Colégio Nossa Senhora de Lourdes. Matemática - Professor: Leonardo Maciel

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Colégio Nossa Senhora de Lourdes. Matemática - Professor: Leonardo Maciel"

Transcrição

1 Colégio Nossa Senhora de Lourdes Matemática - Professor: Leonardo Maciel 1. (Pucrj 015) Uma pesquisa realizada com 45 atletas, sobre as atividades praticadas nos seus treinamentos, constatou que 15 desses atletas praticam natação, 00 praticam corrida e 40 não utilizavam nenhuma das duas modalidades no seu treinamento. Então, o número de atletas que praticam natação e corrida é: a) 70 b) 95 c) 110 d) 15 e) 10. (Pucrj 015) A soma dos números inteiros compreendidos entre 100 e 400, que possuem o algarismo das unidades igual a 4, é: a) 100 b) 560 c) 4980 d) 640 e) (Pucrj 015) Os números a1 5x 5, a x 14 e a 6x estão em PA. A soma dos números é igual a: a) 48 b) 54 c) 7 d) 15 e) (Pucrj 015) Sejam as funções f(x) x 6x e g(x) x 1. O produto dos valores inteiros de x que satisfazem a desigualdade f(x) g(x) é: a) 8 b) 1 c) 60 d) 7 e) (Pucrj 015) A quantidade de anagramas da palavra CONCURSO é: a) 50 b) 5040 c) d) 0160 e) (Pucrj 015) Em uma urna existem 10 bolinhas de cores diferentes, das quais sete têm massa de 00 gramas cada e as outras três têm massa de 00 gramas cada. Serão retiradas bolinhas, sem reposição. A probabilidade de que as bolinhas retiradas sejam as mais leves é de: 1 a) 10 Página 1 de 1

2 b) 10 c) 5 d) 1 0 e) (Pucrj 015) Em uma urna existem 10 bolinhas de cores diferentes, das quais sete têm massa de 00 gramas cada e as outras três têm massa de 00 gramas cada. Serão retiradas bolinhas, sem reposição. A probabilidade de que a massa total das bolinhas retiradas seja de 900 gramas é de: a) 10 b) 7 4 c) 7 10 d) 1 15 e) (Pucrj 015) João joga dois dados comuns e soma os valores. Qual a probabilidade de a soma ser maior ou igual a 10? a) 11 b) 1 6 c) d) 5 6 e) (Pucrj 015) O que acontece com o volume de um paralelepípedo quando aumentamos a largura e a altura em 10% e diminuímos a profundidade em 0%? a) Não se altera b) Aumenta aproximadamente % c) Diminui aproximadamente % d) Aumenta aproximadamente 8% e) Diminui aproximadamente 8% 10. (Pucrj 015) O diagrama abaixo mostra uma pilha de caixas cúbicas iguais, encostadas no canto de um depósito. Página de 1

3 Se a aresta de cada caixa é de 0 cm, então o volume total dessa pilha, em metros cúbicos, é de: a) 0,51 b) 0,79 c) 0,810 d) 0,87 e) 0, (Pucrj 015) O volume do sólido gerado pela rotação de um quadrado de lado cm em torno de um dos seus lados é, em a) π b) 6π c) 9π d) 18π e) 7π cm : x 5 1. (Pucrj 015) Sejam r e s as retas de equações y x e y, respectivamente, representadas no gráfico abaixo. Seja A o ponto de interseção das retas r e s. Sejam B e C os pontos de interseção de r e s com o eixo horizontal, respectivamente. A área do triângulo ABC vale: a) 1,0 b) 1,5 c),0 d) 4,5 e) 6,0 Página de 1

4 1. (Pucrj 015) Seja x log log9 log7. Então, é correto afirmar que: a) 6 x 7 b) 7 x 8 c) 8 x 9 d) 9 x 10 e) x (Pucrj 015) Se log1x, então x x vale: a) 4 b) 6 c) 8 d) 50 e) (Pucrj 015) Quantas soluções inteiras tem a inequação abaixo: x 10x 1 0. a) b) 4 c) 5 d) 6 e) (Pucrj 015) A soma dos valores inteiros que satisfazem a desigualdade a) 9 b) 6 c) 0 d) 4 e) 9 x 6x 8 é: 17. (Pucrj 015) Considere o quadrado ABCD de lado 4 cm. O ponto médio do lado AD é F, e o ponto médio do lado AB é E. Calcule a área do triângulo EFC. a) 6 b) c) 18 d) 4 e) (Pucrj 015) A medida da área, em círculo de raio igual a 5 cm é? a) 0 cm, de um quadrado que pode ser inscrito em um Página 4 de 1

5 b) 5 c) 5 d) 50 e) (Pucrj 015) Os sócios de uma empresa decidem dividir o lucro de um determinado período, pelos seus três gerentes, de modo que cada um receba uma parte diretamente proporcional ao seu tempo de serviço. Sabendo que o lucro que será dividido é de R$ ,00 e que o tempo de serviço de cada um deles é, respectivamente 5, 7 e 8 anos, podemos afirmar que o mais antigo na empresa receberá: a) R$ 465,00 b) R$ 515,00 c) R$ 6475,00 d) R$ 7400,00 e) R$ 950,00 0. (Pucrj 015) Dois descontos sucessivos de % no preço de uma mercadoria equivalem a um único desconto de: a) menos de 6% b) 6% c) entre 6% e 9% d) 9% e) mais de 9% 1. (Pucrj 015) João teve um reajuste de 10% e passou a ganhar R$ 1.10,00 por mês. Qual era o salário do João antes do reajuste? a) R$ 11,00 b) R$ 1089,00 c) R$ 1100,00 d) R$ 910,00 e) R$ 100,00. (Pucrj 015) Sabemos que 4 π cos x e x 0,. 5 Quanto vale tg x? a) 4 b) 7 4 c) 4 7 d) 1 5 e) 1 4 π. (Pucrj 015) Sendo x um arco e satisfazendo x π e x cos é: a) 1 5 sen(x), 5 4 o valor de Página 5 de 1

6 b) 1 5 c) 1 5 d) 5 e) 5 4. (Pucrj 015) Sabendo que a) 1 b) 6 c) 8 d) 1 7 e) 4 9 π π x e 1 sen (x), é correto afirmar que sen (x) é: , 4 é: 5. (Pucrj 015) O valor de a) 1 b) 15 c) 17 d) 19 e) 1 Página 6 de 1

7 Gabarito: Resposta da questão 1: De acordo com os dados temos os seguintes diagramas: Através de uma equação de primeiro grau, temos: 15 x x 00 x x x 10. Resposta da questão : O números inteiros compreendidos entre 100 e 400, que possuem o algarismo das unidades igual a 4, formam uma P.A de razão 10. (104,114,14,14,, 84, 94) Determinando o número n de termos dessa P.A., temos: (n 1) 10 n 0 Calculando, agora, a soma destes 0 termos, temos: Resposta da questão : [B] Considerando a P.A. na ordem dada, temos: P.A. (5x 5, x 14, 6x ) Utilizando a propriedade de uma P.A, temos: 5x 5 6x x 14 x 8 11x 8 9x 6 x 4 Logo, a P.A. será (15, 18, 1). Portanto, a soma do três números será: a1 a a Resposta da questão 4: [C] f(x) g(x) x 6x x 1 x 8x 1 0 Estudando o sinal de x 8x 1, temos: Página 7 de 1

8 O produto dos valores inteiros de x que satisfazem a desigualdade f(x) g(x) é: Resposta da questão 5: [C] A palavra CONCURSO possui 8 letras, sendo que as letras C e O aparecem duas vezes cada. Para determinar o número de anagramas desta palavra deveremos usar permutação com repetição., 8! P !! Resposta da questão 6: [A] 10! Total de possibilidades para a escolha de três bolas: C10, 10! (10 )! Portanto, a probabilidade será dada por p Resposta da questão 7: [B] Devemos considerar a retirada de bolinhas de 00 g para que a massa total seja 900g. Portanto, a probabilidade P pedida é: P Resposta da questão 8: [B] Número de elementos do Espaço amostral: n(e) Evento A (A soma dos pontos ser maior ou igual a 10). A{(4, 6), (5, 5), (5, 6), (6, 4), (6, 5) e (6, 6)} e n(a) 6. Portanto, a probabilidade pedida será dada por: 6 1 P 6 6 Resposta da questão 9: [C] Página 8 de 1

9 V(inicial) a b c V(final) 1,1 a1,1 b0,8 c 0,968 V(inicial) V(final) V(inicial) 0,0V (inicial), portanto houve uma redução de aproximadamente %. Resposta da questão 10: Volume de cada cubo em m V (0,) 0,07m Total de cubos na figura: Volume Total: 0,07 0,864m Resposta da questão 11: O volume V do cilindro resultante será dado por: V π 7 π cm Resposta da questão 1: de[b] Determinando o ponto B, utilizando a equação da reta r. x 0 x B(, 0) Determinando o ponto C, utilizando a equação da reta s. x 5 0 x 5 C(5,0) Determinando o ponto A resolvendo um sistema com as equações de r e s. y x x 5 A(, 1) y Daí, temos a seguinte figura: Página 9 de 1

10 Portanto, a área do triângulo será dada por: 1 A 1,5 Resposta da questão 1: [D] x log log9 log7 x log 9 7 x log 79 Sabemos que log51 log 79 log104 Considerando que as opções são intervalos possíveis para x, podemos considerar como solução do exercício o intervalo 9 x 10. Resposta da questão 14: 1 log1 x x x 8 por tan to Resposta da questão 15: [C] As raízes da equação x 10x 1 0 são e 7. Analisando, agora, o sinal da inequação, temos: Portanto, os valores inteiros de x que verificam a inequação são, 4, 5, 6 e 7 (cinco números inteiros). Resposta da questão 16: [A] x 6x 8 x 6x 8 0 Página 10 de 1

11 Estudando o sinal da função f(x) x 6x 8, temos: A soma S dos valores inteiros do intervalo considerado será dada por: 4 ( ) ( ) 9 Resposta da questão 17: [A] A área A do triângulo EFC será dada pela diferença entre a área do quadrado de lados 4 cm e as áreas A 1, A e A dos triângulos assinalados. A 4 A1 A A 4 4 A 16 A 6 Resposta da questão 18: Na figura x é a medida do lado do quadrado e AC 10cm, daí temos: x x 10 x 50 Portanto, a área do quadrado é Resposta da questão 19: 50cm. Página 11 de 1

12 [D] Podemos afirmar que o mais antigo na empresa receberá R$ 7400,00. Resposta da questão 0: [A] x é o valor da mercadoria. Com dois descontos sucessivos de %, temos: 0,0591x. Portanto, menos de 6%. x (0,97) 0,9409x, ou seja um desconto de Resposta da questão 1: [C] Considerando que x é o salário de João antes do aumento, temos a seguinte equação: x 1,1 110,00 x 1100,00 Portanto, o salário de João antes do aumento era de R$ 1.100,00. Resposta da questão : [C] 4 π Se cos x e x 0,, 5 podemos considerar um triângulo retângulo com um dos ângulos agudos medindo x, o cateto adjacente a ele medindo 4 e a hipotenusa medindo 5. Calculando a medida do cateto b através do Teorema de Pitágoras, podemos escrever: b 4 5 b. Concluímos então que tgx e que: 4 tg x tg(x). 1 tg x Resposta da questão : Página 1 de 1

13 π π x π x x π cos 0 4 cos x 1sen x 4 7 cos x 1 cos x 5 5 π 7 como x π, temos cosx 5 Utilizando, agora, a fórmula do cosseno do arco duplo, temos: x x x x cosx cos cos x cos sen cos x cos 1 Logo, 7 x x 18 x 9 x cos 1 cos cos cos x x como cos 0, temos cos 5 Resposta da questão 4: 1 8 cos x 1 cos x cos x 9 π Como π x, temos: cosx Portanto: senx sen x cos x 1 4 senx 9 Resposta da questão 5: [D] , Página 1 de 1

Seno e Cosseno de arco trigonométrico

Seno e Cosseno de arco trigonométrico Caderno Unidade II Série Segmento: Pré-vestibular Resoluções Coleção: Alfa, Beta e Gama Disciplina: Matemática Volume: Unidade II: Série Seno e Cosseno de arco trigonométrico. sen90 cos80 sen70 ( ) ( )

Leia mais

TESTES. 5. (UFRGS) Os ponteiros de um relógio marcam duas. horas e vinte minutos. O menor ângulo entre os ponteiros é

TESTES. 5. (UFRGS) Os ponteiros de um relógio marcam duas. horas e vinte minutos. O menor ângulo entre os ponteiros é TESTES (UFRGS) O valor de sen 0 o cos 60 o é 0 (Ufal) Se a medida de um arco, em graus, é igual a 8, sua medida em radianos é igual a ( /) 7 (6/) (6/) (UFRGS) Os ponteiros de um relógio marcam duas horas

Leia mais

Escola Naval 2010 ( ) ( ) 8 ( ) 4 ( ) 4 (

Escola Naval 2010 ( ) ( ) 8 ( ) 4 ( ) 4 ( Escola Naval 0 1. (EN 0) Os gráficos das funções reais f e g de variável real, definidas por f(x) = x e g(x) = 5 x interceptam-se nos pontos A = (a,f(a)) e B = (b,f(b)), a b. Considere os polígonos CAPBD

Leia mais

MATEMÁTICA SARGENTO DA FAB

MATEMÁTICA SARGENTO DA FAB MATEMÁTICA BRUNA PAULA 1 COLETÂNEA DE QUESTÕES DE MATEMÁTICA DA EEAr (QUESTÕES RESOLVIDAS) QUESTÃO 1 (EEAr 2013) Se x é um arco do 1º quadrante, com sen x a e cosx b, então é RESPOSTA: d QUESTÃO 2 (EEAr

Leia mais

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta. a) calcule a área do triângulo OAB. b) determine OC e CD.

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta. a) calcule a área do triângulo OAB. b) determine OC e CD. Questão Se Amélia der R$,00 a Lúcia, então ambas ficarão com a mesma quantia. Se Maria der um terço do que tem a Lúcia, então esta ficará com R$ 6,00 a mais do que Amélia. Se Amélia perder a metade do

Leia mais

01. (UFRGS/2003) Se n é um número natural qualquer maior que 1, então n! + n 1 é divisível por. (A) n 1. (B) n. (C) n + 1. (D) n! - 1. (E) n!.

01. (UFRGS/2003) Se n é um número natural qualquer maior que 1, então n! + n 1 é divisível por. (A) n 1. (B) n. (C) n + 1. (D) n! - 1. (E) n!. 0. (UFRGS/00) Se n é um número natural qualquer maior que, então n! + n é divisível por n. n. n +. n! -. n!. 0. (UFRGS/00) Se num determinado período o dólar sofrer uma alta de 00% em relação ao real,

Leia mais

Relembrando: Ângulos, Triângulos e Trigonometria...

Relembrando: Ângulos, Triângulos e Trigonometria... Relembrando: Ângulos, Triângulos e Trigonometria... Este texto é apenas um resumo. Procure estudar esses assuntos em um livro apropriado. Ângulo é a região de um plano delimitada pelo encontro de duas

Leia mais

Exercícios sobre trigonometria em triângulos

Exercícios sobre trigonometria em triângulos Instituto Municipal de Ensino Superior de Catanduva SP Curso de Licenciatura em Matemática º ano Prática de Ensino da Matemática III Prof. M.Sc. Fabricio Eduardo Ferreira fabricio@fafica.br Eercícios sobre

Leia mais

MATEMÁTICA E SUAS TECNOLOGIAS

MATEMÁTICA E SUAS TECNOLOGIAS MATEMÁTICA E SUAS TECNOLOGIAS Lista de Exercícios de Matemática / º ano Professor(: Leonardo Data: / JANEIRO / 06. De sonhos e Aluno(: Questão 0) Um casal tem três filhos cujas idades estão em progressão

Leia mais

26 A 30 D 27 C 31 C 28 B 29 B

26 A 30 D 27 C 31 C 28 B 29 B 26 A O total de transplantes até julho de 2015 é de 912 transplantes. Destes, 487 são de córnea. Logo 487/912 53,39% transplantes são de córnea. 27 C O número de subnutridos caiu de 1,03 bilhões de pessoas

Leia mais

1ª Avaliação. 1) Obtenha a fórmula que define a função linear f, sabendo que (3) 7 f =.

1ª Avaliação. 1) Obtenha a fórmula que define a função linear f, sabendo que (3) 7 f =. 1ª Avaliação 1) Obtenha a fórmula que define a função linear f, sabendo que (3) 7 f. ) Determine o domínio da função abaio. f ( ) 3 3 8 9 + 14 3) Determine o domínio da função abaio. f ( ) 1 ( 3)( ) 4)

Leia mais

MATEMÁTICA. Um pintor pintou 30% de um muro e outro pintou 60% do que sobrou. A porcentagem do muro que falta pintar

MATEMÁTICA. Um pintor pintou 30% de um muro e outro pintou 60% do que sobrou. A porcentagem do muro que falta pintar MATEMÁTICA d Um pintor pintou 0% de um muro e outro pintou 60% do que sobrou. A porcentagem do muro que falta pintar é: a) 0% b) % c) % d) 8% e) % ) 60% de 70% % ) 00% % 0% 8% d Se (x y) (x + y) 0, então

Leia mais

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa D. alternativa B. alternativa E

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa D. alternativa B. alternativa E Questão TIPO DE PROVA: A Os números compreendidos entre 400 e 500, divisíveis ao mesmo tempo por 8 e 75, têm soma: a) 600 d) 700 b) 50 e) 800 c) 50 Questão Na figura, temos os esboços dos gráficos de f

Leia mais

PROVAS DE NÍVEL MÉDIO DA FUNDATEC

PROVAS DE NÍVEL MÉDIO DA FUNDATEC PROVAS DE NÍVEL MÉDIO DA FUNDATEC Obs: Algumas questões das provas abaixo continham questões que não estavam de acordo com o edital atual da Câmara/POA. Nesses casos, cada questão foi retirada ou adaptada.

Leia mais

Exercícios de Aprofundamento Mat Geom Espacial

Exercícios de Aprofundamento Mat Geom Espacial 1. (Fuvest 015) No cubo ABCDEFGH, representado na figura abaixo, cada aresta tem medida 1. Seja M um ponto na semirreta de origem A que passa por E. Denote por θ o ângulo BMH e por x a medida do segmento

Leia mais

LISTA TRIGONOMETRIA ENSINO MÉDIO

LISTA TRIGONOMETRIA ENSINO MÉDIO LISTA TRIGONOMETRIA ENSINO MÉDIO 1. Um papagaio ou pipa, é preso a um fio esticado que forma um ângulo de 45 com o solo. O comprimento do fio é de 100 m. Determine a altura do papagaio em relação ao solo.

Leia mais

Exercícios Extras-Relações Métricas no Triângulo Retângulo-Lei dos Cossenos e Senos- 1 s anos-2015

Exercícios Extras-Relações Métricas no Triângulo Retângulo-Lei dos Cossenos e Senos- 1 s anos-2015 Exercícios Extras-Relações Métricas no Triângulo Retângulo-Lei dos Cossenos e Senos- 1 s anos-015 1. (Ufsj 013) Um triângulo isósceles inscrito em um círculo de raio igual a 8 cm possui um lado que mede

Leia mais

MATEMÁTICA MÓDULO 10 EQUAÇÕES E INEQUAÇÕES TRIGONOMÉTRICAS 1. EQUAÇÕES TRIGONOMÉTRICAS BÁSICAS 1.1. EQUAÇÃO EM SENO. sen a arcsena 2k, k arcsena 2k, k

MATEMÁTICA MÓDULO 10 EQUAÇÕES E INEQUAÇÕES TRIGONOMÉTRICAS 1. EQUAÇÕES TRIGONOMÉTRICAS BÁSICAS 1.1. EQUAÇÃO EM SENO. sen a arcsena 2k, k arcsena 2k, k EQUAÇÕES E INEQUAÇÕES TRIGONOMÉTRICAS. EQUAÇÕES TRIGONOMÉTRICAS BÁSICAS Vamos mostrar como resolver equações trigonométricas básicas, onde temos uma linha trigonométrica aplicada sobre uma função e igual

Leia mais

Assinale as questões verdadeiras some os resultados obtidos e marque na Folha de Respostas:

Assinale as questões verdadeiras some os resultados obtidos e marque na Folha de Respostas: PROVA DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - MAIO DE 0. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Assinale as questões

Leia mais

CPV - especializado na ESPM

CPV - especializado na ESPM - especializado na ESPM ESPM NOVEMBRO/006 PROVA E MATEMÁTICA 0. Entre as alternativas abaixo, assinale a de maior valor: a) 8 8 b) 6 c) 3 3 d) 43 6 e) 8 0 Das alternativas a) 8 8 = 3 3 b) 6 = 8 c) 3 3

Leia mais

a) b) 5 3 sen 60 o = x. 2 2 = 5. 3 x = x = No triângulo da figura abaixo, o valor do x é igual a: a) 7 c) 2 31 e) 7 3 b) 31 d) 31 3

a) b) 5 3 sen 60 o = x. 2 2 = 5. 3 x = x = No triângulo da figura abaixo, o valor do x é igual a: a) 7 c) 2 31 e) 7 3 b) 31 d) 31 3 Matemática a. série do Ensino Médio Frentes e Eercícios propostos AULA FRENTE Num triângulo ABC em que AB = 5, B^ = º e C^ = 5º, a medida do lado AC é: a) 5 b) 5 c) 5 d) 5 e) 5 Sabendo-se que um dos lados

Leia mais

:: Matemática :: 1 lâmpada incandescente a cada 16,3 dias aproximadamente 1 lâmpada fluorescente a cada 128,6 dias aproximadamente 128,6 7,9 16,3

:: Matemática :: 1 lâmpada incandescente a cada 16,3 dias aproximadamente 1 lâmpada fluorescente a cada 128,6 dias aproximadamente 128,6 7,9 16,3 Questão 26 - Alternativa D Proporcionalidade Dados: Em 24 horas temos: 25 0,2 = 5 ml por minuto 25 gotas por minuto 0,2 ml por gota 24. 60 = 1440 minutos 5 ml _ 1 minuto x _ 1.440 minutos x = 5 1.440 =

Leia mais

O conhecimento é a nossa propaganda.

O conhecimento é a nossa propaganda. Lista de Exercícios 1 Trigonometria Gabaritos Comentados dos Questionários 01) (UFSCAR 2002) O valor de x, 0 x π/2, tal que 4.(1 sen 2 x).(sec 2 x 1) = 3 é: a) π/2. b) π/3. c) π/4. d) π/6. e) 0. 4.(1 sen

Leia mais

Questão 1 (UFMG) Sendo A = 88 o 20', B = 31 o 40' e C = radianos, a expressão A + B - C é igual a: a) radianos b) 116 o 40' ;

Questão 1 (UFMG) Sendo A = 88 o 20', B = 31 o 40' e C = radianos, a expressão A + B - C é igual a: a) radianos b) 116 o 40' ; APOSTILAS (ENEM) VOLUME COMPLETO Exame Nacional de Ensino Médio (ENEM) 4 VOLUMES APOSTILAS IMPRESSAS E DIGITAIS Questão 1 (UFMG) Sendo A = 88 o 20', B = 31 o 40' e C = radianos, a expressão A + B - C é

Leia mais

UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE

UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE www.elitecampinas.com.br Fone: (19) -71 O ELITE RESOLVE IME 004 PORTUGUÊS/INGLÊS Você na elite das universidades! UNICAMP 004 SEGUNDA FASE MATEMÁTICA www.elitecampinas.com.br Fone: (19) 51-101 O ELITE

Leia mais

Questão 01. Calcule o número de alunos que visitaram os dois museus. Questão 02

Questão 01. Calcule o número de alunos que visitaram os dois museus. Questão 02 Questão 01 Um grupo de alunos de uma escola deveria visitar o Museu de Ciência e o Museu de História da cidade. Quarenta e oito alunos foram visitar pelo menos um desses museus. 20% dos que foram ao de

Leia mais

UFBA / UFRB a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia. QUESTÕES de 01 a 08

UFBA / UFRB a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia. QUESTÕES de 01 a 08 UFBA / UFRB 008 1a Fase Matemática Professora Maria Antônia Gouveia QUESTÕES de 01 a 08 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de

Leia mais

MATEMÁTICA I A) R$ 4 500,00 B) R$ 6 500,00 C) R$ 7 000,00 D) R$ 7 500,00 E) R$ 6 000,00

MATEMÁTICA I A) R$ 4 500,00 B) R$ 6 500,00 C) R$ 7 000,00 D) R$ 7 500,00 E) R$ 6 000,00 MATEMÁTCA 0. Pedro devia a Paulo uma determinada importância. No dia do vencimento, Pedro pagou 30% da dívida e acertou para pagar o restante no final do mês. Sabendo que o valor de R$ 3 500,00 corresponde

Leia mais

= 16 árvores Se a caminhada iniciar em sentido anti-horário Jorge também tocará em 16 árvores. Resposta: C OBJETIVO

= 16 árvores Se a caminhada iniciar em sentido anti-horário Jorge também tocará em 16 árvores. Resposta: C OBJETIVO Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM 2017 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 16 A permanência de um gerente em uma empresa

Leia mais

Prova Vestibular ITA 2000

Prova Vestibular ITA 2000 Prova Vestibular ITA Versão. ITA - (ITA ) Sejam f, g : R R definidas por f ( ) = e g cos 5 ( ) =. Podemos afirmar que: f é injetora e par e g é ímpar. g é sobrejetora e f é bijetora e g é par e f é ímpar

Leia mais

1. Arcos de mais de uma volta. Vamos generalizar o conceito de arco, admitindo que este possa dar mais de uma volta completa na circunferência.

1. Arcos de mais de uma volta. Vamos generalizar o conceito de arco, admitindo que este possa dar mais de uma volta completa na circunferência. UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Trigonometria II Prof.: Rogério

Leia mais

Matemática 41 c Resolução 42 b Resolução 43 e OBJETIVO 2001

Matemática 41 c Resolução 42 b Resolução 43 e OBJETIVO 2001 Matemática c Numa barraca de feira, uma pessoa comprou maçãs, bananas, laranjas e peras. Pelo preço normal da barraca, o valor pago pelas maçãs, bananas, laranjas e peras corresponderia a 5%, 0%, 5% e

Leia mais

Onde: É no triângulo retângulo que vale a máxima Pitagórica: O quadrado da. a b c

Onde: É no triângulo retângulo que vale a máxima Pitagórica: O quadrado da. a b c 1 Sumário TRIGONOMETRIA... GEOMETRIA ESPACIAL...8 Geometria Plana Fórmulas Básicas...8 Prismas... 11 Cilindro... 18 Pirâmide... 1 Cone... 4 Esferas... 7 REFERÊNCIAS BIBLIOGRÁFICAS... TRIGONOMETRIA Trigonometria

Leia mais

IME º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

IME º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR IME - 2004 1º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 CALCULE o número natural n que torna o determinante a seguir igual a 5. Por Chio, tem-se Matemática Questão 02 Considere

Leia mais

MATEMÁTICA NESTA PROVA SERÃO UTILIZADOS OS SEGUINTES SÍMBOLOS E CONCEITOS COM OS RESPECTIVOS SIGNIFICADOS: Observe os dados do quadro a seguir.

MATEMÁTICA NESTA PROVA SERÃO UTILIZADOS OS SEGUINTES SÍMBOLOS E CONCEITOS COM OS RESPECTIVOS SIGNIFICADOS: Observe os dados do quadro a seguir. MATEMÁTICA NESTA PROVA SERÃO UTILIZADOS OS SEGUINTES SÍMBOLOS E CONCEITOS COM OS RESPECTIVOS SIGNIFICADOS: sen x : seno de x cos x : cosseno de x x : módulo de x log x : logaritmo de x na base 10 6. Um

Leia mais

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 4 Professor Marco Costa

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 4 Professor Marco Costa 1 Projeto Jovem Nota 10 1. (Ufscar 2001) Considere o triângulo de vértices A, B, C, representado a seguir. a) Dê a expressão da altura h em função de c (comprimento do lado AB) e do ângulo A (formado pelos

Leia mais

Módulo de Círculo Trigonométrico. Relação Fundamental da Trigonometria. 1 a série E.M.

Módulo de Círculo Trigonométrico. Relação Fundamental da Trigonometria. 1 a série E.M. Módulo de Círculo Trigonométrico Relação Fundamental da Trigonometria a série EM Círculo Trigonométrico Relação Fundamental da Trigonometria Exercícios Introdutórios Exercício Se sen x /, determine Exercício

Leia mais

RETA E CIRCUNFERÊNCIA

RETA E CIRCUNFERÊNCIA RETA E CIRCUNFERÊNCIA - 016 1. (Unifesp 016) Na figura, as retas r, s e t estão em um mesmo plano cartesiano. Sabe-se que r e t passam pela origem desse sistema, e que PQRS é um trapézio. a) Determine

Leia mais

Se tgx =, então cosx =. 3 3 O valor máximo de y = senx cos 60 + sen 60 cosx é 2.

Se tgx =, então cosx =. 3 3 O valor máximo de y = senx cos 60 + sen 60 cosx é 2. 4 4 A distância do ponto P (- 2; 6) à reta de equação 3x + 4y 1 = 0 é. 19. 0 0 Se cos x > 0, então 0 < x < 90. Se tgx =, então cosx =. 2 2. 3 3 O valor máximo de y = senx cos 60 + sen 60 cosx é 2. 4 4

Leia mais

6. Considere. igual a : (A) f (x) + 2x f(x) = 0 (B) f (x) x f(x) = 0 (C) f (x) + f(x) = 0 (D) f (x) f(x) = 0 (E) f (x) 2x f(x) = 0

6. Considere. igual a : (A) f (x) + 2x f(x) = 0 (B) f (x) x f(x) = 0 (C) f (x) + f(x) = 0 (D) f (x) f(x) = 0 (E) f (x) 2x f(x) = 0 QUESTÃO ÚNICA 0,000 pontos distribuídos em 50 itens Marque no cartão de respostas a única alternativa que responde de maneira correta ao pedido de cada item.. O valor da área, em unidades de área, limitada

Leia mais

Nome: 2 sen (2x) < cos x < 3. Calcular sen 105 Calcular cos 105 Calcular tg 105 (PUC) Se tg (x + y) = 33 e tg x = 3, então tg y é igual a:

Nome: 2 sen (2x) < cos x < 3. Calcular sen 105 Calcular cos 105 Calcular tg 105 (PUC) Se tg (x + y) = 33 e tg x = 3, então tg y é igual a: MATEMÁTICA Série: F Módulos,, 5, 6, 7 e 8 Nome: Resolver as inequações de a supondo 0 x π. sen x Para que valores de x, 0 x π, temos sen x e cos x? tg x cos x Resolver, em, as inequações de a. cos x 0

Leia mais

{ } Questão 1. Considere as seguintes afirmações sobre o conjunto U = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Questão 2. Seja o conjunto = { : 0 e 2 2

{ } Questão 1. Considere as seguintes afirmações sobre o conjunto U = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Questão 2. Seja o conjunto = { : 0 e 2 2 NOTAÇÕES : conjunto dos números complexos. : conjunto dos números racionais. : conjunto dos números reais. : conjunto dos números inteiros. = 0,,,,.... { } { } * =,,,.... i : unidade imaginária; i =. z=x+iy,

Leia mais

Exercícios de Revisão

Exercícios de Revisão Professor: Cassio Kiechaloski Mello Disciplina: Matemática Exercícios de Revisão Geometria Analítica Geometria Plana Geometria Espacial Números Complexos Polinômios Na prova de recuperação final, não será

Leia mais

MATEMÁTICA - CEFET2013 Professor Marcelo QUESTÃO 01

MATEMÁTICA - CEFET2013 Professor Marcelo QUESTÃO 01 MATEMÁTICA - CEFET013 Professor Marcelo QUESTÃO 01 Em um plano, uma reta que passa pelo ponto P(8,10) tangencia a circunferência x +y 4x 6y 3 = 0 no ponto A. A medida do segmento PA, em unidades de comprimento,

Leia mais

Turma: Nº: Professora: OCTAMAR Nº de questões: 20 Data: / / Nota:

Turma: Nº: Professora: OCTAMAR Nº de questões: 20 Data: / / Nota: SALVADOR-BA Formando pessoas para transformar o mundo Tarefa: ª AVALIAÇÃO DE MATEMÁTICA UNIDADE I ALUNO(A): a Série do Ensino Médio Turma: Nº: Professora: OCTAMAR Nº de questões: 0 Data: / / Nota: QUESTÃO

Leia mais

SIMULADO GERAL DAS LISTAS

SIMULADO GERAL DAS LISTAS SIMULADO GERAL DAS LISTAS 1- Sejam as funções f e g definidas em R por f ( x) x + αx g β, em que α e β são números reais. Considere que estas funções são tais que: = e ( x) = ( x x 50) f g Valor mínimo

Leia mais

a) 6% b) 7% c) 70% d) 600% e) 700%

a) 6% b) 7% c) 70% d) 600% e) 700% - MATEMÁTICA 01) Supondo-se que o número de vagas em um concurso vestibular aumentou 5% e que o número de candidatos aumentou 35%, o número de candidatos por vaga para esse curso aumentou: a) 8% b) 9%

Leia mais

Tarefa: SIMULADO DE MATEMÁTICA SIMULADO_2010 DE MATEMÁTICA APLICADO ÀS TURMAS DO 3 O ANO DO ENSINO MÉDIO DO COLÉGIO ANCHIETA EM JULHO DE 2010.

Tarefa: SIMULADO DE MATEMÁTICA SIMULADO_2010 DE MATEMÁTICA APLICADO ÀS TURMAS DO 3 O ANO DO ENSINO MÉDIO DO COLÉGIO ANCHIETA EM JULHO DE 2010. Tarefa: SIMULADO DE MATEMÁTICA ALUNO(A): ª série do ensino médio Professores: Octamar e Carié Nº de questões: 5 Data: / / Unidade: II Turma: Nº: Nota: SIMULADO_ DE MATEMÁTICA APLICADO ÀS TURMAS DO O ANO

Leia mais

EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA

EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA - 015 1. (Unicamp 015) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0),

Leia mais

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 4. Questão 2. alternativa D. alternativa E. alternativa D. alternativa D

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 4. Questão 2. alternativa D. alternativa E. alternativa D. alternativa D Questão TIPO DE PROVA: A O algarismo das dezenas do número! é: a) 5 b) 0 c) d) 7 e) A quantidade de zeros com que termina o número n! é igual ao número de fatores 5 presentes em sua fatoração. Na fatoração

Leia mais

RESOLUÇÀO DA PROVA DE MATEMÁTICA VESTIBULAR DA FUVEST_2007_ 2A FASE. RESOLUÇÃO PELA PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

RESOLUÇÀO DA PROVA DE MATEMÁTICA VESTIBULAR DA FUVEST_2007_ 2A FASE. RESOLUÇÃO PELA PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA RESOLUÇÀO DA PROVA DE MATEMÁTICA VESTIBULAR DA FUVEST_007_ A FASE RESOLUÇÃO PELA PROFA MARIA ANTÔNIA CONCEIÇÃO GOUVEIA Questão Se Amélia der R$3,00 a Lúcia, então ambas ficarão com a mesma quantia Se Maria

Leia mais

Resoluções de Exercícios

Resoluções de Exercícios Resoluções de Exercícios MATEMÁTICA IV Co Capítulo 04 Ângulos entre Retas; Inequações no Plano; Circunferência 0 D Analisando o gráfico, tem-se que as coordenadas dos estabelecimentos são: 01 A) 03 C Assim,

Leia mais

1) Em cada Prisma representado a seguir, calcule a área da base (A b ), a área lateral (A L ), a área total (A T ) e o volume (V):

1) Em cada Prisma representado a seguir, calcule a área da base (A b ), a área lateral (A L ), a área total (A T ) e o volume (V): EXERCÍCIOS DE FIXAÇÃO GEOMETRIA SÓLIDA ÁREAS E VOLUMES DE PRISMAS, CILINDROS E CONES 2 a SÉRIE ENSINO MÉDIO 2011 ==========================================================================================

Leia mais

84 x a + b = 26. x + 2 x

84 x a + b = 26. x + 2 x Para a fabricação de bicicletas, uma empresa comprou unidades do produto A, pagando R$ 96,00, e unidades do produto B, pagando R$ 84,00. Sabendo-se que o total de unidades compradas foi de 6 e que o preço

Leia mais

MATEMÁTICA. log 2 x : logaritmo de base 2 de x. 28. Sendo a, b e c números reais, considere as seguintes afirmações.

MATEMÁTICA. log 2 x : logaritmo de base 2 de x. 28. Sendo a, b e c números reais, considere as seguintes afirmações. MATEMÁTICA NESTA PROVA SERÃO UTILIZADOS OS SEGUINTES SÍMBOLOS E CONCEITOS COM OS RESPECTIVOS SIGNIFICADOS: sen x : seno de x log x : logaritmo de base de x 6 Considere que o corpo de uma determinada pessoa

Leia mais

Matemática Trigonometria TRIGONOMETRIA

Matemática Trigonometria TRIGONOMETRIA TRIGONOMETRIA Aula 43 Página 83 1. Calcule o seno, o cosseno e a tangente de 750. Aula 43 Página 83 2. Calcule o seno, o cosseno e a tangente de π/4. Aula 43 Caderno de Exercícios Pág. 47 1. Obtenha a

Leia mais

Seu pé direito nas melhores faculdades

Seu pé direito nas melhores faculdades Prova tarde Seu pé direito nas melhores faculdades IBMEC - 05/novembro/006 ANÁLISE QUANTITATIVA E LÓGICA DISCURSIVA a) 9 x, se x p 0. Considere a função f (x) =, em que p é x, se x > p uma constante real.

Leia mais

Pontos correspondentes: A e D, B e E, C e F; Segmentos correspondentes: AB e DE, BC e EF, AC e DF.

Pontos correspondentes: A e D, B e E, C e F; Segmentos correspondentes: AB e DE, BC e EF, AC e DF. Teorema de Tales O Teorema de Tales possui diversas aplicações no cotidiano, que devem ser demonstradas a fim de verificar sua importância. O Teorema diz que retas paralelas, cortadas por transversais,

Leia mais

(A) a 2 + b 2 c 2 = 0 (B) a 2 b 2 c 2 = 0 (C) a 2 + b 2 + c 2 = 0 (D) a 2 b 2 + c 2 = 0 (E) a 2 = b 2 = c 2 (A) 25. (B) 50. (C) 100. (D) 250. (E) 500.

(A) a 2 + b 2 c 2 = 0 (B) a 2 b 2 c 2 = 0 (C) a 2 + b 2 + c 2 = 0 (D) a 2 b 2 + c 2 = 0 (E) a 2 = b 2 = c 2 (A) 25. (B) 50. (C) 100. (D) 250. (E) 500. (UFRGS/), semanas corresponde a (A) dias e ora dias, oras e 4 minutos (C) dias, oras e 4 minutos (D) dias e oras (E) dias MATEMÁTICA (A) a + b c = a b c = (C) a + b + c = (D) a b + c = (E) a = b = c 5

Leia mais

(6$0& 9HVWLEXODU B. Questão 26. Questão 27. 5HVROXomR H FRPHQWiULR ² 3URID 0DULD $QW{QLD &RQFHLomR *RXYHLD

(6$0& 9HVWLEXODU B. Questão 26. Questão 27. 5HVROXomR H FRPHQWiULR ² 3URID 0DULD $QW{QLD &RQFHLomR *RXYHLD (6$0& 9HVWLEXODU B M A T E M Á T I C A 5HVROXomR H FRPHQWiULR ² 3URID 0DULD $QW{QLD &RQFHLomR *RXYHLD Questão 26 Para todo x real, seja Int(x) o maior número inteiro que não supera x. Dessa forma, o valor

Leia mais

RASCUNHO. a) 1250 m d) 500 m b) 250 m e) 750 m c) 2500 m

RASCUNHO. a) 1250 m d) 500 m b) 250 m e) 750 m c) 2500 m ª QUESTÃO Numa figura, desenhada em escala, cada 0, cm equivale a m. A altura real de uma montanha que nesse desenho mede mm, é igual a: a) 0 m d) 00 m b) 0 m e) 70 m c) 00 m ª QUESTÃO Suponha que os ângulos

Leia mais

Resolução prova de matemática UDESC

Resolução prova de matemática UDESC Resolução prova de matemática UDESC 009. Prof. Guilherme Sada Ramos Guiba 1. O enunciado da questão omite a palavra, mas quer dizer que 0% dos aprovados passaram somente na disciplina A, 50% passaram somente

Leia mais

Matemática - UNESP fase

Matemática - UNESP fase Matemática - UNESP -015-014- fase 1. (Unesp 015) Um dado viciado, que será lançado uma única vez, possui seis faces, numeradas de 1 a 6. A tabela a seguir fornece a probabilidade de ocorrência de cada

Leia mais

A Determine o comprimento do raio da circunferência.

A Determine o comprimento do raio da circunferência. Lista de exercícios Trigonometria Prof. Lawrence 1. Um terreno tem a forma de um triângulo retângulo. Algumas de suas medidas estão indicadas, em metros, na figura. Determine as medidas x e y dos lados

Leia mais

CPV conquista 93% das vagas do ibmec

CPV conquista 93% das vagas do ibmec conquista 9% das vagas do ibmec (junho/008) Prova REsolvida IBMEC 09/Novembro /008 (tarde) ANÁLISE QUANTITATIVA E LÓGICA DISCURSIVA 0. Renato decidiu aplicar R$ 00.000,00 em um fundo de previdência privada.

Leia mais

LISTA DE EXERCÍCIOS 9º ano 2º bim. Prof. Figo, Cebola, Sandra e Natália

LISTA DE EXERCÍCIOS 9º ano 2º bim. Prof. Figo, Cebola, Sandra e Natália 1. A idade de Paulo, em anos, é um número inteiro par que satisfaz a desigualdade x - x + 5 < 0. O número que representa a idade de Paulo pertence ao conjunto a) {1, 1, 14}. b) {15, 16, 17}. c) {18, 19,

Leia mais

1. Encontre a equação das circunferências abaixo:

1. Encontre a equação das circunferências abaixo: Nome: nº Professor(a): Série: 2ª EM. Turma: Data: / /2013 Nota: Sem limite para crescer Exercícios de Matemática II 2º Ano 2º Trimestre 1. Encontre a equação das circunferências abaixo: 2. Determine o

Leia mais

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução MTEMÁTI - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. omo a base do prisma é um quadrado, os lados adjacentes são perpendiculares,

Leia mais

Simulado Nacional ITA

Simulado Nacional ITA Simulado Nacional ITA Matemática Durate o simulado é proibido consultar qualquer tipo de material e o uso de calculadora. As respostas devem ser submetidas em paperx.com.br em até duas horas a partir do

Leia mais

Questão 21. Questão 24. Questão 22. Questão 23. alternativa D. alternativa C. alternativa A. alternativa D. a) 1/1/2013 d) 1/1/2016

Questão 21. Questão 24. Questão 22. Questão 23. alternativa D. alternativa C. alternativa A. alternativa D. a) 1/1/2013 d) 1/1/2016 Questão a) //0 d) //0 b) //0 e) //07 c) //0 Um supermercado adquiriu detergentes nos aromas limão e coco. A compra foi entregue, embalada em 0 caixas, com frascos em cada caixa. Sabendo-se que cada caixa

Leia mais

UFRGS MATEMÁTICA

UFRGS MATEMÁTICA UFRGS 00 - MATEMÁTICA ) Alguns especialistas recomendam que, para um acesso confortável aos bebedouros por parte de crianças e usuários de cadeiras de rodas, a borda desses equipamentos esteja a uma altura

Leia mais

EXTENSIVO APOSTILA 11 EXERCÍCIOS DE SALA MATEMÁTICA A

EXTENSIVO APOSTILA 11 EXERCÍCIOS DE SALA MATEMÁTICA A EXTENSIVO APOSTILA EXERCÍCIOS DE SALA MATEMÁTICA A AULA 0 0) Sendo PC Preço de Custo PV Preço de Venda PP Preço de Venda Promocional temos: PV,50 PC PP 0,80 PV Substituindo: PP = 0,80,50 PC PP =,0 PC No

Leia mais

NOTAÇÕES. R : conjunto dos números reais C : conjunto dos números complexos

NOTAÇÕES. R : conjunto dos números reais C : conjunto dos números complexos NOTAÇÕES R : conjunto dos números reais C : conjunto dos números complexos i : unidade imaginária: i = 1 z : módulo do número z C Re(z) : parte real do número z C Im(z) : parte imaginária do número z C

Leia mais

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional MA11 Números e Funções Reais Avaliação 2 GABARITO 22 de junho de 201 1. Em cada um dos itens abaixo, dê, se possível,

Leia mais

RESOLUÇÕES E RESPOSTAS

RESOLUÇÕES E RESPOSTAS MATEMÁTICA GRUPO CV 0/00 RESOLUÇÕES E RESPOSTAS QUESTÃO a) No o 40 reservatório, há 600 (= 40 + 60) litros de mistura; em cada litro há L 600 de álcool. No o reservatório, há 40 (= 80 + 60) litros de mistura;

Leia mais

BLITZ PRÓ MASTER MATEMÁTICA A. em que N 0 é a quantidade inicial, isto é, N0

BLITZ PRÓ MASTER MATEMÁTICA A. em que N 0 é a quantidade inicial, isto é, N0 MATEMÁTICA A 01. (Pucpr) O número de bactérias N em um meio de cultura que cresce exponencialmente pode kt ser determinado pela equação N N0e em que N 0 é a quantidade inicial, isto é, N0 N (0) e k é a

Leia mais

PROVAS DE MATEMÁTICA DO VESTIBULARES-2011 DA MACKENZIE RESOLUÇÃO: Profa. Maria Antônia Gouveia. 13 / 12 / 2010

PROVAS DE MATEMÁTICA DO VESTIBULARES-2011 DA MACKENZIE RESOLUÇÃO: Profa. Maria Antônia Gouveia. 13 / 12 / 2010 PROVAS DE MATEMÁTICA DO VESTIBULARES-0 DA MACKENZIE Profa. Maria Antônia Gouveia. / / 00 QUESTÃO N o 9 Dadas as funções reais definidas por f(x) x x e g(x) x x, considere I, II, III e IV abaixo. I) Ambas

Leia mais

Simulado AFA. 2. Sejam x e y números reais tais que: Então, o número complexo z = x + yi. é tal que z 3 e z valem, respectivamente: (D) i e 1.

Simulado AFA. 2. Sejam x e y números reais tais que: Então, o número complexo z = x + yi. é tal que z 3 e z valem, respectivamente: (D) i e 1. Simulado AFA 1. Uma amostra de estrangeiros, em que 18% são proficientes em inglês, realizou um exame para classificar a sua proficiência nesta língua. Dos estrangeiros que são proficientes em inglês,

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 5. Questão 3. alternativa C. alternativa E. alternativa B.

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 5. Questão 3. alternativa C. alternativa E. alternativa B. Questão TIPO DE PROVA: A Se um número natural n é múltiplo de 9ede, então, certamente, n é: a) múltiplo de 7 b) múltiplo de 0 c) divisível por d) divisível por 90 e) múltiplo de Se n é múltiplo de 9 e

Leia mais

Trigonometria no Triângulo Retângulo

Trigonometria no Triângulo Retângulo Trigonometria no Triângulo Retângulo Prof. Márcio Nascimento marcio@matematicauva.org Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina:

Leia mais

QUESTÃO 16 Na figura, há três quadrados.

QUESTÃO 16 Na figura, há três quadrados. Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 06 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 6 Na figura, há três quadrados. A B A E F

Leia mais

Gabarito da Prova de Matemática 2ª fase do Vestibular 2009

Gabarito da Prova de Matemática 2ª fase do Vestibular 2009 Gabarito da Prova de Matemática ª fase do Vestibular 009 Questão 01: (a) Enuncie o Teorema de Pitágoras Solução: Em todo triângulo retângulo, o quadrado da medida da hipotenusa é igual a soma dos quadrados

Leia mais

COLÉGIO ANCHIETA-BA. ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA

COLÉGIO ANCHIETA-BA. ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA A AVALIAÇÃO UNIDADE II -5 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. PROFA. MARIA ANTÔNIA C. GOUVEIA - (MACK) Em uma das provas de uma gincana, cada um dos 4 membros de cada equipe

Leia mais

Segunda Etapa SEGUNDO DIA 2ª ETAPA MATEMÁTICA COMISSÃO DE PROCESSOS SELETIVOS E TREINAMENTOS

Segunda Etapa SEGUNDO DIA 2ª ETAPA MATEMÁTICA COMISSÃO DE PROCESSOS SELETIVOS E TREINAMENTOS Segunda Etapa SEGUNDO DIA ª ETAPA MATEMÁTIA OMISSÃO DE PROESSOS SELETIVOS E TREINAMENTOS Matemática 01. Analise as afirmações a seguir, considerando a função f, tendo como domínio e contradomínio o x conjunto

Leia mais

3º ANO DO ENSINO MÉDIO. 1.- Quais são os coeficientes angulares das retas r e s? 60º 105º. 0 x x. a) Escreva uma equação geral da reta r.

3º ANO DO ENSINO MÉDIO. 1.- Quais são os coeficientes angulares das retas r e s? 60º 105º. 0 x x. a) Escreva uma equação geral da reta r. EXERCÍCIOS DE REVISÃO 3º BIMESTRE GEOMETRIA ANALÍTICA 3º ANO DO ENSINO MÉDIO 1.- Quais são os coeficientes angulares das retas r e s? s 60º 105º r 2.- Considere a figura a seguir: 0 x r 2 A C -2 0 2 5

Leia mais

Matemática. Ficha Extra - Temas do 2º Bim. 3 os anos Walter/Blaidi Nome: Nº: Turma:

Matemática. Ficha Extra - Temas do 2º Bim. 3 os anos Walter/Blaidi Nome: Nº: Turma: Matemática Ficha Extra - Temas do º Bim. 3 os anos Walter/Blaidi 01 Nome: Nº: Turma: 1. (PUCRS) A região plana limitada por uma semicircunferência e seu diâmetro faz uma rotação completa em torno desse

Leia mais

MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO DEP

MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO DEP MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO DEP - DEPA (Casa de Thomaz Coelho/889) CONCURSO DE ADMISSÃO Á ª SÉRIE DO ENSINO MÉDIO PROVA DE MATEMÁTICA 00/004 GABARITO QUESTÃO ALTERNATIVA B D C 4 A 5 C 6 C

Leia mais

Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b. a) a = 3, b, b R. b) a = 3 e b = 1. c) a = 3 e b 1. d) a 3

Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b. a) a = 3, b, b R. b) a = 3 e b = 1. c) a = 3 e b 1. d) a 3 01 Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b a) a = 3, b, b R b) a = 3 e b = 1 c) a = 3 e b 1 d) a 3 1 0 y = 3x + 1 m = 3 A equação que apresenta uma reta com o mesmo coeficiente angular

Leia mais

Módulo de Geometria Espacial I - Fundamentos. Poliedros. 3 ano/e.m.

Módulo de Geometria Espacial I - Fundamentos. Poliedros. 3 ano/e.m. Módulo de Geometria Espacial I - Fundamentos Poliedros. ano/e.m. Geometria Espacial I - Fundamentos Poliedros. 1 Exercícios Introdutórios Exercício 1. Um poliedro convexo tem 6 faces e 1 arestas. Determine

Leia mais

EXTENSIVO APOSTILA 04 EXERCÍCIOS DE SALA MATEMÁTICA A

EXTENSIVO APOSTILA 04 EXERCÍCIOS DE SALA MATEMÁTICA A EXTENSIVO APOSTILA 04 EXERCÍCIOS DE SALA MATEMÁTICA A AULA 10 f(x) = x 4x f(x) > 0 x < 0 ou x > 4 f(x) < 0 0 < x < 4 0) x + 3x < 0 S: {x IR / x < 1 ou x > } 03) x 10x + 9 0 S: {x IR / x 1 ou x 9} 04) São

Leia mais

Gabarito - Matemática - Grupos I e J

Gabarito - Matemática - Grupos I e J 1 a QUESTÃO: (,0 pontos) Avaliador Revisor x O gráfico da função exponencial f, definida por f( x) = k a, foi construído utilizando-se o programa de geometria dinâmica gratuito GeoGebra (http://www.geogebra.org),

Leia mais

Solução do Simulado PROFMAT/UESC 2012

Solução do Simulado PROFMAT/UESC 2012 Solução do Simulado PROFMAT/UESC 01 (1) Encontre uma fração equivalente a 9/5 cuja soma dos termos é igual a 196: (A) 96/100 (B) 106/90 (C) 116/80 (D) 16/70 (E) 136/60 9 5 = 9 5 14 14 = 16 70 () Um grupo

Leia mais

Exame Nacional de a chamada

Exame Nacional de a chamada Exame Nacional de 007. a chamada 1. O Paulo tem dois dados, um branco e um preto, ambos equilibrados e com a forma de um cubo. As faces do dado branco estão numeradas de 1 a, e as do dado preto estão numeradas

Leia mais

Fazendo a decomposição dessas forças, um aluno escreveu o seguinte sistema de equações: log cotg 10º + log cotg 80º é:

Fazendo a decomposição dessas forças, um aluno escreveu o seguinte sistema de equações: log cotg 10º + log cotg 80º é: Módulos 9, 0, 7 e 8 Matemática º EM 1) (Exame de Qualificação UERJ 00) Um corpo de peso P encontra-se em equilíbrio, suspenso por três cordas inextensíveis. Observe, na figura, o esquema das forças T 1

Leia mais

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 16/10/2016 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES: 1.

Leia mais

Colégio Santa Dorotéia

Colégio Santa Dorotéia Colégio Santa Dorotéia Área de Disciplina: Série: ª - Ensino Médio Professor: Elias Atividades para Estudos Autônomos Data: 8 / 3 / 016 QUESTÃO 1 (UEMG) O desenho ao lado representa uma caixa de madeira

Leia mais

GEOMETRIA ESPACIAL

GEOMETRIA ESPACIAL GEOMETRIA ESPACIAL - 016 1. (Unicamp 016) Considere os três sólidos exibidos na figura abaixo, um cubo e dois paralelepípedos retângulos, em que os comprimentos das arestas, a e b, são tais que a b 0.

Leia mais

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON PROFJWPS@GMAIL.COM DEFINIÇÕES GEOMETRIA PLANA Ponto: Um elemento do espaço que define uma posição. Reta: Conjunto infinito de pontos. Dois pontos são

Leia mais

P (A) n(a) AB tra. Observação: Os sistemas de coordenadas considerados são cartesianos retangulares.

P (A) n(a) AB tra. Observação: Os sistemas de coordenadas considerados são cartesianos retangulares. NOTAÇÕES N = f; ; 3; : : :g i : unidade imaginária: i = R : conjunto dos números reais jzj : módulo do número z C C : conjunto dos números complexos Re z : parte real do número z C [a; b] = fx R; a x bg

Leia mais

30's Volume 18 Matemática

30's Volume 18 Matemática 0's Volume 18 Matemática wwwcursomentorcom 0 de dezembro de 2014 Q1 Num cilindro reto de base circular, cujo diâmetro mede 2 m, e de altura igual a 10 m, faz-se um furo central, vazando-se esse cilindro,

Leia mais