São C. C. C. C. C = = 108 possibilidades. 4 4 Somando as possibilidades dos 4 casos, temos = 450. GABARITO: A Comentário sobre a prova: Prova absolutamente difícil. Desde questões articulando conteúdos, como as questões 1 e 14, até outras requisitando um raciocínio um pouco mais elaborado dentro de um mesmo assunto. Na questão 15, por exemplo, o vestibulando tem que perceber a existência das quatro maneiras diferentes de escolher a quantidade de cidades por região. Pouca matemática básica é vista, o que abre espaço para questões do conteúdo específico de Ensino Médio, onde a banca sempre pode incrementar uma dificuldade a mais na questão. A questão 1 não teve seu enunciado devidamente claro dentro do que pedia, tendo como proposta ser uma questão relativamente fácil. Outro detalhe interessante foi a grande abrangência da prova dentro do programa do vestibular. Quando se trata de avaliar o conhecimento do programa curricular do Ensino Médio, uma prova abrangente e elaborada como esta torna-se razoavelmente eficiente. Serve como parâmetro (alto nível) para avaliar sua preparação para a prova da UFSC no final do ano. Creio que 9, 10 acertos já seja um ótimo índice. Mas se você fez menos, não se desanime. Reveja o que errou e tente reforçar o conteúdo correspondente. Lembre-se: a primeira pessoa a acreditar em você deve ser você mesmo(a)... Prof. Guiba

26 A 30 D 27 C 31 C 28 B 29 B

26 A 30 D 27 C 31 C 28 B 29 B 26 A O total de transplantes até julho de 2015 é de 912 transplantes. Destes, 487 são de córnea. Logo 487/912 53,39% transplantes são de córnea. 27 C O número de subnutridos caiu de 1,03 bilhões de pessoas

Leia mais

Como a PA é decrescente, a razão é negativa. Então a PA é dada por

Como a PA é decrescente, a razão é negativa. Então a PA é dada por Detalhamento das Soluções dos Exercícios de Revisão do mestre 1) A PA será dada por Temos Então a PA será dada por:, e como o produto é 440: Como a PA é decrescente, a razão é negativa. Então a PA é dada

Leia mais

IME º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

IME º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR IME - 2006 1º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Sejam a 1 = 1 i, a n = r + si e a n+1 = (r s) + (r + s)i (n > 1) termos de uma sequência. DETERMINE, em função de n,

Leia mais

RESOLUÇÃO MATEMÁTICA 2ª FASE

RESOLUÇÃO MATEMÁTICA 2ª FASE RESOLUÇÃO MATEMÁTICA ª FASE UFPR 01. Encontre o conjunto solução em IR das seguintes inequações: a) 5 x x. 5 x x x 3 (-1) 3 x 3 S x R / x b) 3x 1 3. 3x 1 3 3 3x 1 3 3x 1 3 e 3x 1 3 3x 4 3x 4 x x 3 3 4

Leia mais

{ } Questão 1. Considere as seguintes afirmações sobre o conjunto U = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Questão 2. Seja o conjunto = { : 0 e 2 2

{ } Questão 1. Considere as seguintes afirmações sobre o conjunto U = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Questão 2. Seja o conjunto = { : 0 e 2 2 NOTAÇÕES : conjunto dos números complexos. : conjunto dos números racionais. : conjunto dos números reais. : conjunto dos números inteiros. = 0,,,,.... { } { } * =,,,.... i : unidade imaginária; i =. z=x+iy,

Leia mais

ITA º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

ITA º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR ITA - 2006 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Seja E um ponto externo a uma circunferência. Os segmentos e interceptam essa circunferência nos pontos B e A, e, C

Leia mais

Matemática Unidade I Álgebra Série 15 - Progressão geométrica. a 4 = a 1 q 3 54 = 2 q 3 q 3 = 27 q = 3. a 5 = a 1 q 4 a 5 = a 5 = 162

Matemática Unidade I Álgebra Série 15 - Progressão geométrica. a 4 = a 1 q 3 54 = 2 q 3 q 3 = 27 q = 3. a 5 = a 1 q 4 a 5 = a 5 = 162 0 a 4 = a q 3 54 = q 3 q 3 = 7 q = 3 a 5 = a q 4 a 5 = 3 4 a 5 = 6 Resposta: C 0 a 8 = a q 4 43 = 3 q6 3 5 3 = q 6 q 6 = 3 6 Como os termos são positivos, q > 0; assim: q = 3 a 5 = a q 3 a 5 = 3 33 a 5

Leia mais

Módulo de Círculo Trigonométrico. Relação Fundamental da Trigonometria. 1 a série E.M.

Módulo de Círculo Trigonométrico. Relação Fundamental da Trigonometria. 1 a série E.M. Módulo de Círculo Trigonométrico Relação Fundamental da Trigonometria a série EM Círculo Trigonométrico Relação Fundamental da Trigonometria Exercícios Introdutórios Exercício Se sen x /, determine Exercício

Leia mais

ITA 2004 MATEMÁTICA. Você na elite das universidades! ELITE

ITA 2004 MATEMÁTICA. Você na elite das universidades! ELITE www.elitecampinas.com.br Fone: () -7 O ELITE RESOLVE IME PORTUGUÊS/INGLÊS Você na elite das universidades! ITA MATEMÁTICA www.elitecampinas.com.br Fone: () -7 O ELITE RESOLVE ITA MATEMÁTICA GABARITO ITA

Leia mais

Resolução prova de matemática UDESC

Resolução prova de matemática UDESC Resolução prova de matemática UDESC 00. Prof. Guilherme Sada Ramos Guiba ) Pelo enunciado, devemos pressupor que todos os itens que o jovem puder escolher para o carro, ele escolherá. Feito isso, percebemos

Leia mais

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 16/10/2016 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES: 1.

Leia mais

TD GERAL DE MATEMÁTICA 2ª FASE UECE

TD GERAL DE MATEMÁTICA 2ª FASE UECE Fundação Universidade Estadual do Ceará - FUNECE Curso Pré-Vestibular - UECEVest Fones: 3101.9658 / E-mail: uecevest_itaperi@yahoo.com.br Av. Dr. Silas Munguba, 1700 Campus do Itaperi 60714-903 Fone: 3101-9658/Site:

Leia mais

POLINÕMIOS E EQUAÇÕES POLINOMIAIS 2016

POLINÕMIOS E EQUAÇÕES POLINOMIAIS 2016 POLINÕMIOS E EQUAÇÕES POLINOMIAIS 06. (Unicamp 06) Considere o polinômio cúbico p() a, onde a é um número real. a) No caso em que p() 0, determine os valores de para os quais a matriz A abaio não é invertível.

Leia mais

Soluções Comentadas Matemática Processo Seletivo da Escola de Formação de Oficiais da Marinha Mercante

Soluções Comentadas Matemática Processo Seletivo da Escola de Formação de Oficiais da Marinha Mercante CURSO MENTOR Soluções Comentadas Matemática Processo Seletivo da Escola de Formação de Oficiais da Marinha Mercante Versão.8 05/0/0 Este material contém soluções comentadas das questões de matemática do

Leia mais

Colégio Nossa Senhora de Lourdes. Matemática - Professor: Leonardo Maciel

Colégio Nossa Senhora de Lourdes. Matemática - Professor: Leonardo Maciel Colégio Nossa Senhora de Lourdes Matemática - Professor: Leonardo Maciel 1. (Pucrj 015) Uma pesquisa realizada com 45 atletas, sobre as atividades praticadas nos seus treinamentos, constatou que 15 desses

Leia mais

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa D. alternativa B. alternativa E

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa D. alternativa B. alternativa E Questão TIPO DE PROVA: A Os números compreendidos entre 400 e 500, divisíveis ao mesmo tempo por 8 e 75, têm soma: a) 600 d) 700 b) 50 e) 800 c) 50 Questão Na figura, temos os esboços dos gráficos de f

Leia mais

MATEMÁTICA Professores: Andrey, Cristiano e Julio

MATEMÁTICA Professores: Andrey, Cristiano e Julio MATEMÁTICA Professores: Andrey, Cristiano e Julio Questões Substituindo os valores dados na fórmula teremos: x 1 = x 0+1 = (x 0 )2 +a 2.x 0 = (2)2 +5 = 9 2.2 4 e x 2 = x 1+1 = (x 1 )2 +a = ( 9 4 )2 +5

Leia mais

Matemática E Intensivo V. 1

Matemática E Intensivo V. 1 GABARITO Matemática E Intensivo V. Exercícios 0) 5 0) 5 Seja o termo geral = 3n, então: Par =, temos: a = 3. = 3 = Par =, temos: a = 3. = 6 = 5 Par = 3, temos: a 3 = 3. 3 = 9 = 8 Então a + a + a 3 = +

Leia mais

2. (Ufrj 2003) Os números reais a, b, c e d formam, nesta ordem, uma progressão aritmética. Calcule o determinante da matriz

2. (Ufrj 2003) Os números reais a, b, c e d formam, nesta ordem, uma progressão aritmética. Calcule o determinante da matriz 1 Projeto Jovem Nota 10 1. (Uff 2000) Numa progressão aritmética, de termo geral aš e razão r, tem-se a=r=1/2. Calcule o determinante da matriz mostrada na figura adiante. 2. (Ufrj 2003) Os números reais

Leia mais

MATEMÁTICA E SUAS TECNOLOGIAS

MATEMÁTICA E SUAS TECNOLOGIAS MATEMÁTICA E SUAS TECNOLOGIAS Lista de Exercícios de Matemática / º ano Professor(: Leonardo Data: / JANEIRO / 06. De sonhos e Aluno(: Questão 0) Um casal tem três filhos cujas idades estão em progressão

Leia mais

MATEMÁTICA FORMULÁRIO 11) A = onde. 13) Para z = a + bi, z = z = z (cosθ + i senθ)

MATEMÁTICA FORMULÁRIO 11) A = onde. 13) Para z = a + bi, z = z = z (cosθ + i senθ) [ MATEMÁTICA FORMULÁRIO 0 o 45 o 60 o cosec =, sen 0 sen sen cos tg cotg = sec =, cos 0 cos tg = sen cos, cos 0 cos sen, sen 0 sen + cos = ) a n = a + (n ) r ) A = onde b h D = ou y A = D y y a + an )

Leia mais

GABARITO DE MATEMÁTICA INSTITUTO MILITAR DE ENGENHARIA

GABARITO DE MATEMÁTICA INSTITUTO MILITAR DE ENGENHARIA GABARITO DE MATEMÁTICA INSTITUTO MILITAR DE ENGENHARIA Realizada em 6 de outubro de 010 Questão 01 GABARITO DISCURSIVA A base de um prisma reto ABCA 1 B 1 C 1 é um triângulo com o lado AB igual ao lado

Leia mais

Soluções Comentadas Matemática Curso Mentor Centro Federal de Educação Tecnológica CEFET. Barbosa, L.S.

Soluções Comentadas Matemática Curso Mentor Centro Federal de Educação Tecnológica CEFET. Barbosa, L.S. Soluções Comentadas Matemática Curso Mentor Centro Federal de Educação Tecnológica CEFET Barbosa, L.S. leonardosantos.inf@gmail.com 28 de outubro de 201 2 Sumário I Provas 5 1 Vestibular 2011/2012 7 1.1

Leia mais

Seno e Cosseno de arco trigonométrico

Seno e Cosseno de arco trigonométrico Caderno Unidade II Série Segmento: Pré-vestibular Resoluções Coleção: Alfa, Beta e Gama Disciplina: Matemática Volume: Unidade II: Série Seno e Cosseno de arco trigonométrico. sen90 cos80 sen70 ( ) ( )

Leia mais

BANCO DE EXERCÍCIOS - 24 HORAS

BANCO DE EXERCÍCIOS - 24 HORAS BANCO DE EXERCÍCIOS - HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº GABARITO COMENTADO ) A função será y,5x +, onde y (preço a ser pago) está em função de x (número de quilômetros

Leia mais

UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE

UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE www.elitecampinas.com.br Fone: (19) -71 O ELITE RESOLVE IME 004 PORTUGUÊS/INGLÊS Você na elite das universidades! UNICAMP 004 SEGUNDA FASE MATEMÁTICA www.elitecampinas.com.br Fone: (19) 51-101 O ELITE

Leia mais

COMENTÁRIO DA PROVA DE MATEMÁTICA

COMENTÁRIO DA PROVA DE MATEMÁTICA COMENTÁRIO DA PROVA DE MATEMÁTICA Comparando com a prova do ano anterior é possível observar uma melhora. Para analisar a prova, utilizamos alguns critérios que julgamos necessários numa avaliação de conhecimento.

Leia mais

Obter as equações paramétricas das cônicas.

Obter as equações paramétricas das cônicas. MÓDULO 1 - AULA 1 Aula 1 Equações paramétricas das cônicas Objetivo Obter as equações paramétricas das cônicas. Estudando as retas no plano, você viu que a reta s, determinada pelos pontos P = (x 1, y

Leia mais

Ordenar ou identificar a localização de números racionais na reta numérica.

Ordenar ou identificar a localização de números racionais na reta numérica. Ordenar ou identificar a localização de números racionais na reta numérica. Estabelecer relações entre representações fracionárias e decimais dos números racionais. Resolver situação-problema utilizando

Leia mais

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 16/10/2016 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES: 1.

Leia mais

MATEMÁTICA MÓDULO 10 EQUAÇÕES E INEQUAÇÕES TRIGONOMÉTRICAS 1. EQUAÇÕES TRIGONOMÉTRICAS BÁSICAS 1.1. EQUAÇÃO EM SENO. sen a arcsena 2k, k arcsena 2k, k

MATEMÁTICA MÓDULO 10 EQUAÇÕES E INEQUAÇÕES TRIGONOMÉTRICAS 1. EQUAÇÕES TRIGONOMÉTRICAS BÁSICAS 1.1. EQUAÇÃO EM SENO. sen a arcsena 2k, k arcsena 2k, k EQUAÇÕES E INEQUAÇÕES TRIGONOMÉTRICAS. EQUAÇÕES TRIGONOMÉTRICAS BÁSICAS Vamos mostrar como resolver equações trigonométricas básicas, onde temos uma linha trigonométrica aplicada sobre uma função e igual

Leia mais

1. (Espcex 2013) A figura geométrica formada pelos afixos das raízes complexas da equação a) 7 3 b) 6 3 c) 5 3 d) 4 3 e) 3 3

1. (Espcex 2013) A figura geométrica formada pelos afixos das raízes complexas da equação a) 7 3 b) 6 3 c) 5 3 d) 4 3 e) 3 3 Complexos 06. (Espcex 0) A figura geométrica formada pelos afixos das raízes complexas da equação a) 7 b) 6 c) 5 d) e) x 8 0 tem área igual a. (Unicamp 0) Chamamos de unidade imaginária e denotamos por

Leia mais

MATEMÁTICA UFRGS 2010 RESOLVIDA PELO PROF. REGIS CORTES

MATEMÁTICA UFRGS 2010 RESOLVIDA PELO PROF. REGIS CORTES MATEMÁTICA UFRGS 2010 RESOLVIDA PELO PROF. REGIS CORTES Nesta prova serão utilizados os seguintes símbolos e conceitos com os respectivos significados: l x l : módulo no número x i : unidade imaginária

Leia mais

Números Complexos. é igual a a) 2 3 b) 3. d) 2 2 2

Números Complexos. é igual a a) 2 3 b) 3. d) 2 2 2 Números Complexos 1. (Epcar (Afa) 01) Considerando os números complexos z 1 e z, tais que: z 1 é a raiz cúbica de 8i que tem afixo no segundo quadrante z é raiz da equação x x 1 0 Pode-se afirmar que z1

Leia mais

PROVA 3 conhecimentos específicos

PROVA 3 conhecimentos específicos PROVA conhecimentos específicos MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Central do Vestibular Unificado GABARITO

Leia mais

MATEMÁTICA. Um pintor pintou 30% de um muro e outro pintou 60% do que sobrou. A porcentagem do muro que falta pintar

MATEMÁTICA. Um pintor pintou 30% de um muro e outro pintou 60% do que sobrou. A porcentagem do muro que falta pintar MATEMÁTICA d Um pintor pintou 0% de um muro e outro pintou 60% do que sobrou. A porcentagem do muro que falta pintar é: a) 0% b) % c) % d) 8% e) % ) 60% de 70% % ) 00% % 0% 8% d Se (x y) (x + y) 0, então

Leia mais

1) (Unicamp) Três planos de telefonia celular são apresentados na tabela abaixo:

1) (Unicamp) Três planos de telefonia celular são apresentados na tabela abaixo: Exercícios resolvidos e comentados 1) (Unicamp) Três planos de telefonia celular são apresentados na tabela abaixo: Plano Custo fixo mensal Custo adicional por minuto A R$ 35,00 R$ 0,50 B R$ 20,00 R$ 0,80

Leia mais

Rumo Curso Pré Vestibular Assistencial - RCPVA Disciplina: Matemática Professor: Vinícius Nicolau 24 de Outubro de 2014

Rumo Curso Pré Vestibular Assistencial - RCPVA Disciplina: Matemática Professor: Vinícius Nicolau 24 de Outubro de 2014 Sumário 1 Questões de Vestibular 1 1.1 UP 014...................................... 1 1.1.1 Questão 1................................. 1 1.1. Questão................................. 1 1.1.3 Questão 3.................................

Leia mais

( )( ) = =

( )( ) = = GABARITO IME MATEMÁTICA Questão Assinale a alternativa verdadeira: (A) 06 0 < 07 06

Leia mais

Soluções Comentadas Matemática Curso Mentor Provas de Matemática do Concurso de Admissão à Escola Naval PSAEN/CPAEN

Soluções Comentadas Matemática Curso Mentor Provas de Matemática do Concurso de Admissão à Escola Naval PSAEN/CPAEN Soluções Comentadas Matemática Curso Mentor Provas de Matemática do Concurso de Admissão à Escola Naval PSAEN/CPAEN Barbosa, L.S. leonardosantos.inf@gmail.com 1 de setembro de 01 Sumário I Provas 5 1

Leia mais

UFSC Parte 2. Prof. BAIANO

UFSC Parte 2. Prof. BAIANO UFSC Parte Prof. BAIANO UFSC. Se f : é a função definida por f( ) = sen, então f() >. rad 6 rad 6 + + 6 36 4 - - INCORRETO UFSC 4. Na Figura, a reta r é tangente à circunferência λ, de centro no ponto

Leia mais

MATEMÁTICA I A) R$ 4 500,00 B) R$ 6 500,00 C) R$ 7 000,00 D) R$ 7 500,00 E) R$ 6 000,00

MATEMÁTICA I A) R$ 4 500,00 B) R$ 6 500,00 C) R$ 7 000,00 D) R$ 7 500,00 E) R$ 6 000,00 MATEMÁTCA 0. Pedro devia a Paulo uma determinada importância. No dia do vencimento, Pedro pagou 30% da dívida e acertou para pagar o restante no final do mês. Sabendo que o valor de R$ 3 500,00 corresponde

Leia mais

MATEMÁTICA COMENTÁRIO DA PROVA DE MATEMÁTICA

MATEMÁTICA COMENTÁRIO DA PROVA DE MATEMÁTICA COMENTÁRIO DA PROVA DE MATEMÁTICA A prova manteve a característica dos anos anteriores quanto à boa qualidade, contextualização e originalidade nos enunciados. Boa abrangência: 01) Funções (relação entre

Leia mais

PROVA 3 conhecimentos específicos

PROVA 3 conhecimentos específicos PROVA conhecimentos específicos MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Central do Vestibular Unificado GABARITO

Leia mais

CPV O Cursinho que Mais Aprova na GV

CPV O Cursinho que Mais Aprova na GV CPV O Cursino que Mais Aprova na GV FGV ADM Objetiva Prova A 09/dez/0 MATEMÁTICA 0. O PIB per capita de um país, em determinado ano, é o PIB daquele ano dividido pelo número de abitantes. Se, em um determinado

Leia mais

COLÉGIO CENECISTA PEDRO ANTÔNIO FAYAL CLUBE DE MATEMÁTICA BRUNA ANDRADE ARTHUR LEÃO PEDRO PAULO DO NASCIMENTO PROFESSOR THIAGO MORETI

COLÉGIO CENECISTA PEDRO ANTÔNIO FAYAL CLUBE DE MATEMÁTICA BRUNA ANDRADE ARTHUR LEÃO PEDRO PAULO DO NASCIMENTO PROFESSOR THIAGO MORETI COLÉGIO CENECISTA PEDRO ANTÔNIO FAYAL CLUBE DE MATEMÁTICA BRUNA ANDRADE ARTHUR LEÃO PEDRO PAULO DO NASCIMENTO PROFESSOR THIAGO MORETI RESOLUÇÃO COMENTADA DA PROVA DE MATEMÁTICA DO ENEC 2014 ITAJAI 2015

Leia mais

Simulado AFA. 2. Sejam x e y números reais tais que: Então, o número complexo z = x + yi. é tal que z 3 e z valem, respectivamente: (D) i e 1.

Simulado AFA. 2. Sejam x e y números reais tais que: Então, o número complexo z = x + yi. é tal que z 3 e z valem, respectivamente: (D) i e 1. Simulado AFA 1. Uma amostra de estrangeiros, em que 18% são proficientes em inglês, realizou um exame para classificar a sua proficiência nesta língua. Dos estrangeiros que são proficientes em inglês,

Leia mais

O conhecimento é a nossa propaganda.

O conhecimento é a nossa propaganda. Lista de Exercícios 1 Trigonometria Gabaritos Comentados dos Questionários 01) (UFSCAR 2002) O valor de x, 0 x π/2, tal que 4.(1 sen 2 x).(sec 2 x 1) = 3 é: a) π/2. b) π/3. c) π/4. d) π/6. e) 0. 4.(1 sen

Leia mais

GABARITO. tg B = tg B = TC BC, com B = 60 e tg 60 = 3 BC BC. 3 = TC BC = TC 3. T Substituindo (2) em (1): TC. 3 = 3TC 160.

GABARITO. tg B = tg B = TC BC, com B = 60 e tg 60 = 3 BC BC. 3 = TC BC = TC 3. T Substituindo (2) em (1): TC. 3 = 3TC 160. Matemática Intensivo V. Eercícios 0) No triângulo abaio: teto adjacente ao ângulo. omo 5 e,8 km, vamos relacionar essas informações através da razão tangente: tg cat. oposto cat. adjacente y om: 5, cateto

Leia mais

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional MA11 Números e Funções Reais Avaliação 2 GABARITO 22 de junho de 201 1. Em cada um dos itens abaixo, dê, se possível,

Leia mais

NOTAÇÕES MATEMÁTICAS UTILIZADAS

NOTAÇÕES MATEMÁTICAS UTILIZADAS Prova de MTMÁTI - Modelo R R R + R + R R Q Q Z Z + Z N N f(x) f(a) log a sen α cos α tg α cotg α cossec α x n! NOTÇÕS MTMÁTIS UTILIZS - conjunto dos números reais - conjunto dos números reais não nulos

Leia mais

1. Arcos de mais de uma volta. Vamos generalizar o conceito de arco, admitindo que este possa dar mais de uma volta completa na circunferência.

1. Arcos de mais de uma volta. Vamos generalizar o conceito de arco, admitindo que este possa dar mais de uma volta completa na circunferência. UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Trigonometria II Prof.: Rogério

Leia mais

Esta é só uma amostra do livro do Prof César Ribeiro.

Esta é só uma amostra do livro do Prof César Ribeiro. Esta é só uma amostra do livro do Prof César Ribeiro Para adquirir este (e outros livros do autor) vá ao site: http://wwwescolademestrescom/dicasemacetes Conheça também nosso Blog: http://blogescolademestrescom

Leia mais

SIMULADO. conhecimento específico. CONHECIMENTO ESPECÍFICo - MATEMÁTICA

SIMULADO. conhecimento específico. CONHECIMENTO ESPECÍFICo - MATEMÁTICA MATEMÁTICA conhecimento específico 1 01. CONJUNTOS Interessado em lançar os modelos A, B e C de sandálias, em uma determinada região do estado, foi realizada uma pesquisa sobre a preferência de compra

Leia mais

Nome: 2 sen (2x) < cos x < 3. Calcular sen 105 Calcular cos 105 Calcular tg 105 (PUC) Se tg (x + y) = 33 e tg x = 3, então tg y é igual a:

Nome: 2 sen (2x) < cos x < 3. Calcular sen 105 Calcular cos 105 Calcular tg 105 (PUC) Se tg (x + y) = 33 e tg x = 3, então tg y é igual a: MATEMÁTICA Série: F Módulos,, 5, 6, 7 e 8 Nome: Resolver as inequações de a supondo 0 x π. sen x Para que valores de x, 0 x π, temos sen x e cos x? tg x cos x Resolver, em, as inequações de a. cos x 0

Leia mais

VESTIBULAR DA UFBA- FASE 2/ PROVA DE MATEMÁTICA. Resolução e comentários pela professora Maria Antônia C. Gouveia. QUESTÕES DE 01 A 06.

VESTIBULAR DA UFBA- FASE 2/ PROVA DE MATEMÁTICA. Resolução e comentários pela professora Maria Antônia C. Gouveia. QUESTÕES DE 01 A 06. VESTIBULAR DA UFBA- FASE / 00-0- PROVA DE MATEMÁTICA Resolução e comentários pela professora Maria Antônia C. Gouveia. UESTÕES DE 0 A 06. LEIA CUIDADOSAMENTE O ENUNCIADO DE CADA UESTÃO, FORMULE SUAS RESPOSTAS

Leia mais

1ª Parte Questões de Múltipla Escolha. Matemática

1ª Parte Questões de Múltipla Escolha. Matemática c UFSCar ª Parte Questões de Múltipla Escolha Matemática O gráfico em setores do círculo de centro O representa a distribuição das idades entre os eleitores de uma cidade. O diâmetro AB mede 0 cm e o comprimento

Leia mais

MATEMÁTICA - CEFET2013 Professor Marcelo QUESTÃO 01

MATEMÁTICA - CEFET2013 Professor Marcelo QUESTÃO 01 MATEMÁTICA - CEFET013 Professor Marcelo QUESTÃO 01 Em um plano, uma reta que passa pelo ponto P(8,10) tangencia a circunferência x +y 4x 6y 3 = 0 no ponto A. A medida do segmento PA, em unidades de comprimento,

Leia mais

Derivadas Parciais Capítulo 14

Derivadas Parciais Capítulo 14 Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS Como vimos no Capítulo 4, no Volume I, um dos principais usos da derivada ordinária é na determinação dos valores máximo e mínimo. DERIVADAS PARCIAIS 14.7

Leia mais

Módulo de Equações do Segundo Grau. Relações entre coeficientes e raízes. Nono Ano

Módulo de Equações do Segundo Grau. Relações entre coeficientes e raízes. Nono Ano Módulo de Equações do Segundo Grau Relações entre coeficientes e raízes. Nono Ano Relações entre Coeficientes e Raízes. Exercícios Introdutórios Exercício. Fazendo as operações de soma e de produto entre

Leia mais

3 O ANO EM. Lista 19. Matemática II. f(x) g (x). g, 0,g 1 R R as seguintes funções: x 2 x 2 g 0(x) 2 g 0(4x 6) g 0(4x 6) g 1(x) 2 RAPHAEL LIMA

3 O ANO EM. Lista 19. Matemática II. f(x) g (x). g, 0,g 1 R R as seguintes funções: x 2 x 2 g 0(x) 2 g 0(4x 6) g 0(4x 6) g 1(x) 2 RAPHAEL LIMA 3 O ANO EM Matemática II RAPHAEL LIMA Lista 19 1. (Pucrj 017) Dadas as funções f,g R R definidas por f(x) x 13x 36 - e g(x) - x 1. a) Encontre os pontos de interseção dos gráficos das duas funções. b)

Leia mais

Exercícios de Aprofundamento Mat Geom Espacial

Exercícios de Aprofundamento Mat Geom Espacial 1. (Fuvest 015) No cubo ABCDEFGH, representado na figura abaixo, cada aresta tem medida 1. Seja M um ponto na semirreta de origem A que passa por E. Denote por θ o ângulo BMH e por x a medida do segmento

Leia mais

Matemática E Extensivo V. 6

Matemática E Extensivo V. 6 Etensivo V. 6 Eercícios ) a) P() é sempre igual à soma dos coeficientes de P(). b) P() é sempre igual ao termo independente de P(). c) P() é a raiz de P(), pois P() =. ) D a) P() = ³ + 7. ² 7. P() = +

Leia mais

Progressão aritmética e progressão geométrica

Progressão aritmética e progressão geométrica Progressão aritmética e progressão geométrica Qualquer conjunto cujos elementos obedecem a uma ordem é uma sequência. No cotidiano, encontramos várias sequências: a lista de chamada de uma turma, as palavras

Leia mais

Matemática 41 c Resolução 42 b Resolução 43 e OBJETIVO 2001

Matemática 41 c Resolução 42 b Resolução 43 e OBJETIVO 2001 Matemática c Numa barraca de feira, uma pessoa comprou maçãs, bananas, laranjas e peras. Pelo preço normal da barraca, o valor pago pelas maçãs, bananas, laranjas e peras corresponderia a 5%, 0%, 5% e

Leia mais

Matemática 3 Módulo 3

Matemática 3 Módulo 3 Matemática Módulo COMENTÁRIOS ATIVIDADES PARA SALA 1. Lembrando... Se duas figuras são semelhantes, temos: 1 A = k; 1 = k, em que R 1 e R são medidas lineares A e A 1 e A são as áreas. Círculo I IV. =

Leia mais

o anglo resolve a prova de Matemática do ITA

o anglo resolve a prova de Matemática do ITA o anglo resolve a prova de Matemática do ITA Código: 880 É trabalho pioneiro. Prestação de serviços com tradição de confiabilidade. Construtivo, procura colaborar com as Bancas Examinadoras em sua tarefa

Leia mais

Exercícios de Matemática Trigonometria Equações Trigonométricas

Exercícios de Matemática Trigonometria Equações Trigonométricas Exercícios de Matemática Trigonometria Equações Trigonométricas 1. (Ufpe) Quantas soluções a equação sen x + [(sen x)/2] + [(sen x)/4] +... = 2, cujo lado esquerdo consiste da soma infinita dos termos

Leia mais

Resolução do Simulado Camiseta Preta

Resolução do Simulado Camiseta Preta Resolução do Simulado amiseta Preta Questão 01 Vejamos a simulação da quantidade de partidas que um time deverá jogar em ambos os anos nesta competição. Primeiro Ano Primeira Fase 6 = 6 6 = 6 partidas

Leia mais

a) b) 5 3 sen 60 o = x. 2 2 = 5. 3 x = x = No triângulo da figura abaixo, o valor do x é igual a: a) 7 c) 2 31 e) 7 3 b) 31 d) 31 3

a) b) 5 3 sen 60 o = x. 2 2 = 5. 3 x = x = No triângulo da figura abaixo, o valor do x é igual a: a) 7 c) 2 31 e) 7 3 b) 31 d) 31 3 Matemática a. série do Ensino Médio Frentes e Eercícios propostos AULA FRENTE Num triângulo ABC em que AB = 5, B^ = º e C^ = 5º, a medida do lado AC é: a) 5 b) 5 c) 5 d) 5 e) 5 Sabendo-se que um dos lados

Leia mais

AFRFB 2014 Resolução da Prova de Raciocínio Lógico

AFRFB 2014 Resolução da Prova de Raciocínio Lógico AFRFB 014 Resolução da Prova de Raciocínio Lógico Raciocínio Lógico-Quantitativo p/ RFB Resolução da Prova AFRFB 014 Questão 6: ESAF - AFRFB 014 Se é verdade que alguns adultos são felizes e que nenhum

Leia mais

FGV ADM 04/JUNHO/2017

FGV ADM 04/JUNHO/2017 FGV ADM 0/JUNHO/017 MATEMÁTICA 01. Habitualmente, dois supermercados A e B vendem garrafas de certa marca de vinho por p reais a unidade. Em determinada semana, o supermercado A anunciou uma promoção para

Leia mais

FGV ADM 04/JUNHO/2017

FGV ADM 04/JUNHO/2017 FGV ADM 0/JUNHO/017 MATEMÁTICA 01. Habitualmente, dois supermercados A e B vendem garrafas de certa marca de vinho por p reais a unidade. Em determinada semana, o supermercado A anunciou uma promoção para

Leia mais

MATRIZ DE REFERÊNCIA-Ensino Médio Componente Curricular: Matemática

MATRIZ DE REFERÊNCIA-Ensino Médio Componente Curricular: Matemática MATRIZ DE REFERÊNCIA-Ensino Médio Componente Curricular: Matemática Conteúdos I - Conjuntos:. Representação e relação de pertinência;. Tipos de conjuntos;. Subconjuntos;. Inclusão;. Operações com conjuntos;.

Leia mais

MATEMÁTICA COMENTÁRIO DA PROVA. Professores de Matemática do Curso Positivo.

MATEMÁTICA COMENTÁRIO DA PROVA. Professores de Matemática do Curso Positivo. COMENTÁRIO DA PROVA Na intenção de estabelecer um comentário mais abranjente, vamos analisar a prova sob a luz de 5 critérios: I. Correção dos enunciados: A prova comete duas imprecisões: na questão nº

Leia mais

1. Com o auxílio de régua graduada e transferidor, calcular sen 42, cos 42 e tg 42. Resolução Traçamos uma perpendicular a um dos lados desse ângulo:

1. Com o auxílio de régua graduada e transferidor, calcular sen 42, cos 42 e tg 42. Resolução Traçamos uma perpendicular a um dos lados desse ângulo: Atividades Complementares 1. Com o auxílio de régua graduada e transferidor, calcular sen 4, cos 4 e tg 4. Traçamos uma perpendicular a um dos lados desse ângulo: Medimos, com auxílio da régua, os lados

Leia mais

RESUMÃO DE MATEMÁTICA PARA EsPCEx

RESUMÃO DE MATEMÁTICA PARA EsPCEx Prof. Arthur Lima, RESUMÃO DE MATEMÁTICA PARA EsPCEx Olá! Veja abaixo um resumo com os principais assuntos para a prova da EsPCEx! Bons estudos! Prof. Arthur Lima Equação de 1º grau b é do tipo ax b 0.

Leia mais

Soluções Comentadas Matemática Curso Mentor Escola de Especialistas da Aeronáutica. Barbosa, L.S.

Soluções Comentadas Matemática Curso Mentor Escola de Especialistas da Aeronáutica. Barbosa, L.S. Soluções Comentadas Matemática Curso Mentor Escola de Especialistas da Aeronáutica Barbosa, L.S. leonardosantos.inf@gmail.com 4 de junho de 014 Sumário I Provas 5 1 Matemática 013 1 7 II Soluções 11 Matemática

Leia mais

= 2 sen(x) (cos(x) (b) (7 pontos) Pelo item anterior, temos as k desigualdades. sen 2 (2x) sen(4x) ( 3/2) 3

= 2 sen(x) (cos(x) (b) (7 pontos) Pelo item anterior, temos as k desigualdades. sen 2 (2x) sen(4x) ( 3/2) 3 Problema (a) (3 pontos) Sendo f(x) = sen 2 (x) sen(2x), uma função π-periódica, temos que f (x) = 2 sen(x) cos(x) sen(2x) + sen 2 (x) 2 cos(2x) = 2 sen(x) (cos(x) sen(2x) + sen(x) cos(2x) ) = 2 sen(x)

Leia mais

Matemática B Intensivo V. 1

Matemática B Intensivo V. 1 Matemática Intensivo V. Eercícios 0) No triângulo abaio: teto adjacente ao ângulo. omo 5 e,8 km, vamos relacionar essas informações através da razão tangente: tg cat. oposto cat. adjacente y om: 5, cateto

Leia mais

TESTES. 5. (UFRGS) Os ponteiros de um relógio marcam duas. horas e vinte minutos. O menor ângulo entre os ponteiros é

TESTES. 5. (UFRGS) Os ponteiros de um relógio marcam duas. horas e vinte minutos. O menor ângulo entre os ponteiros é TESTES (UFRGS) O valor de sen 0 o cos 60 o é 0 (Ufal) Se a medida de um arco, em graus, é igual a 8, sua medida em radianos é igual a ( /) 7 (6/) (6/) (UFRGS) Os ponteiros de um relógio marcam duas horas

Leia mais

Matemática 1 a QUESTÃO

Matemática 1 a QUESTÃO Matemática a QUESTÃO IME-007/008 Temos que: i) sen 3 x + cos 3 x = (senx + cosx) (sen x senxcosx + cos x) = (senx + cosx) ( senxcosx) ii) sen xcos x = ( + senxcosx) ( senxcosx) Então, a equação dada é

Leia mais

Matemática Matrizes e Determinantes

Matemática Matrizes e Determinantes . (Unesp) Um ponto P, de coordenadas (x, y) do a plano cartesiano ortogonal, é representado pela matriz 5. (Unicamp) Considere a matriz M b a, onde coluna assim como a matriz coluna b a e b são números

Leia mais

Prova de Matemática ( ) Questão 01 Gabarito A + = Portanto, a expressão é divisível por n 1. Questão 02 Gabarito C

Prova de Matemática ( ) Questão 01 Gabarito A + = Portanto, a expressão é divisível por n 1. Questão 02 Gabarito C Prova de Matemática Questão Gabarito A n! + n n( n )( n! ) ( n ) ( n ) n( n! ) + + Portanto, a epressão é divisível por n. Questão Gabarito C Consideremos uma situação inicial de paridade dólar-real, em

Leia mais

NOTAÇÕES. : inversa da matriz M : produto das matrizes M e N : segmento de reta de extremidades nos pontos A e B

NOTAÇÕES. : inversa da matriz M : produto das matrizes M e N : segmento de reta de extremidades nos pontos A e B NOTAÇÕES R C : conjunto dos números reais : conjunto dos números complexos i : unidade imaginária i = 1 det M : determinante da matriz M M 1 MN AB : inversa da matriz M : produto das matrizes M e N : segmento

Leia mais

Prova 3 Matemática. N ọ DE INSCRIÇÃO:

Prova 3 Matemática. N ọ DE INSCRIÇÃO: Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta

Leia mais

Prova 3 Matemática. N ọ DE INSCRIÇÃO:

Prova 3 Matemática. N ọ DE INSCRIÇÃO: Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta

Leia mais

Prova 3 Matemática. N ọ DE INSCRIÇÃO:

Prova 3 Matemática. N ọ DE INSCRIÇÃO: Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta

Leia mais

1 = 0,20, teremos um aumento percentual de 20% no gasto com

1 = 0,20, teremos um aumento percentual de 20% no gasto com 6ROXomR&RPHQWDGDURYDGH0DWHPiWLFD 0. Suponha que o gasto com a manutenção de um terreno, em forma de quadrado, seja diretamente proporcional à medida do seu lado. Se uma pessoa trocar um terreno quadrado

Leia mais

EFOMM , sabendo-se que I 1 corresponde ao ruído sonoro de 8 decibéis de uma aproximação de dois. metro quadrado.

EFOMM , sabendo-se que I 1 corresponde ao ruído sonoro de 8 decibéis de uma aproximação de dois. metro quadrado. EFOMM 009 (0) Qual é o número inteiro cujo produto por 9 é um número natural composto apenas pelo algarismo? (A) 459 (B) 4569 (C) 45679 (D) 45789 (E) 456789. (0) O logotipo de uma certa Organização Militar

Leia mais

Prova 3 Matemática. N ọ DE INSCRIÇÃO:

Prova 3 Matemática. N ọ DE INSCRIÇÃO: Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta

Leia mais

SUMÁRIO. Unidade 1 Matemática Básica

SUMÁRIO. Unidade 1 Matemática Básica SUMÁRIO Unidade 1 Matemática Básica Capítulo 1 Aritmética Introdução... 12 Expressões numéricas... 12 Frações... 15 Múltiplos e divisores... 18 Potências... 21 Raízes... 22 Capítulo 2 Álgebra Introdução...

Leia mais

13. (Uerj) Em cada ponto (x, y) do plano cartesiano, o valor de T é definido pela seguinte equação:

13. (Uerj) Em cada ponto (x, y) do plano cartesiano, o valor de T é definido pela seguinte equação: 1. (Ufc) Considere o triângulo cujos vértices são os pontos A(2,0); B(0,4) e C(2Ë5, 4+Ë5). Determine o valor numérico da altura relativa ao lado AB, deste triângulo. 2. (Unesp) A reta r é perpendicular

Leia mais

MATRIZ DE REFERÊNCIA - SPAECE MATEMÁTICA 5 o ANO DO ENSINO FUNDAMENTAL TEMAS E SEUS DESCRITORES

MATRIZ DE REFERÊNCIA - SPAECE MATEMÁTICA 5 o ANO DO ENSINO FUNDAMENTAL TEMAS E SEUS DESCRITORES MATEMÁTICA 5 o ANO DO ENSINO FUNDAMENTAL I INTERAGINDO COM OS NÚMEROS E FUNÇÕES D1 Reconhecer e utilizar características do sistema de numeração decimal. Utilizar procedimentos de cálculo para obtenção

Leia mais

01. (UFRGS/2003) Se n é um número natural qualquer maior que 1, então n! + n 1 é divisível por. (A) n 1. (B) n. (C) n + 1. (D) n! - 1. (E) n!.

01. (UFRGS/2003) Se n é um número natural qualquer maior que 1, então n! + n 1 é divisível por. (A) n 1. (B) n. (C) n + 1. (D) n! - 1. (E) n!. 0. (UFRGS/00) Se n é um número natural qualquer maior que, então n! + n é divisível por n. n. n +. n! -. n!. 0. (UFRGS/00) Se num determinado período o dólar sofrer uma alta de 00% em relação ao real,

Leia mais

NOTAÇÕES. R : conjunto dos números reais C : conjunto dos números complexos

NOTAÇÕES. R : conjunto dos números reais C : conjunto dos números complexos NOTAÇÕES R : conjunto dos números reais C : conjunto dos números complexos i : unidade imaginária: i = 1 z : módulo do número z C Re(z) : parte real do número z C Im(z) : parte imaginária do número z C

Leia mais

III-1 Comprimento de Arco

III-1 Comprimento de Arco Nesta aula vamos iniciar com o tratamento de integral que não calcula apenas área sob uma curva. Especificamente, o processo ainda é unidimensional, mas envolve conceitos de geometria (especificamente

Leia mais

Solução Comentada Prova de Matemática

Solução Comentada Prova de Matemática 18. Um reservatório, com capacidade para 680 litros, tem a forma de um cilindro circular reto. Se o raio da base deste reservatório mede 1 metro, sua altura mede: A) 1 m (Considere π =,14) B) 1,4 m C)

Leia mais

COMENTÁRIO DA PROVA DE MATEMÁTICA. Professores Adilson Longen, Carlos Walter Kolb, Emerson Marcos Furtado e Oslei Domingos

COMENTÁRIO DA PROVA DE MATEMÁTICA. Professores Adilson Longen, Carlos Walter Kolb, Emerson Marcos Furtado e Oslei Domingos COMENTÁRIO DA PROVA DE MATEMÁTICA Professores Adilson Longen, Carlos Walter Kolb, Emerson Marcos Furtado e Oslei Domingos Utilizamos a seguir alguns critérios para comentar a prova de Matemática da ª fase

Leia mais

Lista de Estudo para a Prova de 1º Ano. Prof. Lafayette

Lista de Estudo para a Prova de 1º Ano. Prof. Lafayette Lista de Estudo para a Prova de 1º Ano Prof. Lafayette 1. Um triângulo ABC é retângulo em A e os ângulos em B e C são, respectivamente, de 30 e 60. A hipotenusa mede 4. a) Faça um desenho representativo.

Leia mais